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We propose an efficient inverse design approach for multi-
functional optical elements based on adaptive deep diffrac-
tive neural networks (a-D2NNs). Specifically, we introduce
a-D2NNs and design two-layer diffractive devices that can
selectively focus incident radiation over two well-separated
spectral bands at desired distances. We investigate focusing
efficiencies at two wavelengths and achieve targeted spectral
line shapes and spatial point-spread functions (PSFs) with
optimal focusing efficiency. In particular, we demonstrate
control of the spectral bandwidths at separate focal posi-
tions beyond the theoretical limit of single-lens devices with
the same aperture size. Finally, we demonstrate devices that
produce super-oscillatory focal spots at desired wavelengths.
The proposed method is compatible with current diffractive
optics and doublet metasurface technology for ultracompact
multispectral imaging and lensless microscopy applications.
© 2022 Optica Publishing Group
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Multifunctional diffractive optical elements (DOEs), when inte-

grated atop on-chip detectors, enable ultracompact imaging

functionalities for miniaturized flat cameras and microscopes

[1–4]. Multispectral behavior is often achieved by partitioning

single-layer devices into separate phase regions that affect dif-

ferent wavelengths. However, this design limits the maximum

efficiency achievable at each wavelength, which is a significant

challenge for DOEs working at multiple wavelengths [5,6]. This

is because when one specific wavelength illuminates the entire

device, only the phase region designed to operate at that wave-

length will produce the desired output, while the other part of

the illuminated device area will not, thus requiring a different

approach.

To address this important challenge, we propose here novel

multi-layer designs based on the flexibility of adaptive deep

diffractive neural networks (a-D2NNs) for the engineering of

multi-layered diffractive devices with targeted spectral response

and spatial point-spread functions (PSFs) at different wave-

lengths. Recently, deep diffractive neural networks (D2NNs) that

combine optical diffraction with deep learning capabilities have

been reported and applied to all-optical diffraction-based sys-

tems that implement object recognition [7]. Moreover, D2NNs

have also been demonstrated successfully for the inverse design

of multi-layered diffractive devices that achieve pulse shaping

[8] and broadband filtering [9]. These devices are macroscopic,

with typical dimensions up to a few centimeters and are fabri-

cated using 3D printing for applications in the terahertz domain

[8,9]. However, the design of diffractive devices that cover

multiple spectral bands in the optical regime is very challeng-

ing and requires a more flexible implementation of the D2NN

platform.

In this paper, we introduce and utilize a-D2NN that lever-

ages an adaptive loss weight algorithm for the inverse design

of two-layer, ultracompact, dual-band DOEs. The a-D2NNs are

trained to maximize the focusing efficiencies for λ1 at f1 and λ2

at f2. The engineered devices show efficiencies over 50% at both

targeted wavelengths, exceeding the limit of phase-modulated

single-layer DOEs [5,6,10]. We systematically investigate how

the focusing efficiencies vary with the distance between the two

diffractive layers and the pixel size, taking into account practical

fabrication constraints. We also investigate how the efficiency is

affected by the phase discretization level of the proposed diffrac-

tive devices. In addition, the obtained phase designs can also be

implemented using current metasurface technology [1,11–13],

including the recently developed doublet metasurface fabrica-

tion approach [14,15]. An important aspect of our approach

is the design of the spectral line shapes of DOEs. In fact, we

demonstrate dual-band devices with designed bandwidths that

are narrower than diffractive lenses with the same aperture size.

Finally, we show that a-D2NNs can be implemented to design

devices with desired spatial PSFs, including DOEs that produce

super-oscillatory fields with focal spots below the diffraction

limit [16].

Figure 1(a) illustrates the general two-layer diffractive device

concept consisting of two diffractive phase plates located on both

sides of a transparent substrate. The varying thickness profiles

of the materials on the phase plates impart different phase shifts

to the waves that propagate through the device. The design of

the a-D2NN that implements such a device is shown schemati-

cally in Fig. 1(b), where the two diffractive layers of the a-D2NN

correspond to the two phase plates of the device. We imple-

ment the Rayleigh–Sommerfeld (RS) first integral formulation

within the a-D2NN in order to simulate the forward light prop-

agation from one plane to the next one, according to the model
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Fig. 1. (a) Two-layer dual-band DOE and (b) D2NN represen-

tation. (c) Focusing efficiency spectra for the device in (a) with

a-D2NN. (d) Side view of normalized diffraction intensity at λ1 and

λ2.

[2,10]:

Ao (x′, y′) = As (x, y) ∗ h(x, y; x′, y′; z, k) (1)

h(x, y; z, k) =
1

2π

z
r

(
1

r
− jk

)
ejkr

r
, (2)

where ∗ denotes the two-dimensional spatial convolution and

Ao, As are the transverse field distributions on the source and

observation plane with coordinates (x, y) and (x′, y′), respec-

tively. Moreover, k = 2πn/λ is the wavenumber, where λ is the

incident wavelength in vacuum and n is the index of medium

between the two planes. We use r =
√

x2 + y2 + z2, where z is

the distance between the two planes. In our two-layer DOE, we

first compute the forward propagation from plane z = 0 to plane

z = d at wavelengths λ1 and λ2. Then the field distributions on

the focal plane for λ1 at z = d + f1 and for λ2 at z = d + f2 are

calculated. We then utilize the a-D2NN to maximize the focus-

ing efficiency η at these two focal planes, using the following

definition for the focusing efficiency [10]:

η(λ, z) =

∫ 2π

0

∫ 3FWHM/2

0
I′ (λ, z, ρ′, θ′) dr′dθ′∬

I(λ, z = 0, ρ, θ)dS
, (3)

where I′ denotes the intensity distribution on the focal plane,

I denotes the intensity distribution on the input plane, and

S denotes the input plane aperture. The symbols (ρ, θ) and

(ρ′, θ′) are the polar coordinates on the focal and input plane,

respectively.

The focusing efficiency is utilized in the loss function of the

a-D2NN as

L = w1(1 − η1)
2 + w2(1 − η2)

2, (4)

where η1 = η(λ1, d + f1), η2 = η(λ2, d + f2), and w1 and w2 are

the loss weights. Based on the definition of a suitable loss func-

tion, the a-D2NN is directly trained using error backpropagation

within the diffractive layers without the need of training datasets.

Therefore, the a-D2NN achieves a more efficient inverse design

of complex phase devices compared with data-driven neural

network approaches [17,18]. Specifically, a-D2NNs are trained

by varying the phase profiles of the two diffractive layers in

order to minimize L. We train the latent variable h� on each

pixel of the diffractive layers related to the material thickness

h by h = hmax(sin(h� ) + 1)/2, where hmax is the specified maxi-

mum thickness of the device. The phase profile φ(x, y) induced

by diffractive layers at wavelength λ is φ = 2π(n − 1)h/λ. As

a proof of concept, we select λ1 = 632.8 nm, λ2 = 808 nm,

f1 = 80μm, and f2 = 110μm, which were used in our previous

work [10]. The two diffractive layers are square apertures with

L = 100μm side length and the device pixel size isΔx = 200 nm.

We assume that the substrate index n = 3, hmax = 500 nm,

and thickness d = 200μm. Differently from the usual D2NN

approach, here we implement adaptive loss weights that balance

the interplay between different loss terms automatically depend-

ing on their values [19,20]. In particular, we apply the following

updates for wm(m = 1, 2) at the kth epoch of training:

wk
m ← wk−1

m + γ(1 − ηm)
2, (5)

where γ is the learning rate for loss weights update and we

choose γ = 1. We use a desktop with GeForce GTX 1080 Ti

graphical processing unit (GPU, Nvidia Inc.), an Intel i7-8700K

central processing unit (CPU, Intel Inc.) and 32 GB of RAM

for training. We trained the a-D2NN over 2000 epochs using

an Adam optimizer with learning rate equal to 0.1. The typ-

ical training time is only ∼10 min. In Fig. 1(c), we show the

obtained focusing efficiency spectra of the device at f1 and f2.
Specifically, we observe that η(f1, λ) and η(f2, λ) are peaked at λ1

and λ2, respectively, and that both η1 and η2 values exceed 50%.

Therefore, the designed two-layer dual-band device exceeds the

efficiency limit expected in a single-layer DOE. Moreover, in

Fig. 1(d), we display the side view of the normalized intensity

diffraction of the device, clearly showing that the two targeted

wavelengths λ1 and λ2 are well focused at the designed focal

lengths f1 and f2, respectively.

We further investigate the influence of the distance d between

the two diffractive layers, while keeping all the other parameters

as specified previously. The obtained values of η1 and η2 for

devices with different d are shown in Fig. 2(a), which demon-

strates that, for all the devices, the values of η1 and η2 remain

above 50%. We next consider the discretization of the obtained

continuous phase profiles into discrete levels used for scalable

lithographic fabrication [2,10]. Figure 2(b) displays how the

number of discretized levels of the device affect η1 and η2. In

particular, we find that η1 and η2 increase with the number of

phase levels used, with a similar scaling to the one reported for

the diffraction efficiency of multi-level gratings [21]. In particu-

lar, we observe that our two-layer device can achieve η1 = 46%

and η2 = 52% when only eight discretization levels are used. The

Fig. 2. (a) Focusing efficiency with respect to distance d between

the two diffractive layers. (b) Focusing efficiency with respect to

number of discrete phase levels. The inset shows the dependence of

the focusing efficiencies on the pixel size (minimum spatial feature

of the phase profile).
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inset of Fig. 2(b) displays the focusing efficiency with respect

to the pixel size Δx. Devices with smaller Δx achieve larger

η1 and η2 efficiencies as they accommodate faster phase varia-

tions. Therefore, our analysis indicates that the proposed devices

can be conveniently engineered using current multi-level DOE

technology [2,10] as well as planar metasurfaces that provide

nanoscale phase resolution (50–300 nm) [1,11,12,14].

Another important advantage of the DOE design based on a-

D2NNs is that we can engineer spectral line shapes by modifying

the loss function used for training the network. To demonstrate

this capability, we train a-D2NNs to obtain devices with spec-

tral line shapes for the focusing efficiency ηtm(fm, λ) (m = 1, 2)

described by

ηtm(fm, λ) = exp

[
−4 log(2)

(
λ − λm

σm

)2
]

(m = 1, 2), (6)

where λm and σm (m = 1, 2) are the center wavelength and

FWHM of the targeted Gaussian spectral line shape, respec-

tively. We modify the loss function in the a-D2NN as

L =
∑
m=1,2

N∑
k=1

wm(1 − ηm)
2 +

1

N
wsm

[
ηm ∗ ηtm(fm, λm

k )

−ηm(fm, λm
k )
] 2

,

(7)

where wsm(m = 1, 2) is the loss weight for the spectral line shape

loss term. The first term is the same used in Eq. (4). For the

second term, we sample N discrete wavelengths of the target

spectrum uniformly from λm
min to λm

max centered at λm(m = 1, 2)

and evaluate the focusing efficiencies over these wavelengths.

The mean squared error (MSE) between the obtained ηm(fm, λm
k )

and the target line shape ηtm(fm, λ) with its maximum rescaled

to ηm is then calculated. During the training process, we apply

the adaptive loss weights for both wm and wsm. We train the a-

D2NN with the same parameters used to generate Fig. 1 and we

fix σ1 = σ2 = σ. In particular, we sampled N = 30 wavelengths

over two ranges between λm
min = λm − 3σ and λm

max = λm + 3σ.

The a-D2NN is trained over 2000 epochs. We show the spectral

results for the device trained using σ = 10 nm and σ = 40 nm in

Figs. 3(a) and 3(b), respectively. Furthermore, in Fig. 3(c), we

display how η1 and η2 vary for devices optimized with different

σ. A sharp drop of focusing efficiency is observed when the

width of the targeted Gaussian line shape is decreasing below

Fig. 3. Spectral line shapes with (a) σ = 10 nm and (b) σ =
40 nm. (c) η1 and η2 with respect toσ. (d) Normalized field intensity

spectra for σ = 10 nm at f1 (solid blue) and f2 (solid red) compared

with single diffractive lenses with focus λ1 at f1 (dashed blue) and λ2

at f2 (dashed red). (e), (f) Wavelength dependence of focal lengths

around λ1 and λ2, respectively.

20 nm. We also evaluate the normalized field intensity spectra

at the origin of focal planes at f1 and f2 for the device with

σ = 10 nm. We compare our results with those of two diffractive

lenses with the same dimension that focus λ1 at f1 and λ2 at f2.
The analytical expression for the normalized intensity spectrum

Im(λ) of a diffractive lens that focuses λm at fm (m = 1, 2) is given

by [22]

Im(λ) =

[
sin(um(λ)/4)

um(λ)/4

] 2

, (8)

where we defined

um =
2π

λ

(
L
2

)2 (
λ

fmλm
−

1

fm

)
.

As shown in Fig. 3(d), two-layer devices designed using the

a-D2NN method can feature significantly narrower bandwidths

than diffractive lenses at both λ1 and λ2. Recalling that the

intensity spectrum for a diffractive lens is completely deter-

mined once the parameters L, λm, and fm are fixed, we appreciate

that the designed two-layer DOEs provide the additional capa-

bility to tailor spectral line shapes for a given aperture size.

To better understand how the obtained devices achieve narrow

bandwidths, we evaluate the spectral dependence of their focal

lengths near λ1 and λ2 and compare with diffractive lenses in

Figs. 3(e) and 3(f), respectively. Our findings show that the

focal lengths of the designed dual-band devices vary faster with

respect to the wavelength than do in traditional diffractive lenses.

Therefore, they can achieve enhanced spectral selectivity (nar-

rower bandwidths), owing to their stronger defocusing behavior

when varying the incident wavelengths.

We finally implement a-D2NNs for the inverse design of two-

layer DOEs with the desired focusing PSF. We model the PSF as

a two-dimensional Gaussian function on the focal plane fm(m =
1, 2):

Itm(x, y, zm, λm) = exp

[
−4 log(2)

(
x2 + y2

(αεm)2

)]
, (9)

where zm = d + fm is the focal plane z-coordinate for λm, α is a

scaling constant that quantifies the degree of spatial localization

of the designed focal spot with respect to the Rayleigh diffrac-

tion limit, which is achieved for α = 1, and εm = 0.51λmfm/L is

the diffraction limited FWHM of the focal spot. To obtain the

desired spatial PSFs, we implement the following loss function

for training:

L =
∑
m=1,2

∑
x,y

wm(1 − ηm)
2 + wpm

[
Im(0, 0, zm, λm)

∗ Itm(x, y, zm, λm) − Im(x, y, zm, λm)
]2

,

(10)

where wpm is the loss weight for the loss term of squared error

between the device real PSF Im(x, y, zm, λm) and the targeted PSF

Itm(x, y, zm, λm), with its maximum rescaled to Im(0, 0, zm, λm). In

particular, we trained an a-D2NN using α = 0.4, which corre-

sponds to a FWHM below the diffraction limit. The intensity

cuts through the center of the focal spots at λ1 and λ2 are shown

in Figs. 4(a) and 4(b), respectively. The dashed lines are the

targeted PSF used for training the network. The obtained inten-

sity profiles indicate the formation of optical super-oscillations,

which have been shown to result in arbitrarily small energy con-

centration without the assistance of evanescent waves [23,24].

We note that the obtained PSFs exhibit the presence of signifi-

cant sidebands compared with the targeted Gaussian PSF. This
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is due to the fundamental nature of super-oscillations in which

enhanced (sub-diffractive) field focusing can only be achieved

at the expense of a polynomial increase in the power directed

into the sidebands [16]. Owing to their extreme localization

properties, optical super-oscillations have found applications in

sub-wavelength imaging and microscopy [25]. To demonstrate

super-oscillations in our devices, we studied the phase gradient

|∇φ| of the diffracted field on the focal plane, which corresponds

to a local wavenumber. Super-oscillations form when |∇φ|>km,

where km = 2π/λm (m = 1, 2) are the incident wavenumbers. In

Figs. 4(a) and 4(b), we display, for the two wavelengths of inter-

est, the phase gradient profiles of the fields normalized by km.

We notice that the peaks of |∇φ|/km exceed unity around the

designed focal spots, demonstrating the super-oscillation char-

acter of the waves. We further show the two-dimensional focal

intensity distributions and |∇φ|/km maps on the two different

focal planes in Figs. 4(c) and 4(d) and Figs. 4(e) and 4(f),

respectively. In Figs. 4(g) and 4(h), we summarize our results

for the variation of focusing efficiencies with respect to the

localization parameter α. We note that the focusing efficiencies

Fig. 4. (a) Normalized transverse intensities at λ1 (blue solid

line) and (b) at λ1 (red solid line) and corresponding phase gradients

across the focal spots. (c), (d) Focal plane intensity profiles at λ1 and

λ2, respectively, with α = 0.4. (e), (f) Normalized phase gradient

maps at the focal planes for λ1 and λ2, respectively. For better

visualization, the range of the color bars is limited to [0, 1]. (g), (h)

η1 and η2 with respect to α.

slightly decrease with increasing α if α>1, while they suddenly

drop to almost zero for decreasing α when α<1, consistently

with the super-oscillating regime [23,24].

In conclusion, we introduced an inverse design approach

for a dual-band multi-focal DOE based on flexible a-D2NNs.

We demonstrate novel two-layer designs that show η1, η2>50%,

beyond the limit of single-layer DOEs working at two wave-

lengths. Furthermore, we showed the designs of DOEs with

desired spectral line shapes and FWHM down to σ = 5 nm.

Finally, we show PSF engineering with designed super-

oscillatory focal spots below the diffraction limit. The flexible

approach introduced here enables the engineering of two-layer

diffractive devices with desired spectral and spatial responses

for multi-band imaging and microscopy applications.
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