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Abstract. We study the optimal lottery problem and the optimal mechanism design problem
in the setting of a single unit-demand buyer with item values drawn from independent distributions.
Optimal solutions to both problems are characterized by a linear program with exponentially many
variables. For the menu size complexity of the optimal lottery problem, we present an explicit, simple
instance with distributions of support size 2, and show that exponentially many lotteries are required
to achieve the optimal revenue. We also show that, when distributions have support size 2 and share
the same high value, the simpler scheme of item pricing can achieve the same revenue as the optimal
menu of lotteries. The same holds for the case of two items with support size 2 (but not necessarily
the same high value). For the computational complexity of the optimal mechanism design problem,
we show that unless the polynomial-time hierarchy collapses (more exactly, PNP = P#P)  there is
no efficient randomized algorithm to implement an optimal mechanism even when distributions have
support size 3.
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1. Introduction. Optimal pricing problems have been studied intensively dur-
ing the past decade, under various settings and from both algorithmic and complexity-
theoretic perspectives. They are closely related to problems that arise from the area
of optimal Bayesian multidimensional mechanism design; e.g., see [Tha04, GHK+05,
HKO05, BK06, DHFS06, BB06, MV06, CHK07, BBMO08, Bri08, Pav10, CD11, CMS15,
BCKW15, HN12, DW12, HN13, LY13, DDT13, DDT14a, WT14, BILW20, CDP+18,
DDT14b, Yaol5]. The latter is well understood in the single-parameter setting where
Myerson’s classic result shows that a simple, deterministic mechanism can achieve
as much revenue as any sophisticated, randomized mechanism [Mye81]. The gen-
eral case with multiple items, however, turns out to be more complex. Much effort
has been devoted to understanding both the structure and complexity of optimal
mechanisms, and to developing simple and computationally efficient mechanisms that
are approximately optimal.
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In this paper, we consider the following setting of monopolist lottery pricing where
a buyer is interested in n heterogeneous items offered by a seller. We focus on the
case when the buyer is unit-demand (i.e., only interested in obtaining at most one of
the items) and quasi-linear (i.e., her utility is v — p if she receives an item of value
v to her and makes a payment of p to the seller). The seller is given full access to
a probability distribution D from which the buyer’s valuations v = (vy,...,v,) for
the items are drawn, and can exploit D to choose a menu (a set) M of lotteries that
maximizes her expected revenue (i.e., payment from the buyer). Here a lottery is of
the form (x,p), where p € R is its price and x = (z1,...,2,) iS a nonnegative vector
that sums to at most 1, with each x; being the probability of the buyer receiving item
i if this lottery is purchased (the buyer receives no item with probability 1 — >~ x;).
After a menu M is chosen, the buyer draws a valuation vector v from D and receives
a lottery that maximizes her expected utility ) . ;- v; — p, or the empty lottery (0,0)
by default if every lottery in M has a negative utility.

Given D, its optimal menus are characterized by a linear program in which we
associate with each v in D := supp(D) a set of n + 1 variables to capture the lottery
that the buyer receives at v. We will refer to it as the standard linear program (see
section 2.1) for the optimal lottery problem. In particular, for the case when D is
correlated and given explicitly (i.e., given as a tuple of valuation vectors and their
probabilities), one can find an optimal menu by solving the standard linear program
in polynomial time [BCKW15].

We focus on the case when D = Dy x --- X D,, is a product distribution and
each v; is drawn independently from D;. The standard linear program in this case
has exponentially many variables in general (even when each D; has support size 2), so
one cannot afford to solve it directly. We are interested in the following two questions:

e Menu size complexity: How many lotteries are needed to achieve the optimal
revenue?

e Computational complexity: How difficult it is to compute' an optimal menu
of lotteries?

While much progress has been made when the buyer is additive (see discussions on re-
lated work later), both questions remain widely open for the unit-demand single-buyer
setting being considered here. For example no explicit instance is known previously to
require exponentially many lotteries for the optimal revenue. (A trivial upper bound
on the menu size is | D| since otherwise at least one lottery in the menu is never used.)

Our first result is an explicit, simple product distribution D, for which exponen-
tially many lotteries are needed (©2(]D|) indeed) to achieve the optimal revenue. Let
D’ denote the distribution supported on {1,2}, with probabilities (1 — p,p), and let
D" denote the distribution supported on {0, n+ 2} with probabilities (1 — p, p), where
p = 1/n%. We prove the following theorem in section 4.

THEOREM 1.1. When n is sufficiently large, any optimal menu for D* = D’ x
D' x - x D' x D" overn items must have Q(2") many different lotteries.

Note that all distributions in D* are the same except one. We show that this
is indeed necessary. Before stating our result, we review the optimal item pricing
problem. The setup is the same, but now the seller can only assign a price p; € R to
each item 7. Once the prices are fixed, the buyer draws v from D and buys an item
1 that maximizes her utility v; — p;. The problem is to find a tuple of prices that

1See Theorem 1.4 for the exact meaning of “computing” an optimal menu here.
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maximizes the seller’s expected revenue. Equivalently, an item pricing is a menu in
which each lottery is of the special form (e;,p) for some unit vector e; (so the menu
size is at most n). In general lotteries can extract strictly higher revenue than the
optimal item pricing, as shown in [Tha04] for two items with values drawn from [5, 6]
uniformly at random, which motivated much of the subsequent work.

We show that lotteries do not help when D;’s have support size 2 and share the
same high value.

THEOREM 1.2. If D =Dy X --- X D,, and supp(D;) = {a;,b} with a; < b for all
i € [n], an optimal item pricing achieves the same expected revenue as that of an
optimal menu of lotteries.

Therefore, the exponential lower bound on the menu size in Theorem 1.1 cannot
hold for support-size-2 distributions that share the same high value. The proof of
Theorem 1.2 also implies that an optimal menu in this case can be computed in
polynomial time.? For the special case of two items we show that the condition of D;
and D, sharing the same high value can be dropped.

THEOREM 1.3. If both D1 and Dy have support size 2, then an optimal item pric-
ing for D1 x Dy achieves the same expected revenue as that of an optimal menu of
lotteries.

In addition, we give examples of three-item support-size-2 and two-item support-
size-3 instances where lotteries do achieve a strictly higher revenue than item pricings.

Now we describe our result on the problem of computing an optimal menu of lot-
teries. Although D* in Theorem 1.1 trivially rules out any polynomial-time algorithm
that lists explicitly all lotteries in an optimal menu, there is indeed a deterministic
polynomial-time algorithm that, given any v € D, outputs a lottery ¢, such that
{ly : v € D} is an optimal menu for D* and ¥, is the lottery bought by the buyer at
v given this menu (see Corollary 4.5 and the remarks at the end of section 4). We are
interested in the question of whether a universal efficient algorithm that computes an
optimal menu in this fashion exists: given any product distribution D and any v € D,
such an algorithm outputs a lottery ¢ such that {¢, : v € D} is optimal for D.

This question is motivated by a folklore connection between the lottery problem
and the optimal mechanism design problem. Consider the same setting, where a unit-
demand buyer with values drawn from D is interested in n items offered by a seller.
Here a mechanism is a (possibly randomized) map B from the set D to ([n]U{nil}) xR,
where B(v) = (b,p) means that the buyer is assigned item b (or no item if b = nil)
and pays p to the seller. The optimal mechanism design problem is then to find
an individually rational and truthful mechanism (see definitions in section 2.1) that
maximizes the expected revenue of the seller.

Let B(v) = (x(v),p(v)) denote the expected outcome of B on v, i.e., x;(v) is
the probability of B(v) assigning item ¢ and p(v) is the expected payment. It fol-
lows from definitions of these two problems that, under the same D, B is an optimal
mechanism if and only if (B(v) : v € D) is an optimal menu (see section 2.1). There-
fore, the standard linear program for the lottery problem also characterizes optimal
mechanisms.

By exploring further ideas behind the proof of Theorem 1.1 we show that there
exists no efficient universal algorithm to implement an optimal mechanism even when

2The proof of Theorem 1.2 gives an explicit list of n+ 1 item pricings and shows that at least one
of them achieves the same revenue as an optimal lottery pricing. Computing the expected revenue
of a given item pricing is in polynomial time; see [CDP+18].
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D;’s have support size 3, unless PNP = P# | which by Toda’s theorem [Tod91] would
imply that the polynomial hierarchy collapses to the second level; this is considered
unlikely.

THEOREM 1.4. Unless PNY = P#F | there exists no algorithm A(-,-) with the fol-
lowing two properties:

1. A is a randomized polynomial-time algorithm that always terminates in poly-
nomial time.

2. Gwen any instance I = (n,D1,...,Dy) to the optimal mechanism design
problem, where each D; has support size 3, and any v € supp(Dy) X -+ X
supp(Dy), A(I,v) always outputs a pair in ([n] U {nil}) x R, such that By :
v = A(I,v) is an optimal mechanism for the instance I.

We remark that the optimal solutions in the proofs of Theorems 1.1 and 1.4 have
the property that they allocate with probability 1 some item for all valuations; such
lotteries (or mechanisms) are called complete. Thus, the results hold also for the
model where lotteries are required to be complete.

1.1. Related work. We briefly review related work in the language of the op-
timal mechanism design problem.

For the unit-demand, single-buyer setting considered here, Thanassoulis [Tha04]
showed that unlike the single-parameter setting where the optimal mechanism is de-
terministic [Mye81], an optimal mechanism for two items drawn uniformly from [5, 6]
must involve randomization. In [BCKW15], Briest et al. showed that when D is corre-
lated and given explicitly, one can solve the standard linear program to find an optimal
mechanism in polynomial time. They also showed that the ratio of revenues obtained
by an optimal randomized mechanism (lottery pricing) and an optimal deterministic
mechanism (item pricing) can be unbounded in instances with three items. This was
later improved to two items by Hart and Nisan in [HN13] (they also showed it for the
additive setting, i.e., the model in which the buyer may buy any subset of items and
the value of a subset is equal to the sum of values of items in the subset). In [DHN14],
Dughmi, Han, and Nisan studied the sampling and representation complexity of mech-
anisms in a black box access model for the distribution D, and showed that there is a
correlated distribution for which any approximately revenue-maximizing mechanism
requires exponential representation complexity. They also improved previous upper
bounds on the menu size needed to extract at least (1 — €)-fraction of the optimal
revenue.

For the case of product distributions, Chawla, Malec, and Sivan [CMS15] showed
that the ratio between the revenues of optimal randomized and deterministic mecha-
nisms is at most 4. When there are two items drawn independently from distributions
that meet certain conditions, Pavlov [Pav10] characterized optimal mechanisms under
both unit-demand and additive settings. Recently, Kothari et al. [KSM+19] gave a
quasi-polynomial-time algorithm for achieving (1 — €)-fraction of the optimal revenue
for any constant € > 0.

The problem of finding an optimal deterministic mechanism (or an optimal item
pricing) in the unit-demand setting with a product distribution was shown to be NP-
complete in [CDP+18], and this holds even when the item distributions have support
size 3 or are identical. An optimal item pricing can be computed in polynomial time
for support size 2 [CDP+18].

For the additive single-buyer setting, Manelli and Vincent [MV06] gave an exam-
ple where randomization results in a strictly higher expected revenue. Much progress
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has been made on characterizing optimal mechanisms and developing simple, compu-
tationally efficient mechanisms that are approximately optimal (e.g., [HN12, LY13,
DDT13, BILW20, WT14, DDT14b, Yaol5, BGN17]). Most relevant to our work are
the papers addressing the menu size and computational complexity of the problem in
the additive setting. In [HN13], Hart and Nisan introduced the notion of menu size.
They showed that there exists a (continuous) correlated distribution for which no
mechanism of finite menu size can achieve a positive fraction of the optimal revenue.
For product distributions with infinite support, an infinite menu may be required to
achieve the optimal revenue [DDT13], but a constant fraction (1/6) of the optimal
revenue can always be achieved by a small finite menu, using a simple determinis-
tic mechanism that offers either the individual items (at their Myerson prices) or
the grand bundle of all the items (at a suitable price) [BILW20]. Furthermore, any
fraction (1 —¢€) < 1 of the optimal revenue can be achieved by some finite menu
of sufficiently large size [BGN17]. In contrast, [BGN17] showed that 2%(™ menu
size is needed to achieve (1 — 1/n)-fraction of the optimal revenue, even when the
additive buyer has simple value support {0,1} for each item. Regarding the com-
putational complexity, Daskalakis, Deckelbaum, and Tzamos showed in [DDT14a]
that there cannot be an efficient universal algorithm that implements an optimal
mechanism for product distributions, even when all items have support size 2, unless
P#P C ZPP. We compare our proof of Theorem 1.4 and the proof of [DDT14a] in
section 1.2.

1.2. Ideas behind the proofs. The main difficulty in proving both Theorems
1.1 and 1.4 is to understand and characterize optimal solutions to the standard linear
program (denoted by LP(I); see section 2.1) for certain input instances I. For Theo-
rem 1.1 we need to show that every optimal solution to LP(I) with distribution D* has
exponentially many different lotteries; for Theorem 1.4 we need to embed an instance
of a #P-hard problem in I and then show that every optimal solution to LP(I) helps
us solve the #P-hard problem. However, characterizing optimal solutions to LP(I) is
challenging due to its exponentially many variables and constraints, which result in
a highly complex geometric object for which our current understanding is still very
limited (e.g., compared to the literature on the additive setting). Compared with the
optimal item pricing problem under the same setting where NP-completeness was es-
tablished in [CDP+18], there is a significant difference in their underlying structures:
the item pricing problem has a richer combinatorial flavor; characteristics of the lot-
tery pricing problem are mostly “continuous,” as suggested by its linear program
formulation.

The high-level approach behind proofs of Theorems 1.1 and 1.4 is similar to
that of [DDT14a]. We simplify the problem by relaxing the standard linear program
LP(I) to a smaller linear program denoted by LP’(I) on the same set of variables
(u(v),q(v) : v € D) but only subject to a subset of carefully picked constraints
of LP(I). (Here q(v) is a tuple of n variables with ¢;(v) being the probability of
the buyer receiving item ¢ in the lottery; w(v) is the utility of the buyer at v to
replace the role of price of the lottery.) Then we focus on a highly restricted family
of instances I and characterize optimal solutions to LP’(I), taking advantage of the
relaxed, simplified LP’(I) as well as special structures of I. Finally we show that every
optimal solution to LP'(I) is a feasible and, thus, optimal solution to the standard
linear program LP(I) as well, and always satisfies the desired properties (e.g., has
exponentially many different lotteries, for the purpose of Theorem 1.1, or can be used
to solve the #P-hard instance embedded in it, for the purpose of Theorem 1.4).
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The similarity between our proof techniques and those of [DDT14a], however,
stops here due to a subtle but crucial difference between the two linear programs.
In our standard LP(I), the allocation variables q(v) must sum to at most 1 because
the buyer is unit-demand. For the additive setting, on the other hand, there is no
such constraint on the sum of ¢;(v); the only constraint is that ¢;(v) € [0,1] for all
i. It turns out that this difference requires a completely different set of ideas and
techniques to carry out the plan described above for the unit-demand setting, which
we sketch below.

Recall the two distributions D’ and D" used in the statement of Theorem 1.1,
supported on D' = {1,2} and D" = {0, n+2}, respectively. Consider the independent
and identically distributed (i.i.d.) instance I of n items drawn from D’ each. We make
the following observation: an i.i.d. instance as I always has a “symmetric” optimal
solution in which ¢;(v) only depends on the value of v; and the number of 2’s in v,3
and such a solution tends to have many different lotteries. For example, if in such an
optimal solution, ¢;(v) # ¢;(v) when v; = 2, v; =1, and v has (n/2) many 2’s, then
all such exponentially many v’s have distinct lotteries. Inspired by this, we analyze
LP(I) (by a careful relaxation) and obtain a complete characterization of its optimal
solutions. Each optimal solution is (almost) uniquely determined by q(1) of the all-1
vector. Moreover, there are exponentially many different lotteries when q(1) has full
support. However, q(1) does not necessarily have full support; indeed any q(1) that
sums to 1 results in the same optimal expected revenue. In fact, by Theorem 1.2,
there is an optimal item pricing, i.e., an optimal solution with only n lotteries (this
solution is not symmetric).

Our next idea is to add another item, drawn from D” (which breaks the symmetry
of the instance), to enforce full support of q(1) in every optimal solution to LP(I"),
where I’ denotes the new instance with n + 1 items. This is done by defining a
relaxation LP'(I') of LP(I’): LP'(I’) has the same set of variables and the same
objective function as LP(I") but only a carefully picked subset of constraints of LP(I").
We then give a complete characterization of all optimal solutions to LP'(I’). We
show that every optimal solution to LP’(I”) satisfies all the constraints of the original
LP(I’), which implies that they share the same set of optimal solutions. Furthermore,
our characterization for LP’(I") shows that any of its optimal solutions must have
q(1) being the uniform distribution over the first n items and almost all valuations
are assigned a different lottery. This finishes the proof of Theorem 1.1.

The proof of Theorem 1.4 is based on similar ideas but is more delicate and
involved. The goal here is to embed a subset-sum-type #P-hard problem in I. Let
g1, - - -, gn denote the input integers of the #P-hard problem. Roughly speaking, we
are given a subset H of {g1,...,gn} of size n/2, and are asked to decide whether the
sum ),y gi is at least as large as the median of (an) many such sums derived from
all subsets of {g1,...,9n} of size n/2 (note that the exact definition of the problem
is more involved; see section 5.2).

We consider an instance I with n 4+ 2 items, where item ¢ is supported on
{a;, l;, h;} for each i € [n] with a; =~ 1, ; < h;, and ¢; = h; =~ 2. The other two
items n + 1 and n + 2 are supported on {0,s} and {0,t}, respectively, for some s
and t that satisfy ¢ > s > 1. The probabilities of item ¢ taking values a;, ¢;, and h;

3Indeed any optimal solution can be “symmetrized” into such a solution without any loss in
revenue; a general symmetrization procedure can be found in [DW12]. However, there may be an
optimal nonsymmetric solution that is much more compact than its symmetrization. This is the
case, for example, with this instance of n items drawn from D’ each, before we add the additional
(n + 1)th item.
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are 1 —p — r,p, and r, respectively, for each i € [n]; item n + 1 takes value 0 with
probability 1 — §, and s with probability §; item n + 2 takes value 0 with probability
1 — 62, and t with probability 62. The parameters p, r, and § satisfy 1 > p > r > 4.
For now, we do not pin down exact values of the parameters a;, s, h;,t, but only as-
sume that they satisfy certain mild conditions; the rest of the parameters ¢;,p,r, 4,
on the other hand, are assigned specific values.

The first step of our proof is to characterize the set of optimal solutions of a care-
fully chosen relaxation LP’(I) of LP(I), assuming that parameters a;, s, h;,t satisfy
the conditions specified. To this end we partition the set D of all valuation vectors
into four types 11,75, T3, and Ty, where T; denotes the set of type-i vectors: T} con-
sists of vectors v with v, 41 = vp42 = 0, T3 consists of v with v,41 = s and v,42 = 0,
T5 consists of v with v, 1o = ¢ and v,41 = 0, and T} consists of v with v,41 = s and
Upto = t. The following four smallest vectors in each of the four 7;’s play a crucial
role in the chracterization:

a=(a1,...,an,0,0), co2=(a,...,an,s,0), and

cs = (a1,...,an,0,t), c4=(a1,...,an,s,t).

We also let p : To UT5 U Ty — Ty denote the map with p(v) = (v1,...,v,,0,0).

Then our characterization shows that any optimal solution of LP’(I) is (almost)
uniquely determined by q(a), u(c2), u(cs3), and u(cy). This is done by a sequence of
lemmas, each imposing a condition called Condition-Type-i on type-i vectors in opti-
mal solutions of LP’(I). They are established in reverse order: we start by proving the
condition on type-2 and -4 vectors first, followed by type-3 vectors, and finally type-1
vectors. The proof of Condition-Type-1 is among the technically most challenging
parts of the paper. In particular, Condition-Type-i for i = 2, 3, 4 requires that

(1.1) u(v) = max {u(p(v)),u(c;)} for each v € T;.

Given the characterization, we start pinning down parameters a;, s, h;,t. By
setting a; and s carefully, we show that in any optimal solution to LP’(I), the first n
entries of g(a) sum to 1 and are almost uniform, i.e., g;(a) ~ 1/n for i € [n]. Next by
setting h; to encode the input integer g; of the #P-hard problem, Condition-Type-1
implies that utilities of type-1 vectors (more exactly, a carefully chosen subset of type-
1 vectors) encode the desired sums of (n/2)-subsets of {¢1,...,gn}, in every optimal
solution to LP(I). Finally, u(cs) is tightly controlled by our choice of ¢ and we can set
it to an appropriate value so that u(cs3) encodes the median of sums obtained from all
(n/2)-subsets of {g1,...,gn}. Combining these with (1.1) we conclude that the #P-
hard problem can be solved by comparing u(c3) with u(v), in any optimal solution of
LP(I), at a specific type-3 vector v € T such that u(p(v)) encodes Y, gi for the
input set H.

In the last step of the proof, we follow our characterization to show that every
optimal solution of the relaxation LP’(I) must also be a feasible and, thus, optimal
solution to the standard linear program LP(I). This shows that they share the same
set of optimal solutions and finishes the proof of Theorem 1.4.

For Theorems 1.2 and 1.3, our method for showing that randomization does not
help in these settings, is by identifying suitable convex combinations of the revenues
of item pricings which upper bound the revenues of all lotteries. Note that this proof
method is not only sound, but also complete in the pricing problem in all cases where
randomization does not help, by the properties of linear programming; the problem
is to show the existence of suitable coefficients for the convex combinations.
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Organization. We first give formal definitions of both problems and present the
standard linear program in section 2. We prove Theorem 1.2 in section 3, showing that
lotteries do not help when all distributions have support size 2 and share the same high
value. We prove Theorem 1.1 in section 4, showing that the menu size complexity is
exponential. We prove Theorem 1.4 in section 5, showing the computational hardness
of the problem. In the appendix we prove Theorem 1.3, showing that lotteries do
not help for two items and support size 2. We also present two small examples there
showing that lotteries can help when either the number of items is 3 or the support
has size 3.

2. Preliminaries. We give formal definitions of the optimal lottery problem as
well as the optimal mechanism design problem (with a single unit-demand buyer),
and present the standard linear program that characterizes their optimal solutions in
section 2.1. As a warm-up, we prove a few basic properties about the standard linear
program in section 2.2.

2.1. Problem definitions and the standard linear program. Consider an
instance I = (n, Dy, ..., Dy,), where a seller offers n items, indexed by [n] = {1,...,n},
to a unit-demand buyer, whose valuation vy, ..., v, of items is drawn from n inde-
pendent discrete distributions D;, ¢ € [n]. Each distribution D; is given explicitly in
1, including both its support D; = supp(D;) and the probability of each value in D;.
Let D=D; x---xDy,and D =Dy X --- X D,.

A solution to the optimal lottery problem is a menu (a set) M of lotteries (x, p),
where each lottery consists of a nonnegative allocation vector x = (x1,...,x,) that
satisfies Y . ; < 1 and a price p € R.4 Here z; denotes the probability of the buyer
receiving item ¢ so with valuation v = (vy,...,v,), the expected utility of the buyer
purchasing a lottery (x,p) is >, @i - vi — p. (Note that x does not necessarily sum
to 1, and the buyer receives no item with probability 1 — " z;; we refer to a lottery
(x,p) as a complete lottery if ) . x; = 1.) We always assume that the empty lottery
(0,0) is in M as a potential choice when all other lotteries in M have a negative
utility. (This corresponds to the buyer choosing to buy nothing.)

Given a menu M of lotteries, the buyer draws her valuation v of items from D
and then receives a lottery that maximizes her utility with respect to v (so if there is
a tie, the seller can assign the buyer, among those that maximize the buyer’s utility, a
lottery with the maximum price®). Let Pr[v] = [Tie(n) Pro, [vi] denote the probability
of valuation v ~ D, and let REv,(v) denote the price of the lottery that the buyer
receives. Then the goal of the optimal lottery problem is to find a menu M of lotteries
that maximizes the expected revenue of the seller: REV(M) = > ., Pr[v]-REV (V).

We now give the first (not the standard one) linear program characterization
of optimal solutions to the optimal lottery problem. For each v € D we introduce
n + 1 variables q(v) = (¢1(v),...,¢n(v)) and p(v) to denote the allocation vector
and price of the lottery that the buyer receives at v. Then the menu is given by
M ={(q(v),p(v)) : v € D}. The only conditions are to make sure the utility of the
buyer is always nonnegative and that (q(v),p(v)) is a lottery in M that maximizes

4Notice that we do not require that p > 0 in the problem definition. It will become clear after we
define the objective function that the seller has no incentive to offer a lottery with a negative price
so it is the same problem whether p > 0 is required or not.

5As in the case of deterministic pricing [CDP+18], the supremum achievable revenue is indepen-
dent of the tie-breaking rule. Furthermore, the maximum price (equivalently, maximum expected
value) rule tie-breaking has the property that the supremum can be achieved.
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the utility of the buyer. This gives us a linear program characterization of optimal
solutions over variables (p(v),q(v) : v € D):

maximize Z Pr[v] - p(v) subject to
veD

¢i(v) >0 and Z gi(v) <1 forallve D andi€ [n],

i€[n]
Z v; - qi(v) —p(v) >0 forallveD,
i€[n]
Z w; - qi(wW) — p(w) > Z w; - q;(v) —p(v) for all v,w € D.
i€[n] i€[n]

To obtain the standard linear program, we use instead of the price variables p(v),
variables u(v) for the utilities of the buyer at the valuations v, replacing p(v) by the
expression » . v; - ¢;(v) — u(v):

maximize Z Pr[v] - Z v; - ¢;(v) —u(v) | subject to
veD i€[n]

u(v) >0, ¢;(v) >0, and Z ¢i(v) <1 forall ve D and i€ [n],
i€[n]

(2.1) u(v) —u(w) < Z (vi —w;) - qi(v) forall v,w e D.

i€[n]

We will refer to it as the standard linear program that characterizes optimal so-
lutions to the lottery problem and denote it by LP(I). When an optimal solution
(u(v),q(v) : v € D) to LP(I) is given, we refer to the number of lotteries in the menu
it induces as its menu size.

For the optimal mechanism design problem (with a single unit-demand buyer),
the setting is exactly the same (and so are the input instances I). A randomized
mechanism is a randomized algorithm B that, given v € D, returns a pair (a,p),
where a € [n] U {nil} is the item assigned to the buyer (or no item is assigned if
a = nil) and p € R is the payment from the buyer. Given B, let B(v) = (x(v),p(v))
denote the expected outcome of B on v: x;(v) is the probability that B(v) assigns
item 4 and p(v) is the expected payment.

We say B is individually rational if the buyer always has a nonnegative utility if
she reports truthfully:

Z v - zi(v) —p(v) >0 forall veD.

i€[n]

We say B is truthful if the buyer has no incentive to misreport:

> wieai(v) = B(v) = > vi-wi(w) —B(w) for any v,w € D.
i€[n] i€[n]
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The goal of the optimal mechanism design problem is then to find an individually
rational and truthful mechanism B that maximizes expected revenue . ., Pr[v] -
p(v). By the definitions, B is an optimal mechanism if and only if the set of lotteries
{B(v) :v € D} = {(x(v),p(v)) : v € D} is an optimal solution to the lottery problem,
that is, B is an optimal mechanism if and only if the tuple (u(v),x(v) : v € D) it
induces is an optimal solution to the standard LP(TI), where we similarly replace p(v)
by the utility u(v) of the buyer.

2.2. Properties of optimal solutions to LP(I). Given an instance I =
(n,D1,...,D,), we let a € D denote the valuation vector with a; being the low-
est value in the support of D; for each i € [n]. Then we have the following lemma.

LEMMA 2.1. u(a) = 0 in any optimal solution (u(v),q(v):v € D) to LP(I).

Proof. Note that in any feasible solution to LP(I) we have u(v) > u(a) for all
v € D by (2.1). If u(a) > 0, replace u(v) by u(v) — u(a) for all v € D, which results
in a feasible solution with a higher revenue. 0

We assume from now on that u(a) = 0 is fixed and u(a) is no longer a variable of
LP(I).

LEMMA 2.2. In any feasible solution (u(v),q(v) : v € D) to LP(I), the utility
function is monotonically nondecreasing, i.e., for any two valuations v,w, if v < w,
then u(v) < u(w).

Proof. If v < w then constraint (2.1) implies that u(v) — u(w) < 0. |

The allocation function q is not in general monotonic, but if only one entry of
the valuation changes, q changes monotonically in that coordinate. Given v € D
and b € D; = supp(D;), we use (v_;,b) to denote the vector obtained from v by
replacing v; with b. The following lemma shows that if b > v;, then we must have
(V5 b) = ¢;(v).

LEMMA 2.3. Let v € D and v; < b € D;j. Then any feasible solution to LP(I)
satisfies q;(v_j,b) > q;(v).

Proof. Let w = (v_;,b). Applying (2.1) on both (v,w) and (w,v), we get

u(v) —u(w) < Z (v —w;) - g;(v) and wu(w)—u(v) < Z (w; — v;) - gi(w).

1€[n] i€[n]
The lemma follows by summing them up and using v; = w; for all i # j. ]

The lotteries of an optimal menu are not necessarily complete. However, they
are complete for those valuations that are in the upper boundary of the domain D,
i.e., have the maximum value in some coordinate (and this value is positive). In
particular, if all the item supports have size 2, then all the lotteries in the optimal
menu are complete, except possibly for the allocation q(a) for the valuation a where
all the items have the minimum value.

LEMMA 2.4. Let v € D be a vector in which v; > 0 is the largest value in D; for
some coordinate i. Then any optimal solution (u(v),q(v) : v € D) to LP(I) satisfies
Yjem (V) =1.

Proof. Suppose that Zje[n] ¢; = 1 —c with ¢ > 0. Increase the value of ¢;(v)
by c¢. Then the value of the objective function strictly increases (by Pr[v] - v; - ¢).
The new solution is feasible: note that in (2.1), ¢;(v) appears on the right-hand side
always with a nonnegative coefficient since v; > w; for all w € D. O
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3. Distributions with support {a;,b}. In this section we prove Theorem 1.2.
Assume that the n items ¢ = 1,...,n have distributions with support {a;, b} of size 2,
where 0 < a; < b, with the same high value b. Let g; denote the probability that item
i has value v; = a; (and 1 — ¢; that it has value v; = b). We will show that lotteries
do not offer any advantage over deterministic item pricing. A consequence of course
is that in this case we can compute the optimal solution in polynomial time.

Fix an optimal set of lotteries L*. Let N denote the set of all items {1,...,n}.
For each subset S C N of items we let v(S) be the valuation in which items in S
have value b and the rest have value a;. Let Pr(S) be the probability of v(S). Let
Lg be the lottery of L* that the buyer buys for valuation v(S), and let pg be the
price of Lg. Let Ly = (z1,...,%n,pp) be the lottery for the valuation v(@)). Notice
that > ..y xs <1, and pg < ), v a;x; as the utility is nonnegative. For each subset
S C N of items let x(S) = > ;g ¥

Let R* be the expected revenue of the optimal set of lotteries L*. We will show
that R* is bounded from above by a convex combination of the revenues of a set of
n—+1 item pricings. This implies that R* is no greater than the revenue of the optimal
item pricing.

Consider a valuation v(S) for a subset S # (. The utility of lottery Ly for
valuation v(S) is

Zaixi + bei —pp > Zaixi + mei — Zaixi = Z(b —a;)x;.
i¢s i€s ¢S i€S iEN i€s
The utility of the lottery Lg that is bought under v(S) must be at least as large as

that of Lg. The value of the lottery Lg is at most b, thus b —ps > >, o(b — a;)z;,
hence ps < b — >, g(b— a;)x;. Therefore, the total optimal expected revenue R* is

R*= > psPr(S)+py Pr(0)

P£SCN

< Z [b—Z(b i)x;] Pr(S —i—ZamzPr(Z)
P#SCN i€S iEN

=b(1—Pr(0)) = Y _(b—a)zi(l —q) + Y _ azw; Pr(D).

ieN i€EN
Consider now the following set of n + 1 item pricings: pricing my assigns price b
to all items; for each ¢ € N, pricing 7; assigns price a; to item ¢ and b to all the other
items. The expected revenue Ry of 1 is b(1—Pr(()). Under the pricing 7;, the revenue
is b if v; = a; and v; = b for some j # 4, and is a; in all other cases (i.e., if v; = b or
if all v; = a;). So the expected revenue R; of m; is b(¢; — Pr(0)) + a;(1 — ¢; + Pr(0)).
Let 2o = 1 — (N), and consider the convex combination > ,z;R; of the ex-

pected revenues of the n + 1 pricings 7;,7 = 0,...,n. We have
Zﬂiz = zob(1 = Pr(0)) +b Y wi(q; — Pr(0)) + > aizi(1 — g; + Pr(D))
€N 1EN
:bei(l—Pr 0)) —meZ (1-q) —|—Za1 (1-q) +ZamZPr 0)
=0 iEN iEN i€EN

=b(1=Pr(0) = Y _(b—a)zi(1—q) + Y aw; Pr(0).

iEN ieN
Thus, R* < Z?:o z;R; and, hence, R* < R; for at least one m;. This finishes the
proof of Theorem 1.2.
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4. A support-2 instance with exponentially many lotteries. We consider
an instance I of the lottery problem with n+1 items, [n+1] = {1,...,n,n+1}, where
each item ¢ has 2 possible values drawn according to the probability distribution D;.
In our instance the first n items will be identical: item 4 € [n] is supported over {1, 2}
with probabilities (1 — p,p). The “special” item n + 1 is supported over {0, s} with
probabilities (1 — p, p), where the above parameters are

(4.1) p=1/n> and s=2+1/(np)=2+n.

As there are only two possible (high and low) values for each item, there is a natural
bijection S — v(S) between S C [n + 1] (items that receive their high values) and
valuation vectors: for each S C [n+ 1] and i € [n], v;(S) =2 ifi € S and v;(S) =1
otherwise; v, +1(S) = sif n+1 € S and v,41(S) = 0 otherwise. Now the standard
linear program LP(I) for the lottery problem on input I over allocation variables
¢i(S) and utility variables u(S), S C [n + 1], can be written as follows:

(4.2)

maximize Z Pr[S] - Z v;(S) - i(S) —u(S) | subject to
SCln+1] i€[n+1]

u(8) >0, ¢:(S) =0, > ¢(S) <1 for SC[n+1]andie [n+1],
1€[n+1]

(4.3) u(S) —u(T) < Z (vi(S) —vi(T)) - q;(S) for all S, T C [n+1].
1€[n+1]

We use q(S) to denote the vector (g1(5),...,qn+1(5)), and REV(S) to denote the
expected revenue from S, i.e., REV(S) = 3~ (41 vi(5) - ¢:(S) —u(S), given q(5) and
u(S). By Lemma 2.1, we have u(f)) = 0 in any optimal solution to LP(I).

We will define a relaxation LP’(I) of the standard LP(I), characterize its optimal
solutions, and then show that an optimal solution to LP’(I) must also be feasible and,
thus, optimal, for LP(I).

For the purposes of our analysis, we consider below two different types of sets
S C [n+ 1] depending on whether they include the special item n + 1. We consider a
set S to be of type 1 if n+1 ¢ S; otherwise we call it a set of type 2. Correspondingly we
use 17 and T5 to denote the set of type-1 and type-2 sets, respectively. We consider the
partial order among the subsets of [n+ 1] and its Hasse diagram (transitive reduction)
G. For two sets S, T C [n+ 1], we say that S is above T if T C S; the set S is a parent
of T, and T a child of S if they are also adjacent in G, i.e., |[S|=|T|+1and T C S.

We consider the following relaxed linear program LP’(I) of LP(I), which contains
only (some of the) constraints (4.3) between adjacent sets, and between type-1 sets
and (). LP’(I) has the same set of variables and maximizes the same objective function
as LP(I) in (4.2) subject to the following constraints:

Part 1: Same constraints on u(S) and q(S) as in LP(I):

u(8) >0, ¢i($) >0, > ¢(S) <1 forall SCln+1]andic n+1].
J€[n+1]

Part 2: Constraints between (some of the) adjacent sets:
2a. ¢;(S) > u(S) —u(S\{i}) forall SCn+1],i€Sandi#n+1,
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2b. u(S) > u(S\{i}) foral SC[n+1]andie€ S.
Part 3: Constraints between type-1 sets and (:

u(S) > qi() forall S €T

4.1. Characterization of optimal solutions to LP’(I). Our goal is to give
a complete characterization of optimal solutions to LP’(I). We do this in three
steps. First we show how to determine the optimal allocations q(.9), for all S # 0
once the utilities u(-) are set (Lemma 4.2). Then we show how to determine the
optimal utilities u(-) given q(f)) (Lemma 4.3). Finally, we show that every optimal
solution to LP’(I) must have q((}) being the uniform distribution over the first n items
(Lemma 4.4). The characterization is summarized in Corollary 4.5.

We start with a few observations. First, note that the constraints of part 2b
imply that w«(-) is monotonic, i.e., u(T) < w(S) for all T C S. Second, variables
q(9S) of each S # () appear in LP’(I) only in parts 1 and 2a. Given a utility function
w: 2t R>( we define for each S # () the following small linear program, denoted
by LP(S : u) over n + 1 variables q = (q1,- .., qn+1):

(4.4) maximize Z v;(S) - g; — u(S) subject to
j€[n+1]
(4.5) ¢:>0 and Y g <1 forien+1],
J€n+1]
(4.6) gi > u(S) —u(S\ {i}) forie Snin)].

We emphasize that both u(S) and w(S\ {i}) in LP(S : u) above are constants, instead
of variables, given u(-). The following lemma shows that, given u(-), q(S) must be an
optimal solution to LP(S : u).

LEMMA 4.1. Let (u(-),q(-)) be a solution to LP(I). Then for each S # 0, q(S)
satisfies all the constraints of LP (I) that involve q(S) if and only if it is a feasible
solution to LP(S : u). Moreover, if (u(-),q(+)) is an optimal solution to LP'(I), then
a(S) must be an optimal solution to LP(S : u) for all S # 0.

Proof. The first part follows from the fact that all the constraints in LP’(I) that
involve q(S) are present in LP(.S : w). The second part follows from the facts that the
objective function of LP(S : u) is essentially the same as REV(S) and that Pr[S] > 0
for all S. 0

Given u(-), it is easy to characterize optimal solutions to LP(S : u).
LEMMA 4.2. Suppose LP(S : u) is feasible for some utility function u(-). Then
for each set S # 0, the optimal solutions to LP(S : u) are characterized as follows:
1. If S € Ty, then a solution q of LP(S : u) is optimal if and only if g; = 0 for
alli ¢ S, ¢i > u(S) —u(S\{i}) foralli € S, and ) ;.5 q; = 1.
2. If S € Ty, then a solution q of LP(S : u) is optimal if and only if ¢; = 0 for
alli € S, qi = u(S) —u(S\{i}) for alli € SN[n], and gny1 =1=3;c 5 G-

Proof. When S € T, the objective function is 37, 2¢; + 3 i s @& — w(S).

Note that all ¢;,¢ ¢ S, appear only in the constraints (4.5), while all ¢;,i € S,
are also constrained by lower bounds in (4.6). The LP is feasible if and only if
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Yies(u(S) —u(S\{i})) < 1. If a solution has ¢; > 0 for some i ¢ S, then we can
obtain a better solution by setting ¢; = 0 and incrementing g; for some j € S by
qi- If Y ,c5q < 1 then we can improve the solution by incrementing any ¢;,i € S.
Therefore, any optimal solution satisfies the claim. Conversely, all solutions that
satisfy the claim have the same value.

For the case when S € Ty, the objective function is } . cqnm 265 + 2jes 45 +
Sqn+1 — u(S). We can argue similarly that ¢; = 0 for all ¢ € S. As the coefficient s
of gn+1 in the objective function is greater than coefficients of other variables ¢;, and
we have the constraint » j g;(S) <1, it is clearly optimal to give as high a value as
possible to g,4+1. Thus it is optimal to assign to each g¢;,7 € S N [n], the lower bound
of (4.6) and give the rest of the probability mass to g41. 0

The next lemma tells us how to determine from given values for q(f), optimal
values for all the utilities u(S) (and from these we can determine optimal values for
all q(5), S # 0, by the above Lemma 4.2).

LEMMA 4.3. In any optimal (u(-),q()) of LP'(I) the following properties hold.
1. For every set S of type 1, u(S) = >_,c5 (D). For every set S of type 2,

(4.7) u(S) =max | > ¢(0), u({n+1})

i€SN[n]
2. u({n+1}) = minjey ¢:(0). Hence u(S) =37, cgnpm 6(0) for all S # {n+1}.

Proof. 1. Consider an optimal solution (u(-),q(-)) to LP’(I). We know from the
constraints of LP'(I) (part 3) that u(S) > >, 5 qi(0) for all S € Ty. For S € T,
as u(S) > u(SN[n]) > 3 iconp ¢(0) and u is monotonic, u(S) > u({n + 1}), and
u(S) is at least as large as the right-hand side (RHS) of (4.7). Call a set S tight if its
inequality is tight (satisfied as equality, i.e., S satisfies the first property of Lemma
4.3), and nontight otherwise, and let R be the family of tight sets. If w(@) > 0, then we
can subtract the amount u(() from u(S) for all S C [n+ 1] and get a feasible solution
with strictly higher revenue. Therefore, an optimal solution must have u()) = 0, and
() is a tight set. By definition, {n + 1} is also tight.

Let € > 0 be the minimum difference between the left-hand side (LHS) and the
RHS of the inequality over all nontight sets. Form another solution {u/(-),q'(-)} by
setting v/ (S) = u(S) —eif S ¢ R, v/(S) = u(S) if S € R, and setting q'(5) to be a
vector of an optimal solution to LP(S : «’) for each S # @, while q'(0) = q(0). We
will argue that the new solution is feasible and yields strictly more revenue.

For feasibility note first that by our choice of € the new utilities still satisfy
u'(S) > > ,c59(0) for S € Ty, so constraints in part 3 are satisfied. For part 2b,
letting T = S\ {i}, the only way to possibly get a violation is if T is tight. But then
W(T) =w(T) =3 ,erai(0) if T € Ty or = max (P, ey @(0), u({n +1}) if T € T;
in either case we still have u/(S) > «/(T). For the constraints in Parts 1 and 2a, we
only need to check that all the LP(S : ') are feasible. We will do this next and also
show that the optimal solutions q’(S) yield an increase in the total revenue.

Case 1: S is not tight. Then the old solution q(S) remains feasible to LP(S : u’)
and the contribution REV(S) - Pr(S) of the set S to the total revenue increases by
e - Pr(5), due to the decrease in u(S).

Case 2: S is tight. If S is of type 1 then u'(S) = u(S) = > ,c ¢ (0) and all its
children have w'(S\{i}) > 3=;cq\ (4} 4:(#). Thus, we can pick any values ¢;(S) > ¢;(0),
i € S, that sum to 1, and REV(S) does not decrease.
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Suppose S is of type 2. If w/(S) = u(S) = u({n + 1}) > >>;cgnp @(0), then
all its type-2 children must also have u/(S\ {i}) = u(S \ {i}) = u({n + 1}). Setting
q;(S) = 0 for all i € [n] and g, ,(S) = 1 yields a feasible solution and REV(S) does
not decrease.

Finally suppose that the type-2 set S has w/(S) = u(S) = >,c5q 6:(0) >
u({n+1}). Then we set ¢;(S) = u'(S) —u'(S\ {i}) for each i € SN [n], ¢;(S) =0 for
i€[n]\ S, and ¢;,4(5) =1- Zie[n] q;(5). Asu'(S\{i}) = Eie(s\{i})m[n] qi(0) for
all i € [n], we have ¢;(S) < ¢;(0) and, hence, q;,,;(S) > 0, thus LP(S : «) is feasible.
Compared to the previous values of q(S) that were an optimal solution to LP(S : u),
for each nontight child S\ {i}, i € SN[n], the corresponding value ¢;(S) increased by
€; on the other hand, the value of ¢;,,,(S) decreased by k - €, where k is the number
of such nontight children. The contribution REV(S) - Pr(S) of S to the total revenue
decreased by k - €(s — 2) Pr(S). Charge this decrease in revenue for S equally to its
k nontight type-2 children (their revenue increased by Case 1). It remains to verify
that no set is overcharged, in fact, every nontight set still has a net positive increase
in its revenue contribution.

Consider a nontight set S (of type 2) which is charged by some of its (tight)
parents, say by t parents. Since |S| > 2 (recall {n + 1} is tight), we have ¢t < n — 1.
Every parent has size |S| + 1, hence its probability is Pr(S) - (p/(1 — p)). The total
charge from the parents is at most (n—1)e(s—2) Pr(S)p/(1—p), and it suffices to verify
that this is strictly smaller than €-Pr(S), in other words, that (n—1)(s—2)p < 1 —p,
i.e., that (n —1)/n < 1 — (1/n?), which is true.

We conclude that in an optimal solution, all the sets must be tight.

2. Suppose that u({n+1}) > min;cp,) ¢i(). Now we know that all sets satisfy the
property of item 1. Call now a type-2 set S tight if u(S) = 3=, ¢ 5y 6:(0) = u({n+1}).
Decrease the utility of all nontight sets, i.e., of {n + 1} and of all other type-2 sets S
with u(S) = u({n+1}) > 3" cgnm (), by a small amount e > 0. Using the same
arguments as in item 1 this yields a new solution {v'(-),q'(-)} that is feasible and has
strictly higher revenue. The only difference here is that the set {n + 1} is nontight,
and this set has n parents. However, since u({n +1}) > min;c(,) ¢i(#), at least one of
its parents (namely, the set {i,n + 1}, where 7 has the minimum ¢;(()) is not tight,
hence {n + 1} is charged again by at most n — 1 of its parents, and the inequality of
item 1 still holds.

Suppose u({n + 1}) < min;cp,)¢i(0). Then increase the utility of {n + 1}
by a small amount ¢ > 0 and keep the other utilities the same. The only sets
that are affected are {n + 1} and its parents {i,n + 1}, i € [n]. The contribution
REV({n + 1}) - Pr({n + 1}) of {n + 1} to the revenue decreases by e Pr({n + 1}).
For each parent {i,n + 1}, the corresponding variable ¢;({i,n + 1}) decreases by e,
and ¢n+1 ({3, n+1}) increases by ¢, hence the contribution of {i,n+ 1} to the revenue
increases by (s—2)e-Pr({i,n+1}). Since Pr({i,n+1}) = Pr({n+1}p/(1—p) for each
i € [n], the net effect on the total revenue is positive, provided that n(s—2)p/(1—p) > 1,
ie, 1/(1 —p) > 1, which is true.

We conclude that u({n + 1}) = min;c[,,) ¢;() in an optimal solution. Combined
with item 1, this also implies that w(S) = 3 ;cgn, ¢:(0) for all S # {n +1}. O

From the above lemmas, we know how to derive from q((}) all the u’s and all
the q(5), S # 0, in an optimal solution, so we can calculate the revenue as a func-
tion of q(@)). We can then determine the optimal value of q(f)) that maximizes the
revenue.
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LEMMA 4.4. Any optimal solution to LP'(I) satisfies qn41(0) = 0 and ¢;(0) = 1/n
for alli € [n].

Proof. We calculate the revenue of a solution that satisfies the properties of Lem-
mas 4.2 and 4.3.
For a type-1 set S # (), we have

Rev(S) = 2g:(S) —u(S) =2 - ¢:(0) and

€S i€S
Rev(0) = > 1¢:(0) — u(@) = > ().
i€[n] i€[n]

Thus the contribution of type-1 sets to the revenue, denoted by REVy, is

Rev; = Y Pr[9]- (2 - Zqi(@)> +Pr0]- [ D a:(0)

SeTy\0 €S i€[n]

=2. Z Pr[S] + Z qi(0) - | Pr[0] — Z Pr[S]

SeTi\0 i€[n] S€ET | i€S

The first term is a constant, consty, independent of q(@). For the coefficient of
¢;(0), Pr[0] = (1 —p)"*! while the total probability of all sets S € T} that contain i is
(1 — p)p. Therefore, all i € [n] have the same coefficient ¢; = (1 —p)" ! — (1 — p)p ~
1—(n+2)p ~ 1. So the expression above is of the form REVy = consti+c1-) ;1 q:(0).

For each type-2 set § # {n + 1}, by Lemma 4.3, we have u(S) = >_;cgn(,,) 4:(0)-
Hence, for |S| > 2, we have ¢;(S) = ¢;(0) for i € SN[n]; gn+1(S) = 1= 32, c 5 2 (0);
and ¢;(S) =0 for ¢ ¢ S. Thus,

REV(S) =2 Z g(@)+s|1- Z ¢ (0) | - Z qi(0) = s—(s—1) Z qi(0).

i€SN[n] 1€SN[n] ieSN[n] i€SN[n]

Let Gumin = min;ep) ¢i(0) = u({n + 1}). For S; = {i,n + 1} we have u(S;) = ¢:(0),
4i(Si) = ¢i(0) = qumin, qn41(Si) =1 = (¢ (D) — ¢min), and ¢;(S;) = 0 for j & S;. Thus,
REV({i,n+1}) = 2(¢i(0) —gmin) +5(1=¢i (0)+Gmin) —¢:(0) = s—(5—1)q; () +(5—2)Gmin-

For S = {n + 1}, we have u({n + 1}) = Gmin, qn+1 = 1, and ¢; = 0 for all ¢ € [n].
Thus, REV({n + 1}) = 8 — ¢min- Therefore, the revenue from type-2 sets is

REvy =s Y Pr[S]—(s—1) Y Pr[S] > a(0)

S€eTs SeT> i€SN[n]

+ (5= 2)gmin Y Pr[{i,n + 1}] = gmin Pr[{n + 1}].

i€[n]

The first term is a constant, sp. The coefficient of each ¢;() is —(s — 1) times the
sum of the probabilities of all the type-2 sets that contain i, thus, it is —(s—1)p?, i.e.,
a constant —cy independent of 4, which satisfies o = ©(1/n®) < ¢;. The coefficient
of Gdmin is

cs = (s = 2mp*(1 —p)" ' = p(1—p)" = p’(1L —p)" " >0,
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So REVy = sp — ¢ Zie[n] qi(0) + c3¢min- Combining with REVy, the total revenue is

REV = const + (¢1 — ¢2) Z ¢i(0) + c3Gmin-

i€[n]

As (1 — ¢3) > 0 and ¢z > 0, in order to maximize the revenue we want to maximize
Zie[n] qi(0) and guin. Both these quantities are maximized simultaneously if we have
Yicin () = 1 and gmin = 1/n, that is, if ¢;(0) = 1/n for i € [n]. Setting q(0) to
these values and then setting all the utilities u(S) and allocations q(S) for all S # ()
according to Lemmas 4.2 and 4.3, yields a feasible solution to LP(I") that achieves the
maximum possible revenue. Therefore, any optimal solution to LP’(I) must achieve
the same revenue and, hence, must also satisfy ¢;(0)) = 1/n for all i € [n]. ad

Combining the previous lemmas yields the following characterization of optimal
solutions to LP’(T).

COROLLARY 4.5. Any optimal solution (u(-),q(-)) to LP'(I) satisfies

e q(0)=(1/n,...,1/n,0);
e u(S)=1[SNn]|/n forall S # {n+1}; u({n+1}) =1/n;
o for Se Ty \{0}: ¢:(S) =0 fori ¢ S; qi(S) >1/n foricS; 3 .gq(S)=1;
o for S €Ty and|S| <2: q(S)=(0,...,0,1);
o for S €Ty and |S| > 2: ¢;(S) =0 fori &€S; ¢;(S) =1/n forie Snnl;
1S O [n]|

. S Al I
qnt1(5) p

4.2. Returning to the standard LP(I). Now that we have characterized the
optimal solutions of the relaxed LP’(I) in Corollary 4.5, it is straightforward to show
that they are also feasible and, hence, also optimal, in the full standard LP(I).

LEMMA 4.6. Any optimal solution (u(-),q(+)) to LP'(I) is a feasible (and optimal)
solution to LP(I).

Proof. Consider an optimal solution (u(-),q(+)) to LP’(I). We need to show that
(4.3) holds for any two subsets T,.S C [n + 1]. The case when S = () is easy to check,
since we have u(S) — u(T) = —u(T),

[T [n]]
Y @WilS) —ui(T)) - ai(S) = ————,

n
i€[n+1]

and u(T) > |T N [n]|/n for all T. Below we assume that S # (.

We claim that it suffices to show (4.3) for T',.S C [n + 1] that satisfy 7' C S and
S #£ (. To see this, consider any 7,5 with S = (), let T/ =T NS C S, and suppose
that 77,5 satisfy (4.3): u(S) — u(T") < 32;cpq1y(vi(S) — vi(17))qi(S). Note that
u(T) > u(T") by the monotonicity of u, hence u(S) — u(T) < u(S) — w(T”). Further,
v;(T) and v;(T") differ only on elements i € T\T' =T\ S, but ¢;(S) = 0 for all such
1 since S # () by Corollary 4.5. Therefore, we have

Y WilS) —wlT)a(S) = D (0ilS) = wi(T))ai(S),

i€[n+1] i€[n+1]

and (4.3) holds for T, S as well.
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Consider two sets T C S C [n+ 1]. If S is not one of the sets {n + 1} or
{i,n+1},i € [n], then the LHS of (4.3) is u(S) — u(T") < |(S\ T) N [n]|/n which is at
most ;¢ 41 (0i(S) — vi(T))qi(S) because g;(S) > 1/n for all i € (S\T) N [n]. If §
is {n+ 1} or {i,n + 1}, i € [n], then either T' = @, in which case

u(S) ~u(T) =~ < 3 (ul8) —w(T)ai(S) =5,

i€[n+1]

or |T| =1, in which case u(T) = 1/n and

u(S) —u(T) =0< Y (vi(S) = vi(1))a(S).

1€[n+1]
Thus, (4.3) is satisfied in all cases. This finishes the proof of the lemma. |

It follows from Lemma 4.6 that {u(-),q(-)} is an optimal solution to LP(I) if and
only if it is an optimal solution to LP’(I). Finally, we show that any optimal solution
to LP(I) requires an exponential number of lotteries.

THEOREM 4.7. Any optimal solution (u(-),q(:)) to I has ©(2"™) different lotteries.

Proof. For all S C [n + 1], except for @, [n + 1] and {i,n + 1} for ¢ € [n], the
support of q(.9) is equal to S, thus all these lotteries are different. Hence any optimal
solution has 2"*! — n — 2 different lotteries. 0

We remark that, even though an optimal solution has an exponential num-
ber of different lotteries, it follows from Corollary 4.5 that there is a deterministic
polynomial-time algorithm, which takes as input a valuation v € D and outputs an
optimal lottery for v: letting S be the set of items that have high value in the given
valuation v, we can obtain the corresponding allocation q(S) and utility u(S) of the
optimal solution of the LP from Corollary 4.5, and the price of the lottery can be
easily derived from the allocation and the utility.

5. Hardness of optimal mechanism design. In this section we prove Theo-
rem 1.4. This is done by giving a polynomial-time reduction from a #P-hard problem
called COMP. We delay its definition and proof of #P-hardness to section 5.2.3
because it is used only towards the end of the proof.

This section is organized as follows. In section 5.1, we characterize optimal solu-
tions to a relaxation to the standard linear program LP(I) when parameters of the
instance I satisfy certain conditions. We call the relaxed linear program LP’(I), and
the characterization is summarized in section 5.1.7. In section 5.2 we pin down the
rest of the parameters of I to embed the #P-hard problem COMP. More formally,
one can construct an instance I to the lottery problem from an instance of COMP
in polynomial time such that a specific entry of any optimal solution to LP’(I) can
be used to answer COMP. Finally we show that for such instances I, any optimal
solution to LP’(I) must be an optimal solution to LP(I) and, thus, LP’(I) and LP([)
share the same set of optimal solutions. Then an efficient universal algorithm for the
optimal mechanism design problem implies PNY = P#P_ This finishes the proof of
Theorem 1.4.

5.1. Linear program relaxation. Let I denote an instance of n+ 2 items with
the following properties. Each item 4 € [n] is supported over D; = {a;,¢;, h;} with
a; < ¢; < h;. Probabilities of a;,¢; and h; are 1 —p — r, p, and r, respectively, where

(5.1) p=1/2"" and r=p/2".
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So p and r satisfy p = (r/p)" . Let 8 = 1/2". The support {as,;, h;} of item i € [n]
satisfies

1

Let d; =¥4; —a; = 1 and 7, = h; — ¢;. Our choices of ¢; and h; guarantee that 7, =
as well as ¢; > hiy1 + B (or ¢; = h;y1 + 2 more exactly) for all ¢ from 1 to n — 1.
Item n + 1 takes value 0 with probability 1 — §, and s with probability §; item n + 2
takes value 0 with probability 1 — 42, and ¢ with probability 62. So let D,,+1 = {0, s},
Dyi2={0,t},and D = Dy x -+ X Dy, 12. We impose the following conditions on 4, s,
and t throughout section 5.1:

1 1 8 B
= - = B —o(—-
g =0 (pn) 10 (TT”*lm) ! (rm“mT‘) ’

where m = [n/2].

Note that § < r < p, and t = 20(n%) 5 g = 29(") 5 1. Precise values of the
a;’s, the h;’s, and s and ¢t will be chosen later on in section 5.2 after we have analyzed
the structure of the problem. In particular, the h;’s and ¢t will be used to reflect the
instance of the #P-hard problem that we will embed in I and LP(I). (5.1), (5.2), and
(5.3) are sufficient for our analysis in section 5.1 of the relaxed LP to be described
below.

We need some notation before describing the relaxation of LP(I). Given v € D,
we use S(v) to denote the set of i € [n] such that v; € {¢;,h;}, S™(v) to denote the
set of ¢ € [n] such that v; = ¢;, and S*(v) to denote the set of i € [n] such that
v; = h;. So we always have S(v) = ST(v)U S~ (v) C [n].

Next we partition D into 11,715, T3, Ty, where T} consists of vectors with v, 1 =
Upt2 = 0, Ty consists of vectors with v, 41 = s, and v, 19 = 0, T3 consists of vectors
with v,12 =t and v,4+1 = 0, and Ty consists of vectors with v,+1 = s and v,49 = t.
We call vectors in T; type-i vectors. We denote the bottom vector (ay,...,an,0,0) by
a, (ay,...,an,s,0) by ca2, (a1,...,a,,0,t) by c3, and (ai,...,an,s,t) by ¢4 (so ¢; is
the bottom of type-i vectors for ¢ from 2 to 4). By Lemma 2.1, we have u(a) = 0 in
any optimal solution to LP(I) so we fix it to be 0.

Given v € D, we write BLOCK(V) to denote the set of w € D with S(w) = S(v),
Wpt1 = Unt1, and Wy 4o = Up4o; we refer to BLOCK(v) as the block that contains v.
It would also be helpful to view each T; as a collection of (disjoint) blocks. We say
v € D is essential if ST(v) = () (here the intuition is that within each block, there is a
unique essential vector with the largest mass of probability, given r < p in (5.1)). We
use D’ to denote the set of essential vectors, and write T} = T; N D" and T} = T; \ T}
for each i. Given v € D, we use LOWER(V) to denote the unique essential vector in
BLock(v), i.e., LOWER(V) is the vector obtained by replacing each h; in v by ¢;.

We let min(S(v)) denote the smallest index in S(v) and let S’(v) denote S(v) \
{min(S(v))}.

Given a vector v € D we follow the convention and write (v_;, @) to denote the
vector obtained from v by replacing its ith entry v; with a. We write (v{,), a, a') to
denote the vector obtained from v by replacing v,41 with o and v,.o with /. We
let p: 75 UT3 U Ty — Ty denote the map with p(v) = (v, 0,0).

Given two vectors v,w € T; of the same type, we write v. < w (or say that
v lies below w, or w lies above v) if either S(v) C S(w), or S(v) = S(w) and
ST (v) € ST (w). By definition < is transitive.

(53) o=
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The linear program LP’(T) is presented in Figure 5.1 which has the same objective
function and variables (u(v),q(v) : v € D) as LP(I). We refer to u(v) and q(v) as
the utility and allocation variables of v € D, respectively. For convenience, we write
(u(-),q(-)) to denote a solution to LP’(I), and call u(-) : D — Rxq a utility function.
Constraints in Part 1 of LP’(I) concerns variables of type-1 vectors; Part 2 concerns
type-2 and type-1 vectors; Part 3 concerns type-3 and type-1 vectors; Part 4 concerns
type-4, -3, and -1 vectors.

Maximize Z Pr[v] - Z v; - q;(v) —u(v) | subject to
veD i€[n+2]

Part 0. Same constraints on u(v) and q(v) as in LP(]):

u(v) >0, ¢;(v) >0, and Z gj(v) <1 forveDandie€[n+2].
JEn+2]

Part 1. Constraints on type-1 vectors:

(5.4) u(v) > Z d; - gi(a) forveT]
i€S(v)
(5.5) u(v) —u(w) <7 -qi(v) forveTy, i€ ST(v)and w=(v_; (),
(5.6) u(v) —u(w) > Z 7; - q;j(w) for v.e Ty, w=LOWER(V),
JeSt(v)
(5.7) u(v) > u(w) forveTl,ieS(v), w=LOWER(V_;,a;),
(5-8) u(v) —u(w) < Y (v —wy) - 45 (v),
jeln]

for veTy, i€ S(v), we BLOCK(v_;,a;).
Part 2. Constraints on type-2 vectors:
(5.9) u(v) > u(p(v)) and u(v) > u(cg) for v e Ty,
(5.10)

(v) —u(w) <7-qi(v) forveTyicST(v),w=(v_),
(5.11) —u

)
(V) —u(w) < Y (v —wj) - 4;(v)

J€[n]

u
u
for ve Ty, i€ S(v), we BLOCK(V_;,a;).

Part 3: Constraints on type-3 vectors:

(5.12) u(v) > u(p(v)) and u(v) > u(ez) for v € Ts,
(5.13) u(v) —u(w) <7 -qi(v) forveTs, ieST(v),w=(v_;)
(5.14) u(v) —u(w) < Y (v —w;) - (V)

Jj€ln] .
for veTs, i€ S(v), we BLOCK(V_;,a;).

F1G. 5.1. (continued)
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Part 4: Constraints on type-4 vectors:

u(cq) > u(cz) and u(cy) —u(cs) < s- gni1(ca),
(5.15) u(v) > u(p(v)) and u(v) > u(cq) for v e Ty,
(5.16) u(v) —u(w) <7 qi(v) forveTy,ieST(v),w=(v_il),
(5.17) u(v) —u(w) < Y (v —wy) - 4;(v)
jeln]

for veTy, i€ S(v),we BLOCK(V_;,a;).

F1G. 5.1. Relazed linear program LP'(I).

It is easy to check that LP’([) is a relaxation of LP(I). Compared to the standard
LP, we included in LP’(I) the constraint between v and w as given in (2.1) for
only a carefully picked subset of pairs. At a high level, we would like to keep as
few constraints (2.1) of LP(I) as possible to simplify the characterization of optimal
solutions to LP’(I); on the other hand, we need to keep enough constraints of LP([)
so that at the end, optimal solutions to LP’(I) can be shown to be feasible to LP([)
and, thus, are optimal solutions to LP(I) as well.

5.1.1. Properties of a small linear program. We start with the following
lemma on q(cz), q(c3), and q(c4) in any optimal solution to LP'(I).

LEMMA 5.1. If (u(-),q(+)) is an optimal solution to LP'(I), then it satisfies

U(C4) — U(C3)

p . Qny2(ca) =1 —gpnyi(ca);

dnt1(c2) =1, gnia(cs) =1, @nyi(cs) =

all other entries of the three vectors q(cz),q(cs), and q(cy4) are 0.

Proof. No constraint in LP’(I) involves q(c2) or g(cs3) other than those in Part
0. For q(c4), in additional to Part 0, there is a constraint in Part 4 that involves
dn+1(cq): 8- qny1(ca) > u(cq) —u(cg). (Note that we have u(cy) > u(cs) by (5.15) in
Part 4.) The lemma then follows from the objective function and that ¢ > s> 1. O

Let D =T, UT3 U Ty \ {c2,c3,c4}. Vectors q(v) for v € D are more involved.
Given a utility function u : D — R>, we define for each v € D the following small
linear program LP(v : u) over n + 2 variables q = (q1, ..., ¢nt2):

maximize Z vj - g; —u(v) subject to
Jj€[n+2]

(5.18) ¢; >0 and Z q; <1 forie[n+2],

j€n+2]
(5.19) 7 q; > u(v) —u(w) foriec ST(v)and w = (v_;, %),
(5.20) Z (v; —wj) - g > u(v) —u(w) forie S(v) and w € BLOCK(vV_;, a;).

j€ln]

Note that LP(v : u) uses utilities of v and w in blocks nearby v given by u (so

the RHS of the constraints u(v) — u(w) and u(v) in the objective function are all

constants instead of variables), and that ¢,41, ¢ni2, and ¢;, 7 € [n] \ S(v), do not

appear in constraints of LP(v : u) other than (5.18) and the objective function.
Comparing LP’(I) and LP(v : u) gives us the following lemma.
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LEMMA 5.2. Given a utility function u(-) : D — Rxg and v € D, q(v) satisfies
all constraints in LP'(v) that involve q(v) if and only if it is a feasible solution to
LP(v : u). Moreover, if (u(-),q(-)) is an optimal solution to LP'(I), then q(v) must
be an optimal solution to LP(v : u) for all v € D.

Proof. The first part is trivial since we included in LP(v : u) every constraint in
LP’(I) that involves q(v). The second part follows directly from the first part, since
the objective function of LP(v : ) is exactly REV(v), the revenue at v (and we also
know that Pr[v] > 0 for all v € D). O

Next we prove a few properties of optimal solutions to LP(v : ).

LEMMA 5.3. Suppose that LP(v : u) is feasible for some wutility function v : D —
R>o and v € D. Then any optimal solution q = (q1y- - Gny2) to LP(v : u) satisfies
qi(v) =0 for all i € [n]\ S(v) and entries of q sum to 1. Moreover, we also have
Gni2(V) =0 if ve Ty, and g1 (v) =0 if v e T3 UTy.

Proof. If any of the ¢;’s listed above is positive, replacing ¢; by 0 and adding g;
to qny1 if v € Th or adding ¢; to gn42 if v € T35 U Ty would result in a strictly better
feasible solution. If the entries of q sum to 1 — ¢ for some ¢ > 0, adding c to either
Gn+1 O ¢n4o would result in a strictly better feasible solution. O

In the proof sometimes we need to compare optimal solutions to LP(v : u) versus
LP(v : «') for two utility functions v and u’ that are entrywise close to each other.
The following lemma comes in handy.

LEMMA 5.4. Assume LP(v : u) and LP(v : «/) are feasible for some v € D and

utilities u,u' : D — Rxq. Let OPT and OPT' denote optimal values of LP(v : u) and
LP(v : u'), respectively. Let € > 0. Then

1. if v € Ty and |u(w) —u'(w)| < € for w € Ty, then |OPT — OPT'| = O(nes/B).
2. if veTs (orTy) and |u(w) —u'(w)| < e for all w € T3 (or Ty), then we have
|OPT — OPT'| = O(net/B).
Proof. We prove that OpT’ > OPT — O(nes/) when v € Ty. All other cases
can be proved similarly. For this purpose, let q and q' denote an optimal solution to
LP(v : u) and LP(v : u’), respectively. We consider the following two cases.

Case 1: gne1 > 4ne/B. Let q* denote the following nonnegative vector obtained
from q:

4 4
Uni1 = Gns1 — |S(V)|- EE and ¢ =¢; + EE for each i € S(v).

It is a feasible solution to LP(v : u'), given (5.1) and (5.2). As a result, we have that
Op1’ > OPT — O(nes/pB).

Case 2: gny1 < 4ne/B. This case is more involved. From Lemma 5.3 we have
In+2 = @y = 0. Let ¢ = max;cpy){q; — ¢;}. If ¢ < 8ne/B3, then we immediately have
(using g, s > 0)

OPT > OPT — 5 (4ne/B) —n-c-O(1) > OPT — O(nes/B),
since we assumed s > n in (5.3). Otherwise (¢ > 8ne/f3), let k € S(v) denote an index
that achieves the maximum (k € S(v) since ¢; = ¢; = 0 for all i € [n]\ S(v) by Lemma
53): qe —q, =c>8n€/B. As Y icq @i =1 —any1 > 1 —cand 3, g ¢ < 1 we

have ¢; > ¢} — (n + 1)c for all 7 € S(v). Now let q* denote the vector obtained from
q by replacing
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4 4
g =qx — (|S(v)| = 1) - Ee and ¢f =¢; + Ee for all other 7 € S(v).
One can verify that q* is a feasible solution to LP’(v). The only nontrivial case
in verifying this is to show that >, (v; —w;) - ¢f = w/(v) — (W) for any w €
BLOCK(V_g,ak). For this, note that

> —wi)q) = D (05— wy) ) = (k= an) - 5 —n-O(8) - One) = Qe) > 0.

j€ln] j€ln]

As a result, we have OPT' > OPT — O(ne/f) - O(nB) = OPT — O(n%e).
The lemma follows by combining the two cases and the fact that s/8 > n. ]

5.1.2. Condition on utilities of type-2 vectors. We show that utilities of
type-2 vectors in any optimal solution (u(-),q(-)) to LP’(I) must satisfy

CONDITION-TYPE-2: Each type-2 vector v € T, has utility

u(v) = max {u(p(v)),u(cz) }.

Recall that p(v) = (V_(n41),0) for type-2 vectors. By (5.9) of LP’(]) in Part 2, u(v)
is at least as large as the RHS. So CONDITION-TYPE-2 requires that it is tight for
every v € T, in an optimal solution.

We now prove CONDITION-TYPE-2.

LEMMA 5.5. Given (5.1), (5.2), and (5.3), any optimal solution to LP'(I) satisfies
CONDITION-TYPE-2.

Proof. Let (u(-),q(+)) denote an optimal solution to LP’(I). Let R denote the
set of v € Ty that satisfies u(v) > max{u(p(v)),u(c2)}. Note that co ¢ R, and we
assume for contradiction that R is nonempty.

Our plan is to derive a solution (u/(+),q’(+)) from (u(-), q(-)), by modifying utilities
and allocations of type-2 vectors only. We then get a contradiction by showing that
(u'(+),q'(+)) is feasible and has a strictly higher revenue than (u(-),q(:)). (Because we
only modify utilities and allocations of type-2 vectors, for the feasibility it suffices to
verify constraints of LP'(I) in Part 2.) We use REV(v) and REV'(v) to denote the
revenue from v in the old and new solutions. By Lemma 5.3 REV(v) is the value of
LP(v : u) for v e D.

To define the new solution (u'(),d’(+)), let € > 0 denote the following parameter:

€ = min { min (u(v) — max {u(p(V)), U(CQ)})’

VvVER
smallest positive entry in q(v) among all v € D}.

For each v € Ty, set v/(v) = u(v) if v ¢ R and v/ (v) = u(v) —eif v € R. All
other entries of u’ remain the same as in u. Note that v still satisfies (5.9) in Part
2. Given u/(+), we set g'(v) for each v € Ty \ {c2} to be an optimal solution to the
linear program LP(v : ') (though it is not clear for now if LP(v : «') is still feasible
or not; we will show that this is indeed the case for every v € Ty \ {c2}) and all
other allocations remain the same as those in q(-). This finishes the description of
(u'(-),d'())-

By Lemma 5.2, to show that (v/(+),q’(+)) is well-defined and feasible it suffices to
show that LP(v : u') is feasible for all v € T \ {ca} (because (v/(-),q’(-)) satisfies
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trivially all constraints of LP’(I) except (5.10) and (5.11) in Part 2). To see this is
the case we fix such a v. If v € R (and v/(v) = u(v) — €), every feasible solution
to LP(v : u) is also feasible to LP(v : u’). As a result, LP(v : u’) is feasible as
well. Furthermore, we also have REV'(v) > REV(V) + € since v/ (v) = u(v) — € for any
veR.

If v ¢ R, then either v/(v) = u(v) = u(cz) or v/ (v) = u(v) = u(p(v)). For
the former case, setting ¢,4+1 = 1 and ¢; = 0 for all other 7 is a feasible solution to
LP(v : u), since u/'(w) > u(ca) for all w € T». For the latter case, q = q(p(v)) is
a feasible solution to LP(v : u') since constraints on q(p(v)) in LP’'(I) are at least
as strong as those on q in LP(v : u) using «/(v) = u(p(v)) and «’'(w) > u(p(w)) for
w € Ty. More specifically, (5.19) of LP(v : u/) follows from (5.5) of Part 1 in LP'()
over q(p(v)); (5.20) follows from (5.8) of Part 1 in LP’(I) over q(p(v)). We conclude
that (u/(+),q/(-)) is well-defined, feasible to LP'(I).

The only thing left to show that the expected revenue from (u/(-),q’(-)) is strictly
higher. By the definition of (u/(-),q/(+)), we have REV'(v) = REV(v) for all v other
than those in T, \ {ca} since each such v receives the same allocation and utility as
in (u(),q(:)). By Lemma 5.4, we also have

REV'(v) > REV(V) — O(nes/B) for all v e Ty \ {ca}.

Moreover, if v € T\ R and there isnow € R below v (or w < v) then LP(v : /)
is exactly the same as LP(v : u) so REV/(v) = REV(v). This inspires us to define
R’ C R as the bottom of R: v € R’ if there is no other vector in R below v. (Since R
is nonempty, R’ is nonempty as well.) For each v € R’, we claim that REV'(v) from
the new solution indeed has a much bigger advantage over REV(v):

(5.21) REV'(v) > REV(V) + Q(es).

To prove (5.21), we first show that ¢;(v) > 0 for some i € S(v). For this, setting
w = LOWER(v_j,a;) for some j € S(v) in (5.11) of Part 2 in LP'(I) (note that
v # ¢y implies S(v) # ), we have

D (Wi —w) - qi(v) > u(v) —u(w).

i€S(v)
It follows from v € R’ C R that
u(v) > max {u(p(v)),u(c2)} and wu(w)=max {u(p(w)),u(cz)}.

By (5.8) of Part 1 in LP’(I), we have u(p(v)) > u(p(w)). It follows that u(v) > u(w)
and, thus, ¢;(v) > 0 for some i € S(v). Let k be an index in S(v) with gi(v) > 0.
As a result, the following vector q* (which is nonnegative because of our choice of ¢):
Gy = Gnr1(V) +€/2, ¢ = qr(v) — €/2, and ¢f = ¢;(v) for all other i, must be a
feasible solution to LP(v : ). (5.21) then follows from s > 1.

We say a type-2 vector is above R’ if it is above one of the vectors in R’. Combining
all cases together, to show that revenue from (u'(-),q’(+)) is strictly higher than that
from (u(-), q(-)), it suffices to show that

(5.22) Pr[vectors in R'] - Q(es) > Pr[(type-2) vectors above R'] - O(nes/f).
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This follows from our choices of p and r in (5.1). Taking any v € R, we have the
following bound:

Pr[vectors above V]

= Pr[vectors w = v, S(w) = S(v)] + Pr[vectors w = v, S(v) C S(w)]
(o) o)) e
0 (% (2)") - prlv

< s - Prlv].
n

Then (5.22) follows from a union bound. This finishes the proof of the lemma. d

Arguments used in Lemma 5.5 imply the following property. Suppose (u(v), q(v) :
v € Ty) satisfies all the constraints of LP’(I) in Parts 0 and 1. Given any nonnegative
number ug, we can extend it to T by setting u(c2) = w2 and u(v) = max{u(p(v)), us}
for each other v in 75, and then setting q(cz2) according to Lemma 5.1 and q(v) to
be an optimal solution to LP(v : u) for each other v € T,. It is easy to show, by
an argument similar to Lemma 5.5, that LP(v : ) is feasible, and (u(v),q(v) : v €
Ty UTy) now satisfies all the constraints of LP’(I) in Parts 0, 1, and 2.

5.1.3. Conditions on utilities of type-4 vectors. Next we show that utilities
of type-4 vectors satisfy the following condition:

CONDITION-TYPE-4: Each type-4 vector v € Ty has utility

u(v) = max {u(p(v)),u(cq) }.

LEMMA 5.6. Given (5.1), (5.2), and (5.3), any optimal solution to LP'(I) satisfies
CONDITION-TYPE-4.

Proof. Let (u(-),q(:)) be an optimal solution, and let R be the set of v € Ty with
u(v) > {u(p(v)),u(cq)} (so we have ¢y ¢ R). Assume for contradiction that R is
nonempty. Our plan is to derive (v/(+),d(+)) from (u(-),q(-)) by modifying utilities
and allocations of vectors in Ty \ {c4} only. We reach a contradiction by showing
that the new solution (u/(+),q’(-)) is feasible and has a strictly higher revenue than
(u(:),a(").

To define the new solution (u/(+),q’(+)), let € > 0 denote the following parameter:

€ = min { {111612 (u(v) — max {u(p(v)), U(CS)})7

smallest positive entry in q(v) among all v € D}.

First for each v € Ty we set v/(v) = u(v) if v ¢ R, and v/(v) = u(v) —eif v € R;
all other entries of v’ are the same as those in u. Note that u'(-) still satisfies (5.15)
in Part 4 of LP’(I). Given /() we set q'(v) for each v € T \ {c4} to be an optimal
solution to the linear program LP(v : u'). With an argument similar to that used
in Lemma 5.5, LP(v : ) is feasible (if v € R, q(v) is feasible; otherwise q(p(v)) is
feasible).

Given that (u/(+),q'(v)) is well-defined and feasible, we next show that its ex-
pected revenue is strictly higher than that of (u(-),q(:)). We follow the approach as
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in the proof of Lemma 5.5. Let R’ be the bottom of R: R’ contains w € R if no other
vector in R lies below w. For each v € T, \ R’ with w < v for some w € R, we
apply REV/(v) > REV(v) — O(net/B) by Lemma 5.4. For each v € Ty \ R’ that is
not above any vector in R’, we have REV'(v) = REV(v). Finally, for each v € R/, the
same proof of (5.21) in Lemma 5.5 gives that REV'(v) > REV(v) + Q(et).

Combining all the cases and following the same argument used in Lemma 5.5, we
have

Pr[vectors in R'] - Q(et) > Pr|[(type-4) vectors above R'] - O(net/p).

This finishes the proof of the lemma. ]

Arguments used in Lemma 5.6 further imply the following fact. Suppose that
(u(v),q(v) : v € Ty UTs U T3) satisfies all the constraints of LP'(I) in Parts 0, 1, 2,
and 3. Given any nonnegative uy with u(cs) < uq < u(cz) + s, we can extend it to
T4 by setting u(cy) = uq and u(v) = max{u(p(v)), uq} for other v in Ty, and setting
q(c4) according to Lemma 5.1 and g(v) to be an optimal solution to LP(v : w)
for other v € T,. By similar arguments in Lemma 5.6, LP(v : u) is feasible, and
(u(v),q(v) : v € D) is feasible to LP'(I).

5.1.4. Condition on utilities of type-3 vectors. A similar condition holds
for utilities of type-3 vectors in any optimal solution to LP’'(I):

CoNDITION-TYPE-3: Each type-3 vector v € T3 has utility

u(v) = max {u(p(v)), u(cs) }.

LEMMA 5.7. Given (5.1), (5.2), and (5.3), any optimal solution to LP'(I) satisfies
CONDITION-TYPE-3.

Proof. Assume for contradiction that (u(-),q(+)) is an optimal solution to LP’(T)
that violates CONDITION-TYPE-3. Let R denote the nonempty set of v € T3 with
u(v) > max {u(p(v)),u(cs)} (so c3 ¢ R).

To reach a contradiction, we derive from (u(+), q(-)) a new solution (u/(-),q'(:)) by
modifying utilities and allocations of v € T3\ {cs} only. (All constraints are satisfied
trivially except those in Part 3; note that only u(c3) appears in Part 4 but it remains
the same in u/(-).) We then show that (u/(-),q'()) is better.

We define (v'(+),q’(+)) from (u(-),q(+)) as follows. Let € > 0 denote the following
parameter:

€ = min { min (u(v) —max {u(p(v)), “(03)})’

veER
smallest positive entry in q(v) among all v € D}.

For each v € T we set v/ (v) = u(v) if v ¢ R and v/ (v) = u(v) — e if v € R; all other
entries remain the same. Note that the new ' satisfies (5.12) in Part 3 of LP'(I).
Then for each v € T3\ {c3}, we set q'(v) to be an optimal solution to LP(v : u').
With an argument similar to the one used in the proof of Lemma 5.5, LP(v : u/) is
feasible (if v € R, q(v) is feasible; otherwise, q(p(v)) is feasible). All other entries of
q’(-) remain the same. It is clear now that (u/(-),q’(+)) is a feasible solution to LP’(I).

We compare the expected revenues from (u(-),q(-)) and (¢'(:),d'(:)) and show
that the latter is higher. Let R’ denote the bottom of R: R’ contains v € R if no
other vector in R lies below v. For each v € T3 \ R’ above a vector in R’, we apply
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REV'(v) > REV(V) — O(net/3) by Lemma 5.4. For each vector v € T3\ R’ that is not
above any vector in R, we have REV'(v) = REV(v). Finally, for each v € R, we can
show that REV/(v) > REV(V) + Q(et) with an argument similar to that in the proof
of Lemma 5.5.

Combining all these bounds together and following the same argument used in
Lemma 5.5, we have

Pr[vectors in R'] - Q(et) > Pr[(type-3) vectors above R'| - O(net/f3).

This finishes the proof of the lemma. ]

Arguments used in Lemma 5.6 also imply the following property. Suppose that
(u(v), q(v) : v € Ty U Ty) satisfies all the constraints of LP'(I) in Parts 0, 1, and 2.
Given a nonnegative number uz, we can extend it to T3 by setting u(c3) = uz and
u(v) = max{u(p(v)),us} for other v in T3, and setting q(c3) according to Lemma
5.1 and q(v) to be an optimal solution to LP(v : u) for other v € T5. By similar
arguments used in Lemma 5.7, LP(v : u) is feasible, and (u(v),q(v) : v € T1UTy UT3)
now satisfies Parts 0, 1, 2, and 3.

5.1.5. Expected revenue from types-2, -3, and -4 vectors. Before working
on type-1 vectors, which is the most challenging part of the characterization, we
summarize our progress so far. We need the following notation. Let (u(v),q(v):v €
T1) denote a partial solution that satisfies all constraints of LP’(I) in Parts 0 and 1.
Given ug, us, ug > 0 that satisty uz < ug < ug + s, we use Ext(u(-),q(-); ua, us, uq) to
denote the following set of solutions {u/(v),q’(v) : v € D} to LP'(1):

1. W/(v) =wu(v) and ¢'(v) = q(v) for all v € T;.

2. v/ (ca) = ug, u'(c3) = usz, and u'(cy) = ug; q'(c2) = €41 and q’(c3) = en 2.
3. All entries of q’(cy4) are 0 except

Gn+1(ce) = (us —u3)/s and  guia(cs) =1— (ug —uz)/s.

4. For each v € Ty \ {ca}, v/(v) = max{u(p(v)),uz} and q'(v) is an optimal
solution to LP(v : u').

5. For each v € T3 \ {c3}, v/(v) = max{u(p(v)),us} and q’(v) is an optimal
solution to LP(v : u').

6. For each v € Ty \ {c4}, v/ (v) = max{u(p(v)),us} and ¢'(v) is an optimal
solution to LP(v : u/).

By discussions at the end of sections 5.1.2, 5.1.3, and 5.1.4, Ext(u(-),q(:) : ua, us, uq)
is well-defined (and nonempty). The next two lemmas summarize our progress so far.

LEMMA 5.8. Suppose that (u(v),q(v) : v € T1) satisfies all constraints of LP'(I)
in Parts 0 and 1. Given any us,us,uqs > 0, where ug < ug < uz + s, solutions in
Ext(u(-),q(:) : usz,us,us) are feasible to LP'(I) and for each i = 1,2,3,4, they all
share the same expected revenue from type-i vectors.

LEMMA 5.9. Any optimal solution (u'(-),q’(:)) to the linear program LP'(I) be-
longs to Ext(u(-),q(:) : ue2,us,uq4), where we set u; = u'(c;) for i = 2,3,4 and
(u(v),q(v) : v € Th) to be the restriction of (u'(-),d'(-)) on T1.

Let (u(v),q(v) : v € Ty) and (v/(v),q’(v) : v € T1) denote two partial solutions
that satisfy Parts 0 and 1 of LP’(I). The next lemma shows that if |u(v) — u'(v)]
is small for all v € Tj, then expected revenues of Ext(u(-),q(:) : ug,us,uq) and
Ext (v (+),d’(+) : ug,us, uq) from types-2, -3, -4 vectors are also close.
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LEMMA 5.10. Suppose (u(v),q(v) : v € T1) and (v'(v),
all constraints of LP'(I) in Parts 0 and 1 and |u(v) —u/(v)|
Ug, U3, Ug, Uh, us, uy > 0 with uz < ug < ug+ s, uy <ujy <uf
fori1=2,3,4. Then we have

d'(v) : v € Ty) satisfy
<e€ forallveTi. Let
+s, and |u; —ui| <e

2
|REV; — REV) | < O(&;S) . |REVs — REV)| < O<5 Z€t> , and
3
|REV, — REV) | < O<5 Z€t> ,

where we let REV; and REV, denote revenues from type-i vectors in solutions of
Ext(u(-),q(") : uz,us,us) and solutions of Ext(u'(-),q’(+) : ub, us, uly), respectively.

Proof. We focus on |REv4; — REV}|. The same argument applies to types-3
and -4 vectors. For convenience, we abuse the notation slightly and still write
(u(v),q(v): v € D) and (v/(v),q(v) : v € D) to denote two full feasible solutions of
LP'(I) after extension. By definition,

|REV, — REV | = ‘ Z Pr[v] - (REV(V) — REV/(V)) ‘

veTy

It is also clear that |REV(cs) — REV/(cs)| < O(et/s). For other v € Ty, q(v) is
optimal to LP(v : u) and ¢'(v) is optimal to LP(v : «’), both of which are feasible.
It follows from Lemma 5.4 and

lu(w) — v (w)| = | max{u(p(w)), us} — max{u'(p(w)),u}}| < e forall we Ty,
that |REV(V)—REV(V')| < O(net/B). As 3, o7, Prlv] < 6% we have |REV,—REV) | <
O(5*net/B). 0

5.1.6. Condition over type-1 vectors. Finally we show that any optimal
solution (u(-),q(-)) to LP'(I) satisfies the following condition:

CoNDITION-TYPE-1: For each type-1 essential vector v € T} and v # a, we
have u(v) = 3, cg(y) di - ¢i(a). For each v € T] and v # a, letting

k=min(S(v)) and S'(v)=S(v)\ {k},

we have ¢;(v) = ¢;(a) for all i € S'(v), gr(v) = 1= >,cq(y) %i(a), and all
other entries of q(v) are 0. Moreover, for each nonessential type-1 vector
v € T}, letting w = LOWER(Vv), we have q(v) = q(w) and

u(v) = Z 7 qj(w Z di - gi(a Z 7 4 (W

JjEST(v) i€S(v) JjEST(v)

Note that CONDITION-TYPE-1 does not require } ;. ¢;(a) = 1. Actually we will
only get to impose this condition later in section 5.2.1 after proper choices of a;’s.

We record the following three simple lemmas concerning solutions that satisfy
CONDITION-TYPE-1.

LEMMA 5.11. Assume that (u(-),q(-)) satisfies CONDITION-TYPE-1. If two type-
1 vectors v and w satisfy S(w) C S(v), then g;(w) > ¢;(v) for all j € S(w).

S(
LEMMA 5.12. Assume that (u(-),q(-)) satisfies CONDITION-TYPE-1. Then we
have REV(V) = REV(V') for any two type-1 vectors v and v' in the same block.
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Proof. Let w = LOWER(v) = LOWER(v’). Using CONDITION-TYPE-1, REV(V)
is equal to

Z v - qi(v) —u(v) = Z v - (W) —u(w) — Z 7i - qi (W)

i€[n+2] i€S(w) €St (v)

I
g
o~
S
z
I
=N
2

which does not depend on v but only w = LOWER(v). The lemma then follows. 0O

LEMMA 5.13. Let q denote an (n + 2)-dimensional nonnegative vector that sums
to at most 1. Then there is a unique (u(v),q(v) : v € T1) that satisfies q(a) = q
and CONDITION-TYPE-1. Moreover, (u(v),q(v) : v € Ty) satisfies all constraints of
LP'(I) in Parts 0 and 1.

Proof. Part 0, (5.4), and (5.7) are trivial. For (5.5), given v € Ty, i € ST (v), and
w = (v_;,¥;), we have that

u(v) —u(w) =7; - ¢;(LOWER(V)) = 7; - ¢; (V)

by CONDITION-TYPE-1. For (5.6), letting w = LOWER(v), we have u(v) — u(w) =
!/

Zjes+(v) 7j - ¢;(w). For (5.8), given v € T, ¢ € S(v), w € BLOCK(V_;,q;), V' =
LOWER(v), and w' = LOWER(w), we have

u(v) —u(w) = u(v) —u(v') + u(v') — u(w') + u(w') — u(w)
= > (V) +dica@ - D Tg(w).

JjeESt(v) JEST(w)

Applying Lemma 5.11 on v and w’ (also g(v) = q(v’) and ¢;(a) < ¢;(v) for i € S(v))
we have

u(v) < > g Hdica(v)— Y g (v) = >0 (v —wy)gi(v).

J€S+(V) jeSH(w) jes(v)

This covers all constraints in Parts 0 and 1, and the lemma is proven. 0
Now we prove CONDITION-TYPE-1.

LEMMA 5.14. Given (5.1), (5.2), and (5.3), any optimal solution to LP'(I) sat-
isfies CONDITION-TYPE-1.

Proof. Let (u(-),q(+)) be an optimal solution to LP’(I). Our plan is the following.
We first derive a solution (u*(-),q*(+)) from (u(-),q(+)), and show that it is feasible to
LP'(I). Then we compare expected revenues from them and show that for (u(-),q(-))
to be optimal as assumed, it must satisfy CONDITION-TYPE-1.

Using Lemma 5.13, let (v/(v),q'(v) : v € T1) denote the unique partial solu-
tion that satisfies q’(a) = q(a) and CONDITION-TYPE-1. Using Lemma 5.13 again
(u/(v),d'(v) : v € Tp) satisfies all constraints of LP'(I) in Parts 0 and 1. By
Lemma 5.8, Ext(u/(+),q'(:);u(c2),u(cs), u(cy)) is a well-defined (nonempty) set of
feasible solutions to LP'(I) (here u(cz) < u(cy) < u(cz) + s as (u(-),q(+)) is fea-
sible). Now we use (u*(v),q*(v) : v € D) to denote a full feasible solution to
LP'(I) in Ext(u/(-),q(- ),u(cQ) u(cs), u(cq)). Now we compare expected revenues of

(u*(-),q*(-)) and (u () al-))-
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For this purpose, let REv; and REV; denote expected revenues of (u(-),q(-)) and
(u*(+),q*(+)) from type-i vectors, and let REV and REV™ denote their overall expected
revenues. Let € = maxyer, |u(v) —u*(v)|. By Lemmas 5.9 and 5.10 we have

|(REV2 + REV3 + REV,) — (REV; + REVS 4+ REV)) |

2 3
<0 <5nes+5 Z€t+5 net) (5ns> Z |u |

veT,

where we used s > 6t from (5.3) and ), |u(v) —u*(v)]| as a trivial upper bound for e.
By our choice of § we have dns/S3 = o(r"*1). We also have Pr[v] > r"(1 — §)(1 — 6?)
= Q(r™) for all v € T1. As a result,
REV — REV"
< REV; — REV] + |(REV2 + REV3 + REV4) — (REV; + REVS + REV))

< ) Prfv]- (REV(V) = REV*(v)) +0(r" ™) - > Ju(v) (v)]

veTly veTy
= > Prv] | D0 v (@) =g (V) + (L4 G) - (uT(v) —u(v))
veTy i€[n+2]
Z Pr[v] - DIFF(v)
veT;

for some (v with |(y| = o(r) for all v € T;. For convenience we use DIFF(v) to denote
each term for v.

We bound DIFF(v) of nonessential type-1 vectors first. Fix a v € T}". We write
w = LOwWER(v) € T{ and w; = LOWER(v_;, a;) € Ty for each i € S(v). We have for,
each i € S(v),

u(v) —u(wi) < (i —a) - a(V) + Y. ) =d-a)+ Y T
i#jEST(v) JEST(v)

Applying CONDITION-TYPE-1 on u*(+), we also have
u(v) —u(w;i) = u(v) —u*(v) + u*(v) — v (w) + u* (W) — u"(w;) + u* (w;) — u(w;)
= (u(v) - + Y T (W) +di - gi(a) + (uT(wi) — u(wi)).

JEST(V)

Combining these two together (and plugging in q*(w) = q*(v)), we have

di (qi(a) = q(v)) + Y 7 (g5(v) = q;(v) < (u"(v) = u(v)) = (' (W) = u(wi)).
jest(v)
Let k = min(S(v)) (S(v) # 0 since v € T7) and S’ (v) = S(v) \ {k}. We consider
the following two cases.
Case 1: k = min(S(v)) ¢ ST(v). Then ¢;(v) = gj(a) for all j € ST(v). Thus,
(5.23)
di - (qi(@) —a(v)) + D 7 (g5() — (V) < (W (v) = u(v)) = (u* (W) —u(wy)).

JEST(V)
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Given q;(v) =1 =3 ";cq(v) ¢i(a) and vy is the (strictly) largest entry in v, we have

Z viog; (V) =uvp [ 1- Z a(a) | + Z v; - gi(a)

1€[n+2] €8’ (v) €S’ (v)
= Uk — Z (v — vi) - qi(a),
i€S’(v)
Z vi - qi(v) S | 1= Z a(v) | + Z v; - qi(V)
1€[n+2] €87 (v) €87 (v)
= — Z (v — ;) - qi(v).
i€S’(v)

Combining these two we get
(5.24) Yoovi @) —g(v) < D (o —w) - (@) — a(v))
ic[n+2] €S (v)
Since 7; = O(B) = O(1/2™) < d; = 1, there exists a unique tuple (v; : i € S'(v)}
such that

Z (v — vi) - (¢i(a) — qi(v))

i€S’(v)

(5.25) = Z Vi | i (qi(a) — qi(v)) + Z 75 - (g;(a) — g;(v))

€S’ (v) JEST(v)

This is because (y; : i € S'(v)) is the unique solution to a linear system with diagonal
entries being d; or d; + 7; and off-diagonal entries being 0 or 7; for some j € ST(v).
Furthermore, given 7; = O(8) and 8 < vy —v; < 3nf8, we claim that 0 < v; = O(ng).
To see this, we first prove that |y;| < 6ng for all i. Assume for contradiction that
|v:| = max; |y;| > 6nB. Then we have 3nf8 > |vy — v;| > |divi| —n - OB) - || >
(3/4) - |vil, a contradiction. Next, assume for contradiction that «; < 0 for some 4.
Then we have < v, —v; < n-O(fB)-O(nf), contradicting § = 1/2™. Tt follows from
these properties of v;’s that

Yo ovi @) =g < D0 v (W) = u(v) = (¥ (wi) —u(wy))

i€[n+2] 1€S’(v)

(5.26) = @) —u) + Y - (@ (wi) = u(wy))

i€S’(v)

for some vy and vy ; that satisfy || = O(n?B) and |yy;| = O(np) for all i € S'(v).
Case 2: k = min(v) € ST(v). Then we have, for each i € S(v),

(5:27)  di-(gi(a) = (V) + 7 (G(V) —a(V)+ D - (g5() — (V)
JEST(V)\{k}
< (W (v) —u(v)) = (u*(w;) — u(w;)).

For clarity we use LHS; to denote the LHS of the inequality above for each i € S(v).
Then there exists a unique tuple (v; : ¢ € S(v)) such that

> (o —v) + ) - (@i(a) = gi(v) + 9 - (g5 (v) —qe(v)) = > 7 -LHS;.

€S’ (v) i€S/(v)
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This is because (v; : i € S(v)) is the unique solution to a linear system with diagonal
entries being either d; or d; + 7; for i # k and —1 for k and off-diagonal entries being
either 0 or 7; in general and —1 for the column that corresponds to k. Similarly we
have 0 < v; < O(np) for all ¢ € S(v). This gives us a connection between the LHS
above and what we care about since

Z ((vk —vi) + ) - (:(a) — @i(v)) + 7 - (a1(V) — g (V)

1€87(v)
= Y (e—v) (@@ —aV) +n—m |+ D @)
€S’ (v) i€S’(v)
(5.28) > Z vk =) (@i(@) —ai(v) = D v (a:(v) — ¢ (v)),
€8 (v 1€ [n+2]

where the last inequality follows from (5.24). So (5.26) also holds in this case for
some 7y and 7y ; with absolute values bounded from above by O(n?3) and O(np),
respectively.

To summarize our progress so far, we have shown for each nonessential type-1
vector v € T}, DIFF(v) is at most

1+ +w) W (v) —u(v) + Z Vit (u*(LOWER(V_i, a;)) — u(LOWER(vV_;, ai))).

€S’ (v)
Therefore, we have
Z Pr[v] - DIFr(v)
veTy
(5:29) < D Prfv]-(14+7%) - (' (v) —u(v)) + Y Pr[v]- & - (u*(v) —u(v))
veTy veT]

for some v, and &, with |7, | = O(n?B) (since |(y| = o(r)) and |&, | < O(n?pB). For
the latter, we used the fact that for any v € T7 the total probability of all vectors in
blocks strictly above BLOCK(V) is at most an Q(np)-fraction of that of v. We continue
to simplify the first part of the RHS above.

Let w = LOWER(v) for some nonessential vector v € T7". We have

w(v)=u'(w)+ > 7eg(w) and u(v)>uw)+ Y 7-g(w
JESH(V) JEST(v)
by CONDITION-TYPE-1 and (5.6) in Part 1 of LP’(I). As a result, we have
wt(v) —u(v) Sut(w) —u(w)+ Y 7 (g5 (W) = (W)
JESH(V)

Fix an essential vector w € T} and let B = BLoCck(w) \ {w}. Then we have

Y Priv- (14 70) - (w(v) = u(v))

veB

<D PV (L) | utw) —ulw) + Y T (g5 (w) = g5(w))

veB jest(v)
= Pr[w] - a - (u* (W) — u(w)) + Priw] > aw; - (g} (W) — g;(w))
j€[n+2]
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for some ay and ayy ; with absolute values bounded by |aw| = O(nr/p) and |aw ;| =

O(nrf3/p).

Combining all these inequalities together, we have

Z Pr[v] - DIFr(v)

veT,

<Y PV DD w4 (V) = () + L+ G - (u(v) = u(v))

veTy] JjE[n+2]

+ Z Pr[v]- | ay - (u*(v) Z ay,j - (g (v) = ¢;(v))

verTy j€[n+2]

+ ) Prv]- & (ut(v) —u(v))

veT]

_ZPr <1+Cv+av+£v)( (V)—U(V))

veT,

+ Y (v —avy) (qj(v>—q;f(v>>>.

j€[n+2]

Recall that |¢y| = o(r) and |&y| < O(n?pB). We have 1+ (y +ay +& = 1+ 0(1).
Fix an essential v € T]. We have v; — ay ; ~ 2 for j € S(v), and k£ = min(S(v))
still has the (strictly) largest coefficient vy, — ay i since |ay ;| = O(nrf/p) < B. As a
result, we have (recall that S'(v) = S(v) \ {k})

Y W —avy) G(v)

j€[n+2]

=(r—avi)- (1= Y g@ ]+ D (vj—av,) - ga),

JES' (V) JES' (V)
D (W —avy) - g(v)
jEn+2]
(5.30) Sor—ave) (1= DY )|+ D (W —ovy)-g(v).
JES'(v) JES! (V)

Let ¢v,j = vk — vj — Qv + Qi j for each j € §'(v). Then Q(5) < ¢y ; < O(nf) and
Z (Uj - O‘VJ) ’ (qj( - q] Z by QJ - Qj(V))~
jE€[n+2] jES’(v

Plugging this in, we have

Z Pr[v] - DIFF(v)

veTly

< Y Prv]- [ (T£o() - (u'(v) —u(v) + Y b (g5(a) = ¢;(v))

veTy] JES!(v)
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We also have u*(v) —u*(v_j,a;) = d; - gj(a) for v € T} and each j € S(v), and
u(v) —u(v_j,a;) <d;-qj(v) by (5.8) of LP'(I). As a result, we have

> vy (gi(a) = ¢;(v))
JES'(v)

(531) < 3 T () ) = (0 (o)~ uvy.0)).

JES'(v)

Plugging it back, we have
> Pr[v]-DiFr(v) < > Priv]- (1 +0(1)) - (u*(v) — u(v))

veT, veT]
+ Y Prfv] Y (bc;fj (W (V) = u(v) = (W (vj, a5) — u(v—j, a;)))
veT] jes'(vy 7
<PV (14 6) - (' (v) — u(v)
veTy

for some 4, with absolute value bounded from above by
0y < o(1) + O(n*B) + O(nB - np) = o(1).

Since u(v) > w*(v) for all v € T} (due to (5.4) of LP'(I)), we must have
u(v) = u*(v) for all v € T{ by the optimality of (u(-),q(+)). This proved the part of
CoONDITION-TYPE-1 on q(v) of essential vectors.

Combining this with (5.8) of LP'(I), we have for each v € T, i € S(v), and
w = (v_;,a;): d; - qi(a) = u(v) —u(w) < d; - ¢;(v) and, thus, g;(v) > ¢;(a). On the
other hand, it follows from the optimality of (u(-),q(-)) that (5.31) and (5.30) must
be tight. This implies that q(v) = q*(v) for all essential vectors v € T7.

For a nonessential type-1 vector v € T, letting w = LOWER(v), (5.6) in Part 1
of LP'(I) implies that u(v) > u(w) + 2 jes+(v) Ti " ¢5(W) = u*(v), as we have proved
that u(w) = u*(w) and q(w) = q*(w) (since w is essential). Then u(v) = u*(v)
follows from the tightness of (5.29).

Finally, for each nonessential vector v € T3, we consider the following two cases
(letting & = min(S(v)).

Case 1: k ¢ ST(v). q(v) = q*(v) follows from the tightness of (5.23) and (5.24).
(5.23) yields that

di(gi(a) —q(v))+ > 75 (g;(a) —q;(v)) =0
JEST(v)

for all i € S’(v) (note that we actually do not use i = k in (5.25)). These equations
together imply that ¢;(v) = g;(a) for all i € S'(v). ¢x(v) = g;(v) follows from the
tightness of (5.24).

Case 2: k € ST(v). The tightness of (5.28) implies that

(5.32) a(v)=1- Y ¢(v)

JES' (V)

The tightness of (5.27) implies that

di - (ai(a) = a(V)) + 7 - (G (V) —a(V) + Y m(gi(a) —gi(v) =0
JjeST(V\{k}
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for all i € S'(v). Plugging in ¢;(v) =1 =3 ;.4 ¢i(a) and (5.32), we must have
gi(a) = ¢;(v) for all + € S’(v) and thus, gx(v) = g5 (v) by (5.32). It then follows that
q(v) = q*(v).

This finishes the proof of the lemma. ]

5.1.7. Characterization of optimal solutions. Let q be a nonnegative
(n + 2)-dimensional vector that sums to at most 1, and usg,us,us > 0 that satisfy
us < ug < ugz + s. Let Ext(q,us,us,us) denote the following set of solutions to
LP'(I): Let (u(v),q(v) : v € Ty) be the unique partial solution that satisfies both
q(a) = q and CONDITION-TYPE-1. By Lemma 5.13, (u(v),q(v) : v € T1) satisfies
all constraints in Parts 0 and 1 of LP’(I). Then we set

Ext(q, u2, us, us) = Ext(u(-), q(-); ua, us, ug).

We record the following lemma.

LEMMA 5.15. Given any nonnegative vector q that sums to at most 1, and us,
us,ug > 0 with us < ug < ugz + s, Ext(q,us, us,uq) is a nonempty set of feasible
solutions to LP'(I).

Our characterization of optimal solutions to LP’(I) is summarized in the theorem
below.

THEOREM 5.16. Any optimal solution (u(v),q(v) : v € D) to LP'(I) belongs to
Ext(q, ug, us, us), where q = q(a) and u; = u(c;) for each i = 2,3,4.

5.2. Choices of parameters and their consequences. Now we pin down
the rest of the parameters: a;, s, h;, t, and see how they affect optimal solutions of
LP'(I).

5.2.1. Setting a;’s. First, we set a;’s (see (5.34) below) such that they satisfy
(5.2), i.e., |a; — 1] = O(np), and the expected revenue from type-1 vectors in any
optimal solution (u(+),q(+)) to LP’(I) is of the following form,

(5.33) CONST + ¢+ »  g;(a)
i€[n]

for some ¢ ~ 1. By Theorem 5.16, (u(-),q(-)) lies in Ext(q, uz,us,us) for some
nonnegative vector q that sums to at most 1, and some us,u3,us > 0 that satisfy
us < ug < ug + s. Given that (u(-),q(-)) satisfies CONDITION-TYPE-1, expected
revenue from type-1 vectors only depends on q(a) = q. We next calculate the expected
revenue from type-1 vectors given q, and the choices of a;’s will become clear.

First, we have REV(a) = }_,c(, @i - ¢ (since u(a) = 0). Given that (u(-),q(-))
satisfies CONDITION-TYPE-1, each essential type-1 vector v € T and v # a has
revenue (letting & = min(S(v)))

REV(V)Z Z bi-qi+ - | 1— Z qi | — Z d; - q;

€S’ (v) i€S’(v) i€S(v)

=0 — Z (lx — ai) - ¢ — di. - q-
1€8’(v)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/23/22 to 173.2.35.82 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ON THE COMPLEXITY OF OPTIMAL LOTTERY PRICING 527

Given Lemma 5.12, the block B that contains v € T} and v # a overall contributes

Pr(B]-REvV(V) =Pr(B]- |l — > (b —ai)-qi — (s — ax) - g
€S’ (v)

It is clear now that expected revenue from type-1 vectors is an affine linear form of
¢i’s, i € [n].

Let ¢; denote the coeflicient of each ¢; in the expected revenue from type-1 vectors.
Then a contributes Pr[a]-a; to ¢; (Pr[a] & 1—np which as we will see is the dominating
term). A block B that contains v € T and v # a contributes 0 if ¢ ¢ S(v); — Pr[B] -
(€; —a;) if i = min(S(v)); and — Pr[B]- ({min(s(v)) —a:) if i € S’(v). More specifically,
the total probability of type-1 blocks B and v € B with ¢ = min(S(v)) is

(1=08)-(1=6%) - (L=p—r)""-(p+r);
for each k < i, the total probability of type-1 blocks B with i € S(v) and min(S(v)) =
k is
(1=08)-(1=0%)-L=p—r)""-(ptr)(p+r)

As a result, ¢; becomes

(1-6)(1 6% <(1 —p—1)"a;i=Y_ (1=p—r)"p+r)(l — a)

k<i

—L=p=—r)"tp+r); - ai)>.

To meet both goals, i.e., c; =+ =¢, = 1 and |a; — 1| < O(np), we set

1+ (=p=r) " (p+r)? b+ (L =p—r)""-(p+7) 4
Q=p=r)+3pl=—p=r)* - (p+r)+ L —p—r)~t-(pt+r)

It is easy to verify that the a;’s satisfy 1 < a; < 1 + O(np). The length of binary
representations of each a; is polynomial in n and a;’s can be computed efficiently,
given p,r, and ¢;’s as in (5.1) and (5.2).

We summarize the consequence of our choices of a;’s in the following lemma.

LEMMA 5.17. Given choices of a;’s in (5.34), revenue from type-1 vectors in any
feasible solution to LP'(I) that satisfies CONDITION-TYPE-1 is of the form in (5.33)
with ¢ = (1 —8)(1 — &%) =~ 1.

It is now time to prove that g(a) sums to 1 in any optimal solution to LP'(I).

LEMMA 5.18. Given our choices of a;’s in (5.34), any optimal solution to LP'(I)
satisfies Zie[n] gi(a) = 1.

Proof. Assume for contradiction that (u(-),q(-)) is optimal but 3, ai(a) =1
does not hold. Let q" be the vector obtained from q(a) as follows: if 37,1, 5 gi(a) <
1, we replace its first entry by ¢; = ¢1(a) + €, where e = 1 — Zie[n+2] g;(a) > 0; other-
wise, letting € = ¢,41(a)+¢gnq2(a) > 0, weset ¢ = q1(a)+eand g, = ¢}, . = 0. Let
(u/'(+),d’(+)) be a feasible solution from Ext(q’,u(c2),u(cs)). It follows from Lemma
5.17 that the expected revenue from type-1 vectors goes up by (e) in (v/(+),d’(+)).
However, by CONDITION-TYPE-1, we have |u(v) — «/(v)] < O(e) for all v € Ty.
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By Lemma 5.10, expected revenue from types-2, -3 and -4 vectors goes down in
(u'(+),d'(+)) by at most O(énes/B) + O(§?net/B) < €. This contradicts the assump-
tion that (u(-),q(-)) is optimal. |

Given Lemma 5.18, from now on we restrict q to be a nonnegative n-dimensional
vector that sums to exactly 1 in Ext(q,us, us, us). We also use REV(q, ug, us, uq) to
denote the expected revenue of solutions in Ext(q,us,us,us). All parameters of T
have been chosen except s, h;’s, and t.

5.2.2. Setting s. Our goal in this section is to show that, by setting

1 1
5 * (n—0.5)p (np) ’

any optimal solution to LP’(I) from Ext(q,us,us3,u4) must satisfy
(5.35) dy-q1(a) =do-qg2(a) =+ =d, - qu(a).

Note that we have chosen both a; and ¢;, and so d; = ¢; — a;. (5.35) then uniquely
determines g(a) in any optimal solution, as by Lemma 5.18, g(a) must sum to 1.
(5.35) also implies that g(a) is indeed very close to the uniform distribution over [n]
since d; ~ 1 (more exactly, |d; — 1| = O(np + np)).

In the rest of section 5.2.2 we use v; for each i € [n] to denote the type-2 vector
with v, ; = ¢;, v; ; = a; for other j € [n], v; n41 = s and v; 42 = 0. To prove (5.35),
we start with the following lemma.

LEMMA 5.19. Let q be any nonnegative n-dimensional vector that sums to 1, and
uhy = Mingep,) di - qi. If ug,uz, ug > 0 satisfy us < ug < uz + s and ug # uj, then
REV(q, ug, us, us) < REV(q, u5, ug, usg).

Proof. Let (u(-),q(:)) be a feasible solution in Ext(q,us, us,us) and (u'(+),q'(+))
be a feasible solution in Ext(q,u),us,us). Below we compare their revenues REVy
and REV} from type-2 vectors since it is clear that REv; = REV], for all i € {1,3,4}.
We consider two cases: ug < uh or ug > uh. In both cases we have from Lemma 5.4
that |REV'(v) — REV(V)| = O(nes/f3), given that |u(w) — u(w’)| < e. We focus on
comparing REV'(v;) and REV(v;) in both cases.

Case 1: ug < uf. Let € = uh —ug > 0. We have REV'(c2) = REV(ca) — € for ca.
We compare REV'(v;) and REV(v;) for each 4. Since ug < ub, by CONDITION-TYPE-2
and the definition of u}, we have u(v;) = v/(v;). Constraints of LP(v; : u) are

g; > 0 for all j € [n+2], Z g; <1, and d;-q > u(v;) — ug;
j€n+2]
constraints in LP(v; : u’) are
q; >0 for all j € [n+ 2], Z ¢; <1, and d;-q >u'(v;)— uj.
jE€[n+2]

It follows that q(v;) satisfies ¢;(v;) = (u(v;) —u2)/d; and puts the rest of the probabil-
ity onto gn4+1(v;), while q'(v;) satisfies ¢}(v;) = (v/(v;) —uh)/d; = qi(v;) — (¢/d;) and
puts the rest onto ¢}, ;;(v;). As aresult we have REV'(v;) = REV(v;)+ (€/d;) - (s —{;)
for each i € [n]. To summarize, we have

REV, — REV, > Z Pr[v,] - <; (s — Ei)> — Prea] - € — O(nré) - O (TL;S> :

i€[n]
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Plugging in that Pr[cs] <6, 1/d; > 1 —0(np), s —£; > s —2 — O(nfB), and
Prlv]=p-(1-p—r)"""-5-(1-6%) > ps-(1-O(np)),

we have

iez[;l] Pr[v;] - T (s—1¢;)

(2

> b (1= 0ap) (1= 008) - (=g, ~ Ond))
noe
2 g (1= 0@B).

As a result, we have REV, — REVy > 0 given our choices of p, r, and f3.

Case 2: uy > uh. Let € = ug — uh > 0. In this case, REV/'(c2) = REV(c2) + €.
For each i € [n], a similar analysis of LP(v; : u) and LP(v; : «’) as in Case 1 implies
that ¢;(v;) = (u(v;) —u2)/d; and ¢(v;) = (v'(v;) — uh)/d;, and both vectors q(v;)
and q'(v;) have the rest of the probability allocated onto their (n + 1)th entries.

Let I denote the nonempty set of ¢ that has the minimum d;q; among all indices
in [n]. It then follows from the definition of v} and the assumption of us > u} that
u(v;) = ug and v'(v;) = u}, for each i € I and, thus, REV'(v;) = REV(v;) + € for each
i € I. For each ¢ ¢ I, we have u/(v;) —uh < u(v;) —ug + €. This follows by considering
the two cases of u(p(v;)) < ug or u(p(v;)) > uz:

o If u(p(v;)) < ug, we have u(v;) = ug and u'(v;) = max(u(p(v;)), uh) < ug
and, thus, v/ (v;) —uh <wus —uh =€ <wu(v;) —us +e.

o If u(p(vi)) > uz, we have u(v;) = u(p(v;)) and v'(v;) = max(u(p(v;)), up) =
u(p(v;)) and thus, u'(v;) — uh = u(v;) —ug + €.

So for each i ¢ I we have REV'(v;) > REV(v;)—(¢/d;) (s —¥;). Combining everything
we have REVS — REV; is at least

Prlcs] - € + ;Pr[vi] e ;Pr[vi] : (; (s— m) — O(nrd) - O (’?) .

Plugging in Prlcs] > §(1 — O(np)) and

€ 1
Prlvi] - —-(s—4;)<(n—1)-pd-€e-(1 e
P A e e N T
n—1
= fe- (1
de — (1+0(np)),
we have REVy — REVy > 0. This finishes the proof of the lemma. |

We are now ready to prove the main lemma of this section.

LEMMA 5.20. Any optimal solution (u(-),q(-)) to LP'(I) satisfies

di-qi(a) =---=dp-qn(a).

Proof. Let (u(),q(+)) € Ext(q,u2,us,us) be an optimal solution to LP’(I), where
q is an n-dimensional nonnegative vector that sums to 1 and ws,us,us > 0 with
uz < ug < uz + s. By Lemma 5.19, we have ugs = min;e [y d; - q;. Assume for
contradiction that q does not satisfy d; -1 = -+ = dp, - ¢, We use K C [n] to
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denote the set of indices k with dy - ¢ = min; d; - ¢;, and t € [n] denotes an index
with d; - ¢ > min; d; - ¢;. Then we replace q by q', where ¢, = ¢x + (¢/dy) for each
ke K and q; = q; — Y _c(€/dr), for a sufficiently small € > 0 such that q’ remains
nonnegative and indices k € K still have the smallest dj, - ¢, = dj - g, + € in q’. We also
replace ug by u) = uz + €. Let (u/(+),q’(+)) € Ext(q’, uh, uz, us) be a feasible solution.
Then we reach a contradiction by showing that the revenue of (v'(+),q’(+)) is strictly
higher than that of (u(-),q("))-

First it is clear that REV], = REV; since both q and q’ sum to 1. By Lemma
5.10, we have

2,2 3,2 2,2
|(REVs + REV,) — (REVS + REV))| < O (5 z et) +0 (6 o d) =0 (6 " d) ,
B B B

where we used the loose bound of |u(w) — u(w’)| < O(ne) for all w € T;. The RHS
above is negligible as we will see due to §2. Recall that § = 1/2”5 and t = 29(n") Tt
remains to compare REVy and REV,. For all v € Ty other than ¢y and v, i € [n], by
Lemma 5.4, |REV/(v) — REV(V)| = O(n - ne - s/8) = O(n%es/B). On the other hand,
we have REV'(c2) = REV(ca) — €. For each i € [n], it follows from LP(v; : u) that

di - q; — us

—d; - g;.
d, 1

REV(V;)=¥; - qi(v)+s- (1 —qi(v)) —d;-qi(a) =s— (s — &) -
A similar expression holds for REV'(v;) (replacing ¢; by ¢; and ug by ub). As a result,

Z Pr[v;] - (REV/(Vz‘) - REV(Vz‘))
i€[n]

=0(1—=6Hp(1l—p—r)"t- 8;4& e+ (s —ap) Z di_ Z(S—ak)'di
i€ln] ¢ kek F kek k
> 001 (1 = p =) (e (L 00 = O ) )

= 26;.5 (1 =0(nB)) — O(n*p*se),

where we used |a; — 1| = O(np). Combining all these bounds together, we have

REV, — REV, > niég E (1—0(nB)) — O(n*p*ée) —e- 6 — O(nrd) - O(n’es/pB)
§2n’et
so (P24,
g
given our choices of parameters. This contradicts the optimality of (u(-),q()). 0

Given that q(a) is close to a uniform distribution, we record a lemma that will
be useful later.

LEMMA 5.21. Let v,v' € D denote two valuation vectors that differ at the ith
entry only, for some i € [n], and v} > v;. Then we have u(v') > u(v) in any optimal
solution to LP'(I).

Proof. Tt suffices to prove the lemma for two type-1 vectors v,v' € T} (due to
CONDITION-TYPE-2, -3, and -4). The case when v; = ¢; and v} = h; follows directly
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from CONDITION-TYPE-1. The case when v; = a; and v; = ¥¢; follows from Lemma
5.20, that q(a) is close to a uniform distribution. In particular, we have

w(LOWER(V')) = u(LOWER(V)) + d; - g;(a) ~ u(LOWER(V)) + (1/n),

while both w(v’) — u(LOWER(v’)) and u(v) — u(LOWER(v)) are much smaller than
1/n since 7; = O(np) for all ¢ and 8 = 1/2™. O

5.2.3. Setting h;’s and t. Before giving our choices of h;’s and ¢, we introduce
the problem COMP, and show that it is #P-hard. Here an input (G, H, M) of COMP
consists of a tuple G = (g2, ...,9,) of n — 1 integers between 1 and N = 2", a subset
H C [2:n] of size |H| = m = [n/2], and an integer M between 1 and ("n;l) For
convenience, we write Sum(T') = >, g; for T C [2: n]. We use t* to denote the

Mth largest integer in the multiset
(5.36) {Sum(T): T C [2:n] and |T| = m}.

The problem is then to decide whether Sum(H) > ¢* or Sum(H) < ¢, i.e., compare
Sum(H) to the Mth largest integer in (5.36). We first show that COMP is #P-hard.

LEMMA 5.22. COMP is #P-hard.

Proof. We reduce from a related problem called LEX-RANK, which was shown
to be #P-hard in [DDT14a]. In LEX-RANK, the input consists of a collection C' =
{c1,...,cn} of positive integers, a subset S C [n], and a positive integer k. Order the
subsets T' of [n] of cardinality |S| according to their sums, Sumg(T) = 3,1 ¢, from
smallest to largest, with subsets that have equal sums ordered lexicographically; that
is, we have T <¢ T" if and only if Sum¢(T) < Sume(T”), or Sume(T) = Sume(T)
and the largest element in the symmetric difference TAT’ belongs to 7’. The LEX-
RANK problem is to determine for a given input (C, S, k) whether the rank of S in
this ordering (among subsets of cardinality |S|) is at most k.

Let (C, S, k) be an instance of LEX-RANK. Let ¢, = 22" . ¢; + 2¢ for all i, and let
C'={d,...,c,}. Clearly, any two subsets of C’ have unequal sums and, furthermore,
T <¢ T' if and only if Sume/ (T) < Sumer (T7) for all T, T C [n]. In the new instance
(C', S, k), the rank of a set S (among sets of the same cardinality) is the same as its
rank in the old (C, S, k), and the rank of S is at most k if and only if Sumc/(S) is at
most the Mth largest sum, where M = (Igl) — k+1. Thus, the LEX-RANK problem
in the new instance is equivalent to the COMP problem, except that in the latter
problem we also require that |S| = [n/2] and that all input integers are at most 2.

Let B be the maximum number of bits of the integers in C’; note, B > 2n.
Add 2B — n — 1 new elements to the set C’ to form the new set G; B — | S| of the
new clements have value n28%!, and the rest have value 1. Let H be the set that
consists of S and the new elements with value n25+!. Thus, G has 2B — 1 =n/ — 1
elements, S has size B = n//2, and all the integers are between 1 and 228 = on’,
Let M = (‘g‘) — k41, as above. The instance (G, H, M) of COMP now satisfies the
required constraints. If we order the subsets of cardinality B = |H| from largest sum
to smallest, the first (‘g‘) subsets will each consist of the B — |S| new elements with
the large value of n25+! and then a subset of cardinality |S| of the original elements,
ordered according to their sum. Therefore, Sumg(H) is at most the Mth largest sum
in the instance (G, H, M) of COMP if and only if Sumc.(S) is at most the Mth
largest sum in (C’, S, k), i.e., if and only if the rank of S is at most k in the original
instance (C, S, k) of LEX-RANK. d
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We embed COMP in I. Let (G,H, M) be an instance of COMP, where G =
(g2,---,9n) is a sequence of n — 1 integers between 1 and N = 2" H C [2 : n] with
|H| =m = [n/2], and M is an integer between 1 and (" '). Here are our choices of
7;’s and then h; = ¢; + 7;. Recall that we promised in (5.2), (5.3) that

B s

By our choices and a;’s and ¢;’s, di = max;c[,) dj. Set 7; = 7/ + 8 for each i € [n]
with 7{ = 3/N? and

,_ B di—d; dzﬂ_0<?152

=N g 9N =Y e

> for each 7 > 1.
Recall g; is from G. As 8 = 1/N, (5.37) on 7; is satisfied. The choice of t needs to be
done more carefully.

Let R denote the set of v € Tj satisfying |S(v)| = m + 1 and |ST(v)| = m, and
let R' denote the set of v € T3 with |[S(v)| = [ST(v)| = m+ 1. Let R* denote the set
of v.e R with 1 € ST(v). Let h denote the probability Pr[v] of each vector v € R’
(note that they all share the same probability Pr[v]):

h=(1-=0)-6%-r"T. (1 —p—r)" ™ §%rmtt
We are now ready to set t using M as follows,

Be?

L= T DM = (12))

which clearly satisfies the promise on ¢ in (5.37).

Fix a type-3 vector ve R*, and let w=p(v)€Ty. Let (u(-),q(-)) € Ext(q,us,
u3,u4) be a feasible solution to LP’(I) for some nonnegative q that sums to 1, and
ug, uz, ug > 0 that satisfy ug = dy-q1 = -+ =dp, - ¢ = O(1/n) and ug < uy <
us + s. To see the connection between these two problems, we calculate u(w). Given
min(S(w)) = min(S(v)) = 1, we have

uw)= > dicgi+T- (1= Y a|+ Y. Ti-a
1€S(v) €S’ (v) €S’ (v)
—(m+1) utr— Y (-T2
€S’ (v) t
Bd; ;B\ u2
:(m+1)'u2+7'1—‘z <N2d1_gi.N4 "
1€87(v)
_C+ﬂUQ Z glv
€S’ (v)

where we write the constant C' (independent of the choice of v € R*) as

mpBus

C:(mﬁ’l)ug‘i"rl*Nle
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This suggests a natural one-to-one correspondence: T — v € R* with S(v) =
{1} UT, between
{T:T c[2:n]and |T|=m}

and R* with respect to which the order over Sum(T') is the same as that over u(p(v)).
Moreover, since 74 is much larger than 7/ with ¢ > 1, other v € R’ have strictly smaller
utility u(p(v)) than those in R*.

To see this, note that for each v € R*, we have

ulp(v)) = (m+1) - ug+B+7 — > 7 -qi=(m+1)-us+ B+ Q).
i€S’ (v)

On the other hand, let k¥ = min(S(v’)) > 1 for some v € R’ \ R*. We have

ulp(v)) < (m+1) us + B+ 7+ Z Ti’~q¢:(m—i—l)-uz—i—ﬂ—&—O(m;LQXT{).
€S (v) =

It is also easier to verify that u(p(v)) with v € R* are strictly higher than u(p(v’))
of v/ € R.

We write u* to denote the Mth largest element of multiset {u(p(v)) : v € R*}.
Then the next two lemmas together show that u(cs) = us must be exactly u* in any
optimal solution to LP’(I).

LEMMA 5.23. Any optimal solution (u(-),q(-)) to LP'(I) must satisfy u(cz) < u*.

Proof. This is the easier direction. Assume for contradiction that (u(-),q(-)) €
Ext(q, ua, us, us) is optimal but ug > u*. Let € > 0 be sufficiently small such that
u(v) < us implies that u(v) < us — € for all v € D.

We show that (u/(),d’(+)) € Ext(q, ua, us, u}), where us = us —e and u) = ug —e
(note that we still have uj < uj < uj + s), results in strictly higher expected revenue
from type-3 and type-4 vectors, which contradicts the optimality of (u(-),q(-)). By
Lemma 5.10, we have | REV) — REV4| = O(63net/B).

We now bound REV; — REV3. To this end, let A denote the set of v € Ty with
u(p(v)) > uz and let B denote the rest of the type-3 vectors with u(p(v)) < us (so
c3 € B). For each v € B, we have u(v) = uz and «/(v) = u} (by our choice of ¢).
By LP(v : u) and LP(v : '), we have both q(v) and q’(v) putting probability 1 on
item n + 2. As a result, we have REV'(v) = REV(v) + € for each v € B. On the other
hand, for each v € A, by Lemma 5.4 we have REV'(v) > REV(v) — O(net/f).

We need to take a closer look at vectors v € R* N A (which can be empty but by
usz > u*, |[R* N A is at most M — 1). To understand q(v) and q'(v), we note that
all w(w) in LP(v : u) are usg and all «/(w) in LP(v : /) are u}. As a result, we only
need to consider the following constraints in LP(v : u): ¢; > 0, Zje[n+2] g; <1, and
Ti -+ qi > u(v) —ug, for i € ST(v) = S(v), as all other constraints would be implied.
Thus, ¢;(v) = (u(v) —us)/7; for i € ST(v), and q(v) puts the rest of the probability
onto ¢, 4+2(v). Similarly, ¢}(v) = (u(v)—u})/7; fori € ST(v) and q/(v) puts the rest of
the probability onto ¢}, ,,(v). This implies that REV'(v) > REV(v) — (m+1)-(¢/B) -t
for each v € R* N A.

Combining all these inequalities, we have

REV, — REVs > Pr[B] - e — Pr[A\ R*] - O(net/B) — (M —1) - h- (m +1) - % -t

Plugging in Pr[B] > Prfcs] > 4%(1 — O(np)) (since c3 € B) and Pr[A \ R*] <
3" . §% - p™*+2 since A\ R* only has vectors v € Ty with [S(v)| > m + 2, we have
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REV; — REV3 > 525(1 —O(np)) = O <W>
€ B(1+o(rm))
M =Dhtm+ 1) 5 o = (1/2))

e 1 " 3npm+2n
=0%€- (2M—1 —O(np) —o(r™) — O e

> O(6%net/B),

which follow from choices of p,r, and ¢ in (5.1). This finishes the proof. O
LEMMA 5.24. Any optimal solution (u(-),q(+)) to LP'(I) must satisfy u(cz) > u*.

Proof. This direction is more difficult. Assume for contradiction that (u(-),q(-)) €
Ext(q, ua, us, u4) is an optimal solution but us < u*. Let € > 0 be a sufficiently small
positive number such that u(v) > uz implies u(v) > uz + € for all v.€ D. Our plan
is to show that (u/(-),q'(:)) € Ext(q, us,uk,u}), where uy = uz + € and u) = ug + €
result in strictly higher expected revenue, a contradiction.

By Lemma 5.10, we have | REV), — REV,| = O(63net/S). Next we compare REVS
and REvs. For this purpose we define A as the set of v € T with u(p(v)) > ug
and B as the rest of v € T3 with u(p(v)) < us (so cg € B). By an argument
similar to the previous lemma, we have REV'(v) = REV(v) — ¢ for all v € B. For
v € A, we have u(v) = u/(v) by our choice of e. Since uf = ug + €, we have
u'(w) > u(w) for each w in LP(v : u) and, thus, constraints in LP(v : u) are at least
as strong as those in LP(v : u/). As a result, we have REV'(v) > REV(v) — ¢ for every
veA

Let C' denote the subset of v € A that satisfies (1) v is below a vector in R*
and (2) every type-3 vector below v has u(w) = uz (so w € B). Note that C' can be
empty. Fix a v € C when it is nonempty. We have v'(v) = u(v) > v} = uz + € and
uw'(w) = ufy = u(w) +e, for all type-3 vectors w below v. As a result, every constraint
(other than those on q only) in LP(v : ) has its RHS larger than the corresponding
RHS of LP(v : u’) by e. We claim that REV'(v) > REV(V) + Q(te). To see this,
let q* denote the vector derived from q(v) as follows: ¢ = ¢;(v) — (¢/2) for some
i€ S(v) and gy 5 = qni2(v) + (¢/2); all other entries remain the same. It is clear
that q* is nonnegative (since d; - ¢;(v) > u(v) —ug > €) and is also a feasible solution
to LP(v : u/). Tt follows that REV'(v) > REV(V) + Q(te).

To finish the proof, we consider the following two cases.

Case 1: C' # (). Then (taking the worst case that |C| =1 and the vector is in R)
we have

REV, — REV3 > 62 -7 - p-Q(te) — 6% - €

2 r"pBo?
>0 (h(m+1)(M—0.5

— 3TL€
) 1) > O(8net/B),

where the second to the last inequality follows from p/r = 27" > mM /8.

Case 2: C' = . Then every v € R* N A satisfies that all vectors w below v have
u(w) = ug, and for each v.€ R*NA, LP(v : u) boils down to the following constraints:
0% 20,3 i@ <1 and 7-q; > u(v) —ug for all i € St (v) = S(v), since all other

constraints would be trivially implied. As a result, ¢;(v) = (u(v) — u3)/7; for each
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i € S(v) and ¢n42(v) takes the rest of the probability; ¢i(v) = (u(v) — uj)/7; for
i€ S(v) and ¢q;, (V) takes the rest of the probability. Plugging in uj = u3 + ¢,

REV'(V) 2 REV(V) + (m + 1) - t — max hi) — €.

maXie(n] Ti . ( i€[n]

Given that uz < u*, we have |[AN R*| > M. Combining all bounds together, we have

+1)e
REv) — Revs > Mh- — D€ (4 (91 308)) - 52
EV; — REVS > 5+ OL/N)) (t—(2+3np)) €
M(1-O(1/N?))
_ 52 _
=0 ( M—05 t)=0
and is > O(83net/B).
This finishes the proof of the lemma. 0

Before we pin down u(cy), recall that the second part of the input (G, H, M) is a
set H C [2: n] of size m. Let vy denote the vector in R* with ST (vy) = S(vg) =
{1} U H. Given that us = u*, we have (1) if Sum(H) > ¢*, then u(vg) > u(cs), and
(2) if Sum(H) < t* then u(vy) = u(cg) in any optimal solution (u(-),q(-)) to LP'(I).
It also follows from LP(v : «) that (1) if Sum(H) > t*, then ¢u4+2(vy) < 1, and (2) if
Sum(H) < t*, then ¢,12(vy) =1 in any optimal solution. We summarize it below.

COROLLARY 5.25. If Sum(H) > t*, then qny2(vi) < 1 in every optimal solution
to LP'(I). If Sum(H) < t*, then qnia(vm) = 1 in every optimal solution to LP'(I).

Finally we show that u(cs4) = u(c3) = u* in any optimal solution to LP’(I).
LEMMA 5.26. Any optimal solution to LP'(I) must satisfy u(cs) = u(cs) = u*.

Proof. The proof is similar to that of Lemma 5.23. Suppose that (u(-),q(-)) €
Ext(q, ug, u*,uyg) is optimal but ug > u* (and ug < u* + s for it to be feasible). Let
e > 0 be a sufficiently small positive number, such that uqs — e > v* and u(v) <
ug implies that w(v) < ug — € for every v. € D. Our goal is then to show that
(W' (+),d'(+)) € Ext(q, ug,u*,u}) is strictly better, where u) = uy — €, a contradiction.

It suffices to compare REV) and REVy since REV, = REV; for i = 1,2, 3.

For ¢4 we have REV'(cy) > REV(cy) + Q(et/s). Let A be the set of v € Ty \ {c4}
with u(p(v)) > ug and B be the rest of v € Ty \ {c4} with u(p(v)) < uy. Following
the same argument used in Lemma 5.23, we have REV'(v) = REV(v) + € for each
v € B, and REV'(v) > REV(v) — O(net/3) for each v € A.

These bounds are strong enough for the current lemma. Given u* we have Pr[A4] <
3m.§% . rmFl Thus REV) — REVy > Prlcy] - Q(et/s) — Pr[A] - O(net/B) = Q(63%¢t/s) —
O(3"3r™*net/B) > 0. O

5.3. Returning to the standard linear program. Let (G, H, M) be an input
instance of COMP and I be the input instance of the optimal mechanism design
problem (or the lottery problem) constructed from (G, H, M) in sections 5.1 and 5.2.

We show that any optimal solution to LP'(I) is a feasible solution to the standard
LP(I).

LEMMA 5.27. Any optimal solution (u(-),q(-)) to LP'(I) is a feasible solution to
LP(I).

Before proving Lemma 5.27, we use it to prove Theorem 1.4.
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Proof of Theorem 1.4 assuming Lemma 5.27. Using Lemma 5.27, we claim that
(u(-),q(+)) is an optimal solution to LP(I) if and only if it is an optimal solution to
LP/(I). To see this, let OPT and OPT’ denote the optimal values of LP(I) and LP’([),
respectively. As LP’(I) is a relaxation of LP(I), we have OPT’ > OPT. Lemma 5.27,
on the other hand, implies OPT > OPT’. So OpPT = OpPT’, and from here the claim
follows easily.

Suppose that A(-,-) satisfies both properties stated in Theorem 1.4. Then it fol-
lows from the connection between the optimal mechanism design problem and LP([)
(see section 2.1) that (A(I,v) : v € D) is an optimal solution to LP(I) and thus, an
optimal solution to LP'(I).

It follows from Corollary 5.25 that (1) when Sum(H) > t*, A(I,vy) assigns an
item other than n + 2 or no item to the buyer with a positive probability; (2) when
Sum(H) < t*, A(I,vy) always assigns item n+2 with probability 1. Given I and vy,
the problem of deciding which case it is belongs to NP, because A is a randomized
algorithm that always terminates in polynomial time by assumption.

The theorem follows from the #P-hardness of COMP proved in Lemma 5.22. O

We prove Lemma 5.27 in the rest of the section. It suffices to show that any
optimal solution (u(-),q(+)) to LP’(I) satisfies (2.1) for all ordered pairs (v, w) in D.

5.3.1. Reducing to (v,w) with S(w) C S(v). First we handle the special
case when v = a. Let (u(-),q(:)) be an optimal solution to LP’(I) and w € Tj.
By CoNDITION-TYPE-1, we have u(w) > > ;cqw) (Wi — a;) - gi(a). We extend p
by setting p(w) = w if w € Tj. Then u(w) > u(p(w)) for all w € D. Thus,
u(w) > u(p(w)) > ZiGS(p(w))(wi —a;) - gi(a) = Zies(w) (w; — a;) - ¢;(a). Since
u(a) = 0, this implies (2.1) on (a,w) for all w € D. We assume v # a in (v, w) from
now on.

Now we claim that it suffices to prove (2.1) for (v, w) that satisfies S(w) C S(v)
(though v and w here may belong to different blocks). Suppose that we have proved
(2.1) over (v,w) with S(w) C S(v). Given any general pair (v,w) with v # a
(otherwise it is done), we use w’ to denote the vector obtained from w by replacing
every w;, i € S(w) \ S(v), by a;. Then clearly we have S(w’) C S(v). Because (2.1)
holds for (v, w’), by monotonicity of «(-) (Lemma 5.21), we have

u(v) —u(w) Su(v) —u(w) < (o —w) - a(v) + D (v wh) - a(v),

i€[n] i€{n+1,n+2}

where the latter is equal to

Swi—w) a(v)+ D (- wi)-a(v)

i€[n] i€{n+1,n+2}

using Wp41 = Wy, 41, Wni2,= W, o and for every i € [n] but i ¢ S(v), ¢i(v) =0
(CONDITION-TYPE-1, Lemmas 5.1 and 5.3). From now on we consider pairs (v, w)
that satisfy S(w) C S(v).

5.3.2. Both v and w are type 1. We start with the case when v and w are
both type-1 vectors (and satisfy S(w) C S(v)).

Note that (2.1) means that w does not envy the lottery of v. As v buys the
same lottery as LOWER(v) (by CONDITION-TYPE-1), we may assume without loss of
generality that v € T{ and S(w) C S(v). Then
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u(v)—u(w)= > di-g(@)- Y 7 ¢(LOWER(W))

1€S(v)\S(w) €St (w)
< Z d; - QZ Z T - QZ
i€S(v)\S(w) €St (w)

where the last inequality follows from ¢;(v) > g¢;(a) for every ¢ € S(v), and that
¢;(LOWER(W)) > ¢;(v) for every i € S(w) by Lemma 5.11.

5.3.3. Both v and w are type 2. Next we prove (2.1) for pairs (v, w) of type-2
vectors that satisfy S(w) C S(v).

The special case of |S(v)| < 1 is easy to check. Let v; be the type-2 vector
with S(v;) = {i} and its ith entry being ¢; and let v} denote the type-2 vector with
S(v}) = {i} and its ith entry being h;. The constraint (2.1) over (v,w) = (v;,c2),
(vl,ea), or (vi,v;) is part of LP'(I); for (v,w) = (v;, V), (2.1) follows trivially from
the fact that u(v}) > u(v;) (by CONDITION-TYPE-2), and ¢;(v;) = 0. To see the
latter, note that by Lemma 5.20 we have u(v;) = u(cg) and, thus, an optimal solution
to LP(v; : w) must have ¢,11 = 1.

For type-2 (v, w) with |S(v)| > 2, we need to understand q(v) better. We prove
the following lemma regarding v € To U T5 U Ty \ {c2,c3,c4} that satisfies certain
conditions.

LEMMA 5.28. Let (u(-),q(+)) be an optimal solution to LP'(I) and v € To U T3 U
Ty \ {ca,c3,c4}. Assume that u(v) = u(p(v)) and u(w) = u(p(w)) for every w that
appears in LP(v : u). Then LP(v : u) has the following unique optimal solution q
(letting k = min(S(v)) and S'(v) = S(v) \ {k}):
o Ifk¢ ST(v), ¢ = qi(a) for alli € S(v), and q puts the rest of the probability
1— Zies(v) gi(a) (if any) on gny1 if v € To or Gny2 if v € T3 UTy; all other
entries of q are 0.
o Ifk € ST(v), ai(v) = qi(a) for alli € S'(v) and qi(v) =1 = 3" cq(y) € (a);
all other entries of q are 0. In this case we have q(v) = q(p(v)).

Proof. We relax LP(v : u): its second batch of constraints is now over ¢ € S(v)
and w; = LOWER(v_;, a;) only. Denote this linear program by LP*(v : u):

maximize Z vj - q; —u(v) subject to
J€[n+2]
g >0 and Z q; <1 forie [n+2],
J€n+2]
7 qi > u(v) —u(w) forie ST(v)and w=(v_;,{),
Z (v; —wj) -q; > u(v) —u(w) forie S(v) and w = LOWER(V_;, a;).
J€ln]
We start with the case when k& = min(S(v)) ¢ S*(v). The first batch of con-

straints yields ¢; > g;(a) for all i € ST(v), where we used u(v) = u(p(v)), u(w) =
u(p(w)), and CONDITION-TYPE-1. For each i € S(v), the second batch requires

( _az Qi T Z >d Q’L Z Tj QJ

JjES (W) JEST(v)
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Rearranging terms results in

di - (g — qi(a)) + Z 75 (¢; —qj(a)) 2 0

JEST(V)

for each i € S(v). These are the only constraints in LP*(v : u) other than those
on q itself. We now show that LP*(v : u) has a unique optimal solution q with
q; = gi(a) for all i € S(v), and q allocates all the rest of probability onto g,4; or
Gn+2, depending on whether v € T, or v € T3 U Ty.

Assume for contradiction that ¢, < ¢/(a) for some ¢ € S(v) (this is actually
without loss of generality since if ¢; > ¢;(a) for all i € S(v), then to be optimal q must
be the vector described above). Take £ to be an index in S(v) that maximizes gq(a)—gy,
denoted by € > 0. For the second constraint on ¢ we must have ¢; — ¢:(a) > Q(e/(nf8))
for some ¢t € S(v). Let @’ denote the following vector derived from q: ¢; = ¢; +¢ for all
i€ S(v)andi#t; g =q—2n€; ¢}, Or q), 5 takes the rest of the probability. Then
q’ is feasible and strictly better than q. For feasibility, the only nontrivial constraint
to check is the second one on ¢:

di- (g, —q(@)+ Y 75 (g —a;(a) > Qe/(nf)) —n-O(B) - € > 0.
JEST(V)

Given that q described above is the unique optimal solution to LP*(v : u), it
is easy to verify that q is indeed a feasible solution to LP(v : u). Taking a w €
BLOCK(v_;,a;) for some i € S(v), we have

u(v) —u(w) =di-gi(@) + Y m-q5(p(v)) = D 7 ai(p(w))

jeStH(v) jest(w)
<d;-qi(a)+ Z 75 - qj(a) — Z 7j - qj(a)
JEST(V) JESH(wW)
= Y (w—wy)-gila) = > (v —w)-q;
jeSv) JjE€S(V)

This finishes the proof of the case when k = min(S(v)) ¢ ST (v).

We consider the case when k& = min(v) € ST(v). Let v/ = p(v). The first batch
requires ¢; > ¢;(v') for all i € ST(v) (including k). For each i € S~(v), the second
batch of LP*(v : u) requires

(vi —a;) - qi + Z (v; —w;) - q; > d; - gi(a) + Z 7 q; (V).
JES(w) jest(v)
Asi € S7(v)andi # k, we have ¢;(a) = ¢;(v') and thus d; (¢ — (V")) + 2 5+ (v) i
(g; —gqj(v")) > 0 for each ¢ € S~ (v). It turns out that q = q(v’) is the unique feasible
solution to these constraints (as q(v’) sums to 1, q sums to at most 1, and d; > 7;).

Hence, we have q(v) = q(v’) (as LP(v : u) is feasible and q = q(v’) is the only
feasible solution to LP*(v : u)). This finishes the proof when k € ST (v). 0

We summarize below the following property of q(v) for all v € Ty that will be
useful later.

LEMMA 5.29. For allv € Ty and i € S(v), ¢:(v) < ¢i(p(v)). Moreover,

Gn41(v) =1— Z ai(v).

i€S(v)
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Proof. Recall v; and v} at the beginning of section 5.3.3. For co and v; we have
dn+1(c2) = qnt1(vi) = 1; for v} we have ¢;(v}) = 1 = ¢;(p(v})). The rest of v € T
follows from Lemma 5.28. |

Now let (v, w) be a pair of type-2 vectors with S(w) C S(v) and |S(v)| > 2 (so
Lemma 5.28 applies to v and we know exactly what q(v) is). The rest of the proof is
similar to that for type-1 vectors.

Using u(v) = u(p(v)) and u(w) > u(p(w)), we have

uv) —uw) < Y dica@+ Y meaev) = D T ailp(w

i€S(v)\S(w) 1€ST(v) €St (w)

When k = min(v) ¢ S*(v), we have ¢;(v) = gi(a) for all i € S(v). We have

u(v) —u(w) < Z d; - qi(a) + Z Ti Z Ti - qi(a
i€S(V)\S(w) i€S+(v) ieS+(w)
= > (v —w)-q(v),
i€S(v)
where we used ¢;(p(v)) = ¢;(a) for i # min(S(v)) and ¢;(p(w)) > ¢;(a) for i € S(w).
For the case when k = min(v) € S*(v), we have q(v) = q(p(v )) Then

u@)—uw) < D dira(V)+ D meav)— D Tia(v)

1€S(v)\S(w) 1€ST(v) €St (w)

= Z (vi = wi) - qi(v),

i€S(v)

where we used ¢;(p(w)) > ¢;(p(v)) = q;(v) for i € S(p(w)) = S(w) by Lemma 5.11.
This finishes the proof of (2.1) over all pairs (v, w) of type-2 vectors.

5.3.4. Both v and w are type 3. Now we turn to pairs (v, w) of type-3 vectors
that satisfy S(w) C S(v).

When [S(v)| > m + 3, we note that by Lemma 5.23 and 5.24, v satisfies the
condition of Lemma 5.28 which completely characterizes q(v). The same argument
above for type-2 vectors with |S(v)| > 2 can be used to prove (2.1) for type-3 (v, w)
with S(w) C S(v) and |S(v)| > m + 3.

Next we check the case when |S(v)| < m+1. The case when u(v) = u(c3) is simple
as ¢na2(v) = 1 (note that this includes v = c3). As a result, we have (using u(w) >
u(c3) by CONDITION-TYPE-3) that u(v) —u(w) <0=73,c(, 10 (vi —wi) - ¢:(v).

For the case when u(v) > u(c3) and |S(v)| < m+1, by Lemmas 5.23 and 5.24 we
must have v € R*. q(v) is an optimal solution to the following (relaxed) LP (from
LP(v:u)): qi 20,37, ciy9 @ < 1, 7i¢;s > u(v) —u(cs) for i € ST(v), since all other
constraints in LP(v : «) would be implied. This implies that ¢;(v) = (u(v)—u(c3))/7
for all ¢ € S(v) and g,42(v) takes the rest of the probability. We now prove (2.1) on
(v,w). Using S(w) C S(v) and w # v (so u(w) = u(c3)), there must be an index
t € S(v) such that w; < v;. As a result we have

S wi—wi)-a(v)= Y (hi—wi)-q(v)

i€[n+2] i€S(v)
> 1y g (v) = u(v) — u(es) = u(v) — u(w).

The only case left for type 3 (v, w) is when |S(v)| = m + 2. We need the next
lemma about its q(v).
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LEMMA 5.30. For eachv € T3 with |S(v)| = m+2, q(v) satisfies ¢;(v) = qi(p(v))
for each i € StT(v), qi(v) < q(a) for each i € S™(v), and q(v) puts the rest of
probability onto gn12(v).

Proof. By LP(v : u), q;(v) for each i € S*(v) must satisfy

(5.38) 7o qi(v) > u(v) —u(v_i, ;) = u(p(v)) — u(p(v_i, i) = 7i - ¢i(p(Vv)),

since we have u(w) = u(p(w)) for w € T3 with |S(w)| > m + 2. Let q be the
vector with ¢; = ¢;(p(v)) for all i € ST(v) and ¢; = g;(a) for all i € S~(v). Let
¢ = max;(q;(v) — ¢;), and assume for contradiction that ¢ > 0. Let t € S(v) denote
an index with ¢;(v) = ¢ + ¢. We consider two cases below.

Case 1: One of the constraints in the second batch of LP(v : u) with ¢ = ¢ is tight,
i.e., there is a type-3 vector w € BLOCK(V_¢, at) such that Zies(v)(vi —w;) - qi(v) =
u(v) — u(w). Since u(v) = u(p(v)) and u(w) > u(p(w)), we have

Y (i wi) - qi(v) < ulp(v)) — u(p(w))
i€S(v)
=di-q(@)+ Y, m-alp(v)— D Ti-a(p(w)).

ieSt(v) i€St(w)

Plugging in ¢;(a) < q;, ¢;(p(v)) = ¢; for i € ST(v), and q;(p(w)) > ¢;(p(v)) > g; for
i € S(w), we have

d-(@v)—a)+ D> m-(a(v)—a)< Y, 7i-(a(v)—a) <n-0f)-c

i€eSt(v) i€ST(w)

Given that d; &~ 1> O(nf), there must exist an i € S*(v) such that ¢;(v) —¢; <0,
contradicting (5.38).

Case 2: All constraints in the second batch with ¢ = ¢ are loose. For this case we
lower ¢:(v) by € for some sufficiently small € > 0, increase ¢;(v) by €/(2n) for other
i € S(v), and move the rest of (at least €/2) probability to ¢n42(v). This gives a
feasible solution that is strictly better than q(v), a contradiction. |

We summarize below the following property of q(v) for all v € T3 that will be
useful later:

LEMMA 5.31. For allv € T5 and i€ S(v), ¢:(v) < ¢:(p(v)). Moreover,

Gnt1(v) =1— Z ai(v).

1€S(v)

Proof. The case of u(v) = u(cs) is trivial. The case of u(v) > u(c3) and |S(v)| <

m+1 follows from ¢;(v) = (u(v)—u(c3)) /7 < (u(p(v))—ulp(v_i,4;)))/7i = @(p(v)).
The rest of v € T, follows from either Lemmas 5.28 or 5.30.

O

We now return to prove (2.1) for pairs (v, w) of type-3 vectors with S(w) C S(v)
and |S(v)| = m+2. The only nontrivial case here is when w also has |S(w)| = m+2.
For other cases, we have the following:

1. |S(w)| = m + 1: Trivial since the constraint is indeed part of LP’(I).

2. |S(w)| < m+ 1: Let w* denote a type-3 vector in R such that w < w* < v
and w} = h; for all i € S(w). Then we have u(w*) = u(w) = u(c3). It
follows from (2.1) over (v, w*) that
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u(v) —u(w) = u(v) —u(w*) < > (v —wi)-q(v) < Y (vi—wi)-qi(v),
i€S(v) i€S(v)

where the last inequality follows from w; < w} for all i.

Wgen |S(w)| =m—+2, we have S(v) = S(w). Then u(v) —u(w) = u(p(v)) —u(p(w))

ulp(v) —ulp(w)) = Y meale) - Y Tealpv)

€St (v)\ST(w) €St (w)\St(v)

< > mav— YD ma(v)
1€ST(V)\ST(w) 1€ST(W)\S*(v)

= > (i —w)-q(v),
i€S(v)

since ¢;(v) = ¢;(p(v)) for all i € ST(v) and ¢;(v) < gi(a) < qi(p(v)) for alli € S~ (v).
This finishes the proof of (2.1) over pairs of type-3 vectors.

5.3.5. Both v and w are type 4. For each v € T}, let ®(v) = (V_(n+1),0).
So ® is a one-to-one correspondence between type-4 and type-3 vectors. As u(cy) =
u(ez), we have u(v) = u(®(v)) for all v € T;. This suggests the following lemma.

LEMMA 5.32. Let (u(-),q(+)) be an optimal solution to LP'(I) and v € Ty. Then
(u(-),q(:)) remains to be an optimal solution to LP'(I) after replacing q(®(v)) by
q(v).

Proof. The statement is trivial for v = ¢4 since gnq2(c3) = gni2(cq) = 1.

For v # c4, note that LP(v : u) is essentially the same as LP(®(v) : u), with
the only subtle difference being that the coefficient of ¢,,+1 is s in LP(v : «) but 0 in
LP(®(v) : u). However, neither q(®(v)) nor q(v) can put any probability onto ¢, 11.
The lemma then follows. O

To prove (2.1) on a pair (v, w) of type-4 vectors we simply replace q(®(v)) by q(v)
to get a new optimal solution by Lemma 5.32, and (2.1) must hold on (®(v), ®(w))
in the new solution (since we have proved (2.1) between type-3 vectors in any optimal
solution). This then implies (2.1) on (v, w) in the original solution.

5.3.6. Pairs with different types. Finally we prove (2.1) for pairs (v, w) of
vectors with S(w) C S(v) and of different types.
The following lemma helps us further reduce cases that need to be considered.

LEMMA 5.33. Assume that v,v' € D differ at the ith entry only, for some ¢ €
{n+1,n+ 2}, and v; > v;. Then we have u(v') > u(v) in any optimal solution to
LP/(I).

Proof. The case when v € T follows directly from CONDITION-TYPE-2 and
CONDITION-TYPE-3.

The case when v € T3 and 7 = n + 1 follows from u(c3) = u(cy).

The case when v € Ty and ¢ = n + 2 follows from the fact that u(cg) > u(cz). O

It suffices to prove (2.1) for (v, w) that satisfies v, 11 > w2 and v,49 > Wyo.
To see this, we let w’ denote the vector obtained from w by replacing w; by min(w;, v;),
i € {n+1,n+2}. Then u(w) > u(w’) by Lemma 5.33 and (v,w’) satisfies v, 41 >
wy, 1 and vpqp > Wy, 5. Assuming that (2.1) holds for (v, w’),
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u(v) —u(w) u(v) —u(w) < Y (v w))a(v)

i1€[n+2]
=Y (Wi—w)a(v)+ D (vi—w))g(v).
i€[n] i€{n+1,n+2}

The RHS is indeed the same as ) . (v; — w;) - ¢;(v). This is because for either i €
{n+1,n+ 2}, w; # w} would imply that v; = 0 and, thus, ¢;(v) = 0.

Now we need to consider the following cases of types of (v,w): (2,1), (3,1), (4,1),
(4,2), and (4, 3). We start with the case when v is type 2 and w is type 1.

We consider the following two cases: u(v) = u(ca) or u(v) > u(cg). For the
former, ¢,11(v) =1 and, thus, u(v) —u(w) < u(cz) < s=3",c(,19 Vi —wi) - @(v).
For the latter, u(v) = u(p(v)). By Lemma 5.29, let v; = ¢;(p(v)) — ¢;(v) > 0 for each
i € S(v). Then

u(v) —u(w) = u(p(v)) —u(w) < Y (v —w) - qi(p(v))

ie€S(v)
= Y (wi—w)-a(v)+ D> (vi—w)
i€S(v) ieS(v)
< Z (vi —w;) - qi(v) + 5 Z Vi
ieS(v) i€S(v)
= > (vi—w)-g(v),
i€[n+2]

where the last equation used ¢y41(v) =1 =,y ¢:(v) from Lemma 5.29.

The case when v is type 3 and w is type 1 can be proved similarly using Lemma
5.31. From this case, the case when v is type 3 and w is type 2 follows from Lemma
5.33 (we mention it since it is used below).

For the case when v is type 4 and w is type 3, we simply replace q(®(v)) by q(v)
to get a new optimal solution by Lemma 5.32. (2.1) on (v, w) in the original solution
then follows from that on (®(v),w) in the new solution (note that this is the (3,2)
case we already handled), given that g,4+1(v) = 0.

For the case when v is type 4 and w is type 2, we again replace q(®(v)) by q(v)
to get a new optimal solution by Lemma 5.32. (2.1) on (v, w) in the original solution
then follows from that on (®(v), w) in the new solution, given g,4+1(v) = 0. The same
argument works for the case when v is type 4 and w is type 1.

This finishes the proof of Lemma 5.27.

6. Conclusions. In this paper we studied the complexity of optimal lottery pric-
ing and randomized mechanisms for a unit-demand buyer with a product distribution.
We showed that the menu size complexity of the problem is exponential even when
the distribution of each item has support size 2. For the computational complexity,
we showed that the problem is unlikely to have a randomized polynomial-time algo-
rithm unless PN = P#P and this holds even when the distribution of each item has
support size 3.

Appendix A. Two items with support size 2.

In this section we show Theorem 1.3, i.e., that offering lotteries does not improve
the expected revenue when there are two items and both distributions Dy and D5 are
of support size 2.
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Let {a;,b;} be the support of D; for i € {1,2}, where 0 < a; < b;. Let ¢; be
the probability that item ¢ has value a; (and 1 — ¢; that it has value b;). Without
loss of generality, we assume that by > b; and write t = by — a;. We consider the
following four item pricings: (a1, b2), (b1, az), (b1,b2), (a1,b2 —t) (according to the al-
gorithm for the optimal item pricing in the support-2 case [CDP+18], one of them is
optimal).

In Table A.1 below, we list the revenue for each of the four item pricings (the
rows of the table) at each of the four possible valuations (the columns). The bottom
left entry § of the table is equal to ap if az < by — t (i.e., if t < by — agy), and is equal
to bg—tifag Zbg—t.

TABLE A.1
Revenue for each potentially optimal pricing (rows) and each possible valuation vector (columns).

(a1,a2) (b1,a2) (a1,b2)  (b1,b2)
(a1, b2) ay ay bo al
(b1,a2) as max{b1,az} as as
(b1,b2) 0 b1 b b
(al,bzft) ) al by —t by —t

Consider now an optimal menu L* of lotteries. By Lemma 2.4, all the lotteries,
except for the one bought for valuation (a1,as), are complete. In Table A.2 we list
the allocation and price of each lottery bought.

TABLE A.2
An optimal menu.

Allocation
Item 1 Item 2 Price
(017 az) w1 w2 p1
Valuation (b1, a2) -z il p2
(a1,b2) y 1—y P3
(b1,b2) 2z 1—2 P4

Our plan is to show that the revenue of L* is upperbounded by a convex combi-
nation of revenues from the four item pricings. We use the following strategy.

Let @ = (1—q1)/q1- Note that this is the ratio between probabilities of valuations
(b1,a2) and (ai,as), and also those of (b1,b2) and (a1,b2). The expected revenue of
L* then can be written as

q1q2 - (p1 +ap2) + q1(1 — q2) - (p3 + apa).

Denote by C; the ith column vector of Table A.1. Our goal is to find a nonnegative
vector s = (s1, S2, S3,54) of weights (view s; as the weight of the item pricing on the
ith row of Table A.1) with Z?Zl s; = 1 such that

(A1) s-(C1+aCz) >p1+apy and s-(C3+aCy) > p3+ aps.

Let R* be the revenue of L* and R; be the revenue of the item pricing on the ith
column of Table A.1. Such a weight vector s then implies that R* < Z?:l s; - R;, and
Theorem 1.3 follows.

Here is the plan of the rest of the section. In section A.1 we bound the prices p;
of L*, and then bound p; + aps and ps + aps. We then choose an appropriate s and
use these bounds to prove (A.1) in section A.2.
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A.1. Upper bounds for the prices in L*. We start with upper bounds for
Di, i€ {17233a4}

Bounding p1: For valuation (a1,as), the buyer buys (wi,ws,p1). Since it has
nonnegative utility,

(A2) p1 < arwy + asws.

Bounding py: For valuation (b1, as), the buyer prefers lottery (1 — x,z,p2) over
(w1, w2,p1). Thus,

A2
bi(1 — x) + agx — pa > biwi + asws — p1 % p2 < by —x(by —az) —wi(by — aq).

Bounding py: For valuation (by,bs), the buyer prefers lottery (z,1 — z,py4) over
(w1, w2,p1), SO

A.
b1z +ba(1 — 2) — ps > brwy + bows — py 42,
(AS) p4§b12+b2(1—z)—w1(b1—al)—wg(bg—ag).

For valuation (by,bs), lottery (2,1 — z,p2) is also preferred over (1 — x,x, ps), so we
have

b1z +ba(l —2) —ps > b1(1 —x) + box — po %
(A4) Pa §blz+b2(1—z)—w1(b1 —al)—l'(bg—ag).
Hence, from (A.3) and (A.4) it follows that
(A5) Pa S bg — Z(b2 — bl) — wl(bl — al) — max{wg,x}(bg — ag).

Bounding ps: For valuation (aq,bs), lottery (y,1 — y, p3) is preferred over (z,1 —
2,p4), 80 we have

A5
a1y +ba(l —y) —p3 > a1z +ba(l — 2) — ps By,

(A.6) p3 <by— (by —a1)y+ z(by —ay) —wi(by — a1) — max{ws, x}(by — as).

Similarly, for valuation (a1, bs), lottery (y,1 — y, p3) is preferred over (wy,ws,p1), so
we have

A2
a1y +ba(1 —y) — p3 > ajwy + bows — py %

(A7) p3 < a1y +bo(1 —y) — wa(bz — az).
Plugging in b2 > a; and y > 0, we have from (A.6) and (A.7) that

p3 <bs+ z(by —a1) — wy(by — a1) — max{ws,x}(bs — az) and
(A8) P3 S bg - wg(bg — CLQ).

Bounding p1 + aps: From (A.2) and (A.3) we get

(A.9) p1+ aps < aby —wi(ab; — (1 4+ a)ay) + weag — xa(by — asz).
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Bounding ps + apys: Combining the first part of (A.8) and (A.5) we get

P3 + QaPy § (1 + Oé)(bg — wl(bl — al) — max{wQ,:c}(bg — ag))
(AlO) — Z(Oé(bg — b1) — (bl — al)).

Similarly, from the second part of (A.8) and (A.5) we get

p3+ aps < by(1+ ) — za(by — b1) — wia(by — aq)
(A.11) — wa(by — az) — max{ws, x}a(bs — az).

Next we will prove that there are nonnegative weights s, s, s3, and s4 that sum
to 1 and satisfy (A.1).

A.2. Upper bounds for the expected revenue. First we note the following
useful inequality:

waag — xa(by — az) < max{ws,x} - (ag + a(max{b;,as} — bl)),

which can be verified by checking the two cases by > as and b; < as.
We start with a sufficient condition on s = (s1,...,s4) to satisfy the first part of

(A.1).
LEMMA A.1. Suppose that s1,s4 > 0 satisfy s1 + s4 = w1, $o satisfies 0 < s5 <
max{ws, z},
(A.12) woag — xa(by —ag) < so - (a2 + a(max{by,as} — bl)),
and s3 =1 —wi — so. Then s; >0 for all 7, Z?:l s; =1, and s satisfies
s-(Cq1+aCs) > p1 + aps.

Proof. We have s1, s2,s4 > 0 by the assumption of the lemma. To see that s3 > 0
note that by Lemma 2.3 w; <1 —z. As wy +wy < 1, we have 1 — wy > max{ws,z}
and, thus, s3 > 0. Zle s; = 1 is obvious.

Recall that § in Table A.1 is ay or bg —t = by — by + a1 > ay. Letting A =
s- (C1 4+ aCs), we have

A = 51(1+ a)ay + s2a2 + ssamax{by, az} + szab; + $49 + sqaaq
> s1(1 4+ a)ag + s2a2 + ssamax{by, as} + szaby + sqa1 + sgaay
= (81 + 84)(1 + a)ay + s2as + ssamax{by,as} + szab;.
From the choice of the s;’s: s1 + s4 = wy and s4 = 1 — wy — s9, the above inequality
becomes
A > wi (14 a)ay + saas + ssamax{by,as} + (1 —wy — s2)aby
= ab; —wi(ab; — (1 + a)ay) + saas + ssa(max{bi,as} — by).

The lemma then follows directly from (A.9) and the assumption (A.12). O

We next show that there is an s that satisfies the second part of (A.1) as well as
conditions of Lemma A.1.

LEMMA A.2. There exists an s that satisfies conditions of Lemma A.1 and s -
(C3+aCy) = p3 + apa.
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Proof. Let B =s"-(Cs+ aCy). It follows from Table A.1 that we have
(A.13) B = s1bs + syaag + s2(1 + a)as + s3(1 4+ a)be + s4(1 + a)(ba — 1).

We will distinguish two cases.

Case 1: (by—by)a > by —ay. Set so = max{ws,x}, s3 = 1—w; —max{ws,x},s1 =
0, and s4 = w;. Clearly, this assignment satisfies the conditions of Lemma A.1.
Equation (A.13) gives

(A.14) B = (14 a)(bs — wi(by — a1) — max{ws, 2} (b2 — az)).

Furthermore, in this case —z((ba — b1)a — (b1 — a1)) < 0, therefore (A.10) and (A.14)
give ps + aps < B.

Case 2: (by — by)a < (by — a1). For this case we distinguish 3 subcases.
Case 2.1: z < wy. Set s; = wy, so = max{ws,z}, s3 = 1 — wy — max{ws,x}, and
s4 = 0. Then

B = wiby + wiaa + max{ws, 2} (1 + a@)az + (1 — wy — max{ws, z})(1 + a)bs
(A.15) =b2(1 + a) — wia(bs — a1) — max{ws, v} (1 + ) (b2 — ag).
Using (by — b1)a < (by — a1) and z < wp in (A.10), we have

ps + apy < (14 a)(ba — wi(by — a1) — max{ws, x}(ba — az))

— w1 (a(by —by) — (b —a1))
=bo(1+a) —wia(by — ar) — max{ws, x}(1 + a)(bz — az) = B.

Case 2.2: z > wy and © < wy. Using the same assignment of s as in Case 2.1, by
z > wy, (A.11) gives

ps + apy < bo(l 4 a) —wia(bs — ay)

— wa(by — ag) — max{wa, z}a(by — a2).

Furthermore, x < wy implies that we = max{ws, x}. It follows from (38) and (A.15)
that p3 + apy < B.
Case 2.3: z > wy and x > wo. Set 81 = wy, s3 =1 —wy — S, 84 = 0 with

s = (w2 +xa) /(1 + ).

Clearly so < max{wq,2z}. We verify (A.12) at the end but first compare B and
p3 + aps. We have

B = wibs + wiaa; + s2(1 4+ a)ag + (1 —wy — s2)(1 + a)bs
(A16) :b2(1+04) 71010[(1)27(11) 782(14’0{)(1)2 7@2).

Since = > wq, (38) gives
(A.17) ps + apy < ba(l+ a) —wia(bs — ar) — wa(by — az) — za(bs — az).

It follows from our choice of so and by — as > 0 that p3 + apy < B.
Finally we verify that our choice of so satisfies (A.12) in this case. To see this,

(1+a) (wgaz —za(by — ag)) — (wg + za) (ag + a(max{by,as} — bl))

= wouag — zaby + xa’ag — wyamax{by,as} + woah; — xa® max{b,as} < 0.

The last inequality used x > ws. The lemma follows by combining all the cases. 0O
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Theorem 1.3 follows from Lemmas A.1 and A.2.

Appendix B. Small instances where lotteries help.

In this section, we give examples where lotteries can extract a strictly higher
revenue than the optimal item pricing. In the first example, there are three items and
each D; has support size 2; in the second example, there are two items and each D;
has support size 3.

Three items, support size 2: We consider the following instance I with three
items. The three items have distributions with support {5,b;} for i € [3], where
b1 = 10 and b = b3 = 6. Let p; be the probability that item ¢ has value 5. Then set
p1 = 0.6, po = 0.7, and p3 = 0.8.

There are two optimal item pricings: (10, 6,5) and (9, 6,5), with expected revenue
6.744. The optimal menu for I consists of four lotteries: x; = (1,0,0) at price 9.5,
x2 = (0,1,0) at price 5.5, x5 = (0,0,1) at price 5.5, and x4 = (0,0.5,0.5) at price 5.
The expected revenue of this menu is 6.806.

Two items, support size 3: Consider the following instance J with two items
and identical distributions. Each item has value 4 with probability 0.5, value 6 with
probability 0.2, and value 7 with probability 0.3.

There are also two optimal item pricings: (6,4) and (6, 6), with expected revenue
4.5. The optimal menu for instance J consists of three lotteries: x; = (1,0) at price
6, xo = (0,1) at price 5, and x3 = (0,0.5) at price 2. The expected revenue of this
menu is 4.56.
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