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We study the efficacy of a new ab initio framework that combines the symmetry-adapted (SA) no-
core shell-model approach with the resonating group method (RGM) for unified descriptions of nuclear 
structure and reactions. We obtain ab initio neutron-nucleus interactions for 4He, 16O, and 20Ne targets, 
starting with realistic nucleon-nucleon potentials. We discuss the effect of increasing model space sizes 
and symmetry-based selections on the SA-RGM norm and direct potential kernels, as well as on phase 
shifts, which are the input to calculations of cross sections. We demonstrate the efficacy of the SA basis 
and its scalability with particle numbers and model space dimensions, with a view toward ab initio
descriptions of nucleon scattering and capture reactions up through the medium-mass region.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Ab initio descriptions of spherical and deformed nuclei up through the calcium region are now possible within a no-core shell-model 
framework, by utilizing emerging symplectic symmetry in nuclei. In particular, the symmetry-adapted no-core shell-model (SA-NCSM) 
[1–5] uses a physically relevant symmetry-adapted (SA) basis that can achieve significantly reduced model spaces compared to the corre-
sponding complete ultra-large model spaces, without compromising the accuracy of results for various observables [1,6,7]. This enables the 
SA-NCSM to accommodate contributions from more shells and to describe heavier nuclei, such as 20Ne [2], 21Mg [8], 22Mg [9], 28Mg [10], 
as well as 32Ne and 48Ti [11,12]. The access to higher-lying shells makes the SA basis suitable for describing nuclear reactions [12], the 
processes that are typically studied in experiments and govern stellar evolution. Remarkable progress has been made in first-principle de-
scriptions to scattering and nuclear reactions for light nuclei (for an overview, see [13,14]), including studies of elastic scattering [15–21], 
photoabsorption [22], transfer [23] and capture reactions [24], α widths [25,26] and resonant states [27], as well as thermonuclear fusion 
[28]. In this paper, we show that expanding the reach of ab initio reactions to deformed and heavier targets is now feasible with the SA 
basis.

Microscopic approaches to nuclear reactions take into account nucleon degrees of freedom along with their correlations within and 
among the reaction fragments. Coupled with realistic inter-nucleon interactions, such as the ones derived in the framework of chiral ef-
fective field theory [29–32], these approaches provide ab initio calculations of reaction observables. One of the earliest and very successful 
microscopic approaches to nuclear reactions is the resonating-group method (RGM) [33,34]. In the RGM, nucleons are organized within 
different groups, or clusters, “resonating” through the inter-cluster exchange of nucleons. Most importantly, the cluster system is trans-
lationally invariant, and the Pauli exclusion principle is enforced by the antisymmetrization between the different clusters. All of these 
features make this method particularly suitable for unified descriptions of nuclear structure and reaction observables. Following the suc-
cess of the Elliott model [35,36], showing that a leading (most deformed) SU(3) shell-model configuration describes reasonably well the 
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ground-state rotational band in intermediate-mass nuclei, the RGM has been extensively used with an SU(3) basis and its no-core shell-
model extension, the symplectic Sp(3, R) basis [37–39]. Applications of the model with Gaussian interactions have successfully calculated 
α and 8Be cluster amplitudes, spectroscopic amplitudes for heavy-fragment clusters, and sub-Coulomb 12C+12C resonances [40–42]. The 
formalism has been extended by utilizing a mixed no-core shell-model Sp(3, R) plus RGM cluster basis [43–45], and applied to studies of 
the monopole and quadrupole strengths in light nuclei [46,47], as well as the α+12C cluster system [48–50].

More recently, a successful first-principle description of scattering and reactions has been realized by implementing the RGM using 
ab initio NCSM [51,52] wave functions for the clusters in a formalism known as NCSM/RGM [17,53,54] and, later, by fully combining 
the two approaches into the generalized ab initio cluster expansion of the no-core shell model with continuum (NCSMC) [55,56]. These 
methods, which have enabled predictions of nucleon [57,58], deuteron [59] and alpha [60] scattering off light targets, as well as polarized 
deuterium-tritium fusion [28] from chiral nucleon-nucleon (NN) and three-nucleon (3N) forces, are reviewed in Refs. [14,61].

In addition, the Gamow shell model coupled-channel approach combines the RGM with a continuum core-valence shell approach and 
allows for descriptions of nuclear reactions of heavier systems [20,62,63].

The goal of this paper is to show the efficacy of a new approach that can extend the study of ab initio reactions to medium mass 
nuclei by using the SA-NCSM approach [1,2]. The SA framework takes advantage of symmetries inherent to nuclei and of group theoretical 
algorithms, and reorganizes the model space into a physically relevant basis. This allows us to account for the relevant correlations within 
only a few dominant components and, hence, achieve manageable Hamiltonian matrix sizes. In this paper, we present a new formalism 
of the RGM, one that admits the use of the SA basis, and we demonstrate the capability and potential of the approach for light and 
intermediate-mass nuclei. The formalism of the SA-RGM framework is presented in Sec. 2, where we discuss RGM kernels computed using 
the SA basis. The sensitivity of the kernels on different selected model spaces and model space sizes is discussed in Sec. 3.1 for a 4He 
target and in Sec. 3.2 for intermediate-mass 16O and 20Ne targets. Section 3.3 presents an analysis of the basis dimension and its scaling 
with model space sizes and particle numbers. Finally, Sec. 4 outlines the conclusions.

2. Theoretical framework

Traditionally, the RGM adopts microscopic cluster wave functions as basis functions to describe the motion of a system of two or more 
clusters (see, e.g., Refs. [53,64]). We consider two nuclear fragments, or binary-cluster nuclear reactions. For two clusters A and a, the 
cluster states for a channel c are defined as:

|� Jπ M
cr 〉 = {{|(A)a1 Iπ1

1 〉 × |(a)a2 Iπ2
2 〉}I × Y�(r̂ A,a)} Jπ M

×δ(r − rA,a)

rrA,a
, (1)

where the cluster system is defined for a channel c = {a1, Iπ1
1 , a2, Iπ2

2 , I, �}, which is labeled by the angular momentum (spin) and parity 
of each of the clusters and the total spin of the clusters I (the labels a1 and a2 denote all other quantum numbers needed to fully 
characterize their respective states), and the orbital momentum l. For particle laboratory coordinates �ri (used in this study), the separation 
distance between the center-of-mass of the two clusters is determined from �rA,a = 1

A

∑A
i=1 �ri − 1

a

∑A+a
i=A+1 �ri . The distance r between the 

clusters defines the cluster states and the RGM kernels, as shown below, and as an integration variable facilitates the treatment of the 
inter-cluster antisymmetrization. Namely, the A + a nuclear wave function is expressed in terms of the cluster states as

|� Jπ M〉 =
∑

c

∫
r

drr2 g Jπ M
c (r)

r
Ac |� Jπ M

cr 〉 , (2)

with unknown amplitudes g Jπ M
c (r) that are determined by solving the integral Hill-Wheeler equations for a given total energy E in the 

A + a center-of-mass frame:

∑
c

∫
drr2 [Hc′c(r

′, r) − E Nc′c(r
′, r)
] g Jπ M

c (r)

r
= 0. (3)

Here, Hc′c(r′, r) = 〈� Jπ M
c′r′ |Ac′ ĤAc |� Jπ M

cr 〉 is the Hamiltonian kernel and Nc′c(r′, r) = 〈� Jπ M
c′r′ |Ac′Ac |� Jπ M

cr 〉 is the norm kernel, where A is 
the inter-cluster antisymmetrizer. The kernels are computed by using the microscopic wave functions of the clusters that can be obtained 
in the ab initio NCSM and SA-NCSM. Once the kernels are computed, Eq. (3) can then be solved using the microscopic R-matrix approach 
[65,66].

In the SA-RGM, the target nucleus of A particles is described by SA-NCSM many-body wave functions. In the SA-NCSM, the many-body 
basis is labeled by irreducible representations (irreps) according to the group chain [35,36]:[

SU(3)(λμ) ⊃
κ

SO(3)L ⊃ SO(2)ML

]
⊗ [SU(2)S ⊃ SU(1)MS

]
. (4)

The (λμ) quantum numbers label an SU(3) irrep and can be related to the average deformation through the established link with the 
well-known parameters, deformation β and triaxiality γ [67,68]. The label κ distinguishes multiple occurrences of the same orbital 
momentum L in the parent irrep (λμ), and ML is the projection. These quantum numbers define the spatial degrees of freedom, which 
can then be coupled to the intrinsic spin (S) to yield a good total angular momentum.

Specifically, a target state with total angular momentum and parity I1
π1 (and projection M1) is constructed in terms of the SA basis:

|(A)a1 Iπ1
1 M1〉 =

∑
b1ω1

Cω1κ1 L1 S1 I1
b1

|b1ω1κ1(L1 S1)Iπ1
1 M1〉 , (5)
κ1 L1 S1

2



A. Mercenne, K.D. Launey, T. Dytrych et al. Computer Physics Communications 280 (2022) 108476
where the labels are defined as b ≡ {. . .ωpωnρN; Sp Sn
}

and deformation ω ≡ (λ μ) (it is understood that the coefficients C are for 
given π1, which is omitted from labeling). Protons and neutrons are labeled by p and n, respectively, and S labels the intrinsic spin 
(“. . . ” denotes all additional quantum numbers including a1). The SU(3) outer multiplicity ρ [69] results from the coupling of the proton 
deformation with that of neutrons to total deformation ω1. N labels the total harmonic oscillator (HO) excitations above the valence-shell 
configuration and is truncated at a maximum value (N ≤ Nmax), which determines the model space size.

For a single-particle projectile, the SA-RGM channel basis states can thus be defined for a channel {ν1;ν} = {ω1κ1(L1 S1); ωκ(L S)}
[related to channel c in Eq. (13)] as:

|�ν Jπ M
ν1 I1;η〉 =

∑
b1

Cν1 I1
b1

{
|b1ω1 S1〉 × |(η 0)

1

2
〉
}ν J M

, (6)

where the SU(3) basis states for the target are coupled to the HO single-particle states of the projectile with (η 0) SU(3) quantum numbers 
and spin 1

2 (we will omit the parity π from the notation throughout the paper for simplicity). We note that the SU(3) outer multiplicity 
associated with the coupling of ω1 and (η 0) is 1, and hence, omitted from the notations. An important consequence of the use of SU(3) 
is that there is no dependence on the orbital momentum of the projectile, only on the shell number it occupies, η. Furthermore, the 
summation over b1 implies that the SA-RGM basis requires only a part of the information present in the SA basis.

The SA-RGM basis is used to calculate the RGM kernels, which is the main computational task in RGM [53]. These include the norm 
kernel, which is the overlap between antisymmetrized non-orthogonal RGM basis states. It consists of a direct part (a Dirac delta function), 
which dominates at large relative distances, and an exchange part that takes into account the Pauli principle at short distances. The 
exchange norm kernel is related to the permutation operator P̂ A,A+1 that exchanges the nucleon projectile with another nucleon within 
the target, thereby ensuring antisymmetrization (cf. [53]):

Nex
c′c(r

′, r) = −〈� J M
c′r′ |

A∑
i=1

P̂ i,A+1 |� J M
cr 〉

= −A 〈� J M
c′r′ | P̂ A,A+1 |� J M

cr 〉 (7)

The exchange norm kernel in the SA-RGM basis is thus reduced to evaluating the following (similarly, for the Hamiltonian kernels):

〈�ν ′ J M
ν ′

1 I ′1;η′ | P A,A+1 |�ν J M
ν1 I1;η〉 = δν ′ν

∑
ω0 S0ρ0

�S0 S ′
1
(−1)η+η′−ω0(−1)S1+ 1

2 +S ′
{

S1 S0 S ′
1

1
2 S 1

2

}

×
√

dimω0

dim (η 0)
U
[
ω1ω0ω(η ′0);ω′

1ρ01(η 0)11
]
ρ

ρ0ω0 S0
ηη′

(
ν ′

1 I ′1;ν1 I1
)
, (8)

where U [. . . ] is the SU(3) 6-(λ μ) recoupling coefficient [70], analogous to the SU(2) 6- j symbol, dim (λ μ) = 1
2 (λ + 1)(μ + 1)(λ +μ + 2), 

� j1 j2 = √
(2 j1 + 1)(2 j2 + 1), and the SU(3) one-body density matrix elements are defined as:

ρ
ρ0ω0 S0
ηη′

(
ν ′

1 I ′1;ν1 I1
)= ∑

b1b
′
1

C
ν ′

1 I ′1
b′

1
Cν1 I1
b1

〈b′
1ω

′
1 S ′

1|||{a†
(η 0) 1

2
× ã(0η′) 1

2
}ω0 S0 |||b1ω1 S1〉ρ0 , (9)

where a†
(η 0)lml

1
2 ms

≡ a†
ηlml

1
2 ms

and aηlml
1
2 ms

creates and annihilates, respectively, a particle of spin 1/2 in the η-th HO shell, ã(0η)l−ml
1
2 −ms

≡
(−1)η+l−ml+s−ms aηlml

1
2 ms

is the annihilation SU(3) tensor operator, and 〈. . . ||| . . . ||| . . . 〉 denotes a reduced matrix element (rme) with 
respect to SU(3) and the spin SU(2) groups. It is notable that, as a result of the Kronecker delta function δν ′ν in Eq. (8), the exchange part 
of the norm kernel turns out to be block-diagonal in the SA-RGM basis. The reason is that the operator P̂ is an SU(3) scalar and spin 
scalar, and therefore preserves deformation and spin of the composite A + 1 system (note that it may change the ω1 deformation of the 
target itself).

The matrix elements of the ρ density of Eq. (9) can be quickly computed on the fly in the SA basis. Their computation can utilize 
an efficacious algorithm that exploits organization of SA basis states in terms of subspaces of SU(3) irreps and the factorization of spatial 
SU(3) and SU(2) spin degrees of freedom [1,71], and this can be done prior to the computation of the kernels. Specifically, the essential 
input for the computation of ρρ0ω0 S0

ηη′ (ν ′
1 I ′1; ν1 I1) is represented by the SU(3) proton-neutron rme’s

〈b′
1ω

′
1 S ′

1|||{a†
(η 0) 1

2
× ã(0η′) 1

2
}ω0 S0 |||b1ω1 S1〉ρ0

≡ 〈
{

α′
pω

′
p S ′

p
α′

nω
′
n S ′

n

}
ρ ′

1ω
′
1 S ′

1|||T̂ ω0 S0
ηη′ |||

{
αpωp S p

αnωn Sn

}
ρ1ω1 S1〉ρ0 , (10)

where T̂ ω0 S0
ηη′ ≡ {a†

(η 0) 1
2

× ã(0η′) 1
2
}ω0 S0 and symbols αp, α′

p, αn, α′
n schematically denote all the additional quantum numbers needed to 

uniquely determine proton and neutron SU(3)×SU(2) irreps. The computation of proton-neutron SU(3) rme’s (10) is done by a new effi-
cacious algorithm that exploits organization of SA basis states in terms of SU(3) equivalent irreps and also benefits from the factorization 
of basis states into spatial SU(3) and spin SU(2) components.

Here we briefly describe the main steps of this algorithm. Let’s assume that operator T̂ ω0 S0
ηη′ acts on protons (algorithm for neutron case 

is identical). The input for the computation of proton-neutron SU(3) rme’s is then a set of non-vanishing rme’s for a system of Z protons 
that span 0h̄�, 1h̄�,. . . , Nmaxh̄� model space,
3
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〈α′
pω

′
p S ′

p|||T̂ ω0 S0
ηη′ |||αpωp S p〉ρp .

Note that the computation of proton rme’s needs to be done only once in a lifetime for a given number of Z identical nucleons and 
the cutoff parameter Nmax. We sort input rme’s into blocks defined by rows and columns of SU(3) equivalent irreps. This allows us to 
maximize the reuse of computationally expensive 9-(λ μ) symbols for the computation of proton-neutron SU(3) rme’s, which is executed 
in two main steps. In the first step, we compute the so-called proton-neutron “spinless” SU(3) rme’s as

〈
{

α′
pω

′
p S ′

p
ωn

}
ρ ′

1ω
′
1|||T̂ ω0 S0

ηη′ |||
{

αpωp S p

ωn

}
ρ1ω1〉ρ0

=
∑
ρp

⎧⎪⎪⎨
⎪⎪⎩

ωp ω0 ω′
p ρp

ωn (0 0) ωn 1
ω1 ω0 ω′

1 ρ0
ρ1 1 ρ ′

1

⎫⎪⎪⎬
⎪⎪⎭ 〈α′

pω
′
p S ′

p|||T̂ ω0 S0
ηη′ |||αpωp S p〉ρp . (11)

Note that “spinless” rme’s do not depend on neutron spins S ′
n, Sn and on total intrinsic spins S ′

1 and S1 quantum numbers. Hence, this 
results in a small amount of data that can be readily computed. In the second step, the resulting proton-neutron SU(3) rme’s are computed 
by multiplying intrinsic spin dependent factor with the “spinless” rme’s, namely,

〈
{

α′
pω

′
p S ′

p
α′

nω
′
n S ′

n

}
ρ ′

1ω
′
1 S ′

1|||T̂ ω0 S0
ηη′ |||

{
αpωp S p

αnωn Sn

}
ρ1ω1 S1〉ρ0

= δω′
nωn

δα′
nαn

δS ′
n Sn

�S1 S0 S ′
p Sn

⎧⎨
⎩

S p Sn S1
S0 0 S0
S ′

p Sn S ′
1

⎫⎬
⎭

× 〈
{

α′
pω

′
p S ′

p
ωn

}
ρ ′

1ω
′
1|||T̂ ω0 S0

ηη′ |||
{

αpωp S p

ωn

}
ρ1ω1〉ρ0 . (12)

The delta coefficients arise due to the spectator nature of neutrons and greatly simplify computations.
Furthermore, Eq. (8) allows the kernels to be calculated, for each Jπ , through the SA-RGM channel basis of Eq. (6) that only depends 

on the deformation, rotation, and spin of the target ν1 (that is, ω1κ1L1 S1), and the deformation, rotation, and spin of the target-projectile 
system ν (that is, ωκ L S). From this, it is clear that the SA offers two main advantages: first, calculations utilize group-theoretical algo-
rithms that use a reduced subset of quantum numbers ν and ν1, and second, the number of SU(3) configurations in the target wave 
function, we find, is a manageable number when compared to the complete model-space size. This results in a manageable number of 
configurations for the target-projectile system based on SU(3) and SU(2) selection rules, namely, ω = ω1 × (η 0) and S = S1 × 1

2 (for 
further details on scalability, see Sec. 3.3).

Another advantage of the SA scheme is that the dependence on the orbital momentum � is recovered in the very last step:

|� J M
cr 〉 =

∑
η

Rη�(r)
∑

j

�sj(−1)I1+ J+ j

×
{

I1
1
2 s

� J j

}∑
ν
ν1

�L S I1 j〈ω1κ1L1; (η 0)�||ωκ L〉

×
⎧⎨
⎩

L1 S1 I1

� 1
2 j

L S J

⎫⎬
⎭ |�ν J M

ν1 I1;η〉 . (13)

This wave function is then used in a microscopic R-matrix approach [65] to calculate phase shifts and cross sections.
To study the efficacy of the SA scheme, we focus on the norm and potential kernels. For the potential kernel, we consider only the 

part that involves the projectile and a single nucleon in the target (similarly to Ref. [21]), that is, the potential kernel of particle-rank one, 
denoted here as V (1)

c′c (r′, r) (cf. [53]):

V (1)

c′c (r′, r) ≡ A 〈� J M
c′r′ | V̂ A,A+1(1 − P̂ A,A+1) |� J M

cr 〉 . (14)

Note that the exchange of two nucleons that interact with each other is part of this kernel. We do not consider the particle-rank two 
potential kernel that accounts for the projectile exchanging with one nucleon in the target and interacting with another nucleon (called 
exchange potential kernel in [53]). Since the goal of this study is to validate the use of the SA scheme against the use of complete model 
spaces, we expect that the particle-rank two potential kernel will benefit from advantages similar to those shown in the next section. The 
reason is that the main advantage stems from the reductions of the number of basis states needed to describe the target wavefunctions. 
Such a reduction ensures that one-body densities, along with the two-body densities that will be needed for the particle-rank two 
potential kernels, are computed for wavefunctions that span only a fraction of the complete model space (as discussed in Sec. 3.3).

The derivation of the potential kernel in the SA-RGM basis follows a procedure similar to that for the norm kernel:

〈�ν ′ J M
ν ′

1 I ′1;η′ | (V̂ A,A+1(1 − P̂ A,A+1)) |�ν J M
ν1 I1;η〉

=
∑
Sb Sa
S S

(
�Sp Sa

�S ′
0

1
2

)2
�S0

� 1
2

1

�S ′
1 Sa

U

⎡
⎣ 1

2 S0
1
2

1
2 Sp

1
2

Sb S ′
0 Sa

⎤
⎦ U

⎡
⎣ S1 S0 S ′

1
1
2 Sp

1
2

S S ′
0 S ′

⎤
⎦

0 p

4



A. Mercenne, K.D. Launey, T. Dytrych et al. Computer Physics Communications 280 (2022) 108476
Table 1
Model space dimension for the targets used in the present study, for J = 0+ in 4He, 16O, and 
20Ne, and for J = 3/2+ for 23Mg. The complete J model spaces (all basis states) are denoted 
by Nmax, whereas selected model spaces are denoted as 〈N〉Nmax.

Nucleus Nmax Dimension Nmax Dimension
(selected) (complete)

4He 〈6〉8 1.98×103 8 2.38×103

4He 〈6〉10 5.51×103 10 7.92×103

4He 〈6〉12 1.04×104 12 2.27×104

4He 〈6〉14 1.44×104 14 5.80×104

16O 〈0〉8 3.96×106 8 3.01×107

20Ne 〈2〉4 8.27×105 4 2.38×106

20Ne 〈2〉6 6.53×106 6 1.16×108

20Ne 〈2〉8 7.94×106 8 3.43×109

20Ne 〈2〉10 8.86×106 10 7.18×1010

23Mg 〈2〉4 1.38×106 4 1.05×108

23Mg 〈2〉6 8.77×106 6 5.40×109

23Mg 〈2〉8 1.04×107 8 1.74×1011

×
∑
ηbηa

∑
ωbωa
ω0ωp

∑
ρ ′

0ρ0

ρ ′ρb

√
dimω0

dim (ηb 0)

dimωp dimωa

dimω′
0 dim (η′ 0)

U

⎡
⎢⎢⎣

(ηb 0) ω0 (ηa 0) 1
(η 0) ωp (η′ 0) 1
ωb ω′

0 ωa ρa

1 ρ ′
0 1 −

⎤
⎥⎥⎦ U

⎡
⎢⎢⎣

ω1 ω0 ω′
1 ρ0

(η 0) ωp (η′ 0) 1
ω ω′

0 ω′ ρ ′
1 ρ ′

0 1 −

⎤
⎥⎥⎦

×
√

1 + δηaη′
√

1 + δηaη

∑
κ ′

0 S ′
0

〈ωκ L;ω′
0κ

′
0 S ′

0||ω′κ ′L′〉ρ ′
�L′ S ′

�S ′
0

(−1)L+S ′
0+S ′+ J

{
L S ′

0 L′
S ′ J S

}

× 〈(ηa0)(η′0);ωa Sa| |V̂ ω′
0 S ′

0 ||(ηb0)(η0);ωb Sb〉ρ ′
0
ρ

ρ0ω0 S0
ηaηb

(
ν ′

1 I ′1;ν1 I1
)
, (15)

where ωp, ω0, and ω′
0 denote the SU(3) rank of the operator that transforms the initial state to the final state of the projectile, target, and 

the A + 1 system, respectively.

3. Results and discussions

It is important to validate the use of the SA basis in the SA-RGM, by comparing selected model spaces with the corresponding com-
plete Nmax, to ensure that the selection does not remove configurations relevant for the reaction processes under consideration (similar 
validations have been reported in Ref. [72] but for nuclear structure observables). For this, we study single-projectile scattering off the 
spherical 4He and 16O nuclei, as well as for the deformed 20Ne nucleus. We present kernels that use target ground state (g.s.) wavefunc-
tions computed with the SA basis in a complete Nmax model space (equivalent to NCSM/RGM calculations [53]) and we compare these to 
the results that use wavefunctions calculated in a selected SA model space (see Table 1, including cases currently feasible only in selected 
model spaces). In general, SA selections are denoted as 〈NC

max〉Nmax. For example, the Nmax = 〈6〉14 model space includes the complete set 
of excitations up to 6h̄� and selected excitations in the 8h̄� - 14h̄� subspaces, following a prescription detailed in Ref. [73]. This allows 
the mixing of all possible shapes within the complete subspaces, whereas the higher selected subspaces accommodate spatially expanded 
collective modes [12].

3.1. Validation of the SA scheme

We study the SA efficacy for the potential kernel of Eq. (14) for 4He(0+
g.s.) + n (Fig. 1), for which calculations in the complete space 

(no SA selection) are available up to Nmax = 18/19 with other interactions (Nmax = 18 denotes the model space for the target) [53]. For 
two NN interactions, Ref. [53] has shown that the Nmax = 14/15 results are sufficient to achieve converged phase shifts for the 4He(0+

g.s.) 
+ n 2 S1/2 and 2 P3/2 channels. In the present study, we use the Nmax = 14 complete model space for the target, and we compare to the 
Nmax = 〈6〉14 model space. The 4He wavefunctions in these model spaces, calculated with the JISP16 NN interactions [74], have been 
shown to converge for the binding energy and the g.s. root-mean-square (rms) matter radius, as well as to yield various electromagnetic 
sum rules [7] that agree with those calculated in the hyperspherical harmonics approach [75].

We explore the potential kernel of Eq. (14) for P3/2 as a function of the distance between the clusters, which is used to describe the 
3
2

−
resonant g.s. in 5He, as well as for S1/2 for a description of the 1

2
+

scattering states of 5He (see Fig. 1). We find that the SA space 
yields results that are indistinguishable from those in the complete space. While Fig. 1 shows the comparison only for r′ = 1 fm, the 
results remain indistinguishable for any r′ . In addition, the norm kernels exhibit the same behavior, namely, the outcomes for the SA and 
complete model spaces coincide. These results demonstrate that the SA wavefunctions account for the relevant correlations necessary to 
describe the norm and the direct component of the non-local potentials that govern the resonant ground state and low-energy scattering 
states in 5He. Because the kernels are used as the input for calculating phase shifts, the findings show that the SA model spaces are 
sufficient to reproduce the corresponding S1/2 and P3/2 phase shifts calculated in the Nmax complete model spaces (see Figs. 2 and 3 for 
the comparison of the selected model space to the complete model space). Such small differences are expected to be inconsequential. We 
emphasize that this comparison focuses on the effect of SA model spaces benchmarked against the corresponding complete model spaces, 
not on reproducing experimental phase shifts with all RGM kernels.
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Fig. 1. Potential kernel of Eq. (15) for 4He(0+
g.s.) + n as a function of the relative coordinate r. Calculations use the JISP16 NN interaction, for h̄� = 25 MeV and ηmax = 10, 

and use SA-NCSM 4He wave functions in selected (Nmax = 〈6〉14) and complete (Nmax = 14; equivalent to NCSM/RGM) model spaces. The selected space (dashed red) yields 
results that are indistinguishable from those in the complete space (solid blue) for both 2 P3/2 and 2 S1/2 channels. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

Fig. 2. Percent difference in phase shifts for the 2 S1/2 neutron scattering off 4He from kernels calculated in Nmax〈6〉14, relative to the complete Nmax = 14 model space. 
Results are shown as a function of the center-of-mass projectile energy.

Fig. 3. Same as in Fig. 2 but for the 2 P3/2 neutron scattering off 4He.
6



A. Mercenne, K.D. Launey, T. Dytrych et al. Computer Physics Communications 280 (2022) 108476
Fig. 4. (a & b) Exchange norm kernel of Eq. (8) and (c & d) potential kernel [Eqs. (14) and (15)] for 20Ne(0+
g.s.) + n as a function of the relative coordinate r. Calculations use 

the NNLOopt NN interaction, for h̄� = 15 MeV and ηmax = 10, and use SA-NCSM 20Ne wave functions in selected Nmax = 〈2〉4, 〈2〉6, and 〈2〉8 model spaces, for (a & c) 2 P3/2

and (b & d) 2 S1/2 partial waves.

3.2. Application to intermediate-mass nuclei

To illustrate the capability of the SA-RGM, we present the first ab initio calculations of RGM norm and leading-order potential kernels in 
the intermediate mass region, namely, for neutron scattering off 20Ne(0+

g.s.). The SA 20Ne wave functions are calculated using the NNLOopt

NN interaction [76] and have been shown to reproduce observables, such as excitation energies and B(E2) strengths [2]. The NNLOopt is 
used without 3N forces, which have been shown to contribute minimally to the 3- and 4-nucleon binding energies [76]. Furthermore, the 
NNLOopt NN potential has been found to reproduce various observables, including the 4He electric dipole polarizability [7]; the challenging 
analyzing power for elastic proton scattering on 4He, 12C, and 16O [77]; along with B(E2) transition strengths for 21Mg and 21F [8].

As expected, the exchange norm kernel for 20Ne(0+
g.s.) + n manifests itself at short distances and vanishes at long distances (see Fig. 4a 

& b, for the case of r′ = 1 fm). This reflects the short-range nature of the Pauli exclusion principle. We find that the change in the model 
space size from Nmax = 6 to Nmax = 8 has only a small effect on the exchange norm of the P3/2 partial wave (Fig. 4a) and S1/2 partial 
wave (Fig. 4b). The largest deviations are observed at short distances, where the kernels have the largest magnitude. As the model space 
increases, the kernels start to converge, and the exchange kernel maximum slightly increases in magnitude for S1/2, whereas it slightly 
decreases for P3/2. Note that even though the deviation seems larger for P3/2, the magnitude of the P3/2 exchange kernel maximum is 
smaller by a factor of 3.5 than that of S1/2. Hence, these outcome indicates that the selection of dominant SU(3) components at Nmax = 8
(see also Fig. 3 in Ref. [2]) is sufficient to incorporate the relevant correlations needed to describe the short-range Pauli effect.

The potential kernels of Eq. (14) for 20Ne(0+
g.s.) + n, calculated with the NNLOopt NN, are also studied with increasing model space sizes 

(see Fig. 4c & d, for r′ = 1 fm). Similarly to the exchange norm kernel, the increase in the model space from Nmax = 6 to Nmax = 8 has a 
much smaller effect on this potential kernel when compared to the increase from Nmax = 4 to Nmax = 6, for both S1/2 and P1/2 partial 
waves, suggesting converging results. When compared to the potentials for 4He + n of Fig. 4, the 20Ne(0+

g.s.) + n case shows a slightly 
larger deviation around the kernel maximum when varying the model space. This effect might be a result of the open-shell structure of 
the ground-state wave function of 20Ne compared to that of 4He. In addition, the small changes in these kernels result in only very little 
deviations in the 2 S1/2 phase shifts for the low-energy neutron scattering off 20Ne(0+

g.s.), with a relative difference of the order of 1-2%
compared to the largest model space used (Fig. 5).

As another illustrative example, we present the potential kernel of Eq. (14) for 16O(0+
g.s.) + n (Fig. 6), which is feasible for no-core 

shell-model calculations with the importance truncation using other interactions [78]. In our study, we use the NNLOsat [79], for which 
the three-nucleon (3N) forces are included in the SA-NCSM as averages [12]. Namely, in these calculations, the 3N forces are included 
as a mass-dependent monopole interaction [80], which has an effect on binding energies. For the 16O ground-state energy, the 7-shell 
3N contribution is 20.46 MeV, resulting in −127.97 MeV total energy for Nmax = 8 and h̄�=16 MeV, which agrees with the experimental 
value of −127.62 MeV. In this case, we compare calculations within a selected model space Nmax = 〈0〉8 to those in the complete Nmax = 6
model space. The results of the two model spaces are practically indistinguishable, despite the significantly reduced SA model space used 
here and the addition of SU(3) dominant configurations in the 8h̄� subspace. For 16O, this outcome could be understood by the fact that 
∼ 80% of the ground state is composed of a spherical shape and low Nmax model spaces are able to account for its vibrations.
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Fig. 5. Percent difference in phase shifts for the 2 S1/2 neutron scattering off 20Ne from kernels calculated in Nmax = 〈2〉4 and Nmax = 〈2〉6 model spaces, relative to the phase 
shift from the largest model space Nmax = 〈2〉8. Results are shown as a function of the center-of-mass projectile energy.

Fig. 6. Potential kernel [Eqs. (14) and (15)] for 16O + n as a function of the relative coordinate r. Calculations use the NNLOsat NN+3N interaction, for h̄� = 16 MeV and 
ηmax = 10, and use SA-NCSM 16O wave functions in selected (Nmax = 〈0〉8) and complete (Nmax = 6) model spaces, for both 2 P3/2 and 2 S1/2 channels.

3.3. Efficacy and scalability of the SA scheme

In this section we explore the scalability of the SA-RGM calculations with increasing model space sizes and particle number. The SA-
RGM channel basis (6) is used to compute the kernels of Eqs. (8) and (15). These channels are constructed from the unique {ν1} quantum 
numbers of the target state that uses drastically reduced SA dimensions as shown in Table 1. This results in a manageable number of 
SA-RGM basis states, which do not require memory that scales exponentially with Nmax as calculations in complete model spaces do. 
Indeed, the SA-RGM basis states remain almost constant or even decrease with Nmax, as shown in Fig. 7 for several nuclear systems.

For example, for proton- or neutron-nucleus interaction for N+20Ne (0+
g.s.), there are only about 103-104 SA-RGM basis states for 7 

to 13 shells, and only about 105 − 106 for 23Mg when more target states are used (with channels for 3/2+
g.s., 5/2+ , 7/2+), which is still 

manageable (Fig. 7). Interestingly, the number of unique deformed configurations for heavier targets, such as Ne and Mg, may decrease 
in larger model spaces, as dominant shapes are allowed to develop, thereby reducing shape mixing. As a consequence, in such cases the 
SA-RGM basis can become smaller when increasing Nmax.

There is a further reduction in the number of SU(3) basis states needed for the target wave functions, as one eliminates negligible 
contributions identified in the target eigenfunctions. Namely, for the illustrative example of the 23Mg target (Fig. 7), we show the number 
of the SA-RGM channels after retaining basis states that contribute with a probability amplitude (Cω1κ1 L1 S1

b1
)2 [see Eq. (5)] greater than a 

certain value ε. We find that the number of the 23Mg+N SA-RGM states do not grow exponentially but remain manageable with increasing 
8
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Fig. 7. Number of SA-RGM basis states as a function of the model space size 〈NC
max〉Nmax of the target. The target eigenfunctions are shown as complete (solid curves or 

ε = 10−6), or reduced to the SU(3) basis states with probability amplitudes greater than ε cutoff. We use NC
max = 6 for 4He, and NC

max = 2 for 20Ne and 23Mg, as well as 
ηmax = 15. The SA-NCSM calculations for 4He (20Ne and 23Mg) use the JISP16 (NNLOopt) NN interaction and h̄� = 25 MeV (h̄� = 25 and h̄� = 15, respectively). The model 
space dimensions needed to solve for each target nucleus is given in Table 1.

Nmax for each ε and further decreases for higher ε reduction cutoffs. We note that the ε = 10−6 cutoff uses the 23Mg basis states with a 
probability greater that 10−6 and results in no reduction. In the SA-RGM calculations, the ε cutoff for the SA selection is decreased until 
convergence of results is achieved.

We note that an important step for computing the kernels from the many-body wavefunctions is the calculation of the ρρ0ω0 S0
ηη′ operator 

of Eq. (9). Its calculation can be compared to the one-body density matrix elements, namely, they need to be calculated only once for a 
given set of target wavefunctions, and, as mentioned above, can utilize an efficient algorithm that exploits SU(3) SA subspaces and the 
factorization of spatial and spin degrees of freedom. As for the kernels, these calculations are also facilitated by the large reduction in the 
number of SU(3) basis states needed to describe the target wave functions, as compared to the complete Nmax model space. These same 
reductions are observed for two-body densities that will be needed for the particle-rank two potential kernels.

4. Conclusions

In this paper, we have studied the efficacy of the new ab initio SA-RGM approach that combines the SA-NCSM and RGM frameworks. We 
have discussed nucleon-nucleus interactions and the use of the SA framework for 4He and 16O targets, as well as the intermediate-mass 
20Ne and 23Mg targets feasible in the SA-NCSM. We have shown that the SU(3) selection of the model space has almost negligible effect 
on the SA-RGM norm and particle-rank one potential kernels, as well as on phase shifts used in calculations of cross sections. The results 
demonstrate that the reduced number of components included in the calculations are sufficient to describe single nucleon scattering in 
this mass region.

In addition, we have studied the scalability of the SA-RGM approach, showing its computational advantages that stem from the signifi-
cantly reduced number of SU(3) basis states needed to describe the target, as well as the manageable number of the SA-RGM basis states 
for the target+N system with the increase in the model space size. This means that the memory resources needed for these calculations 
remain manageable and do not grow exponentially. The demonstrated efficacy of the SA basis and its scalability with particle numbers 
and model space dimensions opens the way to ab initio calculations up through the medium-mass region of nucleon-nucleus interactions 
that enter nucleon scattering and nucleon capture reactions.
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