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We propose an efficient inverse design approach for multi-
functional optical elements based on adaptive deep diffrac-
tive neural networks (a-D?’NNs). Specifically, we introduce
a-D*NNs and design two-layer diffractive devices that can
selectively focus incident radiation over two well-separated
spectral bands at desired distances. We investigate focusing
efficiencies at two wavelengths and achieve targeted spectral
line shapes and spatial point-spread functions (PSFs) with
optimal focusing efficiency. In particular, we demonstrate
control of the spectral bandwidths at separate focal posi-
tions beyond the theoretical limit of single-lens devices with
the same aperture size. Finally, we demonstrate devices that
produce super-oscillatory focal spots at desired wavelengths.
The proposed method is compatible with current diffractive
optics and doublet metasurface technology for ultracompact
multispectral imaging and lensless microscopy applications.
© 2022 Optica Publishing Group

https://doi.org/10.1364/0OL.460186

Multifunctional diffractive optical elements (DOEs), when inte-
grated atop on-chip detectors, enable ultracompact imaging
functionalities for miniaturized flat cameras and microscopes
[1-4]. Multispectral behavior is often achieved by partitioning
single-layer devices into separate phase regions that affect dif-
ferent wavelengths. However, this design limits the maximum
efficiency achievable at each wavelength, which is a significant
challenge for DOEs working at multiple wavelengths [5,6]. This
is because when one specific wavelength illuminates the entire
device, only the phase region designed to operate at that wave-
length will produce the desired output, while the other part of
the illuminated device area will not, thus requiring a different
approach.

To address this important challenge, we propose here novel
multi-layer designs based on the flexibility of adaptive deep
diffractive neural networks (a-D*NNs) for the engineering of
multi-layered diffractive devices with targeted spectral response
and spatial point-spread functions (PSFs) at different wave-
lengths. Recently, deep diffractive neural networks (D*NNGs) that
combine optical diffraction with deep learning capabilities have
been reported and applied to all-optical diffraction-based sys-
tems that implement object recognition [7]. Moreover, D*NNs
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have also been demonstrated successfully for the inverse design
of multi-layered diffractive devices that achieve pulse shaping
[8] and broadband filtering [9]. These devices are macroscopic,
with typical dimensions up to a few centimeters and are fabri-
cated using 3D printing for applications in the terahertz domain
[8,9]. However, the design of diffractive devices that cover
multiple spectral bands in the optical regime is very challeng-
ing and requires a more flexible implementation of the D*NN
platform.

In this paper, we introduce and utilize a-D’NN that lever-
ages an adaptive loss weight algorithm for the inverse design
of two-layer, ultracompact, dual-band DOEs. The a-D*NNs are
trained to maximize the focusing efficiencies for A, at f; and A,
at f>. The engineered devices show efficiencies over 50% at both
targeted wavelengths, exceeding the limit of phase-modulated
single-layer DOEs [5,6,10]. We systematically investigate how
the focusing efficiencies vary with the distance between the two
diffractive layers and the pixel size, taking into account practical
fabrication constraints. We also investigate how the efficiency is
affected by the phase discretization level of the proposed diffrac-
tive devices. In addition, the obtained phase designs can also be
implemented using current metasurface technology [1,11-13],
including the recently developed doublet metasurface fabrica-
tion approach [14,15]. An important aspect of our approach
is the design of the spectral line shapes of DOEs. In fact, we
demonstrate dual-band devices with designed bandwidths that
are narrower than diffractive lenses with the same aperture size.
Finally, we show that a-D?NNs can be implemented to design
devices with desired spatial PSFs, including DOEs that produce
super-oscillatory fields with focal spots below the diffraction
limit [16].

Figure 1(a) illustrates the general two-layer diffractive device
concept consisting of two diffractive phase plates located on both
sides of a transparent substrate. The varying thickness profiles
of the materials on the phase plates impart different phase shifts
to the waves that propagate through the device. The design of
the a-D>NN that implements such a device is shown schemati-
cally in Fig. 1(b), where the two diffractive layers of the a-D*NN
correspond to the two phase plates of the device. We imple-
ment the Rayleigh—-Sommerfeld (RS) first integral formulation
within the a-D’NN in order to simulate the forward light prop-
agation from one plane to the next one, according to the model
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Fig. 1. (a) Two-layer dual-band DOE and (b) D°NN represen-
tation. (c) Focusing efficiency spectra for the device in (a) with
a-D2NN. (d) Side view of normalized diffraction intensity at A, and
A>.
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where * denotes the two-dimensional spatial convolution and
A,, A, are the transverse field distributions on the source and
observation plane with coordinates (x,y) and (x',y’), respec-
tively. Moreover, k = 2zrn/A is the wavenumber, where A is the
incident wavelength in vacuum and 7 is the index of medium
between the two planes. We use r = /x> + y? + 22, where z is
the distance between the two planes. In our two-layer DOE, we
first compute the forward propagation from plane z = 0 to plane
z = d at wavelengths A; and A,. Then the field distributions on
the focal plane for A, at z=d +f; and for A, at z =d + f, are
calculated. We then utilize the a-D’NN to maximize the focus-
ing efficiency n at these two focal planes, using the following
definition for the focusing efficiency [10]:

/Ozn /03FWHM/2 I (/l,Z, o, 0/) drde’
[[1(A,z=0,p,6)ds

where I’ denotes the intensity distribution on the focal plane,
I denotes the intensity distribution on the input plane, and
S denotes the input plane aperture. The symbols (p,8) and
(p’, ) are the polar coordinates on the focal and input plane,
respectively.

The focusing efficiency is utilized in the loss function of the
a-D?NN as

n(4,z) = ©)

L=w((- 771)2 +wy(1 - 7]2)29 4)

where 1, = n(A,,d + 1), m, = n(A,,d + f>), and w, and w, are
the loss weights. Based on the definition of a suitable loss func-
tion, the a-D*NN is directly trained using error backpropagation
within the diffractive layers without the need of training datasets.
Therefore, the a-D’NN achieves a more efficient inverse design
of complex phase devices compared with data-driven neural
network approaches [17,18]. Specifically, a-D*NNs are trained
by varying the phase profiles of the two diffractive layers in
order to minimize .£. We train the latent variable /&, on each
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pixel of the diffractive layers related to the material thickness
h by h = hy(sin(h,) + 1)/2, where hy,, is the specified maxi-
mum thickness of the device. The phase profile ¢(x,y) induced
by diffractive layers at wavelength A is ¢ = 2z(n — 1)h/A. As
a proof of concept, we select A; = 632.8nm, 4, = 808 nm,
fi =80 um, and f5 = 110 um, which were used in our previous
work [10]. The two diffractive layers are square apertures with
L = 100 um side length and the device pixel size is Ax = 200 nm.
We assume that the substrate index n =3, Ay, = 500nm,
and thickness d = 200 um. Differently from the usual D*NN
approach, here we implement adaptive loss weights that balance
the interplay between different loss terms automatically depend-
ing on their values [19,20]. In particular, we apply the following
updates for w,,(m = 1,2) at the kth epoch of training:

wh —wit +y(1 - 7n,), (5)

where 7y is the learning rate for loss weights update and we
choose y = 1. We use a desktop with GeForce GTX 1080 Ti
graphical processing unit (GPU, Nvidia Inc.), an Intel i7-8700K
central processing unit (CPU, Intel Inc.) and 32 GB of RAM
for training. We trained the a-D?NN over 2000 epochs using
an Adam optimizer with learning rate equal to 0.1. The typ-
ical training time is only ~10min. In Fig. 1(c), we show the
obtained focusing efficiency spectra of the device at f; and f;.
Specifically, we observe that 1(f;, 1) and 5(f», 1) are peaked at 4,
and A,, respectively, and that both 7, and 7, values exceed 50%.
Therefore, the designed two-layer dual-band device exceeds the
efficiency limit expected in a single-layer DOE. Moreover, in
Fig. 1(d), we display the side view of the normalized intensity
diffraction of the device, clearly showing that the two targeted
wavelengths A, and A, are well focused at the designed focal
lengths f; and f,, respectively.

We further investigate the influence of the distance d between
the two diffractive layers, while keeping all the other parameters
as specified previously. The obtained values of 7, and 5, for
devices with different d are shown in Fig. 2(a), which demon-
strates that, for all the devices, the values of 1, and 7, remain
above 50%. We next consider the discretization of the obtained
continuous phase profiles into discrete levels used for scalable
lithographic fabrication [2,10]. Figure 2(b) displays how the
number of discretized levels of the device affect 1, and 7,. In
particular, we find that n, and 7, increase with the number of
phase levels used, with a similar scaling to the one reported for
the diffraction efficiency of multi-level gratings [21]. In particu-
lar, we observe that our two-layer device can achieve n; = 46%
and 17, = 52% when only eight discretization levels are used. The
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Fig. 2. (a) Focusing efficiency with respect to distance d between
the two diffractive layers. (b) Focusing efficiency with respect to
number of discrete phase levels. The inset shows the dependence of
the focusing efficiencies on the pixel size (minimum spatial feature
of the phase profile).
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inset of Fig. 2(b) displays the focusing efficiency with respect
to the pixel size Ax. Devices with smaller Ax achieve larger
n, and 7, efficiencies as they accommodate faster phase varia-
tions. Therefore, our analysis indicates that the proposed devices
can be conveniently engineered using current multi-level DOE
technology [2,10] as well as planar metasurfaces that provide
nanoscale phase resolution (50-300nm) [1,11,12,14].

Another important advantage of the DOE design based on a-
D*NNss is that we can engineer spectral line shapes by modifying
the loss function used for training the network. To demonstrate
this capability, we train a-D?NNs to obtain devices with spec-
tral line shapes for the focusing efficiency 7,,(f,,, 1) (m =1,2)
described by

(m=1,2), (6)

m

Mn(fns A) = €XP [—4 log(2) (’1 ;’1)

where 4, and o, (m=1,2) are the center wavelength and
FWHM of the targeted Gaussian spectral line shape, respec-
tively. We modify the loss function in the a-D*NN as

N
1
L = Wm(l - nm)z + W T]m * T]tm(f;'lu /lm)
2.2 vl o

_nm(ﬁn’ /lkm)] ’ >

where w,,(m = 1,2) is the loss weight for the spectral line shape
loss term. The first term is the same used in Eq. (4). For the
second term, we sample N discrete wavelengths of the target
spectrum uniformly from A7, to A%  centered at A4,,(m = 1,2)
and evaluate the focusing efliciencies over these wavelengths.
The mean squared error (MSE) between the obtained 7,,(f,,, A}")
and the target line shape 7,,(f,,, 4) with its maximum rescaled
to n,, is then calculated. During the training process, we apply
the adaptive loss weights for both w,, and w,,. We train the a-
D?NN with the same parameters used to generate Fig. 1 and we
fix oy = 0, = 0. In particular, we sampled N = 30 wavelengths
over two ranges between A7 =4, —30 and A =4, + 30.
The a-D’NN is trained over 2000 epochs. We show the spectral
results for the device trained using o = 10nm and oo = 40 nm in
Figs. 3(a) and 3(b), respectively. Furthermore, in Fig. 3(c), we
display how 7; and 7, vary for devices optimized with different
o. A sharp drop of focusing efficiency is observed when the
width of the targeted Gaussian line shape is decreasing below
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Fig. 3. Spectral line shapes with (a) oo = 10nm and (b) o =
40 nm. (c) n; and 1, with respect to 0. (d) Normalized field intensity
spectra for o = 10 nm at f; (solid blue) and f> (solid red) compared
with single diffractive lenses with focus 4, at f; (dashed blue) and A,
at f> (dashed red). (e), (f) Wavelength dependence of focal lengths
around 4, and A, respectively.
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20nm. We also evaluate the normalized field intensity spectra
at the origin of focal planes at f; and f, for the device with
o = 10 nm. We compare our results with those of two diffractive
lenses with the same dimension that focus 4, at f; and 4, at f5.
The analytical expression for the normalized intensity spectrum
1,,(2) of a diffractive lens that focuses 4,, atf,, (m = 1,2) is given
by [22]

sin(u,()/4) |

/4| ®

Im(/l) = |:

where we defined

o (LY A4 1
w3 (3) )

As shown in Fig. 3(d), two-layer devices designed using the
a-D’NN method can feature significantly narrower bandwidths
than diffractive lenses at both 4, and A,. Recalling that the
intensity spectrum for a diffractive lens is completely deter-
mined once the parameters L, 4,,, and f,, are fixed, we appreciate
that the designed two-layer DOEs provide the additional capa-
bility to tailor spectral line shapes for a given aperture size.
To better understand how the obtained devices achieve narrow
bandwidths, we evaluate the spectral dependence of their focal
lengths near A; and A, and compare with diffractive lenses in
Figs. 3(e) and 3(f), respectively. Our findings show that the
focal lengths of the designed dual-band devices vary faster with
respect to the wavelength than do in traditional diffractive lenses.
Therefore, they can achieve enhanced spectral selectivity (nar-
rower bandwidths), owing to their stronger defocusing behavior
when varying the incident wavelengths.

We finally implement a-D*NNss for the inverse design of two-
layer DOEs with the desired focusing PSF. We model the PSF as
a two-dimensional Gaussian function on the focal plane f,,(m =
1,2):

x2+y2) , ©)

L, (X, Y, 2y, A) = €XP [—4 log(2) (—

(a€,)

where z,, = d + f,, is the focal plane z-coordinate for 4, @ is a

scaling constant that quantifies the degree of spatial localization

of the designed focal spot with respect to the Rayleigh diffrac-

tion limit, which is achieved for @ = 1, and €, = 0.514,,f,,/L is

the diffraction limited FWHM of the focal spot. To obtain the

desired spatial PSFs, we implement the following loss function
for training:

L= w1 =0, + W, [1,(0,0,2,, 4,)
m=12 xy (1 o)

* Itm('xa Y, Zms /lm) - Im('x’ Vs Zms /lm)]27

where w,, is the loss weight for the loss term of squared error
between the device real PSF I,,(x, y, z,,, 4,,) and the targeted PSF
Lw(X, Y, Zun, A,n), With its maximum rescaled to 7,,(0, 0, z,,, 4,,). In
particular, we trained an a-D’NN using @ = 0.4, which corre-
sponds to a FWHM below the diffraction limit. The intensity
cuts through the center of the focal spots at 4, and A, are shown
in Figs. 4(a) and 4(b), respectively. The dashed lines are the
targeted PSF used for training the network. The obtained inten-
sity profiles indicate the formation of optical super-oscillations,
which have been shown to result in arbitrarily small energy con-
centration without the assistance of evanescent waves [23,24].
We note that the obtained PSFs exhibit the presence of signifi-
cant sidebands compared with the targeted Gaussian PSF. This




Letter

is due to the fundamental nature of super-oscillations in which
enhanced (sub-diffractive) field focusing can only be achieved
at the expense of a polynomial increase in the power directed
into the sidebands [16]. Owing to their extreme localization
properties, optical super-oscillations have found applications in
sub-wavelength imaging and microscopy [25]. To demonstrate
super-oscillations in our devices, we studied the phase gradient
|V¢| of the diffracted field on the focal plane, which corresponds
to a local wavenumber. Super-oscillations form when |V¢|>k,,,
where k,, = 27/A,, (m = 1,2) are the incident wavenumbers. In
Figs. 4(a) and 4(b), we display, for the two wavelengths of inter-
est, the phase gradient profiles of the fields normalized by k,,.
We notice that the peaks of |V¢|/k, exceed unity around the
designed focal spots, demonstrating the super-oscillation char-
acter of the waves. We further show the two-dimensional focal
intensity distributions and |V¢|/k, maps on the two different
focal planes in Figs. 4(c) and 4(d) and Figs. 4(e) and 4(f),
respectively. In Figs. 4(g) and 4(h), we summarize our results
for the variation of focusing efficiencies with respect to the
localization parameter @. We note that the focusing efficiencies
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Fig. 4. (a) Normalized transverse intensities at 4; (blue solid
line) and (b) at 4, (red solid line) and corresponding phase gradients
across the focal spots. (c), (d) Focal plane intensity profiles at 4; and
Ay, respectively, with @ = 0.4. (e), (f) Normalized phase gradient
maps at the focal planes for 4, and A,, respectively. For better
visualization, the range of the color bars is limited to [0, 1]. (g), (h)
m and i, with respect to a.
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slightly decrease with increasing « if > 1, while they suddenly
drop to almost zero for decreasing @ when a <1, consistently
with the super-oscillating regime [23,24].

In conclusion, we introduced an inverse design approach
for a dual-band multi-focal DOE based on flexible a-D*NNs.
We demonstrate novel two-layer designs that show 7, 177,>50%,
beyond the limit of single-layer DOEs working at two wave-
lengths. Furthermore, we showed the designs of DOEs with
desired spectral line shapes and FWHM down to o = Snm.
Finally, we show PSF engineering with designed super-
oscillatory focal spots below the diffraction limit. The flexible
approach introduced here enables the engineering of two-layer
diffractive devices with desired spectral and spatial responses
for multi-band imaging and microscopy applications.
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