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Abstract

Using High-Level Synthesis (HLS), the hardware designers must

describe only a high-level behavioral flow of the design. However,

it still can take weeks to develop a high-performance architecture

mainly because there are many design choices at a higher level

to explore. Besides, it takes several minutes to hours to evaluate

the design with the HLS tool. To solve this problem, we model

the HLS tool with a graph neural network that is trained to be

used for a wide range of applications. The experimental results

demonstrate that our model can estimate the quality of design in

milliseconds with high accuracy, resulting in up to 79× speedup

(with an average of 48×) for optimizing the design compared to the

previous state-of-the-art work relying on the HLS tool.
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1 Introduction

High-Level Synthesis (HLS) was introduced to simplify the FPGA

programming by raising the abstraction level in design and soon

was embraced by both academia and industry [4, 16]. This is be-

cause the HLS tools let the designers optimize their microarchitec-

ture quickly by inserting a few synthesis directives in the form of

pragmas. This feature can potentially help shorten the design devel-

opment cycle. However, not every HLS design has a good quality of

results [17]. Thus, one often has to explore many design choices for

each new application since the solution space grows exponentially

by the number of candidate pragmas. This can negatively impact

the design turn-around times.

To speed up the design optimization, a new line of research has

been created with the focus on automating the design space explo-

ration (DSE) for optimizing the microarchitecture. As summarized

in [14], the previous studies either use the HLS tool directly [17, 24],

or develop a model to mimic the HLS tool [11, 26] for evaluating

a design point. Relying on the HLS tool to evaluate a solution can

increase the DSE time significantly as each design candidate would

have a long evaluation time (minutes to hours) that forces us to

explore a reduced set of the solution space. While utilizing a model

can potentially speed up the process, a simple analytical model can-

not capture the different heuristics used by the tool [14]. Adopting a

learning algorithm can help with increasing the accuracy. However,

the related works build a separate learning model per application

and the results from one application are not transferred to another

one. A nice effort was made in Kwon et al. [7] for transfer learn-

ing using a Multi-Layer Perceptron (MLP) network. Nonetheless,

they only use the pragma configurations as the input to the model,

which can result in considerable loss since the program semantics

are missing (see Section 5.2).

A few of the very recent works have proposed to use Graph

Neural Network (GNN) for predicting the design’s quality [18, 21].

Ustun et al. [18] proposes a GNN-based model to learn the oper-

ation mapping to FPGA’s resources for delay prediction in HLS.

IronMan [21] uses GNN to predict the performance of the program

under different resource allocations (DSP or LUT) to the computa-

tion nodes. Although their studies clearly demonstrate the value

and power of using GNNs, none of these works include the pragmas

in their input representation so their models cannot be used for

finding the best design configuration.

In this paper, we aim to automate the design optimization using

GNN with the support for model generalization by developing a

framework called GNN-DSE. We first build a model to evaluate a

design quickly, in milliseconds, without the invocation of the HLS

tool. Since the HLS tools employ many heuristics to optimize a

design and the design parameters affect each other, we let a deep

learning model learn their impact. Furthermore, as the current

HLS tools optimize the design based on specific code patterns,

it is important to identify the different code patterns and learn

their effect to be able to transfer the knowledge we gained from

one application to another. As such, we represent the program as

a graph which includes the program information in the form of

control, data, call, and pragma flows and exploit a GNN to extract

the required features of the graph for predicting the objectives.

We propose several techniques for improving the accuracy of the

model including Jumping Knowledge Network (JKN) [23], node

attention [9], and multi-head objective prediction. To demonstrate

the effectiveness of our model, we build a DSE on top of it to

find the Pareto-optimal design points. We show that not only can

GNN-DSE find the Pareto-optimal design points for the kernels that

were included in its training set, it can also generalize to the kernels

outside of its database and detect their Pareto-optimal design points.

This paper is the first work to employ a graph representation that

captures both the program semantics and the pragmas, and to build

a single predictive model for several applications with transferring

learning capability. In this paper, we target Xilinx FPGAs as an

example but our approach is tool-independent and extendable to

Intel FPGAs as well.

In summary, this paper makes the following contributions:

• We propose a graph-based program representation for optimiz-

ing FPGA designs which includes both the program context and

the pragma flow.

• We develop a learning model based on Graph Neural Network

(GNN) as a surrogate of the HLS tool for assessing a design

point’s quality in milliseconds and propose several techniques

for improving its accuracy.

• We build an automated framework, GNN-DSE
1
, to gather a data-

base of FPGA designs, train a learning model for predicting the

design’s objectives, and run a design space exploration based on

the model to close-in on a high-performance design point.

• The experimental results demonstrate that not only can

GNN-DSE find the Pareto-optimal design points for the ker-

nels in its database, but can also optimize the unseen kernels by

generalizing the knowledge it learned from its training set.

1
The codes are open-sourced at https://github.com/UCLA-VAST/GNN-DSE

https://doi.org/10.1145/3489517.3530409
https://github.com/UCLA-VAST/GNN-DSE
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2 Background

2.1 Programs as Graphs

A popular way of representing a program as a graph is to extract its

control and data flow graph (CDFG) from its intermediate represen-

tation (IR) in LLVM [8]. Thus, instead of focusing on the grammar of

the code, the semantics of the program flow is captured. In a CDFG,

the nodes represent the LLVM instructions that are connected to

each other based on the control flow of the program. For the data

flow of the program, a second type of edge is added between the

nodes based on the operands of the instructions. Note that a CDFG

includes many low-level operations (e.g., memory management)

which makes it desirable for FPGA kernels.

2.2 Graph Neural Networks

AGraphNeural Network (GNN) [22] extracts the graph information

by learning the features (embeddings) of each node in the graph

via a series of layers, in which it aggregates (AGG) the neighboring

nodes’ (N(𝑖)) information and applies a transformation function (TF)
on the aggregated result. Graph Convolutional Network (GCN) [6]

is a popular form of a GNN which adopts a simple AGG function

that performs a weighted summation of the embeddings of N(𝑖)
using the degree (𝑑𝑖 ) of the nodes:

𝒉′𝑖 = 𝜎 (𝑾
∑︁

𝑗 ∈N(𝑖)∪{𝑖 }

1√︁
𝑑 𝑗𝑑𝑖

𝒉 𝑗 ) (1)

where 𝒉𝑖 ∈ R𝐹 (𝒉′
𝑖
∈ R𝐹 ′

) denotes the input (output) embeddings

of node 𝑖 which is a vector of 𝐹 (𝐹 ′) features. 𝑾 is a trainable

weight matrix for the TF step to act as a filter, and 𝜎 is an activation

function to introduce non-linearity to the model. Here, as the AGG

step employs a fixed set of weights (determined by the degree of the

nodes), the model has no way of prioritizing any of the neighbors

to learn better embeddings. Graph Attention Networks (GAT) [20]
were introduced to learn the importance (attention) of the node’s
neighbors so that they can contribute to updating its embeddings

accordingly. The computation of a GAT layer can be seen as:

𝒉′𝑖 = 𝜎 (W
∑︁

𝑗 ∈N(𝑖)∪{𝑖 }
𝛼𝑖, 𝑗𝒉 𝑗 ) (2)

𝛼𝑖, 𝑗 s are the attention coefficients computed by multi-head dot-

product attention. The computation for each head is as follows:

𝛼𝑖, 𝑗 =
exp

(
LeakyReLU

(
𝒂⊤ [𝑾𝒉𝑖 ∥𝑾𝒉 𝑗 ]

) )∑
𝑘∈N(𝑖)∪{𝑖 } exp (LeakyReLU (𝒂⊤ [𝑾𝒉𝑖 ∥𝑾𝒉𝑘 ]))

(3)

where ∥ denotes the concatenation operation and 𝒂 is a learnable

vector controlling the attention that node 𝑖 receives from node 𝑗 .

Note that compared to a GCN only the AGG step is changed.

2.3 The Merlin Compiler

The Merlin Compiler [1, 2], recently open-sourced by Xilinx, was

developed to make FPGA programming easier by introducing a re-

duced set of high-level pragmas for optimizing the design. Based on

these pragmas, it performs source-to-source code transformation

and automatically generates the respective HLS code along with the

required HLS pragmas. It also automatically employs code trans-

formations to implement memory coalescing, apply memory burst,

and cache the required data based on the architectural optimiza-

tions. While it only uses three pragmas (pipeline, parallel, and
tile), it generates several HLS pragmas based on them, includ-

ing pipeline, unroll, array_partition, inline, dependence,
loop_flatten. We build our tool on top of the Merlin Compiler

to not only greatly reduce the solution space size, but also ap-

ply its automated code transformations to achieve a better design.

Nonetheless, the GNN model must work harder to learn when (and

where) the Merlin Compiler applies its automated optimizations.

3 Problem Formulation

In this work, we aim to speed up the DSE problem for HLS. For this

matter, we propose solutions for the following problems:

Problem 1: Build the Prediction Model. Let P be a C program

as the FPGA accelerator kernel with design configurations (𝜃 ).

Let H be a vendor HLS tool that outputs the true execution cy-

cle𝐶𝑦𝑐𝑙𝑒 (H,P(𝜃 )) and the true resource utilization𝑈𝑡𝑖𝑙 (H,P(𝜃 )):
QH (P(𝜃 )) =

(
𝐶𝑦𝑐𝑙𝑒 (H,P(𝜃 )),𝑈 𝑡𝑖𝑙 (H,P(𝜃 ))

)
(4)

Find a prediction function (F) that approximates the results of H
for any given program P with any design configurations (𝜃 ):

min

F

(
𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝜃

(
𝐿𝑜𝑠𝑠 (QF (P(𝜃 )), QH (P(𝜃 )))

) )
(5)

Problem 2: Identify the Optimal Configuration. For the program
P defined above, find a configuration 𝜃 ∈ RP in a given search

time limit so that the generated design P(𝜃 ) can fit in the FPGA

and the execution cycle is minimized. Formally, our objective is:

min

𝜃
𝐶𝑦𝑐𝑙𝑒 (F,P(𝜃 )) (6)

subject to 𝜃 ∈ RP , ∀𝑢 ∈ 𝑈𝑡𝑖𝑙 (F,P(𝜃 )), 𝑢 < 𝑇𝑢 (7)

where𝑢 is the utilization of one type of the FPGA on-chip resources

and 𝑇𝑢 is a user-defined threshold for that type on the FPGA.

4 Our Proposed Methodology

Fig. 1(a) depicts a high-level overview of GNN-DSE which operates

in three modes: training, inference, and DSE. We first collect a

database from various applications (Section 4.1) and represent each

design in the database as a graph (Section 4.2). Then, we train a

predictive model for estimating the design’s objectives (Section 4.3).

Finally, the predictive model can be used as a surrogate to the HLS

tool to run the inference and DSE stages (Section 4.4).

4.1 Database Generation

We adapt a related prior work, AutoDSE [17], which reported supe-

rior results over previous studies (e.g. [24]), to generate the initial

database for each of the applications. Fig. 2 demonstrates our ap-

proach for it. Each for loop can take up to three pragmas: pipeline,
parallel, and tile (Section 2.3). We also exploit AutoDSE’s rules

for pruning a design configuration (e.g., when fine-grained pipelin-

ing is applied on a loop, the inner loops would not take any pragma).

Since the model needs to see a variety of design points from “bad”

to “good” to learn to distinguish them, GNN-DSE extends AutoDSE

to exploit three types of explorers for building the training set:

• The existing explorer of AutoDSE, bottleneck-based optimizer,

which can find high-quality designs.

• A hybrid explorer combining the bottleneck-based optimizer

with a local search, which evaluates up to 𝑃 neighbors of the

best design point after 𝑋% improvement in its quality. Thus, the

model can see the effect of modifying only one of the pragmas.

• A random explorer which may consider those configurations

skipped by the previous two explorers.

Once the explorer picks a design point, it is passed to the Mer-

lin Compiler for evaluation. The result will be committed to a

common database along with the program’s graph representation

(Section 4.2). GNN-DSE gradually collects results from different
applications in a shared space to be used for training the model.

4.2 Program Representation

Asmentioned in Section 2.1, CDFG is a popular choice for represent-

ing FPGA kernels. On the downside, the CDFGs ignore the precision

of the operands and their values, which are crucial in determining

design’s objectives. Recently, a more convenient program repre-

sentation is proposed, ProGraML [3], which extends the CDFG by

explicitly assigning separate nodes to operands to retrieve the miss-

ing information. It also keeps the function hierarchies by including
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Figure 1: (a) High-level overview of the GNN-DSE framework; (b) The graph representation of Code 1.

Application 1 
(C/C++)

Application N 
(C/C++)

…

Design Space 
Generator

Evaluator 
(HLS tool)

Explorer

Graph 
Generator

Database Generator
objectives

Database Generator

Training 
Database

Figure 2: Database generator of GNN-DSE.

the design’s call flow. As such, we adapt ProGraML and extend it

by including the pragma flow to represent a program. Each of the

candidate pragmas are defined in either of the following forms:

#pragma ACCEL pipeline auto{pragma_name}
#pragma ACCEL parallel factor=auto{pragma_name}
#pragma ACCEL tile factor=auto{pragma_name}

the pragma_name is a placeholder for its option, which can be

(off|cg|fg) for pipeline and a numerical value for the other

two. cg (fg) refers to coarse-grained (fine-grained) pipelining [17].

Code 1: Code snippet of an input toy example to GNN-DSE.

1 void foo(int input[N]) {
2 #pragma ACCEL pipeline auto{_PIPE_L1}
3 #pragma ACCEL parallel factor=auto{_PARA_L1}
4 for (int i = 0; i < N; i++) { input[i] += 1; } }

We assign a node for storing the placeholder pragma for each candi-

date pragma. Since the pragmas are applied to the loops, we connect

this node to one of the instruction nodes corresponding to the loop:

icmp. Code 1 shows a toy example having a simple for loop with

two candidate pragmas. Fig. 1(b) depicts its graph representation.

We only show the relevant nodes here for illustration purposes. As

Fig. 1(b) demonstrates, there are three types of nodes in each graph.

The first kind (in blue) is for the LLVM instructions that together

demonstrate the control flow of the program. The second kind (in

red) exhibits the constant values and variables that capture the data

flow of the program. The pragma nodes (third kind) are presented

as purple boxes connecting to the respective icmp node. The edges

also have different kinds which show the different flows of the

graph: control (blue), data (red), call (green), and pragma (purple).

When there are two or more edges of the same type connected to a

node, they are numbered to further distinguish them (see the edges

connecting from pragma nodes to the icmp node).

To distinguish the different candidate pragmas of a nested loop,

one must know the loop level for each pragma. As a rule of thumb,

the HLS tools perform better when the pragmas are applied to

inner loops since they can implement fine-grained optimizations

easier [17]. Besides capturing the control flow, we explicitly encode

this information in each node via the LLVM block ID of the for loop.
More specifically, each node / edge has the following attributes:

Node = {'block': LLVM block ID, 'key_text': Node key task, 'function': Function
ID, 'type': Node type}

Edge = (Src node ID, Dst node ID, {'flow': Flow type, 'position': Position ID})

the type, flow, and position attributes encode this information

(for non-pragma edges, position denotes their ordering):

type 0: instruction 1: variable 2: constant value 3: pragma

flow 0: control 1: data 2: call 3: pragma

position 0: tile 1: pipeline 2: parallel -

The key_text attribute shows a keyword corresponding to that

node. For example, PIPELINE, load, i32* for each of the pragma,

control, and data node types. For each design point, the auto vari-

ables in the pragma placeholders are replaced with their respective

values. Hence, among the graphs for different design configurations

of the same application, only the attributes of their pragma nodes

are different. Fig. 3 demonstrates the graph generation process.

C/C++ Code

Candidate 
Pragma 

Generator

Graph Builder
(Extension of 

PrograML)

Clang(++) Graph Generator

LLVM IR
+ 

Pragma 
placeholder

Pragma 
Fill

Design Config

Figure 3: Graph generator of GNN-DSE.

4.3 Predictive Model

Fig. 4 depicts our model architecture for predicting the design’s

objectives. It takes the graph representation of the program as the

input and creates the initial node/edge embeddings by concatenat-

ing the one-hot encoding of their attributes (Section 4.2) and the

pragma options. This encoding helps the model assign a higher

weight to the attributes that contribute more to the final prediction.

For this matter, the model exploits a GNN encoder (Section 4.3.1) to

update the embeddings. The GNN encoder, then, passes the graph

embeddings to a set of MLPs to estimate the outputs (Section 4.3.2).

4.3.1 GNN Encoder: It assigns𝒉G ∈ R𝐷 to a graphG via three stages:

(1) stacked TransformerConv layers to produce node embeddings,

(2) a Jumping Knowledge Network for combining the output of

different layers to make the final node embeddings with dynamic

ranges of neighborhoods, and (3) an attention mechanism to merge

the node-level embeddings into a graph-level embedding.

TransformerConv: We reviewed GCN [6] and GAT [20] in

Section 2.2. One drawback of these layers is that they both over-

look the edge embeddings. TransformerConv [15], inspired by

the Transformer model [19], is a state-of-the-art GNN architec-

ture, which builds attention coefficients (𝛼𝑖, 𝑗 ) for aggregating the

neighbors in a different manner than GAT:

𝛼𝑖, 𝑗 = softmax

( (W1𝒉𝑖 )⊤ (W2𝒉 𝑗 +W3𝒆𝑖 𝑗 )√
𝐷

)
(8)

where𝑾1,𝑾2, and𝑾3 are learnable weight matrices, and 𝒆𝑖 𝑗 de-
notes the embedding of the edge between nodes 𝑖 and 𝑗 . Including

edge attributes is a desirable feature for our task since the edges in

our graph representation contain useful information (Section 4.2).
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Figure 4: The architecture of GNN-DSE’s predictive model.

In addition, TransformerConv makes use of gated residual con-

nections when updating the node embeddings that can prevent

the model from over-smoothing. Consequently, we adopt Trans-

formerConv as the basic building block of our model.

Jumping Knowledge Network (JKN): Each layer of a GNN

gathers the embeddings of the first-order neighbors. By adding each

layer, the nodes will receive the embeddings from one hop further

since their first-order neighbors are now updated with theirs. The

different nodes in the graph may need information from different

ranges of neighborhoods. For example, in the graph of Fig. 1(b), the

load and add nodes are affected by the pragma nodes after 3 and 4

layers, respectively. To fully leverage the embeddings generated by

different layers of the GNN model, we exploit JKN [23] which as

Fig. 4 illustrates, takes in the output of all the layers to flexibly pick

different ranges of neighborhood for each node:

𝒉𝑖 = max

(
𝒉(1)
𝑖

, . . . ,𝒉(𝑇 )
𝑖

)
(9)

where 𝒉(𝑘)
𝑖

denotes the embedding of node 𝑖 after the 𝑘-th layer.

Node attention-based graph-level embedding generation:

To generate one vector representation for the entire graph, one can

simply add all the node embeddings. However, given the fact that

our graph representation contains both the pragma nodes and the

program context nodes, it is preferable to introduce attention [9]

to learn which node is more important for the prediction tasks:

𝒉G =
∑︁
𝑖=1:𝑁

softmax (MLP1 (h𝑖 )) ·MLP2 (h𝑖 ) (10)

where MLP1 maps the node embedding from R𝐷 to R followed by

a global softmax to obtain one attention score per node. The atten-

tion scores are then applied to the transformed node embeddings,

MLP2 (h𝑖 ), to obtain the final graph-level embedding. Fig. 5 depicts

the graph for a design of the stencil kernel in MachSuite bench-

mark [13]. Each node’s circle size is proportional to the attention

that its embedding receives in building the graph-level embedding.

As we expected, the pragma nodes are among the most important
nodes. Yet, the model could learn that not all the pragma nodes

are equally important. As the figure suggests, the loop trip count

(icmp node and i32 node connecting to it) and other contextual

information of the loop determine their importance.

Figure 5: Node attention scores of a design of the stencil

kernel. The larger the circle, the higher its attention is.

As the embeddings are high-dimensional vectors (124/64-D vec-

tors for initial/final embeddings), we utilize t-SNE [10] to visu-

alize them. t-SNE is a powerful technique that can model high-

dimensional data by 2-D points in a way that nearby (distant) points

a) Initial embeddings b) Embeddings learned by GNN-DSE

Figure 6: t-SNE [10] visualization of the design configura-

tions of stencil. Each point represents a design with colors

indicating its latency value.

model similar (dissimilar) data. Fig. 6(a) depicts the t-SNE plot for

the stencil kernel based on its initial embeddings. The node em-

beddings are added together to create one graph-level embedding.

Each point represents a design configuration which is color-coded

by its latency (cycle counts). Fig. 6(b) demonstrates the t-SNE plot if

we use the graph-level embeddings generated by our GNN encoder

instead. While the initial features show high similarity between

design points with huge differences in their latencies, the GNN en-

coder could successfully assign embeddings to the graphs in a way

that only the designs with similar latency be clustered together.

4.3.2 MLP Prediction Layers:After encoding the graph as a vector,

further transformation is needed to perform the final prediction.

We have the following learning tasks for assessing a design point:

• Classification task for determining whether a design con-

figuration is valid. The source of invalidity can come from

many factors such as: 1) it may be hard for the HLS tool to opti-

mize some of the pragma combinations. If synthesis of a design

does not finish in 4 hours, we mark it as invalid; 2) the HLS tool

may refuse to synthesize designs that have high parallelization

factors; 3) a combination of the pragmas may be infeasible, etc.

• Regression task to estimate the design’s objectives. Once

we identify that a design is valid, we estimate the quality of

design by predicting its cycle count and resource utilization.

For each of these tasks, we exploit an MLP to do the prediction

based on the graph-level embeddings. Note that our regression task

is seeking to predict multiple objectives. Sharing the GNN encoder

as the backbone and applying multi-task prediction with different

MLPs (as seen in Fig. 4) is desirable here. This is because, as the

objectives are correlated with each other, they can help each other

in creating a better graph-level embedding.

4.4 Design Space Exploration

Once we have an accurate model, we can use it for finding the

Pareto-optimal designs. Since our models can finish in milliseconds,

we can explore a large number of design points very quickly. Nev-

ertheless, for enormous solution spaces, we still may not be able

to search through the whole space in a timely fashion. Therefore,

we set a time limit for running the DSE and employ a heuristic to

prioritize searching through the most-promising candidates first.

As the HLS tools can implement the fine-grained optimizations

better, we adapt a BFS-like traversal of the pragmas starting with

the inner-most loops to create an ordered list of them. As a result,

the pragmas of the inner-most loop levels are evaluated sooner.

If there are more than one pragma at a loop-level, we prioritize

parallel over pipeline over tile. If the picked pragma (A) is

dependent on another pragma (B) from the same loop level or

one loop level further, we move pragma B up in the ordered list. A

pragma has a dependencywhenwewant to prune the invalid design

combinations. For example, there is always a dependency between

the parallel pragma of one loop level with the pipeline pragma

of its upper loop level. This is because fg pipelining completely
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unrolls the sub-loops so we no longer need the parallel pragma.

After evaluating this pragma, we do the same process for the next

loop section and continue until all the pragmas are visited.

Since getting the true value of design’s objectives are time-

consuming, building the dataset is the main bottleneck of our ap-

proach. After building an initial database (Section 4.1), we exploit

our DSE to augment the database. Note that the DSE wants to run

the model on many of the unseen data points so we must have good

representatives of all of the design choices in our database. On the

other hand, if our DSE mistakenly believes that an unseen design

point is good, it means that the model does not have a sufficient set

of data to generalize for the whole space. Since these data points

are the ones that made the model mispredict the results, they are

more likely to build a better dataset in the next round.

5 Evaluation

5.1 Experimental Setup

We choose our target kernels from the commonly-used Mach-

Suite benchmark [13], and the Polyhedral benchmark suite (Poly-

bench) [25]. The initial database is generated as explained in Sec-

tion 4.1 with the Xilinx Virtex Ultrascale+ VCU1525 as the target

FPGA. It consists of kernels with different computation intensities

including matrix and vector operations, stencil operation, encryp-

tion, and a dynamic programming application (nw). Our model

predicts the latency in the form of cycle counts, and the resource

utilization for DSP, BRAM, LUT, and FF. Our framework is deployed

and trained using PyTorch [12]. We use 80% (20%) of the dataset for

training (testing), 3-fold cross-validation during training with Adam

optimizer [5] and a learning rate of 0.001. The reported models’

performance are based on the test set. The initial embeddings have

124 features. We build completely separate models for classification

and regression having 6 GNN layers with 64 features followed by 4

MLP layers for each. Table 1 summarizes the number of pragmas,

the total solution space size, the total number of configurations in

our database, and the number of valid configurations among them

for each kernel, in addition to the number of designs after aug-

menting the database as explained in Section 4.4. In our database,

the latency is in the range of 660 to 12,531,777 cycles. DSP/ BRAM /

LUT / FF counts are in the range of 0 / 0 / 913 / 0 to 28,672 / 7,464 /

2,639,487 / 3,831,357, showing a wide range for all the objectives.

5.2 Model Evaluation

5.2.1 Pre-processing the Data:We pre-process our data to limit their

ranges so that they can contribute to the loss equally. For this

matter, we normalize the resource utilizations by dividing them

by the available number of resources on the FPGA and apply the

following formula for latency:

𝑇𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = log
2

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
(11)

therefore, the model spends more time on reducing the loss for

large values of 𝑇𝑙𝑎𝑡𝑒𝑛𝑐𝑦 which corresponds to low latency values,

i.e., the high-performance designs. The log
2
factor is used to make

the data distribution more even, as because of the intrinsic features

of this problem, the number of high-performance values are limited

and the data is originally biased towards low-performance ones.

After this normalization, the lower range for all the objectives is 0.0

and the upper range is 12.7414 / 4.1900 / 1.7200 / 2.2300 / 1.6600 for

latency/ DSP/ BRAM / LUT / FF respectively. Our database shows

that the BRAM utilization has a weak correlation with the rest of the

objectives. Consequently, we train two models for regression, one

is responsible solely to predict the BRAM utilization while the other

one predicts the rest of the objectives.

5.2.2 Comparative Studies:We first test the performance of two

models which only use an MLP network with no considerations for

the graph structure. The first one (M1) follows the same approach

as in [7]
2
and just uses the pragma settings as the input. The sec-

ond model (M2) takes all the nodes of the graph with their initial

embeddings as the input but does not exploit the GNN techniques

for updating the embeddings and rather only uses an MLP. As the

results suggest, including the program context in the input is crucial

for improving the accuracy of the model since it wants to predict

the objectives across applications with different semantics.

Additionally, we assess the effect of our optimizations to the

model. We first tested the model’s performance when it uses either

of the GCN, GAT, or TransformerConv as the GNN layer with

normal summation to create the graph-level embeddings (M3 toM5).

Then, we added the JKN (M6) and replace the normal summation

with our node attention layer (M7). As Table 2 shows, the fact

that these models include the different flows (control, data, call,

and pragma) of the program using a graph structure can decrease

their loss. The results further demonstrate the effectiveness of our

optimizations as explained in Section 4.3.1.
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Figure 7: GNN-DSE’s speedup compared to the the best de-

sign in the initial database. After each round of DSE, the top

designs are added to the database to refine the predictions.

5.3 Results of Design Space Exploration

Using our models, we are able to run 22 inferences per second. As

a result, we can exhaustively search through all the design choices

for our target kernels, except for mvt, in a few minutes. We adopt

the heuristic proposed in Section 4.4 to search through mvt for one

hour. We run the DSE on all the kernels and evaluate their top 10

designs using the HLS tool. Depending on how it performs, we add

a various number of design points with their true objectives to the

database as explained in Section 4.4. Fig. 7 depicts the speedup each

kernel achieved compared to the best design in the initial database

for different rounds of DSE. As the figure shows, after 3 rounds of

database expansion, the DSE can find a design configuration with

better or equal performance. The chart’s legend summarizes the

average speedup of all the kernels after each round.

5.4 Results on Unseen Kernels

To test whether our tool is extensible to unseen kernels, we have

chosen four new kernels from Polybench which were not included

in our database: bicg, doitgen, gesummv, and 2mm. bicg is doing

two matrix-vector multiplications, doitgen multiplies a 3-D tensor

with a matrix, gesummv has two matrix-vector multiplications and

a weighted vector addition, and 2mm consists of two matrix multipli-

cations. Note that four of the kernels in our database are working

with matrix-vector operations, although, in general, they have a

different problem size and coding structure. Table 3 summarizes the

number of pragmas and the design configurations for each of these

new kernels. Like in Section 5.3, we set a time limit of one hour for

2
As the codes are not available, we re-implemented their model as closely as possible.
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Table 1: Design space and the database of the kernels used for training our model.

Kernel name aes atax gemm-blocked gemm-ncubed mvt spmv-crs spmv-ellpack stencil nw Total

# pragmas 3 5 9 7 8 3 3 7 6 -

# Designs configs 45 3,354 2,314 7,792 3,059,001 114 114 7,591 15,288 3,095,613

Initial database

(# Total / # Valid)
15 / 15 605 / 101 616 / 149 432 / 149 571 / 180 98 / 35 114 / 60 1,066 / 281 911 / 66 4,428 / 1,036

Final database

(# Total / # Valid)
44 / 44 636 / 129 667 / 183 476 / 193 621 / 224 114 / 51 114 / 60 1,098 / 291 982 / 103 4,752 / 1,278

Table 2: Model evaluation on the test set of our database. RMSE loss is used as the evaluation metric for the regression task. For

the classification task, the accuracy and F1-score are reported.

Model Method Latency DSP LUT FF BRAM All Accuracy F1 - score

M1 MLP-pragma (as in [7]) 3.2756 0.5857 0.3115 0.2483 0.3356 4.7567 0.52 0.42

M2 MLP-pragma-program context 2.9444 0.4650 0.2401 0.1349 0.1597 3.9442 0.78 0.40

M3 GNN-DSE- GCN 1.6825 0.4265 0.1642 0.1277 0.1593 2.5602 0.79 0.51

M4 GNN-DSE- GAT 1.1819 0.2557 0.1266 0.1009 0.1178 1.7829 0.85 0.68

M5 GNN-DSE- TransformerConv 1.1323 0.2540 0.1245 0.0938 0.1231 1.7277 0.85 0.76

M6 GNN-DSE- TransformerConv + JKN 1.0846 0.2521 0.1112 0.0933 0.0912 1.6324 0.92 0.86

M7 GNN-DSE (TransformerConv + JKN + node att.) 0.5359 0.1253 0.0762 0.0632 0.0515 0.8521 0.93 0.87

2mm, which has more than 492𝑀 design choices. For the rest of the

kernels, we exhaustively search through all their configurations

which takes less than 2 minutes. For all of them, we then pass the

top 10 designs to the Merlin Compiler and run them in parallel to

evaluate them. The 4th column of Table 3 lists the overall runtime

of this process for each kernel.

To measure the quality of the top designs generated here, we

ran the original explorer of AutoDSE for up to 21 hours (its search

for doitgen finished after 3 hours). During this time, it explored

up to 163 design configurations for each of the cases achieving a

maximum speedup of 350× compared to the design with no opti-

mizations. GNN-DSE could achieve about the same performance

(from −2% and +5% difference with a mean of +1%) but in much

less time. Table 3 summarizes the speedup in running the DSE and

synthesizing the design with HLS that GNN-DSE achieved for each

kernel compared to AutoDSE. The results show that GNN-DSE can

accelerate this process by up to 79× with an average of 48×.
Table 3: GNN-DSE’s performance on unseen kernels. The

speedup numbers are with respect to a prior state-of-the-art

work, AutoDSE [17], after running it for up to 21 hours.

Kernel #pragma
#Design

configs

DSE + HLS

runtime (m)
#Explored

Runtime

speedup

bicg 5 3,536 18 3,536 69×
doitgen 6 179 16 179 11×
gesummv 4 1,581 16 1,581 79×

2mm 14 492,787,501 74 78,676 17×

6 Conclusion

In this work, we developed a push-button framework, GNN-DSE,

to build a learning model for predicting the design’s objectives in

milliseconds. We proposed a graph-based program representation

which includes both the program semantics and the candidate prag-

mas and implemented a GNN-based model to help us extract the

required information for estimating our targets. We exploited our

model to optimize the target applications by searching through their

different design configurations. The experimental results show that

GNN-DSE can build a single model with high accuracy to be used

among different domains. They also demonstrate that GNN-DSE

is able to not only find the Pareto-optimal designs quickly for the

applications in its database, but also extend the knowledge it gained

from them to optimize new applications from its existing domains.

In the future, we will expand our tool to cover more domains.
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