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ON THE COMPLEXITY OF OPTIMAL LOTTERY PRICING AND
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Abstract. We study the optimal lottery problem and the optimal mechanism design problem
in the setting of a single unit-demand buyer with item values drawn from independent distributions.
Optimal solutions to both problems are characterized by a linear program with exponentially many
variables. For the menu size complexity of the optimal lottery problem, we present an explicit, simple
instance with distributions of support size 2, and show that exponentially many lotteries are required
to achieve the optimal revenue. We also show that, when distributions have support size 2 and share
the same high value, the simpler scheme of item pricing can achieve the same revenue as the optimal
menu of lotteries. The same holds for the case of two items with support size 2 (but not necessarily
the same high value). For the computational complexity of the optimal mechanism design problem,
we show that unless the polynomial-time hierarchy collapses (more exactly, PNP = P\#P), there is
no efficient randomized algorithm to implement an optimal mechanism even when distributions have
support size 3.
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1. Introduction. Optimal pricing problems have been studied intensively dur-
ing the past decade, under various settings and from both algorithmic and complexity-
theoretic perspectives. They are closely related to problems that arise from the area
of optimal Bayesian multidimensional mechanism design; e.g., see [Tha04, GHK+05,
HK05, BK06, DHFS06, BB06, MV06, CHK07, BBM08, Bri08, Pav10, CD11, CMS15,
BCKW15, HN12, DW12, HN13, LY13, DDT13, DDT14a, WT14, BILW20, CDP+18,
DDT14b, Yao15]. The latter is well understood in the single-parameter setting where
Myerson's classic result shows that a simple, deterministic mechanism can achieve
as much revenue as any sophisticated, randomized mechanism [Mye81]. The gen-
eral case with multiple items, however, turns out to be more complex. Much effort
has been devoted to understanding both the structure and complexity of optimal
mechanisms, and to developing simple and computationally efficient mechanisms that
are approximately optimal.
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ON THE COMPLEXITY OF OPTIMAL LOTTERY PRICING 493

In this paper, we consider the following setting of monopolist lottery pricing where
a buyer is interested in n heterogeneous items offered by a seller. We focus on the
case when the buyer is unit-demand (i.e., only interested in obtaining at most one of
the items) and quasi-linear (i.e., her utility is v  - p if she receives an item of value
v to her and makes a payment of p to the seller). The seller is given full access to
a probability distribution \scrD from which the buyer's valuations v = (v1, . . . , vn) for
the items are drawn, and can exploit \scrD to choose a menu (a set) M of lotteries that
maximizes her expected revenue (i.e., payment from the buyer). Here a lottery is of
the form (x, p), where p \in \BbbR is its price and x = (x1, . . . , xn) is a nonnegative vector
that sums to at most 1, with each xi being the probability of the buyer receiving item
i if this lottery is purchased (the buyer receives no item with probability 1 - 

\sum 
i xi).

After a menu M is chosen, the buyer draws a valuation vector v from \scrD and receives
a lottery that maximizes her expected utility

\sum 
i xi \cdot vi - p, or the empty lottery (0, 0)

by default if every lottery in M has a negative utility.
Given \scrD , its optimal menus are characterized by a linear program in which we

associate with each v in D := \sanss \sansu \sansp \sansp (\scrD ) a set of n+ 1 variables to capture the lottery
that the buyer receives at v. We will refer to it as the standard linear program (see
section 2.1) for the optimal lottery problem. In particular, for the case when \scrD is
correlated and given explicitly (i.e., given as a tuple of valuation vectors and their
probabilities), one can find an optimal menu by solving the standard linear program
in polynomial time [BCKW15].

We focus on the case when \scrD = \scrD 1 \times \cdot \cdot \cdot \times \scrD n is a product distribution and
each vi is drawn independently from \scrD i. The standard linear program in this case
has exponentially many variables in general (even when each \scrD i has support size 2), so
one cannot afford to solve it directly. We are interested in the following two questions:

\bullet Menu size complexity: How many lotteries are needed to achieve the optimal
revenue?

\bullet Computational complexity: How difficult it is to compute1 an optimal menu
of lotteries?

While much progress has been made when the buyer is additive (see discussions on re-
lated work later), both questions remain widely open for the unit-demand single-buyer
setting being considered here. For example no explicit instance is known previously to
require exponentially many lotteries for the optimal revenue. (A trivial upper bound
on the menu size is | D| since otherwise at least one lottery in the menu is never used.)

Our first result is an explicit, simple product distribution \scrD , for which exponen-
tially many lotteries are needed (\Omega (| D| ) indeed) to achieve the optimal revenue. Let
\scrD \prime denote the distribution supported on \{ 1, 2\} , with probabilities (1  - p, p), and let
\scrD \prime \prime denote the distribution supported on \{ 0, n+2\} with probabilities (1 - p, p), where
p = 1/n2. We prove the following theorem in section 4.

Theorem 1.1. When n is sufficiently large, any optimal menu for \scrD \ast = \scrD \prime \times 
\scrD \prime \times \cdot \cdot \cdot \times \scrD \prime \times \scrD \prime \prime over n items must have \Omega (2n) many different lotteries.

Note that all distributions in \scrD \ast are the same except one. We show that this
is indeed necessary. Before stating our result, we review the optimal item pricing
problem. The setup is the same, but now the seller can only assign a price pi \in \BbbR to
each item i. Once the prices are fixed, the buyer draws v from \scrD and buys an item
i that maximizes her utility vi  - pi. The problem is to find a tuple of prices that

1See Theorem 1.4 for the exact meaning of ``computing"" an optimal menu here.
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494 CHEN ET AL.

maximizes the seller's expected revenue. Equivalently, an item pricing is a menu in
which each lottery is of the special form (ei, p) for some unit vector ei (so the menu
size is at most n). In general lotteries can extract strictly higher revenue than the
optimal item pricing, as shown in [Tha04] for two items with values drawn from [5, 6]
uniformly at random, which motivated much of the subsequent work.

We show that lotteries do not help when \scrD i's have support size 2 and share the
same high value.

Theorem 1.2. If \scrD = \scrD 1 \times \cdot \cdot \cdot \times \scrD n and \sanss \sansu \sansp \sansp (\scrD i) = \{ ai, b\} with ai < b for all
i \in [n], an optimal item pricing achieves the same expected revenue as that of an
optimal menu of lotteries.

Therefore, the exponential lower bound on the menu size in Theorem 1.1 cannot
hold for support-size-2 distributions that share the same high value. The proof of
Theorem 1.2 also implies that an optimal menu in this case can be computed in
polynomial time.2 For the special case of two items we show that the condition of \scrD 1

and \scrD 2 sharing the same high value can be dropped.

Theorem 1.3. If both \scrD 1 and \scrD 2 have support size 2, then an optimal item pric-
ing for \scrD 1 \times \scrD 2 achieves the same expected revenue as that of an optimal menu of
lotteries.

In addition, we give examples of three-item support-size-2 and two-item support-
size-3 instances where lotteries do achieve a strictly higher revenue than item pricings.

Now we describe our result on the problem of computing an optimal menu of lot-
teries. Although \scrD \ast in Theorem 1.1 trivially rules out any polynomial-time algorithm
that lists explicitly all lotteries in an optimal menu, there is indeed a deterministic
polynomial-time algorithm that, given any v \in D, outputs a lottery \ell \bfv such that
\{ \ell \bfv : v \in D\} is an optimal menu for \scrD \ast and \ell \bfv is the lottery bought by the buyer at
v given this menu (see Corollary 4.5 and the remarks at the end of section 4). We are
interested in the question of whether a universal efficient algorithm that computes an
optimal menu in this fashion exists: given any product distribution \scrD and any v \in D,
such an algorithm outputs a lottery \ell \bfv such that \{ \ell \bfv : v \in D\} is optimal for \scrD .

This question is motivated by a folklore connection between the lottery problem
and the optimal mechanism design problem. Consider the same setting, where a unit-
demand buyer with values drawn from \scrD is interested in n items offered by a seller.
Here a mechanism is a (possibly randomized) map \scrB from the setD to ([n]\cup \{ nil\} )\times \BbbR ,
where \scrB (v) = (b, p) means that the buyer is assigned item b (or no item if b = nil)
and pays p to the seller. The optimal mechanism design problem is then to find
an individually rational and truthful mechanism (see definitions in section 2.1) that
maximizes the expected revenue of the seller.

Let \scrB (v) = (x(v), p(v)) denote the expected outcome of \scrB on v, i.e., xi(v) is
the probability of \scrB (v) assigning item i and p(v) is the expected payment. It fol-
lows from definitions of these two problems that, under the same \scrD , \scrB is an optimal
mechanism if and only if (\scrB (v) : v \in D) is an optimal menu (see section 2.1). There-
fore, the standard linear program for the lottery problem also characterizes optimal
mechanisms.

By exploring further ideas behind the proof of Theorem 1.1 we show that there
exists no efficient universal algorithm to implement an optimal mechanism even when

2The proof of Theorem 1.2 gives an explicit list of n+1 item pricings and shows that at least one
of them achieves the same revenue as an optimal lottery pricing. Computing the expected revenue
of a given item pricing is in polynomial time; see [CDP+18].
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ON THE COMPLEXITY OF OPTIMAL LOTTERY PRICING 495

\scrD i's have support size 3, unless P
NP = P\#P, which by Toda's theorem [Tod91] would

imply that the polynomial hierarchy collapses to the second level; this is considered
unlikely.

Theorem 1.4. Unless PNP = P\#P, there exists no algorithm \scrA (\cdot , \cdot ) with the fol-
lowing two properties:

1. \scrA is a randomized polynomial-time algorithm that always terminates in poly-
nomial time.

2. Given any instance I = (n,\scrD 1, . . . ,\scrD n) to the optimal mechanism design
problem, where each \scrD i has support size 3, and any v \in \sanss \sansu \sansp \sansp (\scrD 1) \times \cdot \cdot \cdot \times 
\sanss \sansu \sansp \sansp (\scrD n), \scrA (I,v) always outputs a pair in ([n] \cup \{ nil\} ) \times \BbbR , such that \scrB I :
v \mapsto \rightarrow \scrA (I,v) is an optimal mechanism for the instance I.

We remark that the optimal solutions in the proofs of Theorems 1.1 and 1.4 have
the property that they allocate with probability 1 some item for all valuations; such
lotteries (or mechanisms) are called complete. Thus, the results hold also for the
model where lotteries are required to be complete.

1.1. Related work. We briefly review related work in the language of the op-
timal mechanism design problem.

For the unit-demand, single-buyer setting considered here, Thanassoulis [Tha04]
showed that unlike the single-parameter setting where the optimal mechanism is de-
terministic [Mye81], an optimal mechanism for two items drawn uniformly from [5, 6]
must involve randomization. In [BCKW15], Briest et al. showed that when \scrD is corre-
lated and given explicitly, one can solve the standard linear program to find an optimal
mechanism in polynomial time. They also showed that the ratio of revenues obtained
by an optimal randomized mechanism (lottery pricing) and an optimal deterministic
mechanism (item pricing) can be unbounded in instances with three items. This was
later improved to two items by Hart and Nisan in [HN13] (they also showed it for the
additive setting, i.e., the model in which the buyer may buy any subset of items and
the value of a subset is equal to the sum of values of items in the subset). In [DHN14],
Dughmi, Han, and Nisan studied the sampling and representation complexity of mech-
anisms in a black box access model for the distribution \scrD , and showed that there is a
correlated distribution for which any approximately revenue-maximizing mechanism
requires exponential representation complexity. They also improved previous upper
bounds on the menu size needed to extract at least (1  - \epsilon )-fraction of the optimal
revenue.

For the case of product distributions, Chawla, Malec, and Sivan [CMS15] showed
that the ratio between the revenues of optimal randomized and deterministic mecha-
nisms is at most 4. When there are two items drawn independently from distributions
that meet certain conditions, Pavlov [Pav10] characterized optimal mechanisms under
both unit-demand and additive settings. Recently, Kothari et al. [KSM+19] gave a
quasi-polynomial-time algorithm for achieving (1 - \epsilon )-fraction of the optimal revenue
for any constant \epsilon > 0.

The problem of finding an optimal deterministic mechanism (or an optimal item
pricing) in the unit-demand setting with a product distribution was shown to be NP-
complete in [CDP+18], and this holds even when the item distributions have support
size 3 or are identical. An optimal item pricing can be computed in polynomial time
for support size 2 [CDP+18].

For the additive single-buyer setting, Manelli and Vincent [MV06] gave an exam-
ple where randomization results in a strictly higher expected revenue. Much progress
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496 CHEN ET AL.

has been made on characterizing optimal mechanisms and developing simple, compu-
tationally efficient mechanisms that are approximately optimal (e.g., [HN12, LY13,
DDT13, BILW20, WT14, DDT14b, Yao15, BGN17]). Most relevant to our work are
the papers addressing the menu size and computational complexity of the problem in
the additive setting. In [HN13], Hart and Nisan introduced the notion of menu size.
They showed that there exists a (continuous) correlated distribution for which no
mechanism of finite menu size can achieve a positive fraction of the optimal revenue.
For product distributions with infinite support, an infinite menu may be required to
achieve the optimal revenue [DDT13], but a constant fraction (1/6) of the optimal
revenue can always be achieved by a small finite menu, using a simple determinis-
tic mechanism that offers either the individual items (at their Myerson prices) or
the grand bundle of all the items (at a suitable price) [BILW20]. Furthermore, any
fraction (1  - \epsilon ) < 1 of the optimal revenue can be achieved by some finite menu
of sufficiently large size [BGN17]. In contrast, [BGN17] showed that 2\Omega (n) menu
size is needed to achieve (1  - 1/n)-fraction of the optimal revenue, even when the
additive buyer has simple value support \{ 0, 1\} for each item. Regarding the com-
putational complexity, Daskalakis, Deckelbaum, and Tzamos showed in [DDT14a]
that there cannot be an efficient universal algorithm that implements an optimal
mechanism for product distributions, even when all items have support size 2, unless
P\#P \subseteq ZPP. We compare our proof of Theorem 1.4 and the proof of [DDT14a] in
section 1.2.

1.2. Ideas behind the proofs. The main difficulty in proving both Theorems
1.1 and 1.4 is to understand and characterize optimal solutions to the standard linear
program (denoted by LP(I); see section 2.1) for certain input instances I. For Theo-
rem 1.1 we need to show that every optimal solution to LP(I) with distribution \scrD \ast has
exponentially many different lotteries; for Theorem 1.4 we need to embed an instance
of a \#P-hard problem in I and then show that every optimal solution to LP(I) helps
us solve the \#P-hard problem. However, characterizing optimal solutions to LP(I) is
challenging due to its exponentially many variables and constraints, which result in
a highly complex geometric object for which our current understanding is still very
limited (e.g., compared to the literature on the additive setting). Compared with the
optimal item pricing problem under the same setting where NP-completeness was es-
tablished in [CDP+18], there is a significant difference in their underlying structures:
the item pricing problem has a richer combinatorial flavor; characteristics of the lot-
tery pricing problem are mostly ``continuous,"" as suggested by its linear program
formulation.

The high-level approach behind proofs of Theorems 1.1 and 1.4 is similar to
that of [DDT14a]. We simplify the problem by relaxing the standard linear program
LP(I) to a smaller linear program denoted by LP\prime (I) on the same set of variables
(u(v),q(v) : v \in D) but only subject to a subset of carefully picked constraints
of LP(I). (Here q(v) is a tuple of n variables with qi(v) being the probability of
the buyer receiving item i in the lottery; u(v) is the utility of the buyer at v to
replace the role of price of the lottery.) Then we focus on a highly restricted family
of instances I and characterize optimal solutions to LP\prime (I), taking advantage of the
relaxed, simplified LP\prime (I) as well as special structures of I. Finally we show that every
optimal solution to LP\prime (I) is a feasible and, thus, optimal solution to the standard
linear program LP(I) as well, and always satisfies the desired properties (e.g., has
exponentially many different lotteries, for the purpose of Theorem 1.1, or can be used
to solve the \#P-hard instance embedded in it, for the purpose of Theorem 1.4).
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The similarity between our proof techniques and those of [DDT14a], however,
stops here due to a subtle but crucial difference between the two linear programs.
In our standard LP(I), the allocation variables q(v) must sum to at most 1 because
the buyer is unit-demand. For the additive setting, on the other hand, there is no
such constraint on the sum of qi(v); the only constraint is that qi(v) \in [0, 1] for all
i. It turns out that this difference requires a completely different set of ideas and
techniques to carry out the plan described above for the unit-demand setting, which
we sketch below.

Recall the two distributions \scrD \prime and \scrD \prime \prime used in the statement of Theorem 1.1,
supported on D\prime = \{ 1, 2\} and D\prime \prime = \{ 0, n+2\} , respectively. Consider the independent
and identically distributed (i.i.d.) instance I of n items drawn from \scrD \prime each. We make
the following observation: an i.i.d. instance as I always has a ``symmetric"" optimal
solution in which qi(v) only depends on the value of vi and the number of 2's in v,3

and such a solution tends to have many different lotteries. For example, if in such an
optimal solution, qi(v) \not = qj(v) when vi = 2, vj = 1, and v has (n/2) many 2's, then
all such exponentially many v's have distinct lotteries. Inspired by this, we analyze
LP(I) (by a careful relaxation) and obtain a complete characterization of its optimal
solutions. Each optimal solution is (almost) uniquely determined by q(1) of the all-1
vector. Moreover, there are exponentially many different lotteries when q(1) has full
support. However, q(1) does not necessarily have full support; indeed any q(1) that
sums to 1 results in the same optimal expected revenue. In fact, by Theorem 1.2,
there is an optimal item pricing, i.e., an optimal solution with only n lotteries (this
solution is not symmetric).

Our next idea is to add another item, drawn from \scrD \prime \prime (which breaks the symmetry
of the instance), to enforce full support of q(1) in every optimal solution to LP(I \prime ),
where I \prime denotes the new instance with n + 1 items. This is done by defining a
relaxation LP\prime (I \prime ) of LP(I \prime ): LP\prime (I \prime ) has the same set of variables and the same
objective function as LP(I \prime ) but only a carefully picked subset of constraints of LP(I \prime ).
We then give a complete characterization of all optimal solutions to LP\prime (I \prime ). We
show that every optimal solution to LP\prime (I \prime ) satisfies all the constraints of the original
LP(I \prime ), which implies that they share the same set of optimal solutions. Furthermore,
our characterization for LP\prime (I \prime ) shows that any of its optimal solutions must have
q(1) being the uniform distribution over the first n items and almost all valuations
are assigned a different lottery. This finishes the proof of Theorem 1.1.

The proof of Theorem 1.4 is based on similar ideas but is more delicate and
involved. The goal here is to embed a subset-sum-type \#P-hard problem in I. Let
g1, . . . , gn denote the input integers of the \#P-hard problem. Roughly speaking, we
are given a subset H of \{ g1, . . . , gn\} of size n/2, and are asked to decide whether the
sum

\sum 
i\in H gi is at least as large as the median of

\bigl( 
n

n/2

\bigr) 
many such sums derived from

all subsets of \{ g1, . . . , gn\} of size n/2 (note that the exact definition of the problem
is more involved; see section 5.2).

We consider an instance I with n + 2 items, where item i is supported on
\{ ai, \ell i, hi\} for each i \in [n] with ai \approx 1, \ell i < hi, and \ell i \approx hi \approx 2. The other two
items n + 1 and n + 2 are supported on \{ 0, s\} and \{ 0, t\} , respectively, for some s
and t that satisfy t \gg s \gg 1. The probabilities of item i taking values ai, \ell i, and hi

3Indeed any optimal solution can be ``symmetrized"" into such a solution without any loss in
revenue; a general symmetrization procedure can be found in [DW12]. However, there may be an
optimal nonsymmetric solution that is much more compact than its symmetrization. This is the
case, for example, with this instance of n items drawn from \scrD \prime each, before we add the additional
(n+ 1)th item.
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498 CHEN ET AL.

are 1  - p  - r, p, and r, respectively, for each i \in [n]; item n + 1 takes value 0 with
probability 1 - \delta , and s with probability \delta ; item n+ 2 takes value 0 with probability
1 - \delta 2, and t with probability \delta 2. The parameters p, r, and \delta satisfy 1 \gg p \gg r \gg \delta .
For now, we do not pin down exact values of the parameters ai, s, hi, t, but only as-
sume that they satisfy certain mild conditions; the rest of the parameters \ell i, p, r, \delta ,
on the other hand, are assigned specific values.

The first step of our proof is to characterize the set of optimal solutions of a care-
fully chosen relaxation LP\prime (I) of LP(I), assuming that parameters ai, s, hi, t satisfy
the conditions specified. To this end we partition the set D of all valuation vectors
into four types T1, T2, T3, and T4, where Ti denotes the set of type-i vectors: T1 con-
sists of vectors v with vn+1 = vn+2 = 0, T2 consists of v with vn+1 = s and vn+2 = 0,
T3 consists of v with vn+2 = t and vn+1 = 0, and T4 consists of v with vn+1 = s and
vn+2 = t. The following four smallest vectors in each of the four Ti's play a crucial
role in the chracterization:

a = (a1, . . . , an, 0, 0), c2 = (a1, . . . , an, s, 0), and

c3 = (a1, . . . , an, 0, t), c4 = (a1, . . . , an, s, t).

We also let \rho : T2 \cup T3 \cup T4 \rightarrow T1 denote the map with \rho (v) = (v1, . . . , vn, 0, 0).
Then our characterization shows that any optimal solution of LP\prime (I) is (almost)

uniquely determined by q(a), u(c2), u(c3), and u(c4). This is done by a sequence of
lemmas, each imposing a condition called Condition-Type-i on type-i vectors in opti-
mal solutions of LP\prime (I). They are established in reverse order: we start by proving the
condition on type-2 and -4 vectors first, followed by type-3 vectors, and finally type-1
vectors. The proof of Condition-Type-1 is among the technically most challenging
parts of the paper. In particular, Condition-Type-i for i = 2, 3, 4 requires that

(1.1) u(v) = max
\bigl\{ 
u(\rho (v)), u(ci)

\bigr\} 
for each v \in Ti.

Given the characterization, we start pinning down parameters ai, s, hi, t. By
setting ai and s carefully, we show that in any optimal solution to LP\prime (I), the first n
entries of q(a) sum to 1 and are almost uniform, i.e., qi(a) \approx 1/n for i \in [n]. Next by
setting hi to encode the input integer gi of the \#P-hard problem, Condition-Type-1
implies that utilities of type-1 vectors (more exactly, a carefully chosen subset of type-
1 vectors) encode the desired sums of (n/2)-subsets of \{ g1, . . . , gn\} , in every optimal
solution to LP(I). Finally, u(c3) is tightly controlled by our choice of t and we can set
it to an appropriate value so that u(c3) encodes the median of sums obtained from all
(n/2)-subsets of \{ g1, . . . , gn\} . Combining these with (1.1) we conclude that the \#P-
hard problem can be solved by comparing u(c3) with u(v), in any optimal solution of
LP\prime (I), at a specific type-3 vector v \in T3 such that u(\rho (v)) encodes

\sum 
i\in H gi for the

input set H.
In the last step of the proof, we follow our characterization to show that every

optimal solution of the relaxation LP\prime (I) must also be a feasible and, thus, optimal
solution to the standard linear program LP(I). This shows that they share the same
set of optimal solutions and finishes the proof of Theorem 1.4.

For Theorems 1.2 and 1.3, our method for showing that randomization does not
help in these settings, is by identifying suitable convex combinations of the revenues
of item pricings which upper bound the revenues of all lotteries. Note that this proof
method is not only sound, but also complete in the pricing problem in all cases where
randomization does not help, by the properties of linear programming; the problem
is to show the existence of suitable coefficients for the convex combinations.
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Organization. We first give formal definitions of both problems and present the
standard linear program in section 2. We prove Theorem 1.2 in section 3, showing that
lotteries do not help when all distributions have support size 2 and share the same high
value. We prove Theorem 1.1 in section 4, showing that the menu size complexity is
exponential. We prove Theorem 1.4 in section 5, showing the computational hardness
of the problem. In the appendix we prove Theorem 1.3, showing that lotteries do
not help for two items and support size 2. We also present two small examples there
showing that lotteries can help when either the number of items is 3 or the support
has size 3.

2. Preliminaries. We give formal definitions of the optimal lottery problem as
well as the optimal mechanism design problem (with a single unit-demand buyer),
and present the standard linear program that characterizes their optimal solutions in
section 2.1. As a warm-up, we prove a few basic properties about the standard linear
program in section 2.2.

2.1. Problem definitions and the standard linear program. Consider an
instance I = (n,\scrD 1, . . . ,\scrD n), where a seller offers n items, indexed by [n] = \{ 1, . . . , n\} ,
to a unit-demand buyer, whose valuation v1, . . . , vn of items is drawn from n inde-
pendent discrete distributions \scrD i, i \in [n]. Each distribution \scrD i is given explicitly in
I, including both its support Di = \sanss \sansu \sansp \sansp (\scrD i) and the probability of each value in Di.
Let \scrD = \scrD 1 \times \cdot \cdot \cdot \times \scrD n and D = D1 \times \cdot \cdot \cdot \times Dn.

A solution to the optimal lottery problem is a menu (a set) M of lotteries (x, p),
where each lottery consists of a nonnegative allocation vector x = (x1, . . . , xn) that
satisfies

\sum 
i xi \leq 1 and a price p \in \BbbR .4 Here xi denotes the probability of the buyer

receiving item i so with valuation v = (v1, . . . , vn), the expected utility of the buyer
purchasing a lottery (x, p) is

\sum 
i\in [n] xi \cdot vi  - p. (Note that x does not necessarily sum

to 1, and the buyer receives no item with probability 1 - 
\sum 

i xi; we refer to a lottery
(x, p) as a complete lottery if

\sum 
i xi = 1.) We always assume that the empty lottery

(0, 0) is in M as a potential choice when all other lotteries in M have a negative
utility. (This corresponds to the buyer choosing to buy nothing.)

Given a menu M of lotteries, the buyer draws her valuation v of items from \scrD 
and then receives a lottery that maximizes her utility with respect to v (so if there is
a tie, the seller can assign the buyer, among those that maximize the buyer's utility, a
lottery with the maximum price5). Let Pr[v] =

\prod 
i\in [n] Pr\scrD i

[vi] denote the probability

of valuation v \sim \scrD , and let RevM (v) denote the price of the lottery that the buyer
receives. Then the goal of the optimal lottery problem is to find a menu M of lotteries
that maximizes the expected revenue of the seller: Rev(M) =

\sum 
\bfv \in D Pr[v]\cdot RevM (v).

We now give the first (not the standard one) linear program characterization
of optimal solutions to the optimal lottery problem. For each v \in D we introduce
n + 1 variables q(v) = (q1(v), . . . , qn(v)) and p(v) to denote the allocation vector
and price of the lottery that the buyer receives at v. Then the menu is given by
M = \{ (q(v), p(v)) : v \in D\} . The only conditions are to make sure the utility of the
buyer is always nonnegative and that (q(v), p(v)) is a lottery in M that maximizes

4Notice that we do not require that p \geq 0 in the problem definition. It will become clear after we
define the objective function that the seller has no incentive to offer a lottery with a negative price
so it is the same problem whether p \geq 0 is required or not.

5As in the case of deterministic pricing [CDP+18], the supremum achievable revenue is indepen-
dent of the tie-breaking rule. Furthermore, the maximum price (equivalently, maximum expected
value) rule tie-breaking has the property that the supremum can be achieved.
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the utility of the buyer. This gives us a linear program characterization of optimal
solutions over variables (p(v),q(v) : v \in D):

maximize
\sum 
\bfv \in D

Pr[v] \cdot p(v) subject to

qi(v) \geq 0 and
\sum 
i\in [n]

qi(v) \leq 1 for all v \in D and i \in [n],

\sum 
i\in [n]

vi \cdot qi(v) - p(v) \geq 0 for all v \in D,

\sum 
i\in [n]

wi \cdot qi(w) - p(w) \geq 
\sum 
i\in [n]

wi \cdot qi(v) - p(v) for all v,w \in D.

To obtain the standard linear program, we use instead of the price variables p(v),
variables u(v) for the utilities of the buyer at the valuations v, replacing p(v) by the
expression

\sum 
i vi \cdot qi(v) - u(v):

maximize
\sum 
\bfv \in D

Pr[v] \cdot 

\left(  \sum 
i\in [n]

vi \cdot qi(v) - u(v)

\right)  subject to

u(v) \geq 0, qi(v) \geq 0, and
\sum 
i\in [n]

qi(v) \leq 1 for all v \in D and i \in [n],

u(v) - u(w) \leq 
\sum 
i\in [n]

(vi  - wi) \cdot qi(v) for all v,w \in D.(2.1)

We will refer to it as the standard linear program that characterizes optimal so-
lutions to the lottery problem and denote it by LP(I). When an optimal solution
(u(v),q(v) : v \in D) to LP(I) is given, we refer to the number of lotteries in the menu
it induces as its menu size.

For the optimal mechanism design problem (with a single unit-demand buyer),
the setting is exactly the same (and so are the input instances I). A randomized
mechanism is a randomized algorithm \scrB that, given v \in D, returns a pair (a, p),
where a \in [n] \cup \{ nil\} is the item assigned to the buyer (or no item is assigned if
a = nil) and p \in \BbbR is the payment from the buyer. Given \scrB , let \scrB (v) = (x(v), p(v))
denote the expected outcome of \scrB on v: xi(v) is the probability that \scrB (v) assigns
item i and p(v) is the expected payment.

We say \scrB is individually rational if the buyer always has a nonnegative utility if
she reports truthfully:\sum 

i\in [n]

vi \cdot xi(v) - p(v) \geq 0 for all v \in D.

We say \scrB is truthful if the buyer has no incentive to misreport:\sum 
i\in [n]

vi \cdot xi(v) - p(v) \geq 
\sum 
i\in [n]

vi \cdot xi(w) - p(w) for any v,w \in D.
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The goal of the optimal mechanism design problem is then to find an individually
rational and truthful mechanism \scrB that maximizes expected revenue

\sum 
\bfv \in D Pr[v] \cdot 

p(v). By the definitions, \scrB is an optimal mechanism if and only if the set of lotteries
\{ \scrB (v) : v \in D\} = \{ (x(v), p(v)) : v \in D\} is an optimal solution to the lottery problem,
that is, \scrB is an optimal mechanism if and only if the tuple (u(v),x(v) : v \in D) it
induces is an optimal solution to the standard LP(I), where we similarly replace p(v)
by the utility u(v) of the buyer.

2.2. Properties of optimal solutions to LP(\bfitI ). Given an instance I =
(n,\scrD 1, . . . ,\scrD n), we let a \in D denote the valuation vector with ai being the low-
est value in the support of \scrD i for each i \in [n]. Then we have the following lemma.

Lemma 2.1. u(a) = 0 in any optimal solution (u(v),q(v) : v \in D) to LP(I).

Proof. Note that in any feasible solution to LP(I) we have u(v) \geq u(a) for all
v \in D by (2.1). If u(a) > 0, replace u(v) by u(v) - u(a) for all v \in D, which results
in a feasible solution with a higher revenue.

We assume from now on that u(a) = 0 is fixed and u(a) is no longer a variable of
LP(I).

Lemma 2.2. In any feasible solution (u(v),q(v) : v \in D) to LP(I), the utility
function is monotonically nondecreasing, i.e., for any two valuations v,w, if v \leq w,
then u(v) \leq u(w).

Proof. If v \leq w then constraint (2.1) implies that u(v) - u(w) \leq 0.

The allocation function q is not in general monotonic, but if only one entry of
the valuation changes, q changes monotonically in that coordinate. Given v \in D
and b \in Dj = \sanss \sansu \sansp \sansp (\scrD j), we use (v - j , b) to denote the vector obtained from v by
replacing vj with b. The following lemma shows that if b > vj , then we must have
qj(v - j , b) \geq qj(v).

Lemma 2.3. Let v \in D and vj < b \in Dj. Then any feasible solution to LP(I)
satisfies qj(v - j , b) \geq qj(v).

Proof. Let w = (v - j , b). Applying (2.1) on both (v,w) and (w,v), we get

u(v) - u(w) \leq 
\sum 
i\in [n]

(vi  - wi) \cdot qi(v) and u(w) - u(v) \leq 
\sum 
i\in [n]

(wi  - vi) \cdot qi(w).

The lemma follows by summing them up and using vi = wi for all i \not = j.

The lotteries of an optimal menu are not necessarily complete. However, they
are complete for those valuations that are in the upper boundary of the domain D,
i.e., have the maximum value in some coordinate (and this value is positive). In
particular, if all the item supports have size 2, then all the lotteries in the optimal
menu are complete, except possibly for the allocation q(a) for the valuation a where
all the items have the minimum value.

Lemma 2.4. Let v \in D be a vector in which vi > 0 is the largest value in Di for
some coordinate i. Then any optimal solution (u(v),q(v) : v \in D) to LP(I) satisfies\sum 

j\in [n] qj(v) = 1.

Proof. Suppose that
\sum 

j\in [n] qj = 1  - c with c > 0. Increase the value of qi(v)

by c. Then the value of the objective function strictly increases (by Pr[v] \cdot vj \cdot c).
The new solution is feasible: note that in (2.1), qi(v) appears on the right-hand side
always with a nonnegative coefficient since vi \geq wi for all w \in D.
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3. Distributions with support \{ \bfita \bfiti , \bfitb \} . In this section we prove Theorem 1.2.
Assume that the n items i = 1, . . . , n have distributions with support \{ ai, b\} of size 2,
where 0 \leq ai < b, with the same high value b. Let qi denote the probability that item
i has value vi = ai (and 1  - qi that it has value vi = b). We will show that lotteries
do not offer any advantage over deterministic item pricing. A consequence of course
is that in this case we can compute the optimal solution in polynomial time.

Fix an optimal set of lotteries L\ast . Let N denote the set of all items \{ 1, . . . , n\} .
For each subset S \subseteq N of items we let v(S) be the valuation in which items in S
have value b and the rest have value ai. Let Pr(S) be the probability of v(S). Let
LS be the lottery of L\ast that the buyer buys for valuation v(S), and let pS be the
price of LS . Let L\emptyset = (x1, . . . , xn, p\emptyset ) be the lottery for the valuation v(\emptyset ). Notice
that

\sum 
i\in N xi \leq 1, and p\emptyset \leq 

\sum 
i\in N aixi as the utility is nonnegative. For each subset

S \subseteq N of items let x(S) =
\sum 

i\in S xi.
Let R\ast be the expected revenue of the optimal set of lotteries L\ast . We will show

that R\ast is bounded from above by a convex combination of the revenues of a set of
n+1 item pricings. This implies that R\ast is no greater than the revenue of the optimal
item pricing.

Consider a valuation v(S) for a subset S \not = \emptyset . The utility of lottery L\emptyset for
valuation v(S) is\sum 

i/\in S

aixi + b
\sum 
i\in S

xi  - p\emptyset \geq 
\sum 
i/\in S

aixi + b
\sum 
i\in S

xi  - 
\sum 
i\in N

aixi =
\sum 
i\in S

(b - ai)xi.

The utility of the lottery LS that is bought under v(S) must be at least as large as
that of L\emptyset . The value of the lottery LS is at most b, thus b  - pS \geq 

\sum 
i\in S(b  - ai)xi,

hence pS \leq b - 
\sum 

i\in S(b - ai)xi. Therefore, the total optimal expected revenue R\ast is

R\ast =
\sum 

\emptyset \not =S\subseteq N

pS Pr(S) + p\emptyset Pr(\emptyset )

\leq 
\sum 

\emptyset \not =S\subseteq N

[b - 
\sum 
i\in S

(b - ai)xi] Pr(S) +
\sum 
i\in N

aixi Pr(\emptyset )

= b(1 - Pr(\emptyset )) - 
\sum 
i\in N

(b - ai)xi(1 - qi) +
\sum 
i\in N

aixi Pr(\emptyset ).

Consider now the following set of n + 1 item pricings: pricing \pi 0 assigns price b
to all items; for each i \in N , pricing \pi i assigns price ai to item i and b to all the other
items. The expected revenue R0 of \pi 0 is b(1 - Pr(\emptyset )). Under the pricing \pi i, the revenue
is b if vi = ai and vj = b for some j \not = i, and is ai in all other cases (i.e., if vi = b or
if all vj = aj). So the expected revenue Ri of \pi i is b(qi  - Pr(\emptyset )) + ai(1 - qi +Pr(\emptyset )).

Let x0 = 1  - x(N), and consider the convex combination
\sum n

i=0 xiRi of the ex-
pected revenues of the n+ 1 pricings \pi i, i = 0, . . . , n. We have

n\sum 
i=0

xiRi = x0b(1 - Pr(\emptyset )) + b
\sum 
i\in N

xi(qi  - Pr(\emptyset )) +
\sum 
i\in N

aixi(1 - qi + Pr(\emptyset ))

= b

n\sum 
i=0

xi(1 - Pr(\emptyset )) - b
\sum 
i\in N

xi(1 - qi) +
\sum 
i\in N

aixi(1 - qi) +
\sum 
i\in N

aixi Pr(\emptyset )

= b(1 - Pr(\emptyset )) - 
\sum 
i\in N

(b - ai)xi(1 - qi) +
\sum 
i\in N

aixi Pr(\emptyset ).

Thus, R\ast \leq 
\sum n

i=0 xiRi and, hence, R\ast \leq Ri for at least one \pi i. This finishes the
proof of Theorem 1.2.
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4. A support-2 instance with exponentially many lotteries. We consider
an instance I of the lottery problem with n+1 items, [n+1] = \{ 1, . . . , n, n+1\} , where
each item i has 2 possible values drawn according to the probability distribution Di.
In our instance the first n items will be identical: item i \in [n] is supported over \{ 1, 2\} 
with probabilities (1  - p, p). The ``special"" item n + 1 is supported over \{ 0, s\} with
probabilities (1 - p, p), where the above parameters are

(4.1) p = 1/n2 and s = 2 + 1/(np) = 2 + n.

As there are only two possible (high and low) values for each item, there is a natural
bijection S \mapsto \rightarrow v(S) between S \subseteq [n + 1] (items that receive their high values) and
valuation vectors: for each S \subseteq [n + 1] and i \in [n], vi(S) = 2 if i \in S and vi(S) = 1
otherwise; vn+1(S) = s if n + 1 \in S and vn+1(S) = 0 otherwise. Now the standard
linear program LP(I) for the lottery problem on input I over allocation variables
qi(S) and utility variables u(S), S \subseteq [n+ 1], can be written as follows:

maximize
\sum 

S\subseteq [n+1]

Pr[S] \cdot 

\left(  \sum 
i\in [n+1]

vi(S) \cdot qi(S) - u(S)

\right)  subject to

(4.2)

u(S) \geq 0, qi(S) \geq 0,
\sum 

i\in [n+1]

qi(S) \leq 1 for S \subseteq [n+ 1] and i \in [n+ 1],

u(S) - u(T ) \leq 
\sum 

i\in [n+1]

(vi(S) - vi(T )) \cdot qi(S) for all S, T \subseteq [n+ 1].(4.3)

We use q(S) to denote the vector (q1(S), . . . , qn+1(S)), and Rev(S) to denote the
expected revenue from S, i.e., Rev(S) =

\sum 
i\in [n+1] vi(S) \cdot qi(S) - u(S), given q(S) and

u(S). By Lemma 2.1, we have u(\emptyset ) = 0 in any optimal solution to LP(I).
We will define a relaxation LP\prime (I) of the standard LP(I), characterize its optimal

solutions, and then show that an optimal solution to LP\prime (I) must also be feasible and,
thus, optimal, for LP(I).

For the purposes of our analysis, we consider below two different types of sets
S \subseteq [n+1] depending on whether they include the special item n+1. We consider a
set S to be of type 1 if n+1 \not \in S; otherwise we call it a set of type 2. Correspondingly we
use T1 and T2 to denote the set of type-1 and type-2 sets, respectively. We consider the
partial order among the subsets of [n+1] and its Hasse diagram (transitive reduction)
G. For two sets S, T \subseteq [n+1], we say that S is above T if T \subset S; the set S is a parent
of T , and T a child of S if they are also adjacent in G, i.e., | S| = | T | + 1 and T \subset S.

We consider the following relaxed linear program LP\prime (I) of LP(I), which contains
only (some of the) constraints (4.3) between adjacent sets, and between type-1 sets
and \emptyset . LP\prime (I) has the same set of variables and maximizes the same objective function
as LP(I) in (4.2) subject to the following constraints:

Part 1: Same constraints on u(S) and q(S) as in LP(I):

u(S) \geq 0, qi(S) \geq 0,
\sum 

j\in [n+1]

qj(S) \leq 1 for all S \subseteq [n+ 1] and i \in [n+ 1].

Part 2: Constraints between (some of the) adjacent sets:
2a. qi(S) \geq u(S) - u(S \setminus \{ i\} ) for all S \subseteq [n+ 1], i \in S and i \not = n+ 1,
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2b. u(S) \geq u(S \setminus \{ i\} ) for all S \subseteq [n+ 1] and i \in S.
Part 3: Constraints between type-1 sets and \emptyset :

u(S) \geq 
\sum 
i\in S

qi(\emptyset ) for all S \in T1.

4.1. Characterization of optimal solutions to LP\prime (\bfitI ). Our goal is to give
a complete characterization of optimal solutions to LP\prime (I). We do this in three
steps. First we show how to determine the optimal allocations q(S), for all S \not = \emptyset 
once the utilities u(\cdot ) are set (Lemma 4.2). Then we show how to determine the
optimal utilities u(\cdot ) given q(\emptyset ) (Lemma 4.3). Finally, we show that every optimal
solution to LP\prime (I) must have q(\emptyset ) being the uniform distribution over the first n items
(Lemma 4.4). The characterization is summarized in Corollary 4.5.

We start with a few observations. First, note that the constraints of part 2b
imply that u(\cdot ) is monotonic, i.e., u(T ) \leq u(S) for all T \subset S. Second, variables
q(S) of each S \not = \emptyset appear in LP\prime (I) only in parts 1 and 2a. Given a utility function
u : 2[n+1] \rightarrow \BbbR \geq 0 we define for each S \not = \emptyset the following small linear program, denoted
by LP(S : u) over n+ 1 variables q = (q1, . . . , qn+1):

maximize
\sum 

j\in [n+1]

vj(S) \cdot qj  - u(S) subject to(4.4)

qi \geq 0 and
\sum 

j\in [n+1]

qj \leq 1 for i \in [n+ 1],(4.5)

qi \geq u(S) - u(S \setminus \{ i\} ) for i \in S \cap [n].(4.6)

We emphasize that both u(S) and u(S \setminus \{ i\} ) in LP(S : u) above are constants, instead
of variables, given u(\cdot ). The following lemma shows that, given u(\cdot ), q(S) must be an
optimal solution to LP(S : u).

Lemma 4.1. Let (u(\cdot ),q(\cdot )) be a solution to LP\prime (I). Then for each S \not = \emptyset , q(S)
satisfies all the constraints of LP\prime (I) that involve q(S) if and only if it is a feasible
solution to LP(S : u). Moreover, if (u(\cdot ),q(\cdot )) is an optimal solution to LP\prime (I), then
q(S) must be an optimal solution to LP(S : u) for all S \not = \emptyset .

Proof. The first part follows from the fact that all the constraints in LP\prime (I) that
involve q(S) are present in LP(S : u). The second part follows from the facts that the
objective function of LP(S : u) is essentially the same as Rev(S) and that Pr[S] > 0
for all S.

Given u(\cdot ), it is easy to characterize optimal solutions to LP(S : u).

Lemma 4.2. Suppose LP(S : u) is feasible for some utility function u(\cdot ). Then
for each set S \not = \emptyset , the optimal solutions to LP(S : u) are characterized as follows:

1. If S \in T1, then a solution q of LP(S : u) is optimal if and only if qi = 0 for
all i \not \in S, qi \geq u(S) - u(S \setminus \{ i\} ) for all i \in S, and

\sum 
i\in S qi = 1.

2. If S \in T2, then a solution q of LP(S : u) is optimal if and only if qi = 0 for
all i \not \in S, qi = u(S) - u(S \setminus \{ i\} ) for all i \in S\cap [n], and qn+1 = 1 - 

\sum 
i\in S\cap [n] qi.

Proof. When S \in T1, the objective function is
\sum 

j\in S 2qj +
\sum 

j\in [n]\setminus S qj  - u(S).

Note that all qi, i \not \in S, appear only in the constraints (4.5), while all qi, i \in S,
are also constrained by lower bounds in (4.6). The LP is feasible if and only if
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ON THE COMPLEXITY OF OPTIMAL LOTTERY PRICING 505\sum 
i\in S(u(S)  - u(S \setminus \{ i\} )) \leq 1. If a solution has qi > 0 for some i \not \in S, then we can

obtain a better solution by setting qi = 0 and incrementing qj for some j \in S by
qi. If

\sum 
i\in S qi < 1 then we can improve the solution by incrementing any qi, i \in S.

Therefore, any optimal solution satisfies the claim. Conversely, all solutions that
satisfy the claim have the same value.

For the case when S \in T2, the objective function is
\sum 

j\in S\cap [n] 2qj +
\sum 

j \not \in S qj +

sqn+1  - u(S). We can argue similarly that qi = 0 for all i \not \in S. As the coefficient s
of qn+1 in the objective function is greater than coefficients of other variables qi, and
we have the constraint

\sum 
j qj(S) \leq 1, it is clearly optimal to give as high a value as

possible to qn+1. Thus it is optimal to assign to each qi, i \in S \cap [n], the lower bound
of (4.6) and give the rest of the probability mass to qn+1.

The next lemma tells us how to determine from given values for q(\emptyset ), optimal
values for all the utilities u(S) (and from these we can determine optimal values for
all q(S), S \not = \emptyset , by the above Lemma 4.2).

Lemma 4.3. In any optimal (u(\cdot ),q(\cdot )) of LP\prime (I) the following properties hold.

1. For every set S of type 1, u(S) =
\sum 

i\in S qi(\emptyset ). For every set S of type 2,

u(S) = max

\left(  \sum 
i\in S\cap [n]

qi(\emptyset ), u(\{ n+ 1\} )

\right)  .(4.7)

2. u(\{ n+1\} ) = mini\in [n] qi(\emptyset ). Hence u(S) =
\sum 

i\in S\cap [n] qi(\emptyset ) for all S \not = \{ n+1\} .

Proof. 1. Consider an optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I). We know from the
constraints of LP\prime (I) (part 3) that u(S) \geq 

\sum 
i\in S qi(\emptyset ) for all S \in T1. For S \in T2,

as u(S) \geq u(S \cap [n]) \geq 
\sum 

i\in S\cap [n] qi(\emptyset ) and u is monotonic, u(S) \geq u(\{ n + 1\} ), and
u(S) is at least as large as the right-hand side (RHS) of (4.7). Call a set S tight if its
inequality is tight (satisfied as equality, i.e., S satisfies the first property of Lemma
4.3), and nontight otherwise, and let R be the family of tight sets. If u(\emptyset ) > 0, then we
can subtract the amount u(\emptyset ) from u(S) for all S \subseteq [n+1] and get a feasible solution
with strictly higher revenue. Therefore, an optimal solution must have u(\emptyset ) = 0, and
\emptyset is a tight set. By definition, \{ n+ 1\} is also tight.

Let \epsilon > 0 be the minimum difference between the left-hand side (LHS) and the
RHS of the inequality over all nontight sets. Form another solution \{ u\prime (\cdot ), q\prime (\cdot )\} by
setting u\prime (S) = u(S)  - \epsilon if S \not \in R, u\prime (S) = u(S) if S \in R, and setting q\prime (S) to be a
vector of an optimal solution to LP(S : u\prime ) for each S \not = \emptyset , while q\prime (\emptyset ) = q(\emptyset ). We
will argue that the new solution is feasible and yields strictly more revenue.

For feasibility note first that by our choice of \epsilon the new utilities still satisfy
u\prime (S) \geq 

\sum 
i\in S qi(\emptyset ) for S \in T1, so constraints in part 3 are satisfied. For part 2b,

letting T = S \setminus \{ i\} , the only way to possibly get a violation is if T is tight. But then
u\prime (T ) = u(T ) =

\sum 
i\in T qi(\emptyset ) if T \in T1 or = max(

\sum 
i\in T\cap [n] qi(\emptyset ), u(\{ n+ 1\} ) if T \in T2;

in either case we still have u\prime (S) \geq u\prime (T ). For the constraints in Parts 1 and 2a, we
only need to check that all the LP(S : u\prime ) are feasible. We will do this next and also
show that the optimal solutions q\prime (S) yield an increase in the total revenue.

Case 1: S is not tight. Then the old solution q(S) remains feasible to LP(S : u\prime )
and the contribution Rev(S) \cdot Pr(S) of the set S to the total revenue increases by
\epsilon \cdot Pr(S), due to the decrease in u(S).

Case 2: S is tight. If S is of type 1 then u\prime (S) = u(S) =
\sum 

i\in S qi(\emptyset ) and all its
children have u\prime (S\setminus \{ i\} ) \geq 

\sum 
i\in S\setminus \{ i\} qi(\emptyset ). Thus, we can pick any values q\prime i(S) \geq qi(\emptyset ),

i \in S, that sum to 1, and Rev(S) does not decrease.
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506 CHEN ET AL.

Suppose S is of type 2. If u\prime (S) = u(S) = u(\{ n + 1\} ) \geq 
\sum 

i\in S\cap [n] qi(\emptyset ), then
all its type-2 children must also have u\prime (S \setminus \{ i\} ) = u(S \setminus \{ i\} ) = u(\{ n + 1\} ). Setting
q\prime i(S) = 0 for all i \in [n] and q\prime n+1(S) = 1 yields a feasible solution and Rev(S) does
not decrease.

Finally suppose that the type-2 set S has u\prime (S) = u(S) =
\sum 

i\in S\cap [n] qi(\emptyset ) >

u(\{ n+1\} ). Then we set q\prime i(S) = u\prime (S) - u\prime (S \setminus \{ i\} ) for each i \in S \cap [n], q\prime i(S) = 0 for
i \in [n] \setminus S, and q\prime n+1(S) = 1  - 

\sum 
i\in [n] q

\prime 
i(S). As u\prime (S \setminus \{ i\} ) \geq 

\sum 
i\in (S\setminus \{ i\} )\cap [n] qi(\emptyset ) for

all i \in [n], we have q\prime i(S) \leq q\prime i(\emptyset ) and, hence, q\prime n+1(S) \geq 0, thus LP(S : u\prime ) is feasible.
Compared to the previous values of q(S) that were an optimal solution to LP(S : u),
for each nontight child S \setminus \{ i\} , i \in S \cap [n], the corresponding value q\prime i(S) increased by
\epsilon ; on the other hand, the value of q\prime n+1(S) decreased by k \cdot \epsilon , where k is the number
of such nontight children. The contribution Rev(S) \cdot Pr(S) of S to the total revenue
decreased by k \cdot \epsilon (s  - 2)Pr(S). Charge this decrease in revenue for S equally to its
k nontight type-2 children (their revenue increased by Case 1). It remains to verify
that no set is overcharged, in fact, every nontight set still has a net positive increase
in its revenue contribution.

Consider a nontight set S (of type 2) which is charged by some of its (tight)
parents, say by t parents. Since | S| \geq 2 (recall \{ n + 1\} is tight), we have t \leq n  - 1.
Every parent has size | S| + 1, hence its probability is Pr(S) \cdot (p/(1  - p)). The total
charge from the parents is at most (n - 1)\epsilon (s - 2)Pr(S)p/(1 - p), and it suffices to verify
that this is strictly smaller than \epsilon \cdot Pr(S), in other words, that (n - 1)(s - 2)p < 1 - p,
i.e., that (n - 1)/n < 1 - (1/n2), which is true.

We conclude that in an optimal solution, all the sets must be tight.

2. Suppose that u(\{ n+1\} ) > mini\in [n] qi(\emptyset ). Now we know that all sets satisfy the
property of item 1. Call now a type-2 set S tight if u(S) =

\sum 
i\in S\cap [n] qi(\emptyset ) \geq u(\{ n+1\} ).

Decrease the utility of all nontight sets, i.e., of \{ n+ 1\} and of all other type-2 sets S
with u(S) = u(\{ n + 1\} ) >

\sum 
i\in S\cap [n] qi(\emptyset ), by a small amount \epsilon > 0. Using the same

arguments as in item 1 this yields a new solution \{ u\prime (\cdot ),q\prime (\cdot )\} that is feasible and has
strictly higher revenue. The only difference here is that the set \{ n + 1\} is nontight,
and this set has n parents. However, since u(\{ n+1\} ) > mini\in [n] qi(\emptyset ), at least one of
its parents (namely, the set \{ i, n + 1\} , where i has the minimum qi(\emptyset )) is not tight,
hence \{ n+ 1\} is charged again by at most n - 1 of its parents, and the inequality of
item 1 still holds.

Suppose u(\{ n + 1\} ) < mini\in [n] qi(\emptyset ). Then increase the utility of \{ n + 1\} 
by a small amount \epsilon > 0 and keep the other utilities the same. The only sets
that are affected are \{ n + 1\} and its parents \{ i, n + 1\} , i \in [n]. The contribution
Rev(\{ n + 1\} ) \cdot Pr(\{ n + 1\} ) of \{ n + 1\} to the revenue decreases by \epsilon Pr(\{ n + 1\} ).
For each parent \{ i, n + 1\} , the corresponding variable qi(\{ i, n + 1\} ) decreases by \epsilon ,
and qn+1(\{ i, n+1\} ) increases by \epsilon , hence the contribution of \{ i, n+1\} to the revenue
increases by (s - 2)\epsilon \cdot Pr(\{ i, n+1\} ). Since Pr(\{ i, n+1\} ) = Pr(\{ n+1\} p/(1 - p) for each
i\in [n], the net effect on the total revenue is positive, provided that n(s - 2)p/(1 - p)> 1,
i.e., 1/(1 - p) > 1, which is true.

We conclude that u(\{ n + 1\} ) = mini\in [n] qi(\emptyset ) in an optimal solution. Combined
with item 1, this also implies that u(S) =

\sum 
i\in S\cap [n] qi(\emptyset ) for all S \not = \{ n+ 1\} .

From the above lemmas, we know how to derive from q(\emptyset ) all the u's and all
the q(S), S \not = \emptyset , in an optimal solution, so we can calculate the revenue as a func-
tion of q(\emptyset ). We can then determine the optimal value of q(\emptyset ) that maximizes the
revenue.

D
ow

nl
oa

de
d 

07
/2

3/
22

 to
 1

73
.2

.3
5.

82
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE COMPLEXITY OF OPTIMAL LOTTERY PRICING 507

Lemma 4.4. Any optimal solution to LP\prime (I) satisfies qn+1(\emptyset ) = 0 and qi(\emptyset ) = 1/n
for all i \in [n].

Proof. We calculate the revenue of a solution that satisfies the properties of Lem-
mas 4.2 and 4.3.

For a type-1 set S \not = \emptyset , we have

Rev(S) =
\sum 
i\in S

2qi(S) - u(S) = 2 - 
\sum 
i\in S

qi(\emptyset ) and

Rev(\emptyset ) =
\sum 
i\in [n]

1qi(\emptyset ) - u(\emptyset ) =
\sum 
i\in [n]

qi(\emptyset ).

Thus the contribution of type-1 sets to the revenue, denoted by Rev1, is

Rev1 =
\sum 

S\in T1\setminus \emptyset 

Pr[S] \cdot 

\Biggl( 
2 - 

\sum 
i\in S

qi(\emptyset )

\Biggr) 
+ Pr[\emptyset ] \cdot 

\left(  \sum 
i\in [n]

qi(\emptyset )

\right)  
= 2 \cdot 

\sum 
S\in T1\setminus \emptyset 

Pr[S] +
\sum 
i\in [n]

qi(\emptyset ) \cdot 

\left(  Pr[\emptyset ] - 
\sum 

S\in T1 | i\in S

Pr[S]

\right)  .

The first term is a constant, const1, independent of q(\emptyset ). For the coefficient of
qi(\emptyset ), Pr[\emptyset ] = (1 - p)n+1 while the total probability of all sets S \in T1 that contain i is
(1 - p)p. Therefore, all i \in [n] have the same coefficient c1 = (1 - p)n+1  - (1 - p)p \approx 
1 - (n+2)p \approx 1. So the expression above is of the formRev1 = const1+c1\cdot 

\sum 
i\in [n] qi(\emptyset ).

For each type-2 set S \not = \{ n+ 1\} , by Lemma 4.3, we have u(S) =
\sum 

i\in S\cap [n] qi(\emptyset ).
Hence, for | S| > 2, we have qi(S) = qi(\emptyset ) for i \in S\cap [n]; qn+1(S) = 1 - 

\sum 
i\in S\cap [n] qi(\emptyset );

and qi(S) = 0 for i \not \in S. Thus,

Rev(S) = 2
\sum 

i\in S\cap [n]

qi(\emptyset )+s

\left(  1 - 
\sum 

i\in S\cap [n]

qi(\emptyset )

\right)   - 
\sum 

i\in S\cap [n]

qi(\emptyset ) = s - (s - 1)
\sum 

i\in S\cap [n]

qi(\emptyset ).

Let qmin = mini\in [n] qi(\emptyset ) = u(\{ n + 1\} ). For Si = \{ i, n + 1\} we have u(Si) = qi(\emptyset ),
qi(Si) = qi(\emptyset ) - qmin, qn+1(Si) = 1 - (qi(\emptyset ) - qmin), and qj(Si) = 0 for j \not \in Si. Thus,

Rev(\{ i, n+1\} ) = 2(qi(\emptyset ) - qmin)+s(1 - qi(\emptyset )+qmin) - qi(\emptyset ) = s - (s - 1)qi(\emptyset )+(s - 2)qmin.

For S = \{ n + 1\} , we have u(\{ n + 1\} ) = qmin, qn+1 = 1, and qi = 0 for all i \in [n].
Thus, Rev(\{ n+ 1\} ) = s - qmin. Therefore, the revenue from type-2 sets is

Rev2 = s
\sum 
S\in T2

Pr[S] - (s - 1)
\sum 
S\in T2

Pr[S]
\sum 

i\in S\cap [n]

qi(\emptyset )

+ (s - 2)qmin

\sum 
i\in [n]

Pr[\{ i, n+ 1\} ] - qmin Pr[\{ n+ 1\} ].

The first term is a constant, sp. The coefficient of each qi(\emptyset ) is  - (s  - 1) times the
sum of the probabilities of all the type-2 sets that contain i, thus, it is  - (s - 1)p2, i.e.,
a constant  - c2 independent of i, which satisfies c2 = \Theta (1/n3) \ll c1. The coefficient
of qmin is

c3 = (s - 2)np2(1 - p)n - 1  - p(1 - p)n = p2(1 - p)n - 1 > 0.
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So Rev2 = sp - c2
\sum 

i\in [n] qi(\emptyset ) + c3qmin. Combining with Rev1, the total revenue is

Rev = const + (c1  - c2)
\sum 
i\in [n]

qi(\emptyset ) + c3qmin.

As (c1  - c2) > 0 and c3 > 0, in order to maximize the revenue we want to maximize\sum 
i\in [n] qi(\emptyset ) and qmin. Both these quantities are maximized simultaneously if we have\sum 
i\in [n] qi(\emptyset ) = 1 and qmin = 1/n, that is, if qi(\emptyset ) = 1/n for i \in [n]. Setting q(\emptyset ) to

these values and then setting all the utilities u(S) and allocations q(S) for all S \not = \emptyset 
according to Lemmas 4.2 and 4.3, yields a feasible solution to LP(I \prime ) that achieves the
maximum possible revenue. Therefore, any optimal solution to LP\prime (I) must achieve
the same revenue and, hence, must also satisfy qi(\emptyset ) = 1/n for all i \in [n].

Combining the previous lemmas yields the following characterization of optimal
solutions to LP\prime (I).

Corollary 4.5. Any optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I) satisfies

\bullet q(\emptyset ) = (1/n, . . . , 1/n, 0);

\bullet u(S) = | S \cap [n]| 
\big/ 
n for all S \not = \{ n+ 1\} ; u(\{ n+ 1\} ) = 1/n;

\bullet for S \in T1 \setminus \{ \emptyset \} : qi(S) = 0 for i \not \in S; qi(S) \geq 1/n for i \in S;
\sum 

i\in S qi(S)=1;

\bullet for S \in T2 and | S| \leq 2: q(S) = (0, . . . , 0, 1);

\bullet for S \in T2 and | S| > 2: qi(S) = 0 for i \not \in S; qi(S) = 1/n for i \in S \cap [n];

qn+1(S) = 1 - | S \cap [n]| 
n

.

4.2. Returning to the standard LP(\bfitI ). Now that we have characterized the
optimal solutions of the relaxed LP\prime (I) in Corollary 4.5, it is straightforward to show
that they are also feasible and, hence, also optimal, in the full standard LP(I).

Lemma 4.6. Any optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I) is a feasible (and optimal)
solution to LP(I).

Proof. Consider an optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I). We need to show that
(4.3) holds for any two subsets T, S \subseteq [n+ 1]. The case when S = \emptyset is easy to check,
since we have u(S) - u(T ) =  - u(T ),\sum 

i\in [n+1]

(vi(S) - vi(T )) \cdot qi(S) =  - | T \cap [n]| 
n

,

and u(T ) \geq | T \cap [n]| /n for all T . Below we assume that S \not = \emptyset .
We claim that it suffices to show (4.3) for T, S \subseteq [n + 1] that satisfy T \subseteq S and

S \not = \emptyset . To see this, consider any T, S with S \not = \emptyset , let T \prime = T \cap S \subseteq S, and suppose
that T \prime , S satisfy (4.3): u(S)  - u(T \prime ) \leq 

\sum 
i\in [n+1](vi(S)  - vi(T

\prime ))qi(S). Note that

u(T ) \geq u(T \prime ) by the monotonicity of u, hence u(S) - u(T ) \leq u(S) - u(T \prime ). Further,
vi(T ) and vi(T

\prime ) differ only on elements i \in T \setminus T \prime = T \setminus S, but qi(S) = 0 for all such
i since S \not = \emptyset by Corollary 4.5. Therefore, we have\sum 

i\in [n+1]

(vi(S) - vi(T ))qi(S) =
\sum 

i\in [n+1]

(vi(S) - vi(T
\prime ))qi(S),

and (4.3) holds for T, S as well.

D
ow

nl
oa

de
d 

07
/2

3/
22

 to
 1

73
.2

.3
5.

82
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE COMPLEXITY OF OPTIMAL LOTTERY PRICING 509

Consider two sets T \subset S \subseteq [n + 1]. If S is not one of the sets \{ n + 1\} or
\{ i, n+1\} , i \in [n], then the LHS of (4.3) is u(S) - u(T ) \leq | (S \setminus T ) \cap [n]| /n which is at
most

\sum 
i\in [n+1](vi(S) - vi(T ))qi(S) because qi(S) \geq 1/n for all i \in (S \setminus T ) \cap [n]. If S

is \{ n+ 1\} or \{ i, n+ 1\} , i \in [n], then either T = \emptyset , in which case

u(S) - u(T ) =
1

n
\leq 

\sum 
i\in [n+1]

(vi(S) - vi(T ))qi(S) = s,

or | T | = 1, in which case u(T ) = 1/n and

u(S) - u(T ) = 0 \leq 
\sum 

i\in [n+1]

(vi(S) - vi(T ))qi(S).

Thus, (4.3) is satisfied in all cases. This finishes the proof of the lemma.

It follows from Lemma 4.6 that \{ u(\cdot ),q(\cdot )\} is an optimal solution to LP(I) if and
only if it is an optimal solution to LP\prime (I). Finally, we show that any optimal solution
to LP(I) requires an exponential number of lotteries.

Theorem 4.7. Any optimal solution (u(\cdot ),q(\cdot )) to I has \Theta (2n) different lotteries.

Proof. For all S \subseteq [n + 1], except for \emptyset , [n + 1] and \{ i, n + 1\} for i \in [n], the
support of q(S) is equal to S, thus all these lotteries are different. Hence any optimal
solution has 2n+1  - n - 2 different lotteries.

We remark that, even though an optimal solution has an exponential num-
ber of different lotteries, it follows from Corollary 4.5 that there is a deterministic
polynomial-time algorithm, which takes as input a valuation v \in D and outputs an
optimal lottery for v: letting S be the set of items that have high value in the given
valuation v, we can obtain the corresponding allocation q(S) and utility u(S) of the
optimal solution of the LP from Corollary 4.5, and the price of the lottery can be
easily derived from the allocation and the utility.

5. Hardness of optimal mechanism design. In this section we prove Theo-
rem 1.4. This is done by giving a polynomial-time reduction from a \#P-hard problem
called COMP. We delay its definition and proof of \#P-hardness to section 5.2.3
because it is used only towards the end of the proof.

This section is organized as follows. In section 5.1, we characterize optimal solu-
tions to a relaxation to the standard linear program LP(I) when parameters of the
instance I satisfy certain conditions. We call the relaxed linear program LP\prime (I), and
the characterization is summarized in section 5.1.7. In section 5.2 we pin down the
rest of the parameters of I to embed the \#P-hard problem COMP. More formally,
one can construct an instance I to the lottery problem from an instance of COMP
in polynomial time such that a specific entry of any optimal solution to LP\prime (I) can
be used to answer COMP. Finally we show that for such instances I, any optimal
solution to LP\prime (I) must be an optimal solution to LP(I) and, thus, LP\prime (I) and LP(I)
share the same set of optimal solutions. Then an efficient universal algorithm for the
optimal mechanism design problem implies PNP = P\#P. This finishes the proof of
Theorem 1.4.

5.1. Linear program relaxation. Let I denote an instance of n+2 items with
the following properties. Each item i \in [n] is supported over Di = \{ ai, \ell i, hi\} with
ai < \ell i < hi. Probabilities of ai, \ell i and hi are 1 - p - r, p, and r, respectively, where

(5.1) p = 1
\big/ 
2n

4

and r = p
\big/ 
2n

2

.
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So p and r satisfy p = (r/p)n
2

. Let \beta = 1/2n. The support \{ ai, \ell i, hi\} of item i \in [n]
satisfies

(5.2) \ell i = 2+3(n - i)\beta , \ell i+\beta \leq hi \leq \ell i+

\biggl( 
1 +

1

22n

\biggr) 
\beta , and | ai - 1| = O(np).

Let di = \ell i  - ai \approx 1 and \tau i = hi  - \ell i. Our choices of \ell i and hi guarantee that \tau i \approx \beta 
as well as \ell i > hi+1 + \beta (or \ell i \approx hi+1 + 2\beta more exactly) for all i from 1 to n  - 1.
Item n+ 1 takes value 0 with probability 1 - \delta , and s with probability \delta ; item n+ 2
takes value 0 with probability 1 - \delta 2, and t with probability \delta 2. So let Dn+1 = \{ 0, s\} ,
Dn+2 = \{ 0, t\} , and D = D1\times \cdot \cdot \cdot \times Dn+2. We impose the following conditions on \delta , s,
and t throughout section 5.1:

(5.3) \delta =
1

2n6 , s = \Theta 

\biggl( 
1

pn

\biggr) 
, t = O

\biggl( 
\beta 

rm+1m

\biggr) 
, t = \Omega 

\biggl( 
\beta 

rm+1m2n

\biggr) 
,

where m = \lceil n/2\rceil .
Note that \delta \ll r \ll p, and t = 2\Theta (n5) \gg s = 2\Theta (n4) \gg 1. Precise values of the

ai's, the hi's, and s and t will be chosen later on in section 5.2 after we have analyzed
the structure of the problem. In particular, the hi's and t will be used to reflect the
instance of the \#P-hard problem that we will embed in I and LP(I). (5.1), (5.2), and
(5.3) are sufficient for our analysis in section 5.1 of the relaxed LP to be described
below.

We need some notation before describing the relaxation of LP(I). Given v \in D,
we use S(v) to denote the set of i \in [n] such that vi \in \{ \ell i, hi\} , S - (v) to denote the
set of i \in [n] such that vi = \ell i, and S+(v) to denote the set of i \in [n] such that
vi = hi. So we always have S(v) = S+(v) \cup S - (v) \subseteq [n].

Next we partition D into T1, T2, T3, T4, where T1 consists of vectors with vn+1 =
vn+2 = 0, T2 consists of vectors with vn+1 = s, and vn+2 = 0, T3 consists of vectors
with vn+2 = t and vn+1 = 0, and T4 consists of vectors with vn+1 = s and vn+2 = t.
We call vectors in Ti type-i vectors. We denote the bottom vector (a1, . . . , an, 0, 0) by
a, (a1, . . . , an, s, 0) by c2, (a1, . . . , an, 0, t) by c3, and (a1, . . . , an, s, t) by c4 (so ci is
the bottom of type-i vectors for i from 2 to 4). By Lemma 2.1, we have u(a) = 0 in
any optimal solution to LP(I) so we fix it to be 0.

Given v \in D, we write Block(v) to denote the set of w \in D with S(w) = S(v),
wn+1 = vn+1, and wn+2 = vn+2; we refer to Block(v) as the block that contains v.
It would also be helpful to view each Ti as a collection of (disjoint) blocks. We say
v \in D is essential if S+(v) = \emptyset (here the intuition is that within each block, there is a
unique essential vector with the largest mass of probability, given r \ll p in (5.1)). We
use D\prime to denote the set of essential vectors, and write T \prime 

i = Ti \cap D\prime and T \ast 
i = Ti \setminus T \prime 

i

for each i. Given v \in D, we use Lower(v) to denote the unique essential vector in
Block(v), i.e., Lower(v) is the vector obtained by replacing each hi in v by \ell i.

We let min(S(v)) denote the smallest index in S(v) and let S\prime (v) denote S(v) \setminus 
\{ min(S(v))\} .

Given a vector v \in D we follow the convention and write (v - i, \alpha ) to denote the
vector obtained from v by replacing its ith entry vi with \alpha . We write (v[n], \alpha , \alpha 

\prime ) to
denote the vector obtained from v by replacing vn+1 with \alpha and vn+2 with \alpha \prime . We
let \rho : T2 \cup T3 \cup T4 \rightarrow T1 denote the map with \rho (v) = (v[n], 0, 0).

Given two vectors v,w \in Ti of the same type, we write v \prec w (or say that
v lies below w, or w lies above v) if either S(v) \subset S(w), or S(v) = S(w) and
S+(v) \subset S+(w). By definition \prec is transitive.
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The linear program LP\prime (I) is presented in Figure 5.1 which has the same objective
function and variables (u(v),q(v) : v \in D) as LP(I). We refer to u(v) and q(v) as
the utility and allocation variables of v \in D, respectively. For convenience, we write
(u(\cdot ),q(\cdot )) to denote a solution to LP\prime (I), and call u(\cdot ) : D \rightarrow \BbbR \geq 0 a utility function.
Constraints in Part 1 of LP\prime (I) concerns variables of type-1 vectors; Part 2 concerns
type-2 and type-1 vectors; Part 3 concerns type-3 and type-1 vectors; Part 4 concerns
type-4, -3, and -1 vectors.

Maximize
\sum 
\bfv \in D

Pr[v] \cdot 

\left(  \sum 
i\in [n+2]

vi \cdot qi(v) - u(v)

\right)  subject to

Part 0. Same constraints on u(v) and q(v) as in LP(I):

u(v) \geq 0, qi(v) \geq 0, and
\sum 

j\in [n+2]

qj(v) \leq 1 for v \in D and i \in [n+ 2].

Part 1. Constraints on type-1 vectors:

u(v) \geq 
\sum 

i\in S(\bfv )

di \cdot qi(a) for v \in T \prime 
1(5.4)

u(v) - u(w) \leq \tau i \cdot qi(v) for v \in T1, i \in S+(v) and w = (v - i, \ell i),(5.5)

u(v) - u(w) \geq 
\sum 

j\in S+(\bfv )

\tau j \cdot qj(w) for v \in T1, w = Lower(v),(5.6)

u(v) \geq u(w) for v \in T1, i \in S(v), w = Lower(v - i, ai),(5.7)

u(v) - u(w) \leq 
\sum 
j\in [n]

(vj  - wj) \cdot qj(v),(5.8)

for v \in T1, i \in S(v), w \in Block(v - i, ai).

Part 2. Constraints on type-2 vectors:

u(v) \geq u(\rho (v)) and u(v) \geq u(c2) for v \in T2,(5.9)

u(v) - u(w) \leq \tau i \cdot qi(v) for v \in T2, i \in S+(v), w = (v - i, \ell i),(5.10)

u(v) - u(w) \leq 
\sum 
j\in [n]

(vj  - wj) \cdot qj(v)(5.11)

for v \in T2, i \in S(v), w \in Block(v - i, ai).

Part 3: Constraints on type-3 vectors:

u(v) \geq u(\rho (v)) and u(v) \geq u(c3) for v \in T3,(5.12)

u(v) - u(w) \leq \tau i \cdot qi(v) for v \in T3, i \in S+(v), w = (v - i, \ell i)(5.13)

u(v) - u(w) \leq 
\sum 
j\in [n]

(vj  - wj) \cdot qj(v)(5.14)

for v \in T3, i \in S(v), w \in Block(v - i, ai).

Fig. 5.1. (continued)
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Part 4: Constraints on type-4 vectors:

u(c4) \geq u(c3) and u(c4) - u(c3) \leq s \cdot qn+1(c4),

u(v) \geq u(\rho (v)) and u(v) \geq u(c4) for v \in T4,(5.15)

u(v) - u(w) \leq \tau i \cdot qi(v) for v \in T4, i \in S+(v), w = (v - i, \ell i),(5.16)

u(v) - u(w) \leq 
\sum 
j\in [n]

(vj  - wj) \cdot qj(v)(5.17)

for v \in T4, i \in S(v), w \in Block(v - i, ai).

Fig. 5.1. Relaxed linear program LP\prime (I).

It is easy to check that LP\prime (I) is a relaxation of LP(I). Compared to the standard
LP, we included in LP\prime (I) the constraint between v and w as given in (2.1) for
only a carefully picked subset of pairs. At a high level, we would like to keep as
few constraints (2.1) of LP(I) as possible to simplify the characterization of optimal
solutions to LP\prime (I); on the other hand, we need to keep enough constraints of LP(I)
so that at the end, optimal solutions to LP\prime (I) can be shown to be feasible to LP(I)
and, thus, are optimal solutions to LP(I) as well.

5.1.1. Properties of a small linear program. We start with the following
lemma on q(c2), q(c3), and q(c4) in any optimal solution to LP\prime (I).

Lemma 5.1. If (u(\cdot ),q(\cdot )) is an optimal solution to LP\prime (I), then it satisfies

qn+1(c2) = 1, qn+2(c3) = 1, qn+1(c4) =
u(c4) - u(c3)

s
, qn+2(c4) = 1 - qn+1(c4);

all other entries of the three vectors q(c2),q(c3), and q(c4) are 0.

Proof. No constraint in LP\prime (I) involves q(c2) or q(c3) other than those in Part
0. For q(c4), in additional to Part 0, there is a constraint in Part 4 that involves
qn+1(c4): s \cdot qn+1(c4) \geq u(c4) - u(c3). (Note that we have u(c4) \geq u(c3) by (5.15) in
Part 4.) The lemma then follows from the objective function and that t \gg s \gg 1.

Let \^D = T2 \cup T3 \cup T4 \setminus \{ c2, c3, c4\} . Vectors q(v) for v \in \^D are more involved.
Given a utility function u : D \rightarrow \BbbR \geq 0, we define for each v \in \^D the following small
linear program LP(v : u) over n+ 2 variables q = (q1, . . . , qn+2):

maximize
\sum 

j\in [n+2]

vj \cdot qj  - u(v) subject to

qi \geq 0 and
\sum 

j\in [n+2]

qj \leq 1 for i \in [n+ 2],(5.18)

\tau i \cdot qi \geq u(v) - u(w) for i \in S+(v) and w = (v - i, \ell i),(5.19) \sum 
j\in [n]

(vj  - wj) \cdot qj \geq u(v) - u(w) for i \in S(v) and w \in Block(v - i, ai).(5.20)

Note that LP(v : u) uses utilities of v and w in blocks nearby v given by u (so
the RHS of the constraints u(v)  - u(w) and u(v) in the objective function are all
constants instead of variables), and that qn+1, qn+2, and qi, i \in [n] \setminus S(v), do not
appear in constraints of LP(v : u) other than (5.18) and the objective function.

Comparing LP\prime (I) and LP(v : u) gives us the following lemma.
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Lemma 5.2. Given a utility function u(\cdot ) : D \rightarrow \BbbR \geq 0 and v \in \^D, q(v) satisfies
all constraints in LP\prime (v) that involve q(v) if and only if it is a feasible solution to
LP(v : u). Moreover, if (u(\cdot ),q(\cdot )) is an optimal solution to LP\prime (I), then q(v) must
be an optimal solution to LP(v : u) for all v \in \^D.

Proof. The first part is trivial since we included in LP(v : u) every constraint in
LP\prime (I) that involves q(v). The second part follows directly from the first part, since
the objective function of LP(v : u) is exactly Rev(v), the revenue at v (and we also
know that Pr[v] > 0 for all v \in D).

Next we prove a few properties of optimal solutions to LP(v : u).

Lemma 5.3. Suppose that LP(v : u) is feasible for some utility function u : D \rightarrow 
\BbbR \geq 0 and v \in \^D. Then any optimal solution q = (q1, . . . , qn+2) to LP(v : u) satisfies
qi(v) = 0 for all i \in [n] \setminus S(v) and entries of q sum to 1. Moreover, we also have
qn+2(v) = 0 if v \in T2, and qn+1(v) = 0 if v \in T3 \cup T4.

Proof. If any of the qi's listed above is positive, replacing qi by 0 and adding qi
to qn+1 if v \in T2 or adding qi to qn+2 if v \in T3 \cup T4 would result in a strictly better
feasible solution. If the entries of q sum to 1  - c for some c > 0, adding c to either
qn+1 or qn+2 would result in a strictly better feasible solution.

In the proof sometimes we need to compare optimal solutions to LP(v : u) versus
LP(v : u\prime ) for two utility functions u and u\prime that are entrywise close to each other.
The following lemma comes in handy.

Lemma 5.4. Assume LP(v : u) and LP(v : u\prime ) are feasible for some v \in \^D and
utilities u, u\prime : D \rightarrow \BbbR \geq 0. Let Opt and Opt\prime denote optimal values of LP(v : u) and
LP(v : u\prime ), respectively. Let \epsilon > 0. Then

1. if v \in T2 and | u(w) - u\prime (w)| \leq \epsilon for w \in T2, then | Opt - Opt\prime | = O(n\epsilon s/\beta ).

2. if v \in T3 (or T4) and | u(w) - u\prime (w)| \leq \epsilon for all w \in T3 (or T4), then we have
| Opt - Opt\prime | = O(n\epsilon t/\beta ).

Proof. We prove that Opt\prime \geq Opt  - O(n\epsilon s/\beta ) when v \in T2. All other cases
can be proved similarly. For this purpose, let q and q\prime denote an optimal solution to
LP(v : u) and LP(v : u\prime ), respectively. We consider the following two cases.

Case 1: qn+1 \geq 4n\epsilon /\beta . Let q\ast denote the following nonnegative vector obtained
from q:

q\ast n+1 = qn+1  - | S(v)| \cdot 4\epsilon 
\beta 

and q\ast i = qi +
4\epsilon 

\beta 
for each i \in S(v).

It is a feasible solution to LP(v : u\prime ), given (5.1) and (5.2). As a result, we have that
Opt\prime \geq Opt - O(n\epsilon s/\beta ).

Case 2: qn+1 < 4n\epsilon /\beta . This case is more involved. From Lemma 5.3 we have
qn+2 = q\prime n+2 = 0. Let c = maxi\in [n]\{ qi  - q\prime i\} . If c \leq 8n\epsilon /\beta , then we immediately have
(using q\prime n+1 \geq 0)

Opt\prime \geq Opt - s \cdot (4n\epsilon /\beta ) - n \cdot c \cdot O(1) \geq Opt - O(n\epsilon s/\beta ),

since we assumed s \gg n in (5.3). Otherwise (c > 8n\epsilon /\beta ), let k \in S(v) denote an index
that achieves the maximum (k \in S(v) since qi = q\prime i = 0 for all i \in [n]\setminus S(v) by Lemma
5.3): qk  - q\prime k = c > 8n\epsilon /\beta . As

\sum 
i\in S(\bfv ) qi = 1  - qn+1 > 1  - c and

\sum 
i\in S(\bfv ) q

\prime 
i \leq 1 we

have qi \geq q\prime i  - (n+ 1)c for all i \in S(v). Now let q\ast denote the vector obtained from
q by replacing
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514 CHEN ET AL.

q\ast k = qk  - (| S(v)|  - 1) \cdot 4\epsilon 
\beta 

and q\ast i = qi +
4\epsilon 

\beta 
for all other i \in S(v).

One can verify that q\ast is a feasible solution to LP\prime (v). The only nontrivial case
in verifying this is to show that

\sum 
j\in [n](vj  - wj) \cdot q\ast j \geq u\prime (v)  - u\prime (w) for any w \in 

Block(v - k, ak). For this, note that\sum 
j\in [n]

(vj  - wj) \cdot q\ast j  - 
\sum 
j\in [n]

(vj  - wj) \cdot q\prime j \geq (vk  - ak) \cdot 
c

2
 - n \cdot O(\beta ) \cdot O(nc) = \Omega (c) > 0.

As a result, we have Opt\prime \geq Opt - O(n\epsilon /\beta ) \cdot O(n\beta ) = Opt - O(n2\epsilon ).
The lemma follows by combining the two cases and the fact that s/\beta \gg n.

5.1.2. Condition on utilities of type-2 vectors. We show that utilities of
type-2 vectors in any optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I) must satisfy

Condition-Type-2: Each type-2 vector v \in T2 has utility

u(v) = max
\bigl\{ 
u(\rho (v)), u(c2)

\bigr\} 
.

Recall that \rho (v) = (v - (n+1), 0) for type-2 vectors. By (5.9) of LP\prime (I) in Part 2, u(v)
is at least as large as the RHS. So Condition-Type-2 requires that it is tight for
every v \in T2 in an optimal solution.

We now prove Condition-Type-2.

Lemma 5.5. Given (5.1), (5.2), and (5.3), any optimal solution to LP\prime (I) satisfies
Condition-Type-2.

Proof. Let (u(\cdot ),q(\cdot )) denote an optimal solution to LP\prime (I). Let R denote the
set of v \in T2 that satisfies u(v) > max\{ u(\rho (v)), u(c2)\} . Note that c2 /\in R, and we
assume for contradiction that R is nonempty.

Our plan is to derive a solution (u\prime (\cdot ),q\prime (\cdot )) from (u(\cdot ),q(\cdot )), by modifying utilities
and allocations of type-2 vectors only. We then get a contradiction by showing that
(u\prime (\cdot ),q\prime (\cdot )) is feasible and has a strictly higher revenue than (u(\cdot ),q(\cdot )). (Because we
only modify utilities and allocations of type-2 vectors, for the feasibility it suffices to
verify constraints of LP\prime (I) in Part 2.) We use Rev(v) and Rev\prime (v) to denote the
revenue from v in the old and new solutions. By Lemma 5.3 Rev(v) is the value of
LP(v : u) for v \in \^D.

To define the new solution (u\prime (\cdot ),q\prime (\cdot )), let \epsilon > 0 denote the following parameter:

\epsilon = min
\Bigl\{ 
min
\bfv \in R

\Bigl( 
u(v) - max

\bigl\{ 
u(\rho (v)), u(c2)

\bigr\} \Bigr) 
,

smallest positive entry in q(v) among all v \in D
\Bigr\} 
.

For each v \in T2, set u\prime (v) = u(v) if v /\in R and u\prime (v) = u(v)  - \epsilon if v \in R. All
other entries of u\prime remain the same as in u. Note that u\prime still satisfies (5.9) in Part
2. Given u\prime (\cdot ), we set q\prime (v) for each v \in T2 \setminus \{ c2\} to be an optimal solution to the
linear program LP(v : u\prime ) (though it is not clear for now if LP(v : u\prime ) is still feasible
or not; we will show that this is indeed the case for every v \in T2 \setminus \{ c2\} ) and all
other allocations remain the same as those in q(\cdot ). This finishes the description of
(u\prime (\cdot ),q\prime (\cdot )).

By Lemma 5.2, to show that (u\prime (\cdot ),q\prime (\cdot )) is well-defined and feasible it suffices to
show that LP(v : u\prime ) is feasible for all v \in T2 \setminus \{ c2\} (because (u\prime (\cdot ),q\prime (\cdot )) satisfies
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trivially all constraints of LP\prime (I) except (5.10) and (5.11) in Part 2). To see this is
the case we fix such a v. If v \in R (and u\prime (v) = u(v)  - \epsilon ), every feasible solution
to LP(v : u) is also feasible to LP(v : u\prime ). As a result, LP(v : u\prime ) is feasible as
well. Furthermore, we also have Rev\prime (v) \geq Rev(v)+ \epsilon since u\prime (v) = u(v) - \epsilon for any
v \in R.

If v /\in R, then either u\prime (v) = u(v) = u(c2) or u\prime (v) = u(v) = u(\rho (v)). For
the former case, setting qn+1 = 1 and qi = 0 for all other i is a feasible solution to
LP(v : u\prime ), since u\prime (w) \geq u(c2) for all w \in T2. For the latter case, q = q(\rho (v)) is
a feasible solution to LP(v : u\prime ) since constraints on q(\rho (v)) in LP\prime (I) are at least
as strong as those on q in LP(v : u) using u\prime (v) = u(\rho (v)) and u\prime (w) \geq u(\rho (w)) for
w \in T2. More specifically, (5.19) of LP(v : u\prime ) follows from (5.5) of Part 1 in LP\prime (I)
over q(\rho (v)); (5.20) follows from (5.8) of Part 1 in LP\prime (I) over q(\rho (v)). We conclude
that (u\prime (\cdot ),q\prime (\cdot )) is well-defined, feasible to LP\prime (I).

The only thing left to show that the expected revenue from (u\prime (\cdot ),q\prime (\cdot )) is strictly
higher. By the definition of (u\prime (\cdot ),q\prime (\cdot )), we have Rev\prime (v) = Rev(v) for all v other
than those in T2 \setminus \{ c2\} since each such v receives the same allocation and utility as
in (u(\cdot ),q(\cdot )). By Lemma 5.4, we also have

Rev\prime (v) \geq Rev(v) - O(n\epsilon s/\beta ) for all v \in T2 \setminus \{ c2\} .

Moreover, if v \in T2 \setminus R and there is no w \in R below v (or w \prec v) then LP(v : u\prime )
is exactly the same as LP(v : u) so Rev\prime (v) = Rev(v). This inspires us to define
R\prime \subseteq R as the bottom of R: v \in R\prime if there is no other vector in R below v. (Since R
is nonempty, R\prime is nonempty as well.) For each v \in R\prime , we claim that Rev\prime (v) from
the new solution indeed has a much bigger advantage over Rev(v):

(5.21) Rev\prime (v) \geq Rev(v) + \Omega (\epsilon s).

To prove (5.21), we first show that qi(v) > 0 for some i \in S(v). For this, setting
w = Lower(v - j , aj) for some j \in S(v) in (5.11) of Part 2 in LP\prime (I) (note that
v \not = c2 implies S(v) \not = \emptyset ), we have\sum 

i\in S(\bfv )

(vi  - wi) \cdot qi(v) \geq u(v) - u(w).

It follows from v \in R\prime \subseteq R that

u(v) > max
\bigl\{ 
u(\rho (v)), u(c2)

\bigr\} 
and u(w) = max

\bigl\{ 
u(\rho (w)), u(c2)

\bigr\} 
.

By (5.8) of Part 1 in LP\prime (I), we have u(\rho (v)) \geq u(\rho (w)). It follows that u(v) > u(w)
and, thus, qi(v) > 0 for some i \in S(v). Let k be an index in S(v) with qk(v) > 0.
As a result, the following vector q\ast (which is nonnegative because of our choice of \epsilon ):
q\ast n+1 = qn+1(v) + \epsilon /2, q\ast k = qk(v)  - \epsilon /2, and q\ast i = qi(v) for all other i, must be a
feasible solution to LP(v : u\prime ). (5.21) then follows from s \gg 1.

We say a type-2 vector is aboveR\prime if it is above one of the vectors inR\prime . Combining
all cases together, to show that revenue from (u\prime (\cdot ),q\prime (\cdot )) is strictly higher than that
from (u(\cdot ),q(\cdot )), it suffices to show that

(5.22) Pr[vectors in R\prime ] \cdot \Omega (\epsilon s) \gg Pr[(type-2) vectors above R\prime ] \cdot O(n\epsilon s/\beta ).
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This follows from our choices of p and r in (5.1). Taking any v \in R\prime , we have the
following bound:

Pr[vectors above v]

= Pr[vectors w \succ v, S(w) = S(v)] + Pr[vectors w \succ v, S(v) \subset S(w)]

=

\biggl( 
O

\biggl( 
nr

p

\biggr) 
+O

\biggl( 
np| S(\bfv )| +1

r| S(\bfv )| 

\biggr) \biggr) 
\cdot Pr[v]

= O

\biggl( 
nr

p
+ np \cdot 

\Bigl( p
r

\Bigr) n\biggr) 
\cdot Pr[v]

\ll \beta 

n
\cdot Pr[v].

Then (5.22) follows from a union bound. This finishes the proof of the lemma.

Arguments used in Lemma 5.5 imply the following property. Suppose (u(v),q(v) :
v \in T1) satisfies all the constraints of LP

\prime (I) in Parts 0 and 1. Given any nonnegative
number u2, we can extend it to T2 by setting u(c2) = u2 and u(v) = max\{ u(\rho (v)), u2\} 
for each other v in T2, and then setting q(c2) according to Lemma 5.1 and q(v) to
be an optimal solution to LP(v : u) for each other v \in T2. It is easy to show, by
an argument similar to Lemma 5.5, that LP(v : u) is feasible, and (u(v),q(v) : v \in 
T1 \cup T2) now satisfies all the constraints of LP\prime (I) in Parts 0, 1, and 2.

5.1.3. Conditions on utilities of type-4 vectors. Next we show that utilities
of type-4 vectors satisfy the following condition:

Condition-Type-4: Each type-4 vector v \in T4 has utility

u(v) = max
\bigl\{ 
u(\rho (v)), u(c4)

\bigr\} 
.

Lemma 5.6. Given (5.1), (5.2), and (5.3), any optimal solution to LP\prime (I) satisfies
Condition-Type-4.

Proof. Let (u(\cdot ),q(\cdot )) be an optimal solution, and let R be the set of v \in T4 with
u(v) > \{ u(\rho (v)), u(c4)\} (so we have c4 /\in R). Assume for contradiction that R is
nonempty. Our plan is to derive (u\prime (\cdot ),q\prime (\cdot )) from (u(\cdot ),q(\cdot )) by modifying utilities
and allocations of vectors in T4 \setminus \{ c4\} only. We reach a contradiction by showing
that the new solution (u\prime (\cdot ),q\prime (\cdot )) is feasible and has a strictly higher revenue than
(u(\cdot ),q(\cdot )).

To define the new solution (u\prime (\cdot ),q\prime (\cdot )), let \epsilon > 0 denote the following parameter:

\epsilon = min
\Bigl\{ 
min
\bfv \in R

\Bigl( 
u(v) - max

\bigl\{ 
u(\rho (v)), u(c3)

\bigr\} \Bigr) 
,

smallest positive entry in q(v) among all v \in D
\Bigr\} 
.

First for each v \in T4 we set u\prime (v) = u(v) if v /\in R, and u\prime (v) = u(v)  - \epsilon if v \in R;
all other entries of u\prime are the same as those in u. Note that u\prime (\cdot ) still satisfies (5.15)
in Part 4 of LP\prime (I). Given u\prime (\cdot ) we set q\prime (v) for each v \in T4 \setminus \{ c4\} to be an optimal
solution to the linear program LP(v : u\prime ). With an argument similar to that used
in Lemma 5.5, LP(v : u\prime ) is feasible (if v \in R, q(v) is feasible; otherwise q(\rho (v)) is
feasible).

Given that (u\prime (\cdot ),q\prime (v)) is well-defined and feasible, we next show that its ex-
pected revenue is strictly higher than that of (u(\cdot ),q(\cdot )). We follow the approach as
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in the proof of Lemma 5.5. Let R\prime be the bottom of R: R\prime contains w \in R if no other
vector in R lies below w. For each v \in T4 \setminus R\prime with w \prec v for some w \in R\prime , we
apply Rev\prime (v) \geq Rev(v)  - O(n\epsilon t/\beta ) by Lemma 5.4. For each v \in T4 \setminus R\prime that is
not above any vector in R\prime , we have Rev\prime (v) = Rev(v). Finally, for each v \in R\prime , the
same proof of (5.21) in Lemma 5.5 gives that Rev\prime (v) \geq Rev(v) + \Omega (\epsilon t).

Combining all the cases and following the same argument used in Lemma 5.5, we
have

Pr[vectors in R\prime ] \cdot \Omega (\epsilon t) \gg Pr[(type-4) vectors above R\prime ] \cdot O(n\epsilon t/\beta ).

This finishes the proof of the lemma.

Arguments used in Lemma 5.6 further imply the following fact. Suppose that
(u(v),q(v) : v \in T1 \cup T2 \cup T3) satisfies all the constraints of LP\prime (I) in Parts 0, 1, 2,
and 3. Given any nonnegative u4 with u(c3) \leq u4 \leq u(c3) + s, we can extend it to
T4 by setting u(c4) = u4 and u(v) = max\{ u(\rho (v)), u4\} for other v in T4, and setting
q(c4) according to Lemma 5.1 and q(v) to be an optimal solution to LP(v : u)
for other v \in T4. By similar arguments in Lemma 5.6, LP(v : u) is feasible, and
(u(v),q(v) : v \in D) is feasible to LP\prime (I).

5.1.4. Condition on utilities of type-3 vectors. A similar condition holds
for utilities of type-3 vectors in any optimal solution to LP\prime (I):

Condition-Type-3: Each type-3 vector v \in T3 has utility

u(v) = max
\bigl\{ 
u(\rho (v)), u(c3)

\bigr\} 
.

Lemma 5.7. Given (5.1), (5.2), and (5.3), any optimal solution to LP\prime (I) satisfies
Condition-Type-3.

Proof. Assume for contradiction that (u(\cdot ),q(\cdot )) is an optimal solution to LP\prime (I)
that violates Condition-Type-3. Let R denote the nonempty set of v \in T3 with
u(v) > max

\bigl\{ 
u(\rho (v)), u(c3)\} (so c3 /\in R).

To reach a contradiction, we derive from (u(\cdot ),q(\cdot )) a new solution (u\prime (\cdot ),q\prime (\cdot )) by
modifying utilities and allocations of v \in T3 \setminus \{ c3\} only. (All constraints are satisfied
trivially except those in Part 3; note that only u(c3) appears in Part 4 but it remains
the same in u\prime (\cdot ).) We then show that (u\prime (\cdot ),q\prime (\cdot )) is better.

We define (u\prime (\cdot ),q\prime (\cdot )) from (u(\cdot ),q(\cdot )) as follows. Let \epsilon > 0 denote the following
parameter:

\epsilon = min
\Bigl\{ 
min
\bfv \in R

\Bigl( 
u(v) - max

\bigl\{ 
u(\rho (v)), u(c3)

\bigr\} \Bigr) 
,

smallest positive entry in q(v) among all v \in D
\Bigr\} 
.

For each v \in T3 we set u\prime (v) = u(v) if v /\in R and u\prime (v) = u(v) - \epsilon if v \in R; all other
entries remain the same. Note that the new u\prime satisfies (5.12) in Part 3 of LP\prime (I).
Then for each v \in T3 \setminus \{ c3\} , we set q\prime (v) to be an optimal solution to LP(v : u\prime ).
With an argument similar to the one used in the proof of Lemma 5.5, LP(v : u\prime ) is
feasible (if v \in R, q(v) is feasible; otherwise, q(\rho (v)) is feasible). All other entries of
q\prime (\cdot ) remain the same. It is clear now that (u\prime (\cdot ),q\prime (\cdot )) is a feasible solution to LP\prime (I).

We compare the expected revenues from (u(\cdot ),q(\cdot )) and (u\prime (\cdot ),q\prime (\cdot )) and show
that the latter is higher. Let R\prime denote the bottom of R: R\prime contains v \in R if no
other vector in R lies below v. For each v \in T3 \setminus R\prime above a vector in R\prime , we apply
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Rev\prime (v) \geq Rev(v) - O(n\epsilon t/\beta ) by Lemma 5.4. For each vector v \in T3 \setminus R\prime that is not
above any vector in R\prime , we have Rev\prime (v) = Rev(v). Finally, for each v \in R\prime , we can
show that Rev\prime (v) \geq Rev(v) + \Omega (\epsilon t) with an argument similar to that in the proof
of Lemma 5.5.

Combining all these bounds together and following the same argument used in
Lemma 5.5, we have

Pr[vectors in R\prime ] \cdot \Omega (\epsilon t) \gg Pr[(type-3) vectors above R\prime ] \cdot O(n\epsilon t/\beta ).

This finishes the proof of the lemma.

Arguments used in Lemma 5.6 also imply the following property. Suppose that
(u(v), q(v) : v \in T1 \cup T2) satisfies all the constraints of LP\prime (I) in Parts 0, 1, and 2.
Given a nonnegative number u3, we can extend it to T3 by setting u(c3) = u3 and
u(v) = max\{ u(\rho (v)), u3\} for other v in T3, and setting q(c3) according to Lemma
5.1 and q(v) to be an optimal solution to LP(v : u) for other v \in T3. By similar
arguments used in Lemma 5.7, LP(v : u) is feasible, and (u(v),q(v) : v \in T1\cup T2\cup T3)
now satisfies Parts 0, 1, 2, and 3.

5.1.5. Expected revenue from types-2, -3, and -4 vectors. Before working
on type-1 vectors, which is the most challenging part of the characterization, we
summarize our progress so far. We need the following notation. Let (u(v),q(v) : v \in 
T1) denote a partial solution that satisfies all constraints of LP\prime (I) in Parts 0 and 1.
Given u2, u3, u4 \geq 0 that satisfy u3 \leq u4 \leq u3 + s, we use \sansE \sansx \sanst (u(\cdot ),q(\cdot );u2, u3, u4) to
denote the following set of solutions \{ u\prime (v),q\prime (v) : v \in D\} to LP\prime (I):

1. u\prime (v) = u(v) and q\prime (v) = q(v) for all v \in T1.

2. u\prime (c2) = u2, u
\prime (c3) = u3, and u\prime (c4) = u4; q

\prime (c2) = en+1 and q\prime (c3) = en+2.
3. All entries of q\prime (c4) are 0 except

qn+1(c4) = (u4  - u3)/s and qn+2(c4) = 1 - (u4  - u3)/s.

4. For each v \in T2 \setminus \{ c2\} , u\prime (v) = max\{ u(\rho (v)), u2\} and q\prime (v) is an optimal
solution to LP(v : u\prime ).

5. For each v \in T3 \setminus \{ c3\} , u\prime (v) = max\{ u(\rho (v)), u3\} and q\prime (v) is an optimal
solution to LP(v : u\prime ).

6. For each v \in T4 \setminus \{ c4\} , u\prime (v) = max\{ u(\rho (v)), u4\} and q\prime (v) is an optimal
solution to LP(v : u\prime ).

By discussions at the end of sections 5.1.2, 5.1.3, and 5.1.4, \sansE \sansx \sanst (u(\cdot ),q(\cdot ) : u2, u3, u4)
is well-defined (and nonempty). The next two lemmas summarize our progress so far.

Lemma 5.8. Suppose that (u(v),q(v) : v \in T1) satisfies all constraints of LP\prime (I)
in Parts 0 and 1. Given any u2, u3, u4 \geq 0, where u3 \leq u4 \leq u3 + s, solutions in
\sansE \sansx \sanst (u(\cdot ),q(\cdot ) : u2, u3, u4) are feasible to LP\prime (I) and for each i = 1, 2, 3, 4, they all
share the same expected revenue from type-i vectors.

Lemma 5.9. Any optimal solution (u\prime (\cdot ),q\prime (\cdot )) to the linear program LP\prime (I) be-
longs to \sansE \sansx \sanst (u(\cdot ),q(\cdot ) : u2, u3, u4), where we set ui = u\prime (ci) for i = 2, 3, 4 and
(u(v),q(v) : v \in T1) to be the restriction of (u\prime (\cdot ),q\prime (\cdot )) on T1.

Let (u(v),q(v) : v \in T1) and (u\prime (v),q\prime (v) : v \in T1) denote two partial solutions
that satisfy Parts 0 and 1 of LP\prime (I). The next lemma shows that if | u(v)  - u\prime (v)| 
is small for all v \in T1, then expected revenues of \sansE \sansx \sanst (u(\cdot ),q(\cdot ) : u2, u3, u4) and
\sansE \sansx \sanst (u\prime (\cdot ),q\prime (\cdot ) : u2, u3, u4) from types-2, -3, -4 vectors are also close.
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Lemma 5.10. Suppose (u(v),q(v) : v \in T1) and (u\prime (v),q\prime (v) : v \in T1) satisfy
all constraints of LP\prime (I) in Parts 0 and 1 and | u(v)  - u\prime (v)| \leq \epsilon for all v \in T1. Let
u2, u3, u4, u

\prime 
2, u

\prime 
3, u

\prime 
4 \geq 0 with u3 \leq u4 \leq u3 + s, u\prime 

3 \leq u\prime 
4 \leq u\prime 

3 + s, and | ui  - u\prime 
i| \leq \epsilon 

for i = 2, 3, 4. Then we have\bigm| \bigm| Rev2  - Rev\prime 
2

\bigm| \bigm| \leq O

\biggl( 
\delta n\epsilon s

\beta 

\biggr) 
,
\bigm| \bigm| Rev3  - Rev\prime 

3

\bigm| \bigm| \leq O

\biggl( 
\delta 2n\epsilon t

\beta 

\biggr) 
, and

\bigm| \bigm| Rev4  - Rev\prime 
4

\bigm| \bigm| \leq O

\biggl( 
\delta 3n\epsilon t

\beta 

\biggr) 
,

where we let Revi and Rev\prime 
i denote revenues from type-i vectors in solutions of

\sansE \sansx \sanst (u(\cdot ),q(\cdot ) : u2, u3, u4) and solutions of \sansE \sansx \sanst (u\prime (\cdot ),q\prime (\cdot ) : u\prime 
2, u

\prime 
3, u

\prime 
4), respectively.

Proof. We focus on | Rev4  - Rev\prime 
4 | . The same argument applies to types-3

and -4 vectors. For convenience, we abuse the notation slightly and still write
(u(v),q(v) : v \in D) and (u\prime (v),q\prime (v) : v \in D) to denote two full feasible solutions of
LP\prime (I) after extension. By definition,\bigm| \bigm| Rev4  - Rev\prime 

4

\bigm| \bigm| = \bigm| \bigm| \bigm| \sum 
\bfv \in T4

Pr[v] \cdot 
\bigl( 
Rev(v) - Rev\prime (v)

\bigr) \bigm| \bigm| \bigm| .
It is also clear that | Rev(c4)  - Rev\prime (c4) | \leq O(\epsilon t/s). For other v \in T4, q(v) is
optimal to LP(v : u) and q\prime (v) is optimal to LP(v : u\prime ), both of which are feasible.
It follows from Lemma 5.4 and

| u(w) - u\prime (w)| =
\bigm| \bigm| max\{ u(\rho (w)), u4\}  - max\{ u\prime (\rho (w)), u\prime 

4\} 
\bigm| \bigm| \leq \epsilon for all w \in T4,

that | Rev(v) - Rev(v\prime ) | \leq O(n\epsilon t/\beta ). As
\sum 

\bfv \in T4
Pr[v] < \delta 3 we have | Rev4 - Rev\prime 

4 | \leq 
O(\delta 3n\epsilon t/\beta ).

5.1.6. Condition over type-1 vectors. Finally we show that any optimal
solution (u(\cdot ),q(\cdot )) to LP\prime (I) satisfies the following condition:

Condition-Type-1: For each type-1 essential vector v \in T \prime 
1 and v \not = a, we

have u(v) =
\sum 

i\in S(\bfv ) di \cdot qi(a). For each v \in T \prime 
1 and v \not = a, letting

k = min(S(v)) and S\prime (v) = S(v) \setminus \{ k\} ,

we have qi(v) = qi(a) for all i \in S\prime (v), qk(v) = 1  - 
\sum 

i\in S\prime (\bfv ) qi(a), and all

other entries of q(v) are 0. Moreover, for each nonessential type-1 vector
v \in T \ast 

1 , letting w = Lower(v), we have q(v) = q(w) and

u(v) = u(w) +
\sum 

j\in S+(\bfv )

\tau j \cdot qj(w) =
\sum 

i\in S(\bfv )

di \cdot qi(a) +
\sum 

j\in S+(\bfv )

\tau j \cdot qj(w).

Note that Condition-Type-1 does not require
\sum 

i\in [n] qi(a) = 1. Actually we will
only get to impose this condition later in section 5.2.1 after proper choices of ai's.

We record the following three simple lemmas concerning solutions that satisfy
Condition-Type-1.

Lemma 5.11. Assume that (u(\cdot ),q(\cdot )) satisfies Condition-Type-1. If two type-
1 vectors v and w satisfy S(w) \subseteq S(v), then qj(w) \geq qj(v) for all j \in S(w).

Lemma 5.12. Assume that (u(\cdot ),q(\cdot )) satisfies Condition-Type-1. Then we
have Rev(v) = Rev(v\prime ) for any two type-1 vectors v and v\prime in the same block.
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Proof. Let w = Lower(v) = Lower(v\prime ). Using Condition-Type-1, Rev(v)
is equal to\sum 

i\in [n+2]

vi \cdot qi(v) - u(v) =
\sum 

i\in S(\bfw )

vi \cdot qi(w) - u(w) - 
\sum 

i\in S+(\bfv )

\tau i \cdot qi(w)

=
\sum 

i\in S(\bfw )

\ell i \cdot qi(w) - u(w),

which does not depend on v but only w = Lower(v). The lemma then follows.

Lemma 5.13. Let q denote an (n+ 2)-dimensional nonnegative vector that sums
to at most 1. Then there is a unique (u(v),q(v) : v \in T1) that satisfies q(a) = q
and Condition-Type-1. Moreover, (u(v),q(v) : v \in T1) satisfies all constraints of
LP\prime (I) in Parts 0 and 1.

Proof. Part 0, (5.4), and (5.7) are trivial. For (5.5), given v \in T1, i \in S+(v), and
w = (v - i, \ell i), we have that

u(v) - u(w) = \tau i \cdot qi
\bigl( 
Lower(v)

\bigr) 
= \tau i \cdot qi(v)

by Condition-Type-1. For (5.6), letting w = Lower(v), we have u(v)  - u(w) =\sum 
j\in S+(\bfv ) \tau j \cdot qj(w). For (5.8), given v \in T1, i \in S(v), w \in Block(v - i, ai), v

\prime =

Lower(v), and w\prime = Lower(w), we have

u(v) - u(w) = u(v) - u(v\prime ) + u(v\prime ) - u(w\prime ) + u(w\prime ) - u(w)

=
\sum 

j\in S+(\bfv )

\tau j \cdot qj(v\prime ) + di \cdot qi(a) - 
\sum 

j\in S+(\bfw )

\tau j \cdot qj(w\prime ).

Applying Lemma 5.11 on v and w\prime (also q(v) = q(v\prime ) and qi(a) \leq qi(v) for i \in S(v))
we have

u(v) - u(w) \leq 
\sum 

j\in S+(\bfv )

\tau j \cdot qj(v)+di \cdot qi(v) - 
\sum 

j\in S+(\bfw )

\tau j \cdot qj(v) =
\sum 

j\in S(\bfv )

(vj  - wj) \cdot qj(v).

This covers all constraints in Parts 0 and 1, and the lemma is proven.

Now we prove Condition-Type-1.

Lemma 5.14. Given (5.1), (5.2), and (5.3), any optimal solution to LP\prime (I) sat-
isfies Condition-Type-1.

Proof. Let (u(\cdot ),q(\cdot )) be an optimal solution to LP\prime (I). Our plan is the following.
We first derive a solution (u\ast (\cdot ),q\ast (\cdot )) from (u(\cdot ),q(\cdot )), and show that it is feasible to
LP\prime (I). Then we compare expected revenues from them and show that for (u(\cdot ),q(\cdot ))
to be optimal as assumed, it must satisfy Condition-Type-1.

Using Lemma 5.13, let (u\prime (v),q\prime (v) : v \in T1) denote the unique partial solu-
tion that satisfies q\prime (a) = q(a) and Condition-Type-1. Using Lemma 5.13 again
(u\prime (v),q\prime (v) : v \in T1) satisfies all constraints of LP\prime (I) in Parts 0 and 1. By
Lemma 5.8, \sansE \sansx \sanst (u\prime (\cdot ),q\prime (\cdot );u(c2), u(c3), u(c4)) is a well-defined (nonempty) set of
feasible solutions to LP\prime (I) (here u(c3) \leq u(c4) \leq u(c3) + s as (u(\cdot ),q(\cdot )) is fea-
sible). Now we use (u\ast (v),q\ast (v) : v \in D) to denote a full feasible solution to
LP\prime (I) in \sansE \sansx \sanst (u\prime (\cdot ),q\prime (\cdot );u(c2), u(c3), u(c4)). Now we compare expected revenues of
(u\ast (\cdot ),q\ast (\cdot )) and (u(\cdot ),q(\cdot )).

D
ow

nl
oa

de
d 

07
/2

3/
22

 to
 1

73
.2

.3
5.

82
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE COMPLEXITY OF OPTIMAL LOTTERY PRICING 521

For this purpose, let Revi and Rev\ast 
i denote expected revenues of (u(\cdot ),q(\cdot )) and

(u\ast (\cdot ),q\ast (\cdot )) from type-i vectors, and let Rev and Rev\ast denote their overall expected
revenues. Let \epsilon = max\bfv \in T1

| u(v) - u\ast (v)| . By Lemmas 5.9 and 5.10 we have\bigm| \bigm| (Rev2 +Rev3 +Rev4) - (Rev\ast 
2 +Rev\ast 

3 +Rev\ast 
4)
\bigm| \bigm| 

\leq O

\biggl( 
\delta n\epsilon s+ \delta 2n\epsilon t+ \delta 3n\epsilon t

\beta 

\biggr) 
= O

\biggl( 
\delta ns

\beta 

\biggr) 
\cdot 
\sum 
\bfv \in T1

\bigm| \bigm| u(v) - u\ast (v)
\bigm| \bigm| 

where we used s \gg \delta t from (5.3) and
\sum 

\bfv | u(v) - u\ast (v)| as a trivial upper bound for \epsilon .
By our choice of \delta we have \delta ns/\beta = o(rn+1). We also have Pr[v] \geq rn(1 - \delta )(1 - \delta 2)
= \Omega (rn) for all v \in T1. As a result,

Rev - Rev\ast 

\leq Rev1  - Rev\ast 
1 +

\bigm| \bigm| (Rev2 +Rev3 +Rev4) - (Rev\ast 
2 +Rev\ast 

3 +Rev\ast 
4)
\bigm| \bigm| 

\leq 
\sum 
\bfv \in T1

Pr[v] \cdot 
\bigl( 
Rev(v) - Rev\ast (v)

\bigr) 
+ o(rn+1) \cdot 

\sum 
\bfv \in T1

\bigm| \bigm| u(v) - u\ast (v)
\bigm| \bigm| 

=
\sum 
\bfv \in T1

Pr[v] \cdot 

\left(  \sum 
i\in [n+2]

vi \cdot 
\bigl( 
qi(v) - q\ast i (v)

\bigr) 
+ (1 + \zeta \bfv ) \cdot 

\bigl( 
u\ast (v) - u(v)

\bigr) \right)  
:=
\sum 
\bfv \in T1

Pr[v] \cdot Diff(v)

for some \zeta \bfv with | \zeta \bfv | = o(r) for all v \in T1. For convenience we use Diff(v) to denote
each term for v.

We bound Diff(v) of nonessential type-1 vectors first. Fix a v \in T \ast 
1 . We write

w = Lower(v) \in T \prime 
1 and wi = Lower(v - i, ai) \in T \prime 

1 for each i \in S(v). We have for,
each i \in S(v),

u(v) - u(wi) \leq (vi  - ai) \cdot qi(v) +
\sum 

i\not =j\in S+(\bfv )

\tau j \cdot qj(v) = di \cdot qi(v) +
\sum 

j\in S+(\bfv )

\tau j \cdot qj(v).

Applying Condition-Type-1 on u\ast (\cdot ), we also have

u(v) - u(wi) = u(v) - u\ast (v) + u\ast (v) - u\ast (w) + u\ast (w) - u\ast (wi) + u\ast (wi) - u(wi)

= (u(v) - u\ast (v)) +
\sum 

j\in S+(\bfv )

\tau j \cdot q\ast j (w) + di \cdot qi(a) + (u\ast (wi) - u(wi)).

Combining these two together (and plugging in q\ast (w) = q\ast (v)), we have

di \cdot (qi(a) - qi(v)) +
\sum 

j\in S+(\bfv )

\tau j \cdot (q\ast j (v) - qj(v)) \leq (u\ast (v) - u(v)) - (u\ast (wi) - u(wi)).

Let k = min(S(v)) (S(v) \not = \emptyset since v \in T \prime 
1) and S\prime (v) = S(v) \setminus \{ k\} . We consider

the following two cases.
Case 1: k = min(S(v)) /\in S+(v). Then q\ast j (v) = qj(a) for all j \in S+(v). Thus,

(5.23)

di \cdot (qi(a) - qi(v)) +
\sum 

j\in S+(\bfv )

\tau j \cdot (qj(a) - qj(v)) \leq (u\ast (v) - u(v)) - (u\ast (wi) - u(wi)).
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522 CHEN ET AL.

Given q\ast k(v) = 1 - 
\sum 

i\in S\prime (\bfv ) qi(a) and vk is the (strictly) largest entry in v, we have

\sum 
i\in [n+2]

vi \cdot q\ast i (v) = vk

\left(  1 - 
\sum 

i\in S\prime (\bfv )

qi(a)

\right)  +
\sum 

i\in S\prime (\bfv )

vi \cdot qi(a)

= vk  - 
\sum 

i\in S\prime (\bfv )

(vk  - vi) \cdot qi(a),

\sum 
i\in [n+2]

vi \cdot qi(v) \leq vk

\left(  1 - 
\sum 

i\in S\prime (\bfv )

qi(v)

\right)  +
\sum 

i\in S\prime (\bfv )

vi \cdot qi(v)

= vk  - 
\sum 

i\in S\prime (\bfv )

(vk  - vi) \cdot qi(v).

Combining these two we get

(5.24)
\sum 

i\in [n+2]

vi \cdot (qi(v) - q\ast i (v)) \leq 
\sum 

i\in S\prime (\bfv )

(vk  - vi) \cdot (qi(a) - qi(v)).

Since \tau i = O(\beta ) = O(1/2n) \ll di \approx 1, there exists a unique tuple (\gamma i : i \in S\prime (v)\} 
such that \sum 

i\in S\prime (\bfv )

(vk  - vi) \cdot (qi(a) - qi(v))

=
\sum 

i\in S\prime (\bfv )

\gamma i

\left(  di \cdot (qi(a) - qi(v)) +
\sum 

j\in S+(\bfv )

\tau j \cdot (qj(a) - qj(v))

\right)  .(5.25)

This is because (\gamma i : i \in S\prime (v)) is the unique solution to a linear system with diagonal
entries being di or di + \tau i and off-diagonal entries being 0 or \tau j for some j \in S+(v).
Furthermore, given \tau j = O(\beta ) and \beta \leq vk  - vi \leq 3n\beta , we claim that 0 < \gamma i = O(n\beta ).
To see this, we first prove that | \gamma i| \leq 6n\beta for all i. Assume for contradiction that
| \gamma i| = maxj | \gamma j | > 6n\beta . Then we have 3n\beta \geq | vk  - vi| \geq | di\gamma i|  - n \cdot O(\beta ) \cdot | \gamma i| >
(3/4) \cdot | \gamma i| , a contradiction. Next, assume for contradiction that \gamma i \leq 0 for some i.
Then we have \beta \leq vk  - vi \leq n \cdot O(\beta ) \cdot O(n\beta ), contradicting \beta = 1/2n. It follows from
these properties of \gamma i's that\sum 

i\in [n+2]

vi \cdot (qi(v) - q\ast i (v)) \leq 
\sum 

i\in S\prime (\bfv )

\gamma i \cdot 
\bigl( 
(u\ast (v) - u(v)) - (u\ast (wi) - u(wi)

\bigr) 
= \gamma \bfv \cdot (u\ast (v) - u(v)) +

\sum 
i\in S\prime (\bfv )

\gamma \bfv ,i \cdot (u\ast (wi) - u(wi))(5.26)

for some \gamma \bfv and \gamma \bfv ,i that satisfy | \gamma \bfv | = O(n2\beta ) and | \gamma \bfv ,i| = O(n\beta ) for all i \in S\prime (v).
Case 2: k = min(v) \in S+(v). Then we have, for each i \in S(v),

di \cdot (qi(a) - qi(v)) + \tau k \cdot (q\ast k(v) - qk(v)) +
\sum 

j\in S+(\bfv )\setminus \{ k\} 

\tau j \cdot (qj(a) - qj(v))(5.27)

\leq (u\ast (v) - u(v)) - (u\ast (wi) - u(wi)).

For clarity we use LHSi to denote the LHS of the inequality above for each i \in S(v).
Then there exists a unique tuple (\gamma i : i \in S(v)) such that\sum 

i\in S\prime (\bfv )

((vk  - vi) + \gamma k) \cdot (qi(a) - qi(v)) + \gamma k \cdot (q\ast k(v) - qk(v)) =
\sum 

i\in S\prime (\bfv )

\gamma i \cdot LHSi.
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This is because (\gamma i : i \in S(v)) is the unique solution to a linear system with diagonal
entries being either di or di + \tau i for i \not = k and  - 1 for k and off-diagonal entries being
either 0 or \tau j in general and  - 1 for the column that corresponds to k. Similarly we
have 0 < \gamma i \leq O(n\beta ) for all i \in S(v). This gives us a connection between the LHS
above and what we care about since\sum 

i\in S\prime (\bfv )

((vk  - vi) + \gamma k) \cdot (qi(a) - qi(v)) + \gamma k \cdot (q\ast k(v) - qk(v))

=
\sum 

i\in S\prime (\bfv )

(vk  - vi) \cdot (qi(a) - qi(v)) + \gamma k  - \gamma k

\left(  qk(v) +
\sum 

i\in S\prime (\bfv )

qi(v)

\right)  
\geq 

\sum 
i\in S\prime (\bfv )

(vk  - vi) \cdot (qi(a) - qi(v)) \geq 
\sum 

i\in [n+2]

vi \cdot (qi(v) - q\ast i (v)),(5.28)

where the last inequality follows from (5.24). So (5.26) also holds in this case for
some \gamma \bfv and \gamma \bfv ,i with absolute values bounded from above by O(n2\beta ) and O(n\beta ),
respectively.

To summarize our progress so far, we have shown for each nonessential type-1
vector v \in T \ast 

1 , Diff(v) is at most

(1+ \zeta \bfv +\gamma \bfv )(u
\ast (v) - u(v))+

\sum 
i\in S\prime (\bfv )

\gamma \bfv ,i \cdot 
\bigl( 
u\ast (Lower(v - i, ai)) - u(Lower(v - i, ai))

\bigr) 
.

Therefore, we have\sum 
\bfv \in T\ast 

1

Pr[v] \cdot Diff(v)

\leq 
\sum 
\bfv \in T\ast 

1

Pr[v] \cdot (1 + \gamma \prime 
\bfv ) \cdot (u\ast (v) - u(v)) +

\sum 
\bfv \in T \prime 

1

Pr[v] \cdot \xi \bfv \cdot (u\ast (v) - u(v))(5.29)

for some \gamma \prime 
\bfv and \xi \bfv with | \gamma \prime 

\bfv | = O(n2\beta ) (since | \zeta \bfv | = o(r)) and | \xi \bfv | \leq O(n2p\beta ). For
the latter, we used the fact that for any v \in T \prime 

1 the total probability of all vectors in
blocks strictly above Block(v) is at most an \Omega (np)-fraction of that of v. We continue
to simplify the first part of the RHS above.

Let w = Lower(v) for some nonessential vector v \in T \ast 
1 . We have

u\ast (v) = u\ast (w) +
\sum 

j\in S+(\bfv )

\tau j \cdot q\ast j (w) and u(v) \geq u(w) +
\sum 

j\in S+(\bfv )

\tau j \cdot qj(w)

by Condition-Type-1 and (5.6) in Part 1 of LP\prime (I). As a result, we have

u\ast (v) - u(v) \leq u\ast (w) - u(w) +
\sum 

j\in S+(\bfv )

\tau j \cdot (q\ast j (w) - qj(w)).

Fix an essential vector w \in T \prime 
1 and let B = Block(w) \setminus \{ w\} . Then we have\sum 

\bfv \in B

Pr[v] \cdot (1 + \gamma \prime 
\bfv ) \cdot (u\ast (v) - u(v))

\leq 
\sum 
\bfv \in B

Pr[v] \cdot (1 + \gamma \prime 
\bfv ) \cdot 

\left(  u\ast (w) - u(w) +
\sum 

j\in S+(\bfv )

\tau j \cdot (q\ast j (w) - qj(w))

\right)  
= Pr[w] \cdot \alpha \bfw \cdot (u\ast (w) - u(w)) + Pr[w]

\sum 
j\in [n+2]

\alpha \bfw ,j \cdot (q\ast j (w) - qj(w))
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524 CHEN ET AL.

for some \alpha \bfw and \alpha \bfw ,j with absolute values bounded by | \alpha \bfw | = O(nr/p) and | \alpha \bfw ,j | =
O(nr\beta /p).

Combining all these inequalities together, we have\sum 
\bfv \in T1

Pr[v] \cdot Diff(v)

\leq 
\sum 
\bfv \in T \prime 

1

Pr[v] \cdot 

\left(  \sum 
j\in [n+2]

vj \cdot (qj(v) - q\ast j (v)) + (1 + \zeta \bfv ) \cdot (u\ast (v) - u(v))

\right)  
+
\sum 
\bfv \in T \prime 

1

Pr[v] \cdot 

\left(  \alpha \bfv \cdot (u\ast (v) - u(v)) +
\sum 

j\in [n+2]

\alpha \bfv ,j \cdot (q\ast j (v) - qj(v))

\right)  
+
\sum 
\bfv \in T \prime 

1

Pr[v] \cdot \xi \bfv \cdot (u\ast (v) - u(v))

=
\sum 
\bfv \in T \prime 

1

Pr[v] \cdot 

\Biggl( 
(1 + \zeta \bfv + \alpha \bfv + \xi \bfv ) \cdot (u\ast (v) - u(v))

+
\sum 

j\in [n+2]

(vj  - \alpha \bfv ,j) \cdot (qj(v) - q\ast j (v))

\Biggr) 
.

Recall that | \zeta \bfv | = o(r) and | \xi \bfv | \leq O(n2p\beta ). We have 1+ \zeta \bfv +\alpha \bfv + \xi \bfv = 1\pm o(1).
Fix an essential v \in T \prime 

1. We have vj  - \alpha \bfv ,j \approx 2 for j \in S(v), and k = min(S(v))
still has the (strictly) largest coefficient vk  - \alpha \bfv ,k since | \alpha \bfv ,j | = O(nr\beta /p) \ll \beta . As a
result, we have (recall that S\prime (v) = S(v) \setminus \{ k\} )\sum 

j\in [n+2]

(vj  - \alpha \bfv ,j) \cdot q\ast j (v)

= (vk  - \alpha \bfv ,k) \cdot 

\left(  1 - 
\sum 

j\in S\prime (\bfv )

qj(a)

\right)  +
\sum 

j\in S\prime (\bfv )

(vj  - \alpha \bfv ,j) \cdot qj(a),

\sum 
j\in [n+2]

(vj  - \alpha \bfv ,j) \cdot qj(v)

\leq (vk  - \alpha \bfv ,k) \cdot 

\left(  1 - 
\sum 

j\in S\prime (\bfv )

qj(v)

\right)  +
\sum 

j\in S\prime (\bfv )

(vj  - \alpha \bfv ,j) \cdot qj(v).(5.30)

Let \phi \bfv ,j = vk  - vj  - \alpha \bfv ,k + \alpha \bfv ,j for each j \in S\prime (v). Then \Omega (\beta ) \leq \phi \bfv ,j \leq O(n\beta ) and\sum 
j\in [n+2]

(vj  - \alpha \bfv ,j) \cdot (qj(v) - q\ast j (v)) \leq 
\sum 

j\in S\prime (\bfv )

\phi \bfv ,j \cdot (qj(a) - qj(v)).

Plugging this in, we have\sum 
\bfv \in T1

Pr[v] \cdot Diff(v)

\leq 
\sum 
\bfv \in T \prime 

1

Pr[v] \cdot 

\left(  (1\pm o(1)) \cdot (u\ast (v) - u(v)) +
\sum 

j\in S\prime (\bfv )

\phi \bfv ,j \cdot (qj(a) - qj(v))

\right)  .
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We also have u\ast (v) - u\ast (v - j , aj) = dj \cdot qj(a) for v \in T \prime 
1 and each j \in S(v), and

u(v) - u(v - j , aj) \leq dj \cdot qj(v) by (5.8) of LP\prime (I). As a result, we have\sum 
j\in S\prime (\bfv )

\phi \bfv ,j \cdot (qj(a) - qj(v))

\leq 
\sum 

j\in S\prime (\bfv )

\phi \bfv ,j

dj
\cdot 
\bigl( 
(u\ast (v) - u(v)) - (u\ast (v - j , aj) - u(v - j , aj))

\bigr) 
.(5.31)

Plugging it back, we have\sum 
\bfv \in T1

Pr[v] \cdot Diff(v) \leq 
\sum 
\bfv \in T \prime 

1

Pr[v] \cdot (1\pm o(1)) \cdot (u\ast (v) - u(v))

+
\sum 
\bfv \in T \prime 

1

Pr[v]
\sum 

j\in S\prime (\bfv )

\phi \bfv ,j

dj
\cdot 
\bigl( 
(u\ast (v) - u(v)) - (u\ast (v - j , aj) - u(v - j , aj))

\bigr) 
\leq 
\sum 
\bfv \in T \prime 

1

Pr[v] \cdot (1 + \delta \bfv ) \cdot (u\ast (v) - u(v))

for some \delta \bfv with absolute value bounded from above by

| \delta \bfv | \leq o(1) +O(n2\beta ) +O(n\beta \cdot np) = o(1).

Since u(v) \geq u\ast (v) for all v \in T \prime 
1 (due to (5.4) of LP\prime (I)), we must have

u(v) = u\ast (v) for all v \in T \prime 
1 by the optimality of (u(\cdot ),q(\cdot )). This proved the part of

Condition-Type-1 on q(v) of essential vectors.
Combining this with (5.8) of LP\prime (I), we have for each v \in T \prime 

1, i \in S(v), and
w = (v - i, ai): di \cdot qi(a) = u(v)  - u(w) \leq di \cdot qi(v) and, thus, qi(v) \geq qi(a). On the
other hand, it follows from the optimality of (u(\cdot ),q(\cdot )) that (5.31) and (5.30) must
be tight. This implies that q(v) = q\ast (v) for all essential vectors v \in T \prime 

1.
For a nonessential type-1 vector v \in T \ast 

1 , letting w = Lower(v), (5.6) in Part 1
of LP\prime (I) implies that u(v) \geq u(w) +

\sum 
j\in S+(\bfv ) \tau j \cdot qj(w) = u\ast (v), as we have proved

that u(w) = u\ast (w) and q(w) = q\ast (w) (since w is essential). Then u(v) = u\ast (v)
follows from the tightness of (5.29).

Finally, for each nonessential vector v \in T \ast 
1 , we consider the following two cases

(letting k = min(S(v)).
Case 1: k /\in S+(v). q(v) = q\ast (v) follows from the tightness of (5.23) and (5.24).

(5.23) yields that

di \cdot (qi(a) - qi(v)) +
\sum 

j\in S+(\bfv )

\tau j \cdot (qj(a) - qj(v)) = 0

for all i \in S\prime (v) (note that we actually do not use i = k in (5.25)). These equations
together imply that qi(v) = qi(a) for all i \in S\prime (v). qk(v) = q\ast k(v) follows from the
tightness of (5.24).

Case 2: k \in S+(v). The tightness of (5.28) implies that

qk(v) = 1 - 
\sum 

j\in S\prime (\bfv )

qj(v).(5.32)

The tightness of (5.27) implies that

di \cdot (qi(a) - qi(v)) + \tau k \cdot (q\ast k(v) - qk(v)) +
\sum 

j\in S+(\bfv )\setminus \{ k\} 

\tau j \cdot (qj(a) - qj(v)) = 0
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for all i \in S\prime (v). Plugging in q\ast k(v) = 1  - 
\sum 

j\in S\prime (\bfv ) qj(a) and (5.32), we must have

qi(a) = qi(v) for all i \in S\prime (v) and thus, qk(v) = q\ast k(v) by (5.32). It then follows that
q(v) = q\ast (v).

This finishes the proof of the lemma.

5.1.7. Characterization of optimal solutions. Let q be a nonnegative
(n + 2)-dimensional vector that sums to at most 1, and u2, u3, u4 \geq 0 that satisfy
u3 \leq u4 \leq u3 + s. Let \sansE \sansx \sanst (q, u2, u3, u4) denote the following set of solutions to
LP\prime (I): Let (u(v),q(v) : v \in T1) be the unique partial solution that satisfies both
q(a) = q and Condition-Type-1. By Lemma 5.13, (u(v),q(v) : v \in T1) satisfies
all constraints in Parts 0 and 1 of LP\prime (I). Then we set

\sansE \sansx \sanst (q, u2, u3, u4) = \sansE \sansx \sanst (u(\cdot ),q(\cdot );u2, u3, u4).

We record the following lemma.

Lemma 5.15. Given any nonnegative vector q that sums to at most 1, and u2,
u3, u4 \geq 0 with u3 \leq u4 \leq u3 + s, \sansE \sansx \sanst (q, u2, u3, u4) is a nonempty set of feasible
solutions to LP\prime (I).

Our characterization of optimal solutions to LP\prime (I) is summarized in the theorem
below.

Theorem 5.16. Any optimal solution (u(v),q(v) : v \in D) to LP\prime (I) belongs to
\sansE \sansx \sanst (q, u2, u3, u4), where q = q(a) and ui = u(ci) for each i = 2, 3, 4.

5.2. Choices of parameters and their consequences. Now we pin down
the rest of the parameters: ai, s, hi, t, and see how they affect optimal solutions of
LP\prime (I).

5.2.1. Setting \bfita \bfiti 's. First, we set ai's (see (5.34) below) such that they satisfy
(5.2), i.e., | ai  - 1| = O(np), and the expected revenue from type-1 vectors in any
optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I) is of the following form,

const+ c \cdot 
\sum 
i\in [n]

qi(a)(5.33)

for some c \approx 1. By Theorem 5.16, (u(\cdot ),q(\cdot )) lies in \sansE \sansx \sanst (q, u2, u3, u4) for some
nonnegative vector q that sums to at most 1, and some u2, u3, u4 \geq 0 that satisfy
u3 \leq u4 \leq u3 + s. Given that (u(\cdot ),q(\cdot )) satisfies Condition-Type-1, expected
revenue from type-1 vectors only depends on q(a) = q. We next calculate the expected
revenue from type-1 vectors given q, and the choices of ai's will become clear.

First, we have Rev(a) =
\sum 

i\in [n] ai \cdot qi (since u(a) = 0). Given that (u(\cdot ),q(\cdot ))
satisfies Condition-Type-1, each essential type-1 vector v \in T \prime 

1 and v \not = a has
revenue (letting k = min(S(v)))

Rev(v) =
\sum 

i\in S\prime (\bfv )

\ell i \cdot qi + \ell k \cdot 

\left(  1 - 
\sum 

i\in S\prime (\bfv )

qi

\right)   - 
\sum 

i\in S(\bfv )

di \cdot qi

= \ell k  - 
\sum 

i\in S\prime (\bfv )

(\ell k  - ai) \cdot qi  - dk \cdot qk.
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Given Lemma 5.12, the block B that contains v \in T \prime 
1 and v \not = a overall contributes

Pr[B] \cdot Rev(v) = Pr[B] \cdot 

\left(  \ell k  - 
\sum 

i\in S\prime (\bfv )

(\ell k  - ai) \cdot qi  - (\ell k  - ak) \cdot qk

\right)  .

It is clear now that expected revenue from type-1 vectors is an affine linear form of
qi's, i \in [n].

Let ci denote the coefficient of each qi in the expected revenue from type-1 vectors.
Then a contributes Pr[a]\cdot ai to ci (Pr[a] \approx 1 - np which as we will see is the dominating
term). A block B that contains v \in T \prime 

1 and v \not = a contributes 0 if i /\in S(v);  - Pr[B] \cdot 
(\ell i - ai) if i = min(S(v)); and  - Pr[B] \cdot (\ell min(S(\bfv )) - ai) if i \in S\prime (v). More specifically,
the total probability of type-1 blocks B and v \in B with i = min(S(v)) is

(1 - \delta ) \cdot (1 - \delta 2) \cdot (1 - p - r)i - 1 \cdot (p+ r);

for each k < i, the total probability of type-1 blocks B with i \in S(v) and min(S(v)) =
k is

(1 - \delta ) \cdot (1 - \delta 2) \cdot (1 - p - r)k - 1 \cdot (p+ r) \cdot (p+ r).

As a result, ci becomes

(1 - \delta )(1 - \delta 2)

\Biggl( 
(1 - p - r)nai - 

\sum 
k<i

(1 - p - r)k - 1(p+ r)2(\ell k  - ai)

 - (1 - p - r)i - 1(p+ r)(\ell i  - ai)

\Biggr) 
.

To meet both goals, i.e., c1 = \cdot \cdot \cdot = cn \approx 1 and | ai  - 1| \leq O(np), we set

(5.34) ai =
1 +

\sum 
k<i (1 - p - r)k - 1 \cdot (p+ r)2 \cdot \ell k + (1 - p - r)i - 1 \cdot (p+ r) \cdot \ell i

(1 - p - r)n +
\sum 

k<i(1 - p - r)k - 1 \cdot (p+ r)2 + (1 - p - r)i - 1 \cdot (p+ r)
.

It is easy to verify that the ai's satisfy 1 < ai \leq 1 + O(np). The length of binary
representations of each ai is polynomial in n and ai's can be computed efficiently,
given p, r, and \ell i's as in (5.1) and (5.2).

We summarize the consequence of our choices of ai's in the following lemma.

Lemma 5.17. Given choices of ai's in (5.34), revenue from type-1 vectors in any
feasible solution to LP\prime (I) that satisfies Condition-Type-1 is of the form in (5.33)
with c = (1 - \delta )(1 - \delta 2) \approx 1.

It is now time to prove that q(a) sums to 1 in any optimal solution to LP\prime (I).

Lemma 5.18. Given our choices of ai's in (5.34), any optimal solution to LP\prime (I)
satisfies

\sum 
i\in [n] qi(a) = 1.

Proof. Assume for contradiction that (u(\cdot ),q(\cdot )) is optimal but
\sum 

i\in [n] qi(a) = 1

does not hold. Let q\prime be the vector obtained from q(a) as follows: if
\sum 

i\in [n+2] qi(a) <

1, we replace its first entry by q\prime 1 = q1(a)+ \epsilon ,where \epsilon = 1 - 
\sum 

i\in [n+2] qi(a) > 0; other-

wise, letting \epsilon = qn+1(a)+qn+2(a) > 0, we set q\prime 1 = q1(a)+\epsilon and q\prime n+1 = q\prime n+2 = 0. Let
(u\prime (\cdot ),q\prime (\cdot )) be a feasible solution from \sansE \sansx \sanst (q\prime , u(c2), u(c3)). It follows from Lemma
5.17 that the expected revenue from type-1 vectors goes up by \Omega (\epsilon ) in (u\prime (\cdot ),q\prime (\cdot )).
However, by Condition-Type-1, we have | u(v)  - u\prime (v)| \leq O(\epsilon ) for all v \in T1.
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By Lemma 5.10, expected revenue from types-2, -3 and -4 vectors goes down in
(u\prime (\cdot ),q\prime (\cdot )) by at most O(\delta n\epsilon s/\beta ) + O(\delta 2n\epsilon t/\beta ) \ll \epsilon . This contradicts the assump-
tion that (u(\cdot ),q(\cdot )) is optimal.

Given Lemma 5.18, from now on we restrict q to be a nonnegative n-dimensional
vector that sums to exactly 1 in \sansE \sansx \sanst (q, u2, u3, u4). We also use Rev(q, u2, u3, u4) to
denote the expected revenue of solutions in \sansE \sansx \sanst (q, u2, u3, u4). All parameters of I
have been chosen except s, hi's, and t.

5.2.2. Setting \bfits . Our goal in this section is to show that, by setting

s = 2 +
1

(n - 0.5)p
= \Theta 

\biggl( 
1

np

\biggr) 
,

any optimal solution to LP\prime (I) from \sansE \sansx \sanst (q, u2, u3, u4) must satisfy

(5.35) d1 \cdot q1(a) = d2 \cdot q2(a) = \cdot \cdot \cdot = dn \cdot qn(a).

Note that we have chosen both ai and \ell i, and so di = \ell i  - ai. (5.35) then uniquely
determines q(a) in any optimal solution, as by Lemma 5.18, q(a) must sum to 1.
(5.35) also implies that q(a) is indeed very close to the uniform distribution over [n]
since di \approx 1 (more exactly, | di  - 1| = O(np+ n\beta )).

In the rest of section 5.2.2 we use vi for each i \in [n] to denote the type-2 vector
with vi,i = \ell i, vi,j = aj for other j \in [n], vi,n+1 = s and vi,n+2 = 0. To prove (5.35),
we start with the following lemma.

Lemma 5.19. Let q be any nonnegative n-dimensional vector that sums to 1, and
u\prime 
2 = mini\in [n] di \cdot qi. If u2, u3, u4 \geq 0 satisfy u3 \leq u4 \leq u3 + s and u2 \not = u\prime 

2, then
Rev(q, u2, u3, u4) < Rev(q, u\prime 

2, u3, u4).

Proof. Let (u(\cdot ),q(\cdot )) be a feasible solution in \sansE \sansx \sanst (q, u2, u3, u4) and (u\prime (\cdot ),q\prime (\cdot ))
be a feasible solution in \sansE \sansx \sanst (q, u\prime 

2, u3, u4). Below we compare their revenues Rev2

and Rev\prime 
2 from type-2 vectors since it is clear that Revi = Rev\prime 

i for all i \in \{ 1, 3, 4\} .
We consider two cases: u2 < u\prime 

2 or u2 > u\prime 
2. In both cases we have from Lemma 5.4

that | Rev\prime (v)  - Rev(v) | = O(n\epsilon s/\beta ), given that | u(w)  - u(w\prime )| \leq \epsilon . We focus on
comparing Rev\prime (vi) and Rev(vi) in both cases.

Case 1: u2 < u\prime 
2. Let \epsilon = u\prime 

2  - u2 > 0. We have Rev\prime (c2) = Rev(c2) - \epsilon for c2.
We compare Rev\prime (vi) and Rev(vi) for each i. Since u2 < u\prime 

2, by Condition-Type-2
and the definition of u\prime 

2, we have u(vi) = u\prime (vi). Constraints of LP(vi : u) are

qj \geq 0 for all j \in [n+ 2],
\sum 

j\in [n+2]

qj \leq 1, and di \cdot qi \geq u(vi) - u2;

constraints in LP(vi : u
\prime ) are

qi \geq 0 for all j \in [n+ 2],
\sum 

j\in [n+2]

qj \leq 1, and di \cdot qi \geq u\prime (vi) - u\prime 
2.

It follows that q(vi) satisfies qi(vi) = (u(vi) - u2)/di and puts the rest of the probabil-
ity onto qn+1(vi), while q

\prime (vi) satisfies q
\prime 
i(vi) = (u\prime (vi) - u\prime 

2)/di = qi(vi) - (\epsilon /di) and
puts the rest onto q\prime n+1(vi). As a result we have Rev\prime (vi) = Rev(vi)+(\epsilon /di) \cdot (s - \ell i)
for each i \in [n]. To summarize, we have

Rev\prime 
2  - Rev2 \geq 

\sum 
i\in [n]

Pr[vi] \cdot 
\biggl( 

\epsilon 

di
\cdot (s - \ell i)

\biggr) 
 - Pr[c2] \cdot \epsilon  - O(nr\delta ) \cdot O

\biggl( 
n\epsilon s

\beta 

\biggr) 
.
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Plugging in that Pr[c2] \leq \delta , 1/di \geq 1 - O(n\beta ), s - \ell i \geq s - 2 - O(n\beta ), and

Pr[vi] = p \cdot (1 - p - r)n - 1 \cdot \delta \cdot (1 - \delta 2) \geq p\delta \cdot (1 - O(np)),

we have\sum 
i\in [n]

Pr[vi] \cdot 
\epsilon 

di
\cdot (s - \ell i)

\geq n \cdot p\delta \cdot (1 - O(np)) \cdot \epsilon \cdot (1 - O(n\beta )) \cdot 
\biggl( 

1

(n - 0.5)p
 - O(n\beta )

\biggr) 
\geq n\delta \epsilon 

n - 0.5
\cdot (1 - O(n\beta )).

As a result, we have Rev\prime 
2  - Rev2 > 0 given our choices of p, r, and \beta .

Case 2: u2 > u\prime 
2. Let \epsilon = u2  - u\prime 

2 > 0. In this case, Rev\prime (c2) = Rev(c2) + \epsilon .
For each i \in [n], a similar analysis of LP(vi : u) and LP(vi : u

\prime ) as in Case 1 implies
that qi(vi) = (u(vi) - u2)/di and q\prime i(vi) = (u\prime (vi) - u\prime 

2)/di, and both vectors q(vi)
and q\prime (vi) have the rest of the probability allocated onto their (n+ 1)th entries.

Let I denote the nonempty set of i that has the minimum diqi among all indices
in [n]. It then follows from the definition of u\prime 

2 and the assumption of u2 > u\prime 
2 that

u(vi) = u2 and u\prime (vi) = u\prime 
2 for each i \in I and, thus, Rev\prime (vi) = Rev(vi)+ \epsilon for each

i \in I. For each i /\in I, we have u\prime (vi) - u\prime 
2 \leq u(vi) - u2+ \epsilon . This follows by considering

the two cases of u(\rho (vi)) \leq u2 or u(\rho (vi)) > u2:

\bullet If u(\rho (vi)) \leq u2, we have u(vi) = u2 and u\prime (vi) = max(u(\rho (vi)), u
\prime 
2) \leq u2

and, thus, u\prime (vi) - u\prime 
2 \leq u2  - u\prime 

2 = \epsilon \leq u(vi) - u2 + \epsilon .

\bullet If u(\rho (vi)) > u2, we have u(vi) = u(\rho (vi)) and u\prime (vi) = max(u(\rho (vi)), u
\prime 
2) =

u(\rho (vi)) and thus, u\prime (vi) - u\prime 
2 = u(vi) - u2 + \epsilon .

So for each i /\in I we have Rev\prime (vi) \geq Rev(vi) - (\epsilon /di) \cdot (s - \ell i). Combining everything
we have Rev\prime 

2  - Rev2 is at least

Pr[c2] \cdot \epsilon +
\sum 
i\in I

Pr[vi] \cdot \epsilon  - 
\sum 
i/\in I

Pr[vi] \cdot 
\biggl( 

\epsilon 

di
\cdot (s - \ell i)

\biggr) 
 - O(nr\delta ) \cdot O

\biggl( 
n\epsilon s

\beta 

\biggr) 
.

Plugging in Pr[c2] \geq \delta (1 - O(np)) and\sum 
i/\in I

Pr[vi] \cdot 
\epsilon 

di
\cdot (s - \ell i) \leq (n - 1) \cdot p\delta \cdot \epsilon \cdot (1 +O(n\beta )) \cdot 1

(n - 0.5)p

= \delta \epsilon \cdot n - 1

n - 0.5
\cdot (1 +O(n\beta )),

we have Rev\prime 
2  - Rev2 > 0. This finishes the proof of the lemma.

We are now ready to prove the main lemma of this section.

Lemma 5.20. Any optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I) satisfies

d1 \cdot q1(a) = \cdot \cdot \cdot = dn \cdot qn(a).

Proof. Let (u(\cdot ),q(\cdot )) \in \sansE \sansx \sanst (q, u2, u3, u4) be an optimal solution to LP\prime (I), where
q is an n-dimensional nonnegative vector that sums to 1 and u2, u3, u4 \geq 0 with
u3 \leq u4 \leq u3 + s. By Lemma 5.19, we have u2 = mini\in [n] di \cdot qi. Assume for
contradiction that q does not satisfy d1 \cdot q1 = \cdot \cdot \cdot = dn \cdot qn. We use K \subset [n] to
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denote the set of indices k with dk \cdot qk = mini di \cdot qi, and t \in [n] denotes an index
with dt \cdot qt > mini di \cdot qi. Then we replace q by q\prime , where q\prime k = qk + (\epsilon /dk) for each
k \in K and q\prime t = qt  - 

\sum 
k\in K(\epsilon /dk), for a sufficiently small \epsilon > 0 such that q\prime remains

nonnegative and indices k \in K still have the smallest dk \cdot q\prime k = dk \cdot qk+\epsilon in q\prime . We also
replace u2 by u\prime 

2 = u2 + \epsilon . Let (u\prime (\cdot ),q\prime (\cdot )) \in \sansE \sansx \sanst (q\prime , u\prime 
2, u3, u4) be a feasible solution.

Then we reach a contradiction by showing that the revenue of (u\prime (\cdot ),q\prime (\cdot )) is strictly
higher than that of (u(\cdot ),q(\cdot )).

First it is clear that Rev\prime 
1 = Rev1 since both q and q\prime sum to 1. By Lemma

5.10, we have\bigm| \bigm| (Rev3 +Rev4) - (Rev\prime 
3 +Rev\prime 

4)
\bigm| \bigm| \leq O

\biggl( 
\delta 2n2\epsilon t

\beta 

\biggr) 
+O

\biggl( 
\delta 3n2\epsilon t

\beta 

\biggr) 
= O

\biggl( 
\delta 2n2\epsilon t

\beta 

\biggr) 
,

where we used the loose bound of | u(w)  - u(w\prime )| \leq O(n\epsilon ) for all w \in T1. The RHS

above is negligible as we will see due to \delta 2. Recall that \delta = 1/2n
6

and t = 2\Theta (n5). It
remains to compare Rev2 and Rev\prime 

2. For all v \in T2 other than c2 and vi, i \in [n], by
Lemma 5.4, | Rev\prime (v) - Rev(v) | = O(n \cdot n\epsilon \cdot s/\beta ) = O(n2\epsilon s/\beta ). On the other hand,
we have Rev\prime (c2) = Rev(c2) - \epsilon . For each i \in [n], it follows from LP(vi : u) that

Rev(vi) = \ell i \cdot qi(v) + s \cdot (1 - qi(v)) - di \cdot qi(a) = s - (s - \ell i) \cdot 
di \cdot qi  - u2

di
 - di \cdot qi.

A similar expression holds for Rev\prime (vi) (replacing qi by q\prime i and u2 by u\prime 
2). As a result,\sum 

i\in [n]

Pr[vi] \cdot 
\bigl( 
Rev\prime (vi) - Rev(vi)

\bigr) 
= \delta (1 - \delta 2)p(1 - p - r)n - 1 \cdot 

\left(  \sum 
i\in [n]

s - \ell i
di

\cdot \epsilon + (s - at)
\sum 
k\in K

\epsilon 

dk
 - 
\sum 
k\in K

(s - ak) \cdot 
\epsilon 

dk

\right)  
\geq \delta (1 - \delta 2)p(1 - p - r)n - 1 \cdot 

\biggl( 
n

(n - 0.5)p
\cdot (1 - O(n\beta )) \cdot \epsilon  - O (np \cdot n\epsilon )

\biggr) 
=

n\delta \epsilon 

n - 0.5
\cdot (1 - O(n\beta )) - O

\bigl( 
n2p2\delta \epsilon 

\bigr) 
,

where we used | ai  - 1| = O(np). Combining all these bounds together, we have

Rev\prime 
2  - Rev2 \geq n\delta \epsilon 

n - 0.5
\cdot (1 - O(n\beta )) - O

\bigl( 
n2p2\delta \epsilon 

\bigr) 
 - \epsilon \cdot \delta  - O(nr\delta ) \cdot O(n2\epsilon s/\beta )

\gg O

\biggl( 
\delta 2n2\epsilon t

\beta 

\biggr) 
,

given our choices of parameters. This contradicts the optimality of (u(\cdot ),q(\cdot )).
Given that q(a) is close to a uniform distribution, we record a lemma that will

be useful later.

Lemma 5.21. Let v,v\prime \in D denote two valuation vectors that differ at the ith
entry only, for some i \in [n], and v\prime i > vi. Then we have u(v\prime ) \geq u(v) in any optimal
solution to LP\prime (I).

Proof. It suffices to prove the lemma for two type-1 vectors v,v\prime \in T1 (due to
Condition-Type-2, -3, and -4). The case when vi = \ell i and v\prime i = hi follows directly
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ON THE COMPLEXITY OF OPTIMAL LOTTERY PRICING 531

from Condition-Type-1. The case when vi = ai and vi = \ell i follows from Lemma
5.20, that q(a) is close to a uniform distribution. In particular, we have

u(Lower(v\prime )) = u(Lower(v)) + di \cdot qi(a) \approx u(Lower(v)) + (1/n),

while both u(v\prime )  - u(Lower(v\prime )) and u(v)  - u(Lower(v)) are much smaller than
1/n since \tau i = O(n\beta ) for all i and \beta = 1/2n.

5.2.3. Setting \bfith \bfiti 's and \bfitt . Before giving our choices of hi's and t, we introduce
the problemCOMP, and show that it is \#P-hard. Here an input (\scrG , H,M) of COMP
consists of a tuple \scrG = (g2, . . . , gn) of n - 1 integers between 1 and N = 2n, a subset
H \subset [2 : n] of size | H| = m = \lceil n/2\rceil , and an integer M between 1 and

\bigl( 
n - 1
m

\bigr) 
. For

convenience, we write \sansS \sansu \sansm (T ) =
\sum 

i\in T gi for T \subseteq [2 : n]. We use t\ast to denote the
Mth largest integer in the multiset

(5.36)
\bigl\{ 
\sansS \sansu \sansm (T ) : T \subset [2 : n] and | T | = m

\bigr\} 
.

The problem is then to decide whether \sansS \sansu \sansm (H) > t\ast or \sansS \sansu \sansm (H) \leq t\ast , i.e., compare
\sansS \sansu \sansm (H) to the Mth largest integer in (5.36). We first show that COMP is \#P-hard.

Lemma 5.22. COMP is \#P-hard.

Proof. We reduce from a related problem called LEX-RANK, which was shown
to be \#P-hard in [DDT14a]. In LEX-RANK, the input consists of a collection C =
\{ c1, . . . , cn\} of positive integers, a subset S \subseteq [n], and a positive integer k. Order the
subsets T of [n] of cardinality | S| according to their sums, \sansS \sansu \sansm C(T ) =

\sum 
i\in T ci, from

smallest to largest, with subsets that have equal sums ordered lexicographically; that
is, we have T <C T \prime if and only if \sansS \sansu \sansm C(T ) < \sansS \sansu \sansm C(T

\prime ), or \sansS \sansu \sansm C(T ) = \sansS \sansu \sansm C(T
\prime )

and the largest element in the symmetric difference T\Delta T \prime belongs to T \prime . The LEX-
RANK problem is to determine for a given input (C, S, k) whether the rank of S in
this ordering (among subsets of cardinality | S| ) is at most k.

Let (C, S, k) be an instance of LEX-RANK. Let c\prime i = 22n \cdot ci +2i for all i, and let
C \prime = \{ c\prime 1, . . . , c\prime n\} . Clearly, any two subsets of C \prime have unequal sums and, furthermore,
T <C T \prime if and only if \sansS \sansu \sansm C\prime (T ) < \sansS \sansu \sansm C\prime (T \prime ) for all T, T \prime \subseteq [n]. In the new instance
(C \prime , S, k), the rank of a set S (among sets of the same cardinality) is the same as its
rank in the old (C, S, k), and the rank of S is at most k if and only if \sansS \sansu \sansm C\prime (S) is at
most the Mth largest sum, where M =

\bigl( 
n
| S| 
\bigr) 
 - k+1. Thus, the LEX-RANK problem

in the new instance is equivalent to the COMP problem, except that in the latter
problem we also require that | S| = \lceil n/2\rceil and that all input integers are at most 2n.

Let B be the maximum number of bits of the integers in C \prime ; note, B \geq 2n.
Add 2B  - n  - 1 new elements to the set C \prime to form the new set \scrG ; B  - | S| of the
new elements have value n2B+1, and the rest have value 1. Let H be the set that
consists of S and the new elements with value n2B+1. Thus, \scrG has 2B  - 1 = n\prime  - 1
elements, S has size B = n\prime /2, and all the integers are between 1 and 22B = 2n

\prime 
.

Let M =
\bigl( 

n
| S| 
\bigr) 
 - k + 1, as above. The instance (\scrG , H,M) of COMP now satisfies the

required constraints. If we order the subsets of cardinality B = | H| from largest sum
to smallest, the first

\bigl( 
n
| S| 
\bigr) 
subsets will each consist of the B  - | S| new elements with

the large value of n2B+1 and then a subset of cardinality | S| of the original elements,
ordered according to their sum. Therefore, \sansS \sansu \sansm \scrG (H) is at most the Mth largest sum
in the instance (\scrG , H,M) of COMP if and only if \sansS \sansu \sansm C\prime (S) is at most the Mth
largest sum in (C \prime , S, k), i.e., if and only if the rank of S is at most k in the original
instance (C, S, k) of LEX-RANK.
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We embed COMP in I. Let (\scrG , H,M) be an instance of COMP, where \scrG =
(g2, . . . , gn) is a sequence of n  - 1 integers between 1 and N = 2n, H \subset [2 : n] with
| H| = m = \lceil n/2\rceil , and M is an integer between 1 and

\bigl( 
n - 1
m

\bigr) 
. Here are our choices of

\tau i's and then hi = \ell i + \tau i. Recall that we promised in (5.2), (5.3) that

(5.37) \beta \leq \tau i \leq 
\biggl( 
1 +

1

N2

\biggr) 
\beta , t = O

\biggl( 
\beta 

rm+1m

\biggr) 
, and t = \Omega 

\biggl( 
\beta 

rm+1m2n

\biggr) 
.

By our choices and ai's and \ell i's, d1 = maxj\in [n] dj . Set \tau i = \tau \prime i + \beta for each i \in [n]
with \tau \prime 1 = \beta /N2 and

\tau \prime i =
\beta 

N2
\cdot d1  - di

d1
+ gi \cdot 

di\beta 

N4
= O

\biggl( 
n\beta 2

N2

\biggr) 
for each i > 1.

Recall gi is from \scrG . As \beta = 1/N , (5.37) on \tau i is satisfied. The choice of t needs to be
done more carefully.

Let R denote the set of v \in T3 satisfying | S(v)| = m + 1 and | S+(v)| = m, and
let R\prime denote the set of v \in T3 with | S(v)| = | S+(v)| = m+1. Let R\ast denote the set
of v \in R\prime with 1 \in S+(v). Let h denote the probability Pr[v] of each vector v \in R\prime 

(note that they all share the same probability Pr[v]):

h = (1 - \delta ) \cdot \delta 2 \cdot rm+1 \cdot (1 - p - r)n - m \approx \delta 2rm+1.

We are now ready to set t using M as follows,

t = 2 +
\beta \delta 2

h(m+ 1)(M  - (1/2))
,

which clearly satisfies the promise on t in (5.37).
Fix a type-3 vector v\in R\ast , and let w= \rho (v)\in T1. Let (u(\cdot ),q(\cdot )) \in \sansE \sansx \sanst (q, u2,

u3, u4) be a feasible solution to LP\prime (I) for some nonnegative q that sums to 1, and
u2, u3, u4 \geq 0 that satisfy u2 = d1 \cdot q1 = \cdot \cdot \cdot = dn \cdot qn = \Theta (1/n) and u3 \leq u4 \leq 
u3 + s. To see the connection between these two problems, we calculate u(w). Given
min(S(w)) = min(S(v)) = 1, we have

u(w) =
\sum 

i\in S(\bfv )

di \cdot qi + \tau 1 \cdot 

\left(  1 - 
\sum 

i\in S\prime (\bfv )

qi

\right)  +
\sum 

i\in S\prime (\bfv )

\tau i \cdot qi

= (m+ 1) \cdot u2 + \tau 1  - 
\sum 

i\in S\prime (\bfv )

(\tau \prime 1  - \tau \prime i) \cdot 
u2

di

= (m+ 1) \cdot u2 + \tau 1  - 
\sum 

i\in S\prime (\bfv )

\biggl( 
\beta di
N2d1

 - gi \cdot 
di\beta 

N4

\biggr) 
\cdot u2

di

= C +
\beta u2

N4

\sum 
i\in S\prime (\bfv )

gi,

where we write the constant C (independent of the choice of v \in R\ast ) as

C = (m+ 1) \cdot u2 + \tau 1  - 
m\beta u2

N2d1
.
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This suggests a natural one-to-one correspondence: T \mapsto \rightarrow v \in R\ast with S(v) =
\{ 1\} \cup T , between \bigl\{ 

T : T \subset [2 : n] and | T | = m
\bigr\} 

and R\ast with respect to which the order over \sansS \sansu \sansm (T ) is the same as that over u(\rho (v)).
Moreover, since \tau \prime 1 is much larger than \tau \prime i with i > 1, other v \in R\prime have strictly smaller
utility u(\rho (v)) than those in R\ast .

To see this, note that for each v \in R\ast , we have

u(\rho (v)) \geq (m+ 1) \cdot u2 + \beta + \tau \prime 1  - 
\sum 

i\in S\prime (\bfv )

\tau \prime 1 \cdot qi = (m+ 1) \cdot u2 + \beta +\Omega (\tau \prime 1).

On the other hand, let k = min(S(v\prime )) > 1 for some v\prime \in R\prime \setminus R\ast . We have

u(\rho (v\prime )) \leq (m+ 1) \cdot u2 + \beta + \tau \prime k +
\sum 

i\in S\prime (\bfv )

\tau \prime i \cdot qi = (m+ 1) \cdot u2 + \beta +O

\biggl( 
max
i\geq 2

\tau \prime i

\biggr) 
.

It is also easier to verify that u(\rho (v)) with v \in R\ast are strictly higher than u(\rho (v\prime ))
of v\prime \in R.

We write u\ast to denote the Mth largest element of multiset \{ u(\rho (v)) : v \in R\ast \} .
Then the next two lemmas together show that u(c3) = u3 must be exactly u\ast in any
optimal solution to LP\prime (I).

Lemma 5.23. Any optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I) must satisfy u(c3) \leq u\ast .

Proof. This is the easier direction. Assume for contradiction that (u(\cdot ),q(\cdot )) \in 
\sansE \sansx \sanst (q, u2, u3, u4) is optimal but u3 > u\ast . Let \epsilon > 0 be sufficiently small such that
u(v) < u3 implies that u(v) < u3  - \epsilon for all v \in D.

We show that (u\prime (\cdot ),q\prime (\cdot )) \in \sansE \sansx \sanst (q, u2, u
\prime 
3, u

\prime 
4), where u

\prime 
3 = u3 - \epsilon and u\prime 

4 = u4 - \epsilon 
(note that we still have u\prime 

3 \leq u\prime 
4 \leq u\prime 

3 + s), results in strictly higher expected revenue
from type-3 and type-4 vectors, which contradicts the optimality of (u(\cdot ),q(\cdot )). By
Lemma 5.10, we have | Rev\prime 

4  - Rev4 | = O(\delta 3n\epsilon t/\beta ).
We now bound Rev\prime 

3  - Rev3. To this end, let A denote the set of v \in T3 with
u(\rho (v)) \geq u3 and let B denote the rest of the type-3 vectors with u(\rho (v)) < u3 (so
c3 \in B). For each v \in B, we have u(v) = u3 and u\prime (v) = u\prime 

3 (by our choice of \epsilon ).
By LP(v : u) and LP(v : u\prime ), we have both q(v) and q\prime (v) putting probability 1 on
item n+2. As a result, we have Rev\prime (v) = Rev(v)+ \epsilon for each v \in B. On the other
hand, for each v \in A, by Lemma 5.4 we have Rev\prime (v) \geq Rev(v) - O(n\epsilon t/\beta ).

We need to take a closer look at vectors v \in R\ast \cap A (which can be empty but by
u3 > u\ast , | R\ast \cap A| is at most M  - 1). To understand q(v) and q\prime (v), we note that
all u(w) in LP(v : u) are u3 and all u\prime (w) in LP(v : u\prime ) are u\prime 

3. As a result, we only
need to consider the following constraints in LP(v : u): qi \geq 0,

\sum 
j\in [n+2] qj \leq 1, and

\tau i \cdot qi \geq u(v)  - u3, for i \in S+(v) = S(v), as all other constraints would be implied.
Thus, qi(v) = (u(v) - u3)/\tau i for i \in S+(v), and q(v) puts the rest of the probability
onto qn+2(v). Similarly, q\prime i(v) = (u(v) - u\prime 

3)/\tau i for i \in S+(v) and q\prime (v) puts the rest of
the probability onto q\prime n+2(v). This implies that Rev\prime (v) > Rev(v) - (m+1) \cdot (\epsilon /\beta ) \cdot t
for each v \in R\ast \cap A.

Combining all these inequalities, we have

Rev\prime 
3  - Rev3 \geq Pr[B] \cdot \epsilon  - Pr[A \setminus R\ast ] \cdot O(n\epsilon t/\beta ) - (M  - 1) \cdot h \cdot (m+ 1) \cdot \epsilon 

\beta 
\cdot t.

Plugging in Pr[B] \geq Pr[c3] \geq \delta 2(1  - O(np)) (since c3 \in B) and Pr[A \setminus R\ast ] <
3n \cdot \delta 2 \cdot pm+2 since A \setminus R\ast only has vectors v \in T3 with | S(v)| \geq m+ 2, we have
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Rev\prime 
3  - Rev3 \geq \delta 2\epsilon (1 - O(np)) - O

\biggl( 
3n\delta 2pm+2n\epsilon t

\beta 

\biggr) 
+ (M  - 1)h(m+ 1)

\epsilon 

\beta 
\cdot \beta \delta 2(1 + o(rm))

h(m+ 1)(M  - (1/2))

= \delta 2\epsilon \cdot 
\biggl( 

1

2M  - 1
 - O(np) - o(rm) - O

\biggl( 
3npm+2n

rm+1m

\biggr) \biggr) 
\gg O(\delta 3n\epsilon t/\beta ),

which follow from choices of p, r, and \delta in (5.1). This finishes the proof.

Lemma 5.24. Any optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I) must satisfy u(c3) \geq u\ast .

Proof. This direction is more difficult. Assume for contradiction that (u(\cdot ),q(\cdot )) \in 
\sansE \sansx \sanst (q, u2, u3, u4) is an optimal solution but u3 < u\ast . Let \epsilon > 0 be a sufficiently small
positive number such that u(v) > u3 implies u(v) > u3 + \epsilon for all v \in D. Our plan
is to show that (u\prime (\cdot ),q\prime (\cdot )) \in \sansE \sansx \sanst (q, u2, u

\prime 
3, u

\prime 
4), where u\prime 

3 = u3 + \epsilon and u\prime 
4 = u4 + \epsilon 

result in strictly higher expected revenue, a contradiction.
By Lemma 5.10, we have | Rev\prime 

4  - Rev4 | = O(\delta 3n\epsilon t/\beta ). Next we compare Rev\prime 
3

and Rev3. For this purpose we define A as the set of v \in T3 with u(\rho (v)) > u3

and B as the rest of v \in T3 with u(\rho (v)) \leq u3 (so c3 \in B). By an argument
similar to the previous lemma, we have Rev\prime (v) = Rev(v)  - \epsilon for all v \in B. For
v \in A, we have u(v) = u\prime (v) by our choice of \epsilon . Since u\prime 

3 = u3 + \epsilon , we have
u\prime (w) \geq u(w) for each w in LP(v : u) and, thus, constraints in LP(v : u) are at least
as strong as those in LP(v : u\prime ). As a result, we have Rev\prime (v) \geq Rev(v) - \epsilon for every
v \in A.

Let C denote the subset of v \in A that satisfies (1) v is below a vector in R\ast 

and (2) every type-3 vector below v has u(w) = u3 (so w \in B). Note that C can be
empty. Fix a v \in C when it is nonempty. We have u\prime (v) = u(v) > u\prime 

3 = u3 + \epsilon and
u\prime (w) = u\prime 

3 = u(w)+ \epsilon , for all type-3 vectors w below v. As a result, every constraint
(other than those on q only) in LP(v : u) has its RHS larger than the corresponding
RHS of LP(v : u\prime ) by \epsilon . We claim that Rev\prime (v) \geq Rev(v) + \Omega (t\epsilon ). To see this,
let q\ast denote the vector derived from q(v) as follows: q\ast i = qi(v)  - (\epsilon /2) for some
i \in S(v) and q\ast n+2 = qn+2(v) + (\epsilon /2); all other entries remain the same. It is clear
that q\ast is nonnegative (since di \cdot qi(v) \geq u(v) - u3 > \epsilon ) and is also a feasible solution
to LP(v : u\prime ). It follows that Rev\prime (v) \geq Rev(v) + \Omega (t\epsilon ).

To finish the proof, we consider the following two cases.

Case 1: C \not = \emptyset . Then (taking the worst case that | C| = 1 and the vector is in R)
we have

Rev\prime 
3  - Rev3 \geq \delta 2 \cdot rm \cdot p \cdot \Omega (t\epsilon ) - \delta 2 \cdot \epsilon 

> \delta 2\epsilon \cdot 
\biggl( 

rmp\beta \delta 2

h(m+ 1)(M  - 0.5)
 - 1

\biggr) 
\gg O(\delta 3n\epsilon t/\beta ),

where the second to the last inequality follows from p/r = 2n
2 \gg mM/\beta .

Case 2: C = \emptyset . Then every v \in R\ast \cap A satisfies that all vectors w below v have
u(w) = u3, and for each v \in R\ast \cap A, LP(v : u) boils down to the following constraints:
qi \geq 0,

\sum 
i\in [n+2] qi \leq 1, and \tau i \cdot qi \geq u(v) - u3 for all i \in S+(v) = S(v), since all other

constraints would be trivially implied. As a result, qi(v) = (u(v)  - u3)/\tau i for each
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i \in S(v) and qn+2(v) takes the rest of the probability; q\prime i(v) = (u(v)  - u\prime 
3)/\tau i for

i\in S(v) and q\prime n+2(v) takes the rest of the probability. Plugging in u\prime 
3 =u3 + \epsilon ,

Rev\prime (v) \geq Rev(v) + (m+ 1) \cdot \epsilon 

maxi\in [n] \tau i
\cdot 
\biggl( 
t - max

i\in [n]
hi

\biggr) 
 - \epsilon .

Given that u3 < u\ast , we have | A\cap R\ast | \geq M . Combining all bounds together, we have

Rev\prime 
3  - Rev3 \geq Mh \cdot (m+ 1)\epsilon 

\beta (1 +O(1/N2))
\cdot 
\bigl( 
t - (2 + 3n\beta )

\bigr) 
 - \delta 2\epsilon 

= \delta 2\epsilon 

\biggl( 
M(1 - O(1/N2))

M  - 0.5
 - 1

\biggr) 
> 0

and is \gg O(\delta 3n\epsilon t/\beta ).

This finishes the proof of the lemma.

Before we pin down u(c4), recall that the second part of the input (\scrG , H,M) is a
set H \subset [2 : n] of size m. Let vH denote the vector in R\ast with S+(vH) = S(vH) =
\{ 1\} \cup H. Given that u3 = u\ast , we have (1) if \sansS \sansu \sansm (H) > t\ast , then u(vH) > u(c3), and
(2) if \sansS \sansu \sansm (H) \leq t\ast then u(vH) = u(c3) in any optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I).
It also follows from LP(v : u) that (1) if \sansS \sansu \sansm (H) > t\ast , then qn+2(vH) < 1, and (2) if
\sansS \sansu \sansm (H) \leq t\ast , then qn+2(vH) = 1 in any optimal solution. We summarize it below.

Corollary 5.25. If \sansS \sansu \sansm (H) > t\ast , then qn+2(vH) < 1 in every optimal solution
to LP\prime (I). If \sansS \sansu \sansm (H) \leq t\ast , then qn+2(vH) = 1 in every optimal solution to LP\prime (I).

Finally we show that u(c4) = u(c3) = u\ast in any optimal solution to LP\prime (I).

Lemma 5.26. Any optimal solution to LP\prime (I) must satisfy u(c4) = u(c3) = u\ast .

Proof. The proof is similar to that of Lemma 5.23. Suppose that (u(\cdot ),q(\cdot )) \in 
\sansE \sansx \sanst (q, u2, u

\ast , u4) is optimal but u4 > u\ast (and u4 \leq u\ast + s for it to be feasible). Let
\epsilon > 0 be a sufficiently small positive number, such that u4  - \epsilon \geq u\ast and u(v) <
u4 implies that u(v) < u4  - \epsilon for every v \in D. Our goal is then to show that
(u\prime (\cdot ),q\prime (\cdot )) \in \sansE \sansx \sanst (q, u2, u

\ast , u\prime 
4) is strictly better, where u\prime 

4 = u4  - \epsilon , a contradiction.
It suffices to compare Rev\prime 

4 and Rev4 since Rev\prime 
i = Revi for i = 1, 2, 3.

For c4 we have Rev\prime (c4) \geq Rev(c4) +\Omega (\epsilon t/s). Let A be the set of v \in T4 \setminus \{ c4\} 
with u(\rho (v)) \geq u4 and B be the rest of v \in T4 \setminus \{ c4\} with u(\rho (v)) < u4. Following
the same argument used in Lemma 5.23, we have Rev\prime (v) = Rev(v) + \epsilon for each
v \in B, and Rev\prime (v) \geq Rev(v) - O(n\epsilon t/\beta ) for each v \in A.

These bounds are strong enough for the current lemma. Given u\ast we have Pr[A] \leq 
3n \cdot \delta 3 \cdot rm+1. Thus Rev\prime 

4  - Rev4 \geq Pr[c4] \cdot \Omega (\epsilon t/s) - Pr[A] \cdot O(n\epsilon t/\beta ) = \Omega (\delta 3\epsilon t/s) - 
O(3n\delta 3rm+1n\epsilon t/\beta ) > 0.

5.3. Returning to the standard linear program. Let (\scrG , H,M) be an input
instance of COMP and I be the input instance of the optimal mechanism design
problem (or the lottery problem) constructed from (\scrG , H,M) in sections 5.1 and 5.2.
We show that any optimal solution to LP\prime (I) is a feasible solution to the standard
LP(I).

Lemma 5.27. Any optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I) is a feasible solution to
LP(I).

Before proving Lemma 5.27, we use it to prove Theorem 1.4.
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Proof of Theorem 1.4 assuming Lemma 5.27. Using Lemma 5.27, we claim that
(u(\cdot ),q(\cdot )) is an optimal solution to LP(I) if and only if it is an optimal solution to
LP\prime (I). To see this, let Opt and Opt\prime denote the optimal values of LP(I) and LP\prime (I),
respectively. As LP\prime (I) is a relaxation of LP(I), we have Opt\prime \geq Opt. Lemma 5.27,
on the other hand, implies Opt \geq Opt\prime . So Opt = Opt\prime , and from here the claim
follows easily.

Suppose that \scrA (\cdot , \cdot ) satisfies both properties stated in Theorem 1.4. Then it fol-
lows from the connection between the optimal mechanism design problem and LP(I)
(see section 2.1) that (\scrA (I,v) : v \in D) is an optimal solution to LP(I) and thus, an
optimal solution to LP\prime (I).

It follows from Corollary 5.25 that (1) when \sansS \sansu \sansm (H) > t\ast , \scrA (I,vH) assigns an
item other than n + 2 or no item to the buyer with a positive probability; (2) when
\sansS \sansu \sansm (H) \leq t\ast , \scrA (I,vH) always assigns item n+2 with probability 1. Given I and vH ,
the problem of deciding which case it is belongs to NP, because \scrA is a randomized
algorithm that always terminates in polynomial time by assumption.

The theorem follows from the \#P-hardness of COMP proved in Lemma 5.22.

We prove Lemma 5.27 in the rest of the section. It suffices to show that any
optimal solution (u(\cdot ),q(\cdot )) to LP\prime (I) satisfies (2.1) for all ordered pairs (v,w) in D.

5.3.1. Reducing to (v,w) with \bfitS (w) \subseteq \bfitS (v). First we handle the special
case when v = a. Let (u(\cdot ),q(\cdot )) be an optimal solution to LP\prime (I) and w \in T1.
By Condition-Type-1, we have u(w) \geq 

\sum 
i\in S(\bfw )(wi  - ai) \cdot qi(a). We extend \rho 

by setting \rho (w) = w if w \in T1. Then u(w) \geq u(\rho (w)) for all w \in D. Thus,
u(w) \geq u(\rho (w)) \geq 

\sum 
i\in S(\rho (\bfw ))(wi  - ai) \cdot qi(a) =

\sum 
i\in S(\bfw )(wi  - ai) \cdot qi(a). Since

u(a) = 0, this implies (2.1) on (a,w) for all w \in D. We assume v \not = a in (v,w) from
now on.

Now we claim that it suffices to prove (2.1) for (v,w) that satisfies S(w) \subseteq S(v)
(though v and w here may belong to different blocks). Suppose that we have proved
(2.1) over (v,w) with S(w) \subseteq S(v). Given any general pair (v,w) with v \not = a
(otherwise it is done), we use w\prime to denote the vector obtained from w by replacing
every wi, i \in S(w) \setminus S(v), by ai. Then clearly we have S(w\prime ) \subseteq S(v). Because (2.1)
holds for (v,w\prime ), by monotonicity of u(\cdot ) (Lemma 5.21), we have

u(v) - u(w) \leq u(v) - u(w\prime ) \leq 
\sum 
i\in [n]

(vi  - w\prime 
i) \cdot qi(v) +

\sum 
i\in \{ n+1,n+2\} 

(vi  - w\prime 
i) \cdot qi(v),

where the latter is equal to\sum 
i\in [n]

(vi  - wi) \cdot qi(v) +
\sum 

i\in \{ n+1,n+2\} 

(vi  - wi) \cdot qi(v)

using wn+1 = w\prime 
n+1, wn+2,= w\prime 

n+2 and for every i \in [n] but i /\in S(v), qi(v) = 0
(Condition-Type-1, Lemmas 5.1 and 5.3). From now on we consider pairs (v,w)
that satisfy S(w) \subseteq S(v).

5.3.2. Both v and w are type 1. We start with the case when v and w are
both type-1 vectors (and satisfy S(w) \subseteq S(v)).

Note that (2.1) means that w does not envy the lottery of v. As v buys the
same lottery as Lower(v) (by Condition-Type-1), we may assume without loss of
generality that v \in T \prime 

1 and S(w) \subset S(v). Then
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u(v) - u(w) =
\sum 

i\in S(\bfv )\setminus S(\bfw )

di \cdot qi(a) - 
\sum 

i\in S+(\bfw )

\tau i \cdot qi
\bigl( 
Lower(w)

\bigr) 
\leq 

\sum 
i\in S(\bfv )\setminus S(\bfw )

di \cdot qi(v) - 
\sum 

i\in S+(\bfw )

\tau i \cdot qi(v),

where the last inequality follows from qi(v) \geq qi(a) for every i \in S(v), and that
qi(Lower(w)) \geq qi(v) for every i \in S(w) by Lemma 5.11.

5.3.3. Both v and w are type 2. Next we prove (2.1) for pairs (v,w) of type-2
vectors that satisfy S(w) \subseteq S(v).

The special case of | S(v)| \leq 1 is easy to check. Let vi be the type-2 vector
with S(vi) = \{ i\} and its ith entry being \ell i and let v\prime 

i denote the type-2 vector with
S(v\prime 

i) = \{ i\} and its ith entry being hi. The constraint (2.1) over (v,w) = (vi, c2),
(v\prime 

i, c2), or (v
\prime 
i,vi) is part of LP

\prime (I); for (v,w) = (vi,v
\prime 
i), (2.1) follows trivially from

the fact that u(v\prime 
i) \geq u(vi) (by Condition-Type-2), and qi(vi) = 0. To see the

latter, note that by Lemma 5.20 we have u(vi) = u(c2) and, thus, an optimal solution
to LP(vi : u) must have qn+1 = 1.

For type-2 (v,w) with | S(v)| \geq 2, we need to understand q(v) better. We prove
the following lemma regarding v \in T2 \cup T3 \cup T4 \setminus \{ c2, c3, c4\} that satisfies certain
conditions.

Lemma 5.28. Let (u(\cdot ),q(\cdot )) be an optimal solution to LP\prime (I) and v \in T2 \cup T3 \cup 
T4 \setminus \{ c2, c3, c4\} . Assume that u(v) = u(\rho (v)) and u(w) = u(\rho (w)) for every w that
appears in LP(v : u). Then LP(v : u) has the following unique optimal solution q
(letting k = min(S(v)) and S\prime (v) = S(v) \setminus \{ k\} ):

\bullet If k /\in S+(v), qi = qi(a) for all i \in S(v), and q puts the rest of the probability
1 - 

\sum 
i\in S(\bfv ) qi(a) (if any) on qn+1 if v \in T2 or qn+2 if v \in T3 \cup T4; all other

entries of q are 0.

\bullet If k \in S+(v), qi(v) = qi(a) for all i \in S\prime (v) and qk(v) = 1 - 
\sum 

i\in S\prime (\bfv ) qi(a);

all other entries of q are 0. In this case we have q(v) = q(\rho (v)).

Proof. We relax LP(v : u): its second batch of constraints is now over i \in S(v)
and wi = Lower(v - i, ai) only. Denote this linear program by LP\ast (v : u):

maximize
\sum 

j\in [n+2]

vj \cdot qj  - u(v) subject to

qi \geq 0 and
\sum 

j\in [n+2]

qj \leq 1 for i \in [n+ 2],

\tau i \cdot qi \geq u(v) - u(w) for i \in S+(v) and w = (v - i, \ell i),\sum 
j\in [n]

(vj  - wj) \cdot qj \geq u(v) - u(w) for i \in S(v) and w = Lower(v - i, ai).

We start with the case when k = min(S(v)) /\in S+(v). The first batch of con-
straints yields qi \geq qi(a) for all i \in S+(v), where we used u(v) = u(\rho (v)), u(w) =
u(\rho (w)), and Condition-Type-1. For each i \in S(v), the second batch requires

(vi  - ai) \cdot qi +
\sum 

j\in S(\bfw )

(vj  - wj) \cdot qj \geq di \cdot qi(a) +
\sum 

j\in S+(\bfv )

\tau j \cdot qj(a).
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Rearranging terms results in

di \cdot (qi  - qi(a)) +
\sum 

j\in S+(\bfv )

\tau j \cdot (qj  - qj(a)) \geq 0

for each i \in S(v). These are the only constraints in LP\ast (v : u) other than those
on q itself. We now show that LP\ast (v : u) has a unique optimal solution q with
qi = qi(a) for all i \in S(v), and q allocates all the rest of probability onto qn+1 or
qn+2, depending on whether v \in T2 or v \in T3 \cup T4.

Assume for contradiction that q\ell < q\ell (a) for some \ell \in S(v) (this is actually
without loss of generality since if qi \geq qi(a) for all i \in S(v), then to be optimal q must
be the vector described above). Take \ell to be an index in S(v) that maximizes q\ell (a) - q\ell ,
denoted by \epsilon > 0. For the second constraint on \ell we must have qt - qt(a) \geq \Omega (\epsilon /(n\beta ))
for some t \in S(v). Let q\prime denote the following vector derived from q: q\prime i = qi+\epsilon for all
i \in S(v) and i \not = t; q\prime t = qt - 2n\epsilon ; q\prime n+1 or q\prime n+2 takes the rest of the probability. Then
q\prime is feasible and strictly better than q. For feasibility, the only nontrivial constraint
to check is the second one on t:

dt \cdot (q\prime t  - qt(a)) +
\sum 

j\in S+(\bfv )

\tau j \cdot (qj  - qj(a)) \geq \Omega (\epsilon /(n\beta )) - n \cdot O(\beta ) \cdot \epsilon > 0.

Given that q described above is the unique optimal solution to LP\ast (v : u), it
is easy to verify that q is indeed a feasible solution to LP(v : u). Taking a w \in 
Block(v - i, ai) for some i \in S(v), we have

u(v) - u(w) = di \cdot qi(a) +
\sum 

j\in S+(\bfv )

\tau j \cdot qj
\bigl( 
\rho (v)

\bigr) 
 - 

\sum 
j\in S+(\bfw )

\tau j \cdot qj
\bigl( 
\rho (w)

\bigr) 
\leq di \cdot qi(a) +

\sum 
j\in S+(\bfv )

\tau j \cdot qj(a) - 
\sum 

j\in S+(\bfw )

\tau j \cdot qj(a)

=
\sum 

j\in S(\bfv )

(vj  - wj) \cdot qj(a) =
\sum 

j\in S(\bfv )

(vj  - wj) \cdot qj .

This finishes the proof of the case when k = min(S(v)) /\in S+(v).
We consider the case when k = min(v) \in S+(v). Let v\prime = \rho (v). The first batch

requires qi \geq qi(v
\prime ) for all i \in S+(v) (including k). For each i \in S - (v), the second

batch of LP\ast (v : u) requires

(vi  - ai) \cdot qi +
\sum 

j\in S(\bfw )

(vj  - wj) \cdot qj \geq di \cdot qi(a) +
\sum 

j\in S+(\bfv )

\tau j \cdot qj(v\prime ).

As i \in S - (v) and i \not = k, we have qi(a) = qi(v
\prime ) and thus di \cdot (qi - qi(v

\prime ))+
\sum 

j\in S+(\bfv ) \tau j \cdot 
(qj  - qj(v

\prime )) \geq 0 for each i \in S - (v). It turns out that q = q(v\prime ) is the unique feasible
solution to these constraints (as q(v\prime ) sums to 1, q sums to at most 1, and di \gg \tau j).
Hence, we have q(v) = q(v\prime ) (as LP(v : u) is feasible and q = q(v\prime ) is the only
feasible solution to LP\ast (v : u)). This finishes the proof when k \in S+(v).

We summarize below the following property of q(v) for all v \in T2 that will be
useful later.

Lemma 5.29. For all v \in T2 and i \in S(v), qi(v) \leq qi(\rho (v)). Moreover,

qn+1(v) = 1 - 
\sum 

i\in S(\bfv )

qi(v).
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Proof. Recall vi and v\prime 
i at the beginning of section 5.3.3. For c2 and vi we have

qn+1(c2) = qn+1(vi) = 1; for v\prime 
i we have qi(v

\prime 
i) = 1 = qi(\rho (v

\prime 
i)). The rest of v \in T2

follows from Lemma 5.28.

Now let (v,w) be a pair of type-2 vectors with S(w) \subseteq S(v) and | S(v)| \geq 2 (so
Lemma 5.28 applies to v and we know exactly what q(v) is). The rest of the proof is
similar to that for type-1 vectors.

Using u(v) = u(\rho (v)) and u(w) \geq u(\rho (w)), we have

u(v) - u(w) \leq 
\sum 

i\in S(\bfv )\setminus S(\bfw )

di \cdot qi(a) +
\sum 

i\in S+(\bfv )

\tau i \cdot qi(\rho (v)) - 
\sum 

i\in S+(\bfw )

\tau i \cdot qi(\rho (w)).

When k = min(v) /\in S+(v), we have qi(v) = qi(a) for all i \in S(v). We have

u(v) - u(w) \leq 
\sum 

i\in S(\bfv )\setminus S(\bfw )

di \cdot qi(a) +
\sum 

i\in S+(\bfv )

\tau i \cdot qi(a) - 
\sum 

i\in S+(\bfw )

\tau i \cdot qi(a)

=
\sum 

i\in S(\bfv )

(vi  - wi) \cdot qi(v),

where we used qi(\rho (v)) = qi(a) for i \not = min(S(v)) and qi(\rho (w)) \geq qi(a) for i \in S(w).
For the case when k = min(v) \in S+(v), we have q(v) = q(\rho (v)). Then

u(v) - u(w) \leq 
\sum 

i\in S(\bfv )\setminus S(\bfw )

di \cdot qi(v) +
\sum 

i\in S+(\bfv )

\tau i \cdot qi(v) - 
\sum 

i\in S+(\bfw )

\tau i \cdot qi(v)

=
\sum 

i\in S(\bfv )

(vi  - wi) \cdot qi(v),

where we used qi(\rho (w)) \geq qi(\rho (v)) = qi(v) for i \in S(\rho (w)) = S(w) by Lemma 5.11.
This finishes the proof of (2.1) over all pairs (v,w) of type-2 vectors.

5.3.4. Both v and w are type 3. Now we turn to pairs (v,w) of type-3 vectors
that satisfy S(w) \subseteq S(v).

When | S(v)| \geq m + 3, we note that by Lemma 5.23 and 5.24, v satisfies the
condition of Lemma 5.28 which completely characterizes q(v). The same argument
above for type-2 vectors with | S(v)| \geq 2 can be used to prove (2.1) for type-3 (v,w)
with S(w) \subseteq S(v) and | S(v)| \geq m+ 3.

Next we check the case when | S(v)| \leq m+1. The case when u(v) = u(c3) is simple
as qn+2(v) = 1 (note that this includes v = c3). As a result, we have (using u(w) \geq 
u(c3) by Condition-Type-3) that u(v) - u(w) \leq 0 =

\sum 
i\in [n+2](vi  - wi) \cdot qi(v).

For the case when u(v) > u(c3) and | S(v)| \leq m+1, by Lemmas 5.23 and 5.24 we
must have v \in R\ast . q(v) is an optimal solution to the following (relaxed) LP (from
LP(v : u)): qi \geq 0,

\sum 
i\in [n+2] qi \leq 1, \tau i \cdot qi \geq u(v) - u(c3) for i \in S+(v), since all other

constraints in LP(v : u) would be implied. This implies that qi(v) = (u(v) - u(c3))/\tau i
for all i \in S(v) and qn+2(v) takes the rest of the probability. We now prove (2.1) on
(v,w). Using S(w) \subseteq S(v) and w \not = v (so u(w) = u(c3)), there must be an index
t \in S(v) such that wt < vt. As a result we have\sum 

i\in [n+2]

(vi  - wi) \cdot qi(v) =
\sum 

i\in S(\bfv )

(hi  - wi) \cdot qi(v)

\geq \tau t \cdot qt(v) = u(v) - u(c3) = u(v) - u(w).

The only case left for type 3 (v,w) is when | S(v)| = m + 2. We need the next
lemma about its q(v).
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Lemma 5.30. For each v \in T3 with | S(v)| = m+2, q(v) satisfies qi(v) = qi(\rho (v))
for each i \in S+(v), qi(v) \leq qi(a) for each i \in S - (v), and q(v) puts the rest of
probability onto qn+2(v).

Proof. By LP(v : u), qi(v) for each i \in S+(v) must satisfy

(5.38) \tau i \cdot qi(v) \geq u(v) - u(v - i, \ell i) = u(\rho (v)) - u(\rho (v - i, \ell i)) = \tau i \cdot qi(\rho (v)),

since we have u(w) = u(\rho (w)) for w \in T3 with | S(w)| \geq m + 2. Let q be the
vector with qi = qi(\rho (v)) for all i \in S+(v) and qi = qi(a) for all i \in S - (v). Let
c = maxi(qi(v)  - qi), and assume for contradiction that c > 0. Let t \in S(v) denote
an index with qt(v) = qt + c. We consider two cases below.

Case 1: One of the constraints in the second batch of LP(v : u) with i = t is tight,
i.e., there is a type-3 vector w \in Block(v - t, at) such that

\sum 
i\in S(\bfv )(vi  - wi) \cdot qi(v) =

u(v) - u(w). Since u(v) = u(\rho (v)) and u(w) \geq u(\rho (w)), we have\sum 
i\in S(\bfv )

(vi  - wi) \cdot qi(v) \leq u(\rho (v)) - u(\rho (w))

= dt \cdot qt(a) +
\sum 

i\in S+(\bfv )

\tau i \cdot qi(\rho (v)) - 
\sum 

i\in S+(\bfw )

\tau i \cdot qi(\rho (w)).

Plugging in qt(a) \leq qt, qi(\rho (v)) = qi for i \in S+(v), and qi(\rho (w)) \geq qi(\rho (v)) \geq qi for
i \in S(w), we have

dt \cdot (qt(v) - qt) +
\sum 

i\in S+(\bfv )

\tau i \cdot (qi(v) - qi) \leq 
\sum 

i\in S+(\bfw )

\tau i \cdot (qi(v) - qi) \leq n \cdot O(\beta ) \cdot c.

Given that dt \approx 1 \gg O(n\beta ), there must exist an i \in S+(v) such that qi(v) - qi < 0,
contradicting (5.38).

Case 2: All constraints in the second batch with i = t are loose. For this case we
lower qt(v) by \epsilon for some sufficiently small \epsilon > 0, increase qi(v) by \epsilon /(2n) for other
i \in S(v), and move the rest of (at least \epsilon /2) probability to qn+2(v). This gives a
feasible solution that is strictly better than q(v), a contradiction.

We summarize below the following property of q(v) for all v \in T3 that will be
useful later:

Lemma 5.31. For all v \in T3 and i \in S(v), qi(v) \leq qi(\rho (v)). Moreover,

qn+1(v) = 1 - 
\sum 

i\in S(\bfv )

qi(v).

Proof. The case of u(v) = u(c3) is trivial. The case of u(v) > u(c3) and | S(v)| \leq 
m+1 follows from qi(v) = (u(v) - u(c3))

\big/ 
\tau i \leq 

\bigl( 
u(\rho (v)) - u(\rho (v - i, \ell i))

\bigr) \big/ 
\tau i = qi(\rho (v)).

The rest of v \in T4 follows from either Lemmas 5.28 or 5.30.

We now return to prove (2.1) for pairs (v,w) of type-3 vectors with S(w) \subseteq S(v)
and | S(v)| = m+2. The only nontrivial case here is when w also has | S(w)| = m+2.
For other cases, we have the following:

1. | S(w)| = m+ 1: Trivial since the constraint is indeed part of LP\prime (I).

2. | S(w)| < m+ 1: Let w\ast denote a type-3 vector in R such that w \prec w\ast \prec v
and w\ast 

i = hi for all i \in S(w). Then we have u(w\ast ) = u(w) = u(c3). It
follows from (2.1) over (v,w\ast ) that
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u(v) - u(w) = u(v) - u(w\ast ) \leq 
\sum 

i\in S(\bfv )

(vi - w\ast 
i ) \cdot qi(v) \leq 

\sum 
i\in S(\bfv )

(vi - wi) \cdot qi(v),

where the last inequality follows from wi \leq w\ast 
i for all i.

When | S(w)| = m+2, we have S(v) = S(w). Then u(v) - u(w) = u(\rho (v)) - u(\rho (w))
and

u(\rho (v)) - u(\rho (w)) =
\sum 

i\in S+(\bfv )\setminus S+(\bfw )

\tau i \cdot qi(\rho (v)) - 
\sum 

i\in S+(\bfw )\setminus S+(\bfv )

\tau i \cdot qi(\rho (v))

\leq 
\sum 

i\in S+(\bfv )\setminus S+(\bfw )

\tau i \cdot qi(v) - 
\sum 

i\in S+(\bfw )\setminus S+(\bfv )

\tau i \cdot qi(v)

=
\sum 

i\in S(\bfv )

(vi  - wi) \cdot qi(v),

since qi(v) = qi(\rho (v)) for all i \in S+(v) and qi(v) \leq qi(a) \leq qi(\rho (v)) for all i \in S - (v).
This finishes the proof of (2.1) over pairs of type-3 vectors.

5.3.5. Both v and w are type 4. For each v \in T4, let \Phi (v) = (v - (n+1), 0).
So \Phi is a one-to-one correspondence between type-4 and type-3 vectors. As u(c4) =
u(c3), we have u(v) = u(\Phi (v)) for all v \in T4. This suggests the following lemma.

Lemma 5.32. Let (u(\cdot ),q(\cdot )) be an optimal solution to LP\prime (I) and v \in T4. Then
(u(\cdot ),q(\cdot )) remains to be an optimal solution to LP\prime (I) after replacing q(\Phi (v)) by
q(v).

Proof. The statement is trivial for v = c4 since qn+2(c3) = qn+2(c4) = 1.
For v \not = c4, note that LP(v : u) is essentially the same as LP(\Phi (v) : u), with

the only subtle difference being that the coefficient of qn+1 is s in LP(v : u) but 0 in
LP(\Phi (v) : u). However, neither q(\Phi (v)) nor q(v) can put any probability onto qn+1.
The lemma then follows.

To prove (2.1) on a pair (v,w) of type-4 vectors we simply replace q(\Phi (v)) by q(v)
to get a new optimal solution by Lemma 5.32, and (2.1) must hold on (\Phi (v),\Phi (w))
in the new solution (since we have proved (2.1) between type-3 vectors in any optimal
solution). This then implies (2.1) on (v,w) in the original solution.

5.3.6. Pairs with different types. Finally we prove (2.1) for pairs (v,w) of
vectors with S(w) \subseteq S(v) and of different types.

The following lemma helps us further reduce cases that need to be considered.

Lemma 5.33. Assume that v,v\prime \in D differ at the ith entry only, for some i \in 
\{ n + 1, n + 2\} , and v\prime i > vi. Then we have u(v\prime ) \geq u(v) in any optimal solution to
LP\prime (I).

Proof. The case when v \in T1 follows directly from Condition-Type-2 and
Condition-Type-3.

The case when v \in T3 and i = n+ 1 follows from u(c3) = u(c4).
The case when v \in T2 and i = n+ 2 follows from the fact that u(c3) > u(c2).

It suffices to prove (2.1) for (v,w) that satisfies vn+1 \geq wn+2 and vn+2 \geq wn+2.
To see this, we letw\prime denote the vector obtained fromw by replacing wi by min(wi, vi),
i \in \{ n + 1, n + 2\} . Then u(w) \geq u(w\prime ) by Lemma 5.33 and (v,w\prime ) satisfies vn+1 \geq 
w\prime 

n+1 and vn+2 \geq w\prime 
n+2. Assuming that (2.1) holds for (v,w\prime ),
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u(v) - u(w) \leq u(v) - u(w\prime ) \leq 
\sum 

i\in [n+2]

(vi  - w\prime 
i)qi(v)

=
\sum 
i\in [n]

(vi  - wi)qi(v) +
\sum 

i\in \{ n+1,n+2\} 

(vi  - w\prime 
i)qi(v).

The RHS is indeed the same as
\sum 

i(vi  - wi) \cdot qi(v). This is because for either i \in 
\{ n+ 1, n+ 2\} , wi \not = w\prime 

i would imply that vi = 0 and, thus, qi(v) = 0.
Now we need to consider the following cases of types of (v,w): (2, 1), (3, 1), (4, 1),

(4, 2), and (4, 3). We start with the case when v is type 2 and w is type 1.
We consider the following two cases: u(v) = u(c2) or u(v) > u(c2). For the

former, qn+1(v) = 1 and, thus, u(v) - u(w) \leq u(c2) \ll s =
\sum 

i\in [n+2](vi  - wi) \cdot qi(v).
For the latter, u(v) = u(\rho (v)). By Lemma 5.29, let \gamma i = qi(\rho (v)) - qi(v) \geq 0 for each
i \in S(v). Then

u(v) - u(w) = u(\rho (v)) - u(w) \leq 
\sum 

i\in S(\bfv )

(vi  - wi) \cdot qi(\rho (v))

=
\sum 

i\in S(\bfv )

(vi  - wi) \cdot qi(v) +
\sum 

i\in S(\bfv )

(vi  - wi) \cdot \gamma i

\leq 
\sum 

i\in S(\bfv )

(vi  - wi) \cdot qi(v) + s \cdot 
\sum 

i\in S(\bfv )

\gamma i

=
\sum 

i\in [n+2]

(vi  - wi) \cdot qi(v),

where the last equation used qn+1(v) = 1 - 
\sum 

i\in S(\bfv ) qi(v) from Lemma 5.29.
The case when v is type 3 and w is type 1 can be proved similarly using Lemma

5.31. From this case, the case when v is type 3 and w is type 2 follows from Lemma
5.33 (we mention it since it is used below).

For the case when v is type 4 and w is type 3, we simply replace q(\Phi (v)) by q(v)
to get a new optimal solution by Lemma 5.32. (2.1) on (v,w) in the original solution
then follows from that on (\Phi (v),w) in the new solution (note that this is the (3, 2)
case we already handled), given that qn+1(v) = 0.

For the case when v is type 4 and w is type 2, we again replace q(\Phi (v)) by q(v)
to get a new optimal solution by Lemma 5.32. (2.1) on (v,w) in the original solution
then follows from that on (\Phi (v),w) in the new solution, given qn+1(v) = 0. The same
argument works for the case when v is type 4 and w is type 1.

This finishes the proof of Lemma 5.27.

6. Conclusions. In this paper we studied the complexity of optimal lottery pric-
ing and randomized mechanisms for a unit-demand buyer with a product distribution.
We showed that the menu size complexity of the problem is exponential even when
the distribution of each item has support size 2. For the computational complexity,
we showed that the problem is unlikely to have a randomized polynomial-time algo-
rithm unless PNP = P\#P, and this holds even when the distribution of each item has
support size 3.

Appendix A. Two items with support size 2.
In this section we show Theorem 1.3, i.e., that offering lotteries does not improve

the expected revenue when there are two items and both distributions \scrD 1 and \scrD 2 are
of support size 2.
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Let \{ ai, bi\} be the support of \scrD i for i \in \{ 1, 2\} , where 0 \leq ai < bi. Let qi be
the probability that item i has value ai (and 1  - qi that it has value bi). Without
loss of generality, we assume that b2 \geq b1 and write t = b1  - a1. We consider the
following four item pricings: (a1, b2), (b1, a2), (b1, b2), (a1, b2  - t) (according to the al-
gorithm for the optimal item pricing in the support-2 case [CDP+18], one of them is
optimal).

In Table A.1 below, we list the revenue for each of the four item pricings (the
rows of the table) at each of the four possible valuations (the columns). The bottom
left entry \delta of the table is equal to a1 if a2 < b2  - t (i.e., if t < b2  - a2), and is equal
to b2  - t if a2 \geq b2  - t.

Table A.1
Revenue for each potentially optimal pricing (rows) and each possible valuation vector (columns).

(a1, a2) (b1, a2) (a1, b2) (b1, b2)
(a1, b2) a1 a1 b2 a1
(b1, a2) a2 max\{ b1, a2\} a2 a2
(b1, b2) 0 b1 b2 b2

(a1, b2  - t) \delta a1 b2  - t b2  - t

Consider now an optimal menu L\ast of lotteries. By Lemma 2.4, all the lotteries,
except for the one bought for valuation (a1, a2), are complete. In Table A.2 we list
the allocation and price of each lottery bought.

Table A.2
An optimal menu.

Valuation

Allocation
Item 1 Item 2 Price

(a1, a2) w1 w2 p1
(b1, a2) 1 - x x p2
(a1, b2) y 1 - y p3
(b1, b2) z 1 - z p4

Our plan is to show that the revenue of L\ast is upperbounded by a convex combi-
nation of revenues from the four item pricings. We use the following strategy.

Let \alpha = (1 - q1)/q1. Note that this is the ratio between probabilities of valuations
(b1, a2) and (a1, a2), and also those of (b1, b2) and (a1, b2). The expected revenue of
L\ast then can be written as

q1q2 \cdot (p1 + \alpha p2) + q1(1 - q2) \cdot (p3 + \alpha p4).

Denote by Ci the ith column vector of Table A.1. Our goal is to find a nonnegative
vector s = (s1, s2, s3, s4) of weights (view si as the weight of the item pricing on the

ith row of Table A.1) with
\sum 4

i=1 si = 1 such that

(A.1) s \cdot (C1 + \alpha C2) \geq p1 + \alpha p2 and s \cdot (C3 + \alpha C4) \geq p3 + \alpha p4.

Let R\ast be the revenue of L\ast and Ri be the revenue of the item pricing on the ith
column of Table A.1. Such a weight vector s then implies that R\ast \leq 

\sum 4
i=1 si \cdot Ri, and

Theorem 1.3 follows.
Here is the plan of the rest of the section. In section A.1 we bound the prices pi

of L\ast , and then bound p1 + \alpha p2 and p3 + \alpha p4. We then choose an appropriate s and
use these bounds to prove (A.1) in section A.2.
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A.1. Upper bounds for the prices in \bfitL \ast . We start with upper bounds for
pi, i \in \{ 1, 2, 3, 4\} .

Bounding p1: For valuation (a1, a2), the buyer buys (w1, w2, p1). Since it has
nonnegative utility,

(A.2) p1 \leq a1w1 + a2w2.

Bounding p2: For valuation (b1, a2), the buyer prefers lottery (1  - x, x, p2) over
(w1, w2, p1). Thus,

b1(1 - x) + a2x - p2 \geq b1w1 + a2w2  - p1
(A.2)
===\Rightarrow p2 \leq b1  - x(b1  - a2) - w1(b1  - a1).

Bounding p4: For valuation (b1, b2), the buyer prefers lottery (z, 1  - z, p4) over
(w1, w2, p1), so

b1z + b2(1 - z) - p4 \geq b1w1 + b2w2  - p1
(A.2)
===\Rightarrow 

p4 \leq b1z + b2(1 - z) - w1(b1  - a1) - w2(b2  - a2).(A.3)

For valuation (b1, b2), lottery (z, 1  - z, p2) is also preferred over (1  - x, x, p2), so we
have

b1z + b2(1 - z) - p4 \geq b1(1 - x) + b2x - p2
(A.3)
===\Rightarrow 

p4 \leq b1z + b2(1 - z) - w1(b1  - a1) - x(b2  - a2).(A.4)

Hence, from (A.3) and (A.4) it follows that

p4 \leq b2  - z(b2  - b1) - w1(b1  - a1) - max\{ w2, x\} (b2  - a2).(A.5)

Bounding p3: For valuation (a1, b2), lottery (y, 1 - y, p3) is preferred over (z, 1 - 
z, p4), so we have

a1y + b2(1 - y) - p3 \geq a1z + b2(1 - z) - p4
(A.5)
===\Rightarrow 

p3 \leq b2  - (b2  - a1)y + z(b1  - a1) - w1(b1  - a1) - max\{ w2, x\} (b2  - a2).(A.6)

Similarly, for valuation (a1, b2), lottery (y, 1 - y, p3) is preferred over (w1, w2, p1), so
we have

a1y + b2(1 - y) - p3 \geq a1w1 + b2w2  - p1
(A.2)
===\Rightarrow 

p3 \leq a1y + b2(1 - y) - w2(b2  - a2).(A.7)

Plugging in b2 \geq a1 and y \geq 0, we have from (A.6) and (A.7) that

p3 \leq b2 + z(b1  - a1) - w1(b1  - a1) - max\{ w2, x\} (b2  - a2) and

p3 \leq b2  - w2(b2  - a2).(A.8)

Bounding p1 + \alpha p2: From (A.2) and (A.3) we get

p1 + \alpha p2 \leq \alpha b1  - w1(\alpha b1  - (1 + \alpha )a1) + w2a2  - x\alpha (b1  - a2).(A.9)
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Bounding p3 + \alpha p4: Combining the first part of (A.8) and (A.5) we get

p3 + \alpha p4 \leq (1 + \alpha )(b2  - w1(b1  - a1) - max\{ w2, x\} (b2  - a2))

 - z(\alpha (b2  - b1) - (b1  - a1)).(A.10)

Similarly, from the second part of (A.8) and (A.5) we get

p3 + \alpha p4 \leq b2(1 + \alpha ) - z\alpha (b2  - b1) - w1\alpha (b1  - a1)

 - w2(b2  - a2) - max\{ w2, x\} \alpha (b2  - a2).(A.11)

Next we will prove that there are nonnegative weights s1, s2, s3, and s4 that sum
to 1 and satisfy (A.1).

A.2. Upper bounds for the expected revenue. First we note the following
useful inequality:

w2a2  - x\alpha (b1  - a2) \leq max\{ w2, x\} \cdot 
\bigl( 
a2 + \alpha (max\{ b1, a2\}  - b1)

\bigr) 
,

which can be verified by checking the two cases b1 \geq a2 and b1 < a2.
We start with a sufficient condition on s = (s1, . . . , s4) to satisfy the first part of

(A.1).

Lemma A.1. Suppose that s1, s4 \geq 0 satisfy s1 + s4 = w1, s2 satisfies 0 \leq s2 \leq 
max\{ w2, x\} ,

(A.12) w2a2  - x\alpha (b1  - a2) \leq s2 \cdot 
\bigl( 
a2 + \alpha (max\{ b1, a2\}  - b1)

\bigr) 
,

and s3 = 1 - w1  - s2. Then si \geq 0 for all i,
\sum 4

i=1 si = 1, and s satisfies

s \cdot (C1 + \alpha C2) \geq p1 + \alpha p2.

Proof. We have s1, s2, s4 \geq 0 by the assumption of the lemma. To see that s3 \geq 0
note that by Lemma 2.3 w1 \leq 1 - x. As w1 + w2 \leq 1, we have 1 - w1 \geq max\{ w2, x\} 
and, thus, s3 \geq 0.

\sum 4
i=1 si = 1 is obvious.

Recall that \delta in Table A.1 is a1 or b2  - t = b2  - b1 + a1 \geq a1. Letting A =
s \cdot (C1 + \alpha C2), we have

A = s1(1 + \alpha )a1 + s2a2 + s2\alpha max\{ b1, a2\} + s3\alpha b1 + s4\delta + s4\alpha a1

\geq s1(1 + \alpha )a1 + s2a2 + s2\alpha max\{ b1, a2\} + s3\alpha b1 + s4a1 + s4\alpha a1

= (s1 + s4)(1 + \alpha )a1 + s2a2 + s2\alpha max\{ b1, a2\} + s3\alpha b1.

From the choice of the si's: s1 + s4 = w1 and s4 = 1 - w1  - s2, the above inequality
becomes

A \geq w1(1 + \alpha )a1 + s2a2 + s2\alpha max\{ b1, a2\} + (1 - w1  - s2)\alpha b1

= \alpha b1  - w1(\alpha b1  - (1 + \alpha )a1) + s2a2 + s2\alpha (max\{ b1, a2\}  - b1).

The lemma then follows directly from (A.9) and the assumption (A.12).

We next show that there is an s that satisfies the second part of (A.1) as well as
conditions of Lemma A.1.

Lemma A.2. There exists an s that satisfies conditions of Lemma A.1 and s \cdot 
(C3 + \alpha C4) \geq p3 + \alpha p4.
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Proof. Let B = s \cdot (C3 + \alpha C4). It follows from Table A.1 that we have

B = s1b2 + s1\alpha a1 + s2(1 + \alpha )a2 + s3(1 + \alpha )b2 + s4(1 + \alpha )(b2  - t).(A.13)

We will distinguish two cases.
Case 1: (b2 - b1)\alpha \geq b1 - a1. Set s2 = max\{ w2, x\} , s3 = 1 - w1 - max\{ w2, x\} , s1 =

0, and s4 = w1. Clearly, this assignment satisfies the conditions of Lemma A.1.
Equation (A.13) gives

B = (1 + \alpha )
\bigl( 
b2  - w1(b1  - a1) - max\{ w2, x\} (b2  - a2)

\bigr) 
.(A.14)

Furthermore, in this case  - z((b2  - b1)\alpha  - (b1  - a1)) \leq 0, therefore (A.10) and (A.14)
give p3 + \alpha p4 \leq B.

Case 2: (b2  - b1)\alpha < (b1  - a1). For this case we distinguish 3 subcases.
Case 2.1: z \leq w1. Set s1 = w1, s2 = max\{ w2, x\} , s3 = 1  - w1  - max\{ w2, x\} , and
s4 = 0. Then

B = w1b2 + w1\alpha a1 +max\{ w2, x\} (1 + \alpha )a2 + (1 - w1  - max\{ w2, x\} )(1 + \alpha )b2

= b2(1 + \alpha ) - w1\alpha (b2  - a1) - max\{ w2, x\} (1 + \alpha )(b2  - a2).(A.15)

Using (b2  - b1)\alpha < (b1  - a1) and z \leq w1 in (A.10), we have

p3 + \alpha p4 \leq (1 + \alpha )(b2  - w1(b1  - a1) - max\{ w2, x\} (b2  - a2))

 - w1(\alpha (b2  - b1) - (b1  - a1))

= b2(1 + \alpha ) - w1\alpha (b2  - a1) - max\{ w2, x\} (1 + \alpha )(b2  - a2) = B.

Case 2.2: z > w1 and x \leq w2. Using the same assignment of s as in Case 2.1, by
z > w1, (A.11) gives

p3 + \alpha p4 \leq b2(1 + \alpha ) - w1\alpha (b2  - a1)

 - w2(b2  - a2) - max\{ w2, x\} \alpha (b2  - a2).

Furthermore, x \leq w2 implies that w2 = max\{ w2, x\} . It follows from (38) and (A.15)
that p3 + \alpha p4 \leq B.
Case 2.3: z > w1 and x > w2. Set s1 = w1, s3 = 1 - w1  - s2, s4 = 0 with

s2 = (w2 + x\alpha )
\big/ 
(1 + \alpha ).

Clearly s2 \leq max\{ w2, x\} . We verify (A.12) at the end but first compare B and
p3 + \alpha p4. We have

B = w1b2 + w1\alpha a1 + s2(1 + \alpha )a2 + (1 - w1  - s2)(1 + \alpha )b2

= b2(1 + \alpha ) - w1\alpha (b2  - a1) - s2(1 + \alpha )(b2  - a2).(A.16)

Since x > w2, (38) gives

p3 + \alpha p4 \leq b2(1 + \alpha ) - w1\alpha (b2  - a1) - w2(b2  - a2) - x\alpha (b2  - a2).(A.17)

It follows from our choice of s2 and b2  - a2 \geq 0 that p3 + \alpha p4 \leq B.
Finally we verify that our choice of s2 satisfies (A.12) in this case. To see this,

(1 + \alpha )
\bigl( 
w2a2  - x\alpha (b1  - a2)

\bigr) 
 - (w2 + x\alpha )

\bigl( 
a2 + \alpha (max\{ b1, a2\}  - b1)

\bigr) 
= w2\alpha a2  - x\alpha b1 + x\alpha 2a2  - w2\alpha max\{ b1, a2\} + w2\alpha b1  - x\alpha 2 max\{ b1, a2\} \leq 0.

The last inequality used x > w2. The lemma follows by combining all the cases.
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Theorem 1.3 follows from Lemmas A.1 and A.2.

Appendix B. Small instances where lotteries help.
In this section, we give examples where lotteries can extract a strictly higher

revenue than the optimal item pricing. In the first example, there are three items and
each \scrD i has support size 2; in the second example, there are two items and each \scrD i

has support size 3.
Three items, support size 2: We consider the following instance I with three

items. The three items have distributions with support \{ 5, bi\} for i \in [3], where
b1 = 10 and b2 = b3 = 6. Let pi be the probability that item i has value 5. Then set
p1 = 0.6, p2 = 0.7, and p3 = 0.8.

There are two optimal item pricings: (10, 6, 5) and (9, 6, 5), with expected revenue
6.744. The optimal menu for I consists of four lotteries: x1 = (1, 0, 0) at price 9.5,
x2 = (0, 1, 0) at price 5.5, x3 = (0, 0, 1) at price 5.5, and x4 = (0, 0.5, 0.5) at price 5.
The expected revenue of this menu is 6.806.

Two items, support size 3: Consider the following instance J with two items
and identical distributions. Each item has value 4 with probability 0.5, value 6 with
probability 0.2, and value 7 with probability 0.3.

There are also two optimal item pricings: (6, 4) and (6, 6), with expected revenue
4.5. The optimal menu for instance J consists of three lotteries: x1 = (1, 0) at price
6, x2 = (0, 1) at price 5, and x3 = (0, 0.5) at price 2. The expected revenue of this
menu is 4.56.
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