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Abstract

This note addresses hyper-plane arrangements in R? and functions that are constant in the interior of each of the
d-dimensional faces of the arrangement. We show that such a function g can be expressed in a simple form using basis
functions that are products of d or less indicator functions of the open half-spaces bounded by the hyper-planes in the
arrangement. Moreover, we present a simple and efficient algorithm that can be used to express g as a linear combination
of these basis functions.
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1 Introduction

For hyper-planes H,,...,H, in R¢ we denote by «/ the arrangement of the n hyper-planes H,,...,H,. Hyper-plane
arrangements is a broad and well studied topic in mathematics with relations and applications to many other fields in
mathematics and computer science [5, 8,9]. The objects of <7 are all the possible intersections of hyper-planes and open
half-spaces defined by Hy, ..., H,,. Of particular interest to us will be the d-dimensional faces of the arrangement <. These
are in fact the connected components of R% \ U, H;.

We recall the function sign : R — R that is equal to 1 for every positive number and is equal to —1 for negative numbers.
We artificially define sign (0) to be —1. As will be elaborated below, the value of sign (0) will not be important for us at all
in the sequel.

In this note we address functions g : R? — R that can be expressed in terms of the n sign functions sign ({z,v;) — ¢;),
1 <4 < n, where v; € R" and ¢; € R are some given vectors and constants, respectively. Such functions were encountered
in the study of estimation and control of linear systems forced by Cauchy [3, 4, 6, 7] and Laplacian [1, 2] noises. When
derived, these functions g have a very complex form that leads to numerical difficulties in applications. The goal of this
note is to propose an alternative and simpler representation of those functions. In addition, it will show a simple and fast
algorithm to construct this representation. In this paper we will not care about the values of the function ¢ at points « for
which (z,v;) — ¢; = 0 for some 1 < ¢ < n. This is the reason why the value of sign (0) will not be of any importance in this
paper. For convenience we set sign (0) = —1.

It will be more convenient to work with the functions o;(z) = 3 [sign ((z,v;) — ¢;) + 1]. Notice that o;(x) is the indicator
function of the open half-space H;" = {z € R? | (z,v;) > ¢;}. That s, o;(x) = 1 for every z in H;" and is equal to 0 otherwise.
Observe that a function g can be expressed in terms of the functions sign ({x,v;) — ¢;) if and only if it can be expressed in
terms of o1, ..., 0p,.

Because each of the functions o4, ..., 0, is constant in every d-dimensional face of .o, then so are the functions g that
we study in this note.

It is easy to see that also the other way around is true. That is, given Hy, ..., H,, any function g : R%\ U"_, H; — R that
is constant in every d-dimensional face of &7 can be expressed in terms of o4, ..., 0,,. To prove this observe that it is enough
to address functions g that are equal to 1 for every x in some d-dimensional face F' of <7 and are equal to 0 otherwise. Let
I, = {1,...,n} and I C I, be the set of all indices ¢ such that H; supports a (d — 1)-dimensional facet of F. Then F is
equal to the intersection of all half-spaces containing F' and bounded by H; for some ¢ € I. Let I, be the set of all indices
i € I such that o;(z) = 1 for every z € F. Let [, = I\ I,. Then g = [[,c; 0i-[[;c;,(1 — o). Consequently, any function
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g : R\ U, H; — R that is constant in every d-dimensional face of &/ can be written as a linear combination of products
ofnorlessofoy,...,op.
The main result in this note is the following improvement that is also tight.

Theorem 1.1. Let o7 be a hyper-plane arrangement of n affine hyper-planes Hi, . .., H, in R? defined by H; = {z | (x,v;) = ¢;},
where x € RY, v; € R% is normal to H;, and ¢; € R. For every 1 < i < n let o; denote the indicator function of the open half-
space {z | (x,v;) > ¢;} bounded by H;. Let g be any function that is constant in the interior of every d-dimensional face in <.
Then there is a linear combination of products of d or less of the functions o; that is equal to g at any point in R\ U, H,.

Given a hyper-plane arrangement <7 of n affine hyper-planes Hy, ..., H, in R? and a function g : R? \ U H; — R that
is constant on every d-dimensional face of .o/, Theorem 1.1 tells us that we can write g as a linear combination of products
of d or less of the functions o4, ..., 0,. Specifically, let I C I,, be a subset of I,, with cardinality |/| < d and denote by o; the

product [],.; o;. When T is the empty set, we define oy = 1. Theorem 1.1 implies that the function g can be expressed as

9= a0y 1)

1<d

icl

for all I C I,, with |I| < d with some coefficients a;.

The number of such possible products o; and thus terms in the sum of (1) is equal to N = Zf:o (’;) This raises the
question of an efficient computation of the N coefficients a; in (1). In Section 3 we provide an algorithm that given the
function g computes these coefficients with running time of O(2¢ (Z)) That is, number of operations in the algorithm is

O(24(7)), where calling to the function g is considered as one operation.

2 Proof of Theorem 1.1

We start with a preliminary result that will be used to prove the main theorem presented next. When stated separately,
not within the problem addressed in this note, its statement and proof can be greatly simplified, without hampering its
generalization.

Lemma 2.1. Let A, be a d-simplex in R%. Let Hy, ..., Hy,, be the d + 1 affine hyper-planes supporting the facets of Ay. For
i=1,...,d+1, let o; be the indicator function of the closed half-space bounded by H; and containing A,. Then

d+1

I1 (1 - o—i) = 0. @)
i=1
Proof. Assume, without loss of generality, that 0 € A;. Fori = 1,...,d + 1 we write H; as H; = {z | (z,v;) = ¢;}, where
v; € R? (orthogonal to H;) is chosen such that ¢; > 0. Then Ay = {z |V 1 < i < d+1,(z,v;) < ¢; }. Observe that
the statement of the Lemma 2.1 is equivalent to saying that there is no vector u € R? such that (u,v;) > ¢; for every
1 < < d+ 1. Assume to the contrary that there is such a vector u. Then for every a > 0 and every 1 < i < d + 1 we have
(—au,v) = —alu,v;) < —ac; < 0 < ¢;. In other words, —au € A, for every a > 0. This is impossible as A, is bounded. [

We can now proceed to the proof of Theorem 1.1. Observe that in order to prove Theorem 1.1 it is enough to consider
functions g that are indicator functions of d-dimensional faces in <.

Let F be a d-dimensional face in &/ and let g be the indicator function of F'. Let I C I,, denote the set of indices ¢ such
that H, supports I’ at a facet of dimension d — 1. Let I, and I, be a partition of I into two parts such that if i € I, then
F C {z | (z,v;) > ¢;} and ifi € I, then F' C {z | (z,v;) < ¢;}. Observe that F is equal to the intersection of all open
half-spaces containing F' that are bounded by some hyper-plane H; where i € I. Therefore, the function

g= Hai-H(lfJi)
i€l, i€l
is equal to g at any point not in U}’ , H;.

Ifthe cardinality |I| of I is smaller than or equal to d, we are done because g can clearly be written as a linear combination
of products of | 7| or less of the indicator functions o1, . .., 0,,. If the cardinality of I is larger than d, then g can still be written
as a linear combination of products of the indicator functions o4, . .., 0, however the number of terms in each product may
exceed d. Therefore, Theorem 1.1 will follow if we can show that the product of every d + 1 of the indicator functions
o1,...,0, is equal, on R? \ U, H;, to a linear combination of products of d or less of the indicator functions o4, ..., 0,.
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We prove this by induction on d. The basis of the induction is the case d = 1. In this case we have two indicator functions,
say o1 and o5. We would like to consider the function o105 and express it as a linear combination of products of zero or one
of the functions o; and o».

This could easily be left to the reader, but for completeness we bring the simple analysis here. For : = 1, 2 there exists
x; such that the function o; is either the indicator function of { | x < x;} or of {z | = > z;}. Without loss of generality
assume that z; < x5. We consider four possible cases.

Case 1. 0, is the indicator function of {z | < 21} and o5 is the indicator function of {z | z < z3}. In this case 0109 = 0.
Case 2. o, is the indicator function of {z | z < z1} and o5 is the indicator function of {z | z > z2}. In this case o105 = 0.
Case 3. o, is the indicator function of {z | + > z1} and o3 is the indicator function of {z | < x2}. In this case o053 is
equal to the function o; + o9 — 1.

Case 4. o, is the indicator function of {z | + > z1} and o5 is the indicator function of {x | > x2}. In this case 0,05 is
equal to the function o».

This concludes the case d = 1 being the basis of induction.

For d > 1 we consider two possible cases:
Case 1. k + 1 of the vectors vy, ..., v411 are linearly dependent for some 1 < k& < d. Without loss of generality, assume that
v1,...,v541 are linearly dependent. By a possible rotation of R?, we can assume that span{vy,...,v.41} C span{ey,...,ex},
where eq,...,e; are the first k elements of the standard basis of R?. Let P : R — R* be the projection on the first k&
coordinates of R, In R, for every 1 < i < k + 1 we define H! = {x € R* | (P(v;),z) = ¢;} and let o} : R* — R be the
indicator function of {z € R* | (P(v;),z) > ¢;}. Observe that for every x € R and 1 <i < k + 1,

oi(z) = ol (P(x)). (3)

Because & < d, we can apply the induction hypothesis for dimension k¥ and conclude that Hfill o} is equal to a linear
combination of products of & or less of 07, ...,0}_ ;. Because of (3) it follows that Hf;“ll o; is equal to a linear combination
of products of k or less of 71, ..., 0%1. Consequently,

d+1 k+1 d+1

H g; = H gj; - H ag;

i=1 i=1 i=k+2
is equal to a linear combination of products of d or less of o4,...,0441.
Case 2. every set of d vectors from vy, ...,v411 is linearly independent. We split into two possible subcases.

Case 2a. ﬂ?illHi = (). In this case Hy,...,Hy,1 are the d + 1 affine hyper-planes supporting the facets of the d-simplex

A4 whose vertices are v; = N%tl. 4;Hi for 1 < j < d+ 1. We may assume, without loss of generality, that 0 € A4. Let

I={1,...,d+1}. Let I, and I, be a partition of I into two parts such that if i € I,, then ¢; < 0, and if i € I}, then ¢; > 0.

Then
H agj; - H(]. — O'i)

iel, i€,

is the indicator function of the interior of A;. Applying (2) of Lemma 2.1 yields

H(l—ai)'HUz':O,

icl, icl,

which proves the theorem for this case.

Case 2b. O?;LllHi # (. In this case ﬁfillHZ— is a single point, because v, ..., v4 are linearly independent. Without loss of
generality we assume that this single point is 0. Consequently, ¢; = 0for 1 <i < d+ 1. Let a1, ..., aq11 be real numbers,

not all zero, such that Zfill a;v; = 0. Notice that in this case a; # 0 for all 1 < ¢ < d+ 1, because every set of d vectors from
v1,...,0qs1 is linearly independent.
Define I, = {1 <i<d+1]a >0}tand [, = {1 <i <d+ 1| «a; < 0}. Notice that I, and I, form a partition of

{1,...,d+1}. We claim that

i€l, i€l

Observe that once (4) is established we are done, as (4) implies that Hfill o, is a linear combination of products of d or less
ofo1,...,0441.

To prove (4), notice that the contrary assumption is that there exists a vector u such that for every i € I, we have
(u,v;) > 0 and for every i € I, we have (u,v;) < 0. It follows now from the definition of I, and I, that forevery 1 <i <d+1



N. Duong, M. Idan, R. Pinchasi, and J. L. Speyer / Discrete Math. Lett. 7 (2021) 79-85 82

we have «;(u, v;) > 0. This is a contradiction as
d+1 d+1
Zaz(u,vi} = <u,Zaivi> = (u,0) = 0. (5)
i=1 i=1

3 Computational aspects

Assume we are given a hyper-plane arrangement </ of n affine hyper-planes Hy,..., H, in R? and a function g that is
constant on each of the d-dimensional faces of .«7. For every i = 1,...,n we let o; be the indicator function of a open half-
space bounded by H, (we may choose any of the two). In this section we provide an algorithm of running time O(2%(7}))
that produces the representation of ¢ as a linear combination of products of d or less of oy, ..., 0.

We start with a preliminary observation that we will need.

Observation 3.1. Assume H,..., H; are d hyper-planes in R%, passing through the origin, with normal vectors that are
linearly independent. Then H, ..., H, partition R? into 2¢ regions and the horizontal hyper-plane {xq = 0} must avoid at
least two of them. Moreover, if {xq = 0} is not parallel to any intersection of d — 1 or less of Hy, ..., Hy, then the horizontal

hyper-plane must avoid exactly two of the 2¢ regions.

Proof. Perhaps the easiest way to see this is to perform a linear transformation on R¢ such that H,, ..., H; coincide with
the d axis-parallel hyper-planes through the origin. Then H;, ..., H; partition R? into 2¢ region F}, ..., Fy that correspond
to the 2¢ different sign patterns of the d coordinates.

The linear transformation we performed takes the horizontal hyper-plane {z; = 0} to some hyper-plane H with a
normal vector v. Observe that the condition that H is not parallel to any intersection of d — 1 or less of Hy,..., Hy is
equivalent to that no coordinate of v is equal to 0.

There are at least two of the regions Fi,..., Fy (and exactly two if the coordinates of v are all different from 0) whose
coordinates sign patterns either always agree with the sign pattern of the coordinates of v, or always disagree with the
sign pattern of the coordinates of v. These are exactly the regions avoided by H. O

We will first assume that the arrangement < is in general position in the sense that no d + 1 hyper-planes from
Hy,...,H, share a common point. For reasons that will become clear shortly, we assume without loss of generality that
no face in &/ is horizontal, i.e., is parallel to the hyper-plane {z; = 0}. This can be achieved by a generic rotation of <7

We start by computing all the (7}) vertices of <. This can easily be done in time O(d*(})) (we do not try to optimize here
as long as we are at least as fast as O(27(’}))), simply by considering every subset of d of hyper-planes from H,..., H, and
then solving a system of d linear equations in d variables.

It follows from Observation 3.1 that every vertex in ./ is the unique lowest point of a unique d-dimensional face in «/.
Indeed, at every vertex X of o/ apply Observation 3.1, where Hy, ..., Hy are taken to be the d hyper-planes meeting at X
and let H in Observation 3.1 be the horizontal hyper-plane through X, that is, H is the hyper-plane through X parallel to
{zq = 0}.

Theorem 1.1 tells us that any function g that is constant on every d-dimensional face of <7 can be written as a linear
combination of products of d or less of 71, ..., 0,, given in (1). Notice that because Hi, ..., H, are in general position this
implies that the N = Z?:o (’;) products of d or less of o1,...,0, form in fact a basis for the space of all functions g that
are constant on every d-dimensional face of 7. This is because the number of d-dimensional faces in any arrangement of
n hyper-planes in general position is precisely N (see [5,8,9]). Although we will not use the fact that the products of d or
less of o1, ..., 0, are linearly independent, it is useful to observe this fact in order to understand better the proof.

We will use, however, the following simple observation. We claim that even if we replace any o; by (1 — ;) in any of
the products of d or less of o1, ..., 0, we will still remain with a basis for the space of all functions g that are constant on
every d-dimensional face of /. To see this, let I be a set of k£ indices from I,,, where 1 < k < d (the case k = 0 is trivial).
Let I" C I be any subset of /. We would like to show that we can replace [];c; 0i by [[;c;/ (1 = 03) - [ ;1\ 07 and remain
with a basis for the space of all functions g that are constant on every d-dimensional face of 7. This is indeed true because
[Licr (X —0i) - IL;ep v 0i is equal to ][, ; o; plus a linear combination of products of k — 1 or less of 74,..., 0. This fact
can now be used to prove by induction on k that the replacement of any o; by (1 — ¢;) does not change the linear span of
these products.

We are given a function g that is constant on every d-dimensional face of .« and we would like to find the representation
of it, that surely exists because of Theorem 1.1, as in (1). In particular, we want to find the N coefficients a; given the
values of g in the N d-dimensional faces of .«
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For every I C I,, such that |I| = d we consider the point X; that is the intersection of all the d hyper-planes H; where
1 € I. As we observed, X is the unique lowest point of a unique d-dimensional face that we denote by F;. Let I’ C I be the
set of all indices i € I such that o; is equal to 0 on F;. Define o} =[],/ (1 — 03) - [[;ep\ p 0i- Observe that o7 is equal to 0
at every point below X;. Moreover, ¢} is equal to 0 in all the d-dimensional faces that have X; as a vertex, except for F;
where o7 is equal to 1.

As we already noticed, g can be written also as a linear combination of o} for |I| = d and o; for |I| < d. Let o} for |I| < d
be the coefficients such that g = Z‘ I)=d aror + Z‘ I)<d ayor. Let H be a horizontal hyper-plane that is lower than the lowest
vertex of 7. Notice that H intersects precisely all the d-dimensional faces that do not have a lowest point. Notice also that
Z‘ Il=d a0’ is equal to 0 at every point on H simply because H is lower than all the vertices in </. Therefore, on H we have
g= ZI I1<d ayor. We therefore consider the (d — 1)-dimensional arrangement of H N Hy, ..., HN H, in the d — 1 dimensional
space H. We use induction and find the representation of g =} ;_;a70; on H with running time 7'(d — 1) that we will
analyze later (we will show that 7'(d) = O(2%(7}))). Having found the coefficients a/ for |I| < d we proceed to finding the
coefficients o for |I| = d.

Fix I C I, such that |I| = d. We show how to find o). The point X; is the intersection of the d hyper-planes H;, where
i € 1. By Observation 3.1, these hyper-planes partition R into 2¢ d-dimensional regions and therefore, X; is a vertex of
precisely 2¢ d-dimensional faces of .«7. Denote these d-dimensional faces by F}, ..., Fy« and recall that F; is one of these
faces.

Let S; be the function [, .},
20; — 1 is equal to 1 in the half-space where o; = 1 and is equal to —1 in the half-space where o; = 0 (the same is true

(2(1 = 0i) = 1) - [T;ep\r(20i — 1). To understand the simple meaning of S; observe that

for (2(1 — 0;) — 1) with the change of role of the two half-spaces bounded by H;). Therefore, S; is equal to 1 in F; (where
(1—0;)=1forallie I'’and o; = 1for alli € I\ I'). Moreover S; changes sign every time we cross one of the hyper-planes
H;, where i € I.

We claim that

2d
ay = g(F)Si(F). (6)
=1

Notice that evaluating a/ in this way takes time 2¢ (that is, 2 calls to the function g).
To prove (6) recall that g =3~ ;_, a0/, + 3, ;.4 a0, Hence, (6) is restated a

dr= 3N oy (F)Si(F)+ Y S dyos(F)Si(F). XY

|J|=d i=1 |J|<d i=1

Observe that we have Zfil ayot (F;)S1(F;) = a}o(Fr)Si(Fr) = af. This is because o} is equal to 0 on all the faces F1, .. ., Fya
except for F; on which o} is equal to 1. Therefore, in order to complete the proof of (6) it is enough to examine the sums in
(7) with J # I and show that S | a/,0",(F))S;(F,) = 0 for |J| = d and 32, /,o;(F})S; (F;) = 0 for |J] < d.

Let J C I,,,|J| = d, and J # I. Because |I| = d, it must be that I\ .J is not empty. Choose arbitrarily some ¢ € I\ J. For
every face F; the value o/, (F;) is either 1 or 0. If o/;(F;) = 0 for all 1 < i < 29, we are done. For every face F; with ¢/,(F;) = 1
consider the unique face Fj; such that F; and Fj; share a common facet on the hyper-plane H,. Observe that for F; it is
also true that o/;(F;) = 1 because g ¢ J. However S;(F;) = —S;(F;). Therefore, in Zfil a’;0’;(F;)S1(F;) the terms ¢ and
i’ for which o/;(F;) = o/;(F;») = 1 cancel the contributions of each other, while the other terms are identically zero because
their respective ¢/, = 0. Consequently, Zfil a’;0’;(F;)S1(F;) = 0. A similar argument as above holds when |J| < d to yield
that Zfil a’;07(F;)S1(F;) = 0. This concludes the proof of equation (6).

We can therefore find all the coefficients o} for [I| = d in time O(2%(’})), as there are (7)) subsets I of I, with
[I| = d. To summarize, we found all the coefficients a} in the representation of g as g = }_,;_,a707 + X2 4a)01 in
time O(24(%)) +T'(d — 1).

We are not done yet because we need to find the representation of g as g = ZI 1)<d @101 In order to do this we recall
that every o/ for |I| = d is a product of d terms each of which is equal either to o; or to (1 — o;) for some i € I. We can
therefore write it as linear sum of at most 2¢ products of d or less of o; where i € I. This requires an additional work of
time O(24(7})). Then we get a representation of g as a linear sum of at most

zd(g)+(dﬁ1)+(dﬁ2)+...+(g)

products of d or less of oy,...,0,. With additional work of O(2¢ (Z)) we can gather similar terms and get the required
representation of ¢ as in (1).
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In order to analyze the running time 7'(d) we observe that T'(d) = T'(d—1)+0(2%(7})). This easily implies T'(d) = O(2%(}})).

We have thus proved that the desired representation of g can be computed in time O(2¢("})) when the arrangement </
is in general position. We next show how to conclude from here an algorithm with the same running time also when &/
may not be in general position. What we do is perturb by just a little bit the hyper-planes Hi, ..., H,, and define g to be
0 (although it could take arbitrary values just as well) in the newly created d-dimensional faces. More precisely, we first
take sample points from every face in <« before the perturbation. Then we perturb 7. We find which new d-dimensional
faces correspond to the old ones. This can be done very quickly, as we just need to find the new d-dimensional faces to
which each of the old sample points belong. Now that we have the perturbed hyper-plane arrangement that is in general
position and the new function g, we apply our algorithm and the representation that we get for the new g will work also
for the original one.

A disadvantage of the above method for arrangements .7 that are not in a general position is that the representation
we obtain for ¢ has more terms in (1) than the number of d-dimensional faces in 7. Effectively it means that the basis we
use to represent g is larger than needed and one can find a smaller one, i.e., g could be fully represented as in (1) with the
number of terms that equals to the number of d-dimensional faces in 7. In the next section we present an algorithm that
finds such a minimum-dimensional basis and shows how to find the coefficients of a representation of ¢ with this basis.

4 The non-general-position case

Theorem 4.1. Let </ be a hyper-plane arrangement of n affine hyper-planes Hy, ..., H, in R% For every 1 < i < n let o;
denote the indicator function of one of the two open half-spaces bounded by H;. Let 4 be the linear vector space consisting
of all functions g that are constant in the interior of every d-dimensional face in </. Then there is a basis for ¢ that consists
of products of d or less of the functions o;.

Remark. The size of the basis guaranteed in Theorem 4.1 is clearly equal to the dimension of ¢, that is, the number of
d-dimensional faces in <7.

Proof. We prove the theorem by induction on d. For d = 1 there is nothing to prove because in this case the theorem is
equivalent to Theorem 1.1.

Assume the theorem is true for dimension d — 1 and we prove it for dimension d. Given d is fixed, we prove the theorem
by induction on n. The theorem is clearly true for n = 1 because in this case </ consists of just two d-dimensional faces,
that is, the two open half-spaces bounded by H;. Then a basis for ¢ is {1,071} and this is regardless of the choice of the
indicator function oy.

Assume the theorem is true for n — 1 and we prove it for n. We would like to find a basis for ¢4 in which every element
is a product of d or less of o1, . .., o,,. Consider the hyper-plane arrangement </ of the n — 1 hyper-planes Hi, ..., H,_,. By
induction hypothesis, there is a basis whose elements are products of d or less of o1, ...,0,_; for the linear space ¢ of all
the functions that are constant on the interior of every d-dimensional face of /. Denote this basis by ai,...,ax, where k is
the dimension of 4.

Consider now the hyper-plane H,,. Fori =1,...,n — 1 denote by H/ the intersection H; N H,,. Therefore, H] is a hyper-
plane of dimension d — 1 in H,,. Let &/’ denote the hyper-plane arrangement of Hj,..., H)_, inside H,. Let ¢’ be the
linear space of all functions that are constant on every (d — 1)-dimensional face of &/’. Fori = 1,...,n — 1 let o denote
the restriction of o; to H,,. Notice that o] is the indicator function of one of the open half-spaces of H,, bounded by H.

By the induction hypothesis, there is a basis for ¥’ whose elements are products of d — 1 or less of o7,..., 0] Denote

n—1-
the elements of this basis by b,...,b}, where ¢ is the dimension of ¥’. For j = 1,...,¢ let I; be the set of indices from
{L,...,n —1} such that b} =[], oi.

We observe that the number of d-dimensional faces in 7 is equal to the number of d-dimensional faces in o/ plus the
number of (d — 1)-dimensional faces in «/’. In other words, the dimension of ¢ is equal to k + ¢, which is the sum of the

dimension of ¢ and the dimension of ¢'.

We are now ready to define the desired basis for 4. For j = 1,..., ¢, considering the subsets I; used to define b; above,
define b; = Hielj o;. We claim that B = {ay,...,ar} U {opb1,...,0,bs} is a basis for 4. We remark that once we prove B
is a basis for &4 we are done, as every member of B is a product of d or less of oy, ...,0,. Moreover, to conclude that B is

indeed a basis for ¢ it is enough to show that it spans ¢, because | B| is equal to k + ¢, the dimension of ¥.
In order to show that B spans ¢ it is enough to show that the indicator function of every d-dimensional face in </ can
be written as a linear combination of members of B. Let C be a d-dimensional face of /. If none of the facets of C is
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supported by H,,, then C is also a d-dimensional face in <7 and therefore the indicator function of C can be written as a
linear combination of a4, ..., ag.

Assume therefore that H, supports a facet of C. There is a unique cell in .« that contains C. We denote this cell by C.
In fact C is equal to the intersection of C' with one of the two open half-spaces bounded by H,,.

Let ¢’ = H, N C. C'is a (d — 1)-dimensional face in .«v’. Therefore, the indicator function of C’ can be written as
Zf.:l B;b; for some coefficients 31, ..., 3. Now consider the function g = 25:1 B;b;. Notice that g is constant on every d-
dimensional face of .«#. Moreover, because the restriction of g to H,, is equal to Z§:1 ﬂjb;—, that is, to the indicator function
of C’, then g must be equal to 1 on C' and must be equal to 0 on every other d-dimensional face of ./ whose interior is
intersected by H,,.

Consider now the function o,,g. This function is constant on every d-dimensional face of <7 except for C. Indeed, c,,g is
constant on every d-dimensional face of &# whose interior is not intersected by H,,. It is equal to 0 on every d-dimensional
face of <7 whose interior is intersected by H,, except for C. The face C is a union of two d-dimensional faces in <7, namely,
C and C \ C. The function o, g is equal to 1 on one of C' and C \ C and is equal to 0 on the other.

Let f be the function that is equal to o,,g except that f is equal to 0 on C. Because f is in ¢, we can write f = Zle Q,;a;
for some coefficients a1, ..., a;. Now, the function ¢,,g — f is the indicator function of either C or C'\ C, the one for which
ong is equal to 1. If 0,9 — f is the indicator function of C, then we are done because

L k
ong— =Y Bionbj — > aja;.
j=1

Jj=1

If 0,9 — f is the indicator function of C'\ C, then write the indicator function of C' as Z§=1 7v;a;. Then the indicator function

of C is equal to
k k ‘
Z’Yjaj —(ong— f) = Z(’Yj + aj)a; — Zﬂjo—nbjﬂ
Jj=1 j=1

Jj=1

and we are done again. ]
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