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Abstract

Chemotactic bacteria form emergent spatial patterns of variable cell density within cultures
that are initially spatially uniform. These patterns are the result of chemical gradients that
are created from the directed movement and metabolic activity of billions of cells. A recent
study on pattern formation in wild bacterial isolates has revealed unique collective behaviors
of the bacteria Enterobacter cloacae. As in other bacterial species, Enterobacter cloacae
form macroscopic aggregates. Once formed, these bacterial clusters can migrate several
millimeters, sometimes resulting in the merging of two or more clusters. To better under-
stand these phenomena, we examine the formation and dynamics of thousands of bacterial
clusters that form within a 22 cm square culture dish filled with soft agar over two days. At
the macroscale, the aggregates display spatial order at short length scales, and the migra-
tion of cell clusters is superdiffusive, with a merging acceleration that is correlated with
aggregate size. At the microscale, aggregates are composed of immotile cells surrounded
by low density regions of motile cells. The collective movement of the aggregates is the
result of an asymmetric flux of bacteria at the boundary. An agent-based model is developed
to examine how these phenomena are the result of both chemotactic movement and a
change in motility at high cell density. These results identify and characterize a new mecha-
nism for collective bacterial motility driven by a transient, density-dependent change in
motility.

Author summary

Bacteria growing and swimming in soft agar often aggregate to form elaborate spatial pat-
terns. Here we examine the patterns formed by the bacteria Enterobacter cloacae. An
unusual behavior of these bacteria is the collective movement of cells after the initial
aggregation into a tiny spot. Despite the majority of the cells within an aggregate being
immotile at any point in the time, the flux of cells entering and leaving the aggregate, as
motility is lost and regained in individual cells, led to a net, collective movement of the
aggregate. These spots sometimes run into each other and combine. By looking at the cells
within these spots under a microscope, we find that cells within each spot stop swimming.
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The process of switching back and forth between swimming and not swimming causes
the movement and fusion of the spots. A numerical simulation shows that the migration
and merging of these spots can be expected if the cells swim towards regions of space with
high concentrations of attractant molecules and stop swimming in locations crowded
with many cells. This work identifies a novel process through which populations of bacte-
ria cooperate and control the movement of large groups of cells.

Introduction

In populations of chemotactic bacteria, coupling of the directed movement of individual cells
in response to nutrients or chemical stimuli gives rise to spatio-temporal collective phenom-
ena, including swarm bands and aggregates [1-3]. These macroscopic structures are the result
of an emergent pattern of bacterial cell density that forms due to the coordinated movement
and metabolic activity of billions of bacterial cells in an initially uniform environment. Both
swarm band and aggregate formation rely on chemotaxis [1-4]. These collective phenomena
can even be predicted with analytical mathematical considerations and recreated with detailed
computational models [3,5-10]. Decades of work has resulted in a detailed and predictive
understanding of bacterial collective phenomena, based mostly on work with bacterial species
Escherichia coli, Salmonella typhimurium and Myxococcus xanthus [1-3,11]. It is unclear
whether the collective properties within these three species encompass the full range of collec-
tive behaviors observed in all chemotactic bacteria, or if our understanding of these behaviors
extends to other species of chemotactic bacteria.

A variety of cellular motility rules have been attributed to the emergence of larger macro-
scopic properties via the collective organization of high local densities of cells. A main driver
of bacterial pattern formation is chemotaxis; individual cells utilize flagella to move in a combi-
nation of runs in a straight line, interrupted by tumbles to randomly change the direction of
swimming [12,13]. At the molecular level, the switch between the run state and the tumbling
state allows the bacteria to navigate towards increasing chemoattractant gradients [14]. For
instance, many swarm bands of Enterobacteriaceae species are the result of cells migrating up
concentration gradients of nutrients following local depletion [15]. The collective responses
can also depend on the cell density and shape. For example, the surface swarming of Bacillus
subtilis exhibits different morphologies, depending on the aspect ratios and surface densities of
the cells [16]. Moreover, single cell properties such as adhesion, also direct the nature of collec-
tive phenomena. During the initial stages, the fruiting bodies of Myxococcus xanthus spontane-
ously assemble through the adhesion of cells, when two collide with each other [17]. This
diversity of mechanisms governing the movement of individual cells has given rise to multiple
macroscopic dynamics.

Bacterial cells are internally driven motile agents, and thus belong to the category of active
matter. Active matter is a branch of non-equilibrium physics that considers microscopic rules
and emergent macroscopic phenomena of energy consuming motile agents [18]. Driven inor-
ganic matter also lies in the realm of active matter and has been used to probe the effect of indi-
vidual properties of agents on the collective. For instance, self-propelled colloidal particles
form aggregates, with size that linearly increases with particle speed [19]. Often living and
non-living systems obey similar individual rules, for example swarming and swimming bacte-
ria at high densities and shaken granular materials belong to the same active matter category
of self-propelled rods [20]. Local motility interactions, which induce a distance dependent
velocity alignment of moving agents, as dictated by the Vicsek model, give rise to emergent
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collective motion in multicellular organisms [21]. This density driven motility transition has
been observed in the schooling of fish, flocking of birds, cells and insects [22]. The concepts of
active matter systems can help to understand complex biological and physical processes, and
even help to develop micromachines and nanomachines for practical applications [23,24].

Here we report new collective properties observed in the bacterial species Enterobacter cloa-
cae, i.e., the formation, long-distance movement, and merging of macroscale bacterial aggre-
gates. Chemotactic pattern formation was reported in this bacterium as part of a recent study
of pattern formation in wild bacterial isolates [6]. Here we quantify a pattern of spots that
emerges within an initially well-mixed culture of cells in soft agar and track the movement of
each spot over multiple hours. In contrast to bacterial aggregates of Escherichia coli, which
have been reported as mostly stationary with slight “jiggling” over time [1], aggregates formed
by the bacterium Enterobacter cloacae migrate over distances up to four times their diameter.
In addition, this movement results in approximately 36% of the aggregates merging with
another aggregate to form a single spot. Our aim is to quantify and explain the spatial charac-
teristics of these aggregates, their motility, and the underlying kinematics of the merging phe-
nomena. High magnification, time-lapse imaging of individual cells within the spots reveals
the microscopic mechanism that enables the collective motion of spots, namely a transition of
individual cells between the motile and non-motile state. Chemotactic agent-based simula-
tions, which include a novel immotile to motile transition, recreate the spatial order observed
in experiments. This transition gives rise to a novel type of collective motility in bacteria.

Results
Aggregate formation by Enterobacter cloacae on soft M9 + glucose agar

Enterobacter cloacae is a bacterial species previously reported to be capable of large-scale pattern
formation, including moving bands of high cell density and aggregate formation [6,25]. Here
we focus on the aggregate formation, using a large culture dish and uniformly mixing cells into
the culture medium at the beginning of the experiment. Cells grown overnight in Luria Bertani
media at 37°C, and 180 rpm were uniformly mixed into soft minimal agar media supplemented
with glucose at 0.07% inoculum. The media containing cells were poured into 22 cm x 22 cm
dishes, with a lid and incubated at room temperature, as depicted in Fig 1 A. Pictures of the dish
were taken over time using a DSLR camera at 1X magnification. Initially, no macroscopic
aggregates could be observed. After 5 hours, aggregates began to form, and at around 20 h a pat-
tern of spots emerged across the plate, as shown in Fig 1B and 1C. Images of aggregates were
analyzed using image analysis software as discussed in Materials and Methods.

= 3000

22cm

Aggregate
= N
g 8
o (=1

soft agar media mixed
with Enterobacter cloacae

o

0 20 40
Time (hrs)

Fig 1. Overview of aggregate formation experiment. (A) Sketch of experimental setup. (B) Image of a 100x100 mm” subregion of the experimental plate before and after
aggregate formation. (C) Zoomed in 20x20 mm? region showing the aggregates at 22.5 h. (D) Number of aggregates on the plate versus time for the duration of the 44
hour experiment. The number of spot aggregates peaks at 22.5 hours, marked by the vertical line.

https://doi.org/10.1371/journal.pcbi.1009153.g001
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Aggregates form over about 10 hours, reaching a maximal number of aggregates at 22.5 h,
as shown in Fig 1D. A video of spot formation over the entire plate can be found in S1 Video.
As shown in the video, many of the aggregates migrate on the plate after formation, and some
even merge together. After 36 h, the aggregates begin to dissolve and are no longer visible on
the plate. In order to confirm the reproducibility of our results, we used identical culture con-
ditions in two additional, independent experimental set- ups. We observed the emergence of
aggregates, the movement of aggregates, and the occurrence of merging events between aggre-
gates (52 Video). After confirming the observed phenomenon, we proceeded to analyze the
formation and the spatial patterns of these aggregates, the migration of aggregates on the plate,
as well as the observed aggregate merging process.

Aggregate spatial structure analysis

As shown in Fig 1, thousands of aggregates appear on the plate. We analyzed the distributions
of sizes and nearest neighbor distances of the aggregates at the time of the maximum number
of aggregates. Replicate experiments showed similar spatial structure (S1 Fig). As shown in S2
Fig, aggregate sizes and the overall spatial distribution did not vary significantly between the
time when spots started filling the plate and when the spots began to dissolve. As observed in
S3 Fig, there was a large-scale variation in the local density of aggregates, the densest regions
containing 25 aggregates per cm” and the sparsest regions having 5 aggregates per cm”. Despite
this variation in the density of aggregates, the trends observed in analysis of the center of the
plate, shown in Fig 2, are similar to trends in the larger plate (S2 Fig). The subset of the plate,
highlighted in S3 Fig, was used to obtain a higher resolution of the local spatial structure and
to avoid edge effects. As shown in Fig 2A, the aggregates were fairly uniform in size, with an
average area near 1 mm”. A small fraction of aggregates is larger and does not belong to the
same peak in the histogram. Nearest neighbor distances were calculated using Voronoi tessel-
lation, considering all nearest neighbors [26]. As shown in Fig 2B, the distribution of nearest
neighbors is a slightly skewed Gaussian, with a characteristic nearest neighbor distance around
2.7 mm. To compare the aggregate point pattern with a random point pattern, 100 random
point patterns were generated in a 100x100 region with 1340 points, equal to the number of
aggregates found in the 100 x 100mm” subregion analyzed in Fig 2. Using the Kolmogorov-
Smirnov two-sided test, the resulting nearest neighbor probability distribution of the random
point patterns (Fig 2B) was found to be non-identical with that of the aggregate pattern with a
probability distance of 0.150 and a p-value of 3.69e-155.

To further analyze the overall spatial pattern of aggregates, the pair correlation function
and the structure factor of the subregion of the plate were calculated (see Materials and Meth-
ods for details). As observed in Fig 2C, the structure factor shows a single peak at 2.5 mm™,
and lacks additional peaks, indicating an absence of long-range order. This type of structure
factor resembles that of a liquid, characterized by a single peak at low wavenumber, k, that
repeats with a diminishing amplitude for multiples of nearest neighbor distances. However, it
is unclear whether the fluctuations for large k are due to noise and finite sample size or long-
range order. Fig 2D shows the results of the radial correlation analysis. Here, the ultra-short
aggregate-to-aggregate distances appear to be absent, indicating an exclusion zone approxi-
mately two times larger than the average aggregate diameter. The short-range structure identi-
fied in the pattern matches that of a liquid, which is described by an exclusion region mediated
by short range repulsion. In the long-range limit, the pattern of aggregates resembles a gas, as
there is no long-range order. In summary, the aggregate pattern can be described as having no
Bragg peaks, i.e., no long-range order (Fig 2C), but instead short-range correlations and a
restriction on the minimal spacing between aggregates.
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Fig 2. Spatial structure of aggregate formation. A-D) Spatial analysis of the aggregate pattern at 22.5 h for a subregion of the plate. (A) The
aggregate area distribution is depicted, with a mean of 1.01 mm? and standard deviation of 0.25 mm>. (B) Histogram of the nearest neighbor distance
distributions of the aggregate pattern and a random point pattern for comparison. For the bacterial aggregates, a pronounced single peak shows the
existence of small-scale structure in the pattern. The average is 3.33 mm, with standard deviation of 2.33 mm. The distribution of the random pattern
had an average of 3.35 mm, with standard deviation of 3.00 mm and it was found to be statistically different from that of the aggregate pattern, with a
two-sided Kolmogorov-Smirnov test distance 0.15 and a p-value of p = 3.69¢-155. (C) Structure factor versus wavenumber. The structure factor
saturates to 1 at 3 mm™", suggesting absence of long-range order. The dotted horizontal line represents the structure factor of a random point pattern
for large system size. (D) Radial pair correlation function. The pair correlation is zero for distances less than 1.7 average aggregate diameters, as no
other spots are detected in that proximity. The pair correlation peaks at 3.37 mm, exhibiting short range order, and saturates to one at 7 mm,
consistent with disorder at longer distances. The dotted horizontal line represents the pair correlation factor of a random point pattern for large

system size.

https://doi.org/10.1371/journal.pchi.1009153.g002

Hard sphere models have been widely used to model liquids and successfully capture their
quasi-universal spatial structure [27]. In the hard sphere model, each particle is defined as a
sphere with a fixed radius, which cannot overlap with the other spheres in the system. Interest-
ingly, the spatial structure of the bacterial aggregates is consistent with a system of closed
packed hard spheres whose radii are distributed according to a Gaussian [28]. Specifically, the
coefficient of variation for spot size distribution was determined to be 7 = 0.3, and using the
same coefficient of variation for a Gaussian, size distributed hard sphere packing, one retrieves
an identical functional form for the radial pair correlation function [28]. This is consistent
with the experimental aggregates size distribution. Calculating the pair correlation from a hard
sphere model with constant radius of exclusion is enough to recover the qualitative character-
istics of the pair correlation function in Figs 2D and S4. However, contrary to the hard-sphere
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model, the bacterial aggregates are not closely packed, and nearest neighbors are on average

separated by approximately three times the average aggregate diameter. The explanation for

this difference is that the aggregates form by recruiting bacteria in proximity, thus extending
their exclusion region beyond the physical aggregate size.

Aggregate motility analysis

After aggregate formation, a displacement of some of the spot aggregates over time was
observed, as shown in Fig 3. In Fig 3A, the green circle shows the location of each aggregate at
14.5 h, the magenta circle shows the location of each aggregate at 37.3 h, and the yellow line
indicates the aggregate trajectory. Over twenty hours, the aggregates were displaced by up to a
few millimeters, without a significant change in aggregate area or shape. Note that the upper
left aggregate dissolves prior to 37.3 h.

Time-lapse movies of the dish were used to quantify the trajectories of 495 aggregates,
obtained by tracking the aggregates in six 26 mm x 26 mm subregions, shown in S5 Fig. The
complete trajectory and positional information output for each subregion can be found in S1
Appendix. An analysis of the aggregate trajectories reveals that a subset of 35.4% of the aggre-
gates participated in a coalescing or merging event. Specifically, 31.1% aggregates merged with
another aggregate, and 4.2% of aggregates merged with two other aggregates resulting in 17.0%
reduction in the number of aggregates. In the next sections we discuss the merging of two or
more aggregates, while here we focus on the motility of all aggregates. Fig 3B shows the distribu-
tion of speeds for all the aggregates. The average speed of aggregate migration is 0.050 mm/hr.
The path taken by the aggregates is quantified by dividing the distance over displacement in

0.2
g
%
0.1
e
[a
0.0
0.025 0.050 0.075 0.100
Average Speed (mm/hr)
& -1 Slope = 1.54
:
D) & -2
x
Vv
ISy
S _3 .
2 4 6 8 0.0 0.5 1.0
Distance/Displacement log( Time (hrs) )

Fig 3. Aggregate motility. (A) Snapshots of a subregion of the plate at T = 14.5 h and T = 37.3 h. The aggregates are depicted along with the trajectory
identified by the tracking algorithm. (B) Distribution of the average speed of all aggregates (n = 495). (C) Distribution of path deflection, quantified as the ratio
of distance to displacement (n = 495). The path taken by the aggregates slightly deviates from a straight line. D) Log-log plot of mean square displacement
versus time. The fit yields a coefficient of 1.54 indicating that the trajectories are, on average, superdiffusive. Brownian motion, corresponding to diffusion,

yields a coefficient of 1.0.
https://doi.org/10.1371/journal.pcbi.1009153.9003
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Fig 3C. Here, a value of 1, the minimal value, indicates a straight-line trajectory. The ratio of dis-
tance to displacement shown here, with an average value of 2.0, indicates that aggregates move
in a directed manner. Plotting the average mean squared displacement versus time yields that
the aggregate trajectories lie in the super-diffusive regime with a power law coefficient of 1.54
(Fig 3D). Thus, the aggregate trajectories are directed. Isolating the non-mergers, a weak but
statistically significant negative correlation is found between the average minimum nearest
neighbor distance and average speed for each aggregate trajectory, with a Spearman rank-order
correlation coefficient correlation -0.12, p-value 0.034 (S6 Fig). The negative correlation indi-
cates that proximity with other aggregates increases the speed of a given aggregate.

Microscopic analysis of aggregates

To shed more light on the microscopic behavior of the cells within as well as around the aggre-
gates, we scaled down the experimental system using the Lab-Tek chamber, so that the aggre-
gate movement could be captured by microscope at regular intervals.

For this experiment, cultures were prepared by tagging 5% of Enterobacter inoculum with
RFP [29], to monitor single cell movement. Fluorescent portion of the populations enabled us
to track movement of the boundary of an individual aggregate, as high cell density regions of
aggregates have higher fluorescence than the rest of the focal plane (Fig 4A and 4B and S3

B)

Trajectories of motile cells Trajectories of sessile cells

t =0 secs
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Fig 4. Single cell motility and aggregate movement. High magnification imaging of cells in an aggregate. Aggregates were formed within a coverslip bottom
chamber to enable 100X imaging of cells within the aggregate. (A) Motile cells exist in the vicinity of the aggregate and a subset consolidates with the aggregate
and becomes immotile. Representative trajectories of individual cells that are motile at t = 0. Yellow lines denote cells that swim towards the spot and become
immotile within 0.24 s. Green lines denote cells that remain motile for 0.24 s. (B) Immotile cells within the aggregate. Shown in blue are representative cells
within the aggregate that do not change position over 10 seconds. In A and B, trajectories are labeled with respective cellular velocities in pm/sec, and the scale
bar is 40 pm. (C) Aggregate movement on the microscale. Progression of the boundary of a typical aggregate over 80 mins. The yellow solid line marks the
periphery of the spot in real time, whereas the cyan solid line indicates the position of the spot front at t = 0 mins. Direction of the spot movement is shown
with the white arrow. (D) Distribution of aggregate front speeds. By tracking the position of an aggregate boundary over time, the front speed is calculated for
n = 40 aggregates. The histogram shows the measured distribution of front speeds with an average value of 0.023 mm/hr.

https://doi.org/10.1371/journal.pchi.1009153.g004
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Video). When measured motility for Enterobacter cells expressing RFP was compared with
Enterobacter host cells, we found no significant difference (S8A and S8B Fig), ensuring the
reproducibility of the experiment in Lab-Tek chambers with mixed populations.

The Lab-Tek chamber loaded with a growth medium containing Enterobacter cells was
incubated at room temperature for 24 hours and then mounted on a microscope after the visi-
ble appearance of aggregate (S7 Fig). As observed in liquid cultures in M9 + 0.4% glucose,
comprising similar percent of cells in inoculum as that in plate and Lab-Tek chamber experi-
ments, both EccI and Eccl + RFP populations not only have similar growth rates (0.48 + 0.13
h-1 and 0.44 + 0.04 h-1, respectively) during exponential phase but also reach stationary phase
approximately 10 hours after inoculation (S8C and S8D Fig). Reduced cell divisions in the sta-
tionary phase implies that the growth likely does not influence the observed pattern formation
during the course of microscopy.

We pooled data from imaging of 40 individual aggregates recorded over 80 mins in 8 differ-
ent microscopy sessions. Image] was used to analyze aggregate and single cells in aggregate
through time. Displacements calculated for single cells reveal the existence of three sub- popu-
lations in the milieu (Fig 4A and 4B). As shown in Fig 4A, a typical aggregate was observed to
be surrounded by motile cells. A subset of such cells is identified with green circles. Interest-
ingly, some of the motile cells coalesce with aggregate and lose their motility, thus, switching
into non- motile cells (yellow circles). Fig 4B, on the other hand, shows cells within the bound-
ary of the aggregate, which were observed to be non- motile for the duration of the video (cyan
blue circles).

We then analyzed the progression of the aggregate boundary through time (Fig 4C). We
marked and tracked the edge of the aggregate using Image]J. The difference between the XY
coordinates of the centroid of the boundary in the initial frame (solid cyan blue line) and the
final frame (solid yellow line) was calculated to obtain the speed of aggregate boundary. An
analysis of 40 aggregates revealed that the average speed exhibited by the aggregate boundary
is 0.023 mm/hr (Fig 4D), which is comparable to the aggregate speed calculated for a large
plate experiment.

Since the microscope was focused on a segment of the aggregate boundary chosen ran-
domly, there is no guarantee that the trailing or receding edge of the aggregate was recorded.
Therefore, measuring the boundary propagation speed corresponds to obtaining a component
and not the magnitude of the aggregate speed.

Nevertheless, these microscopic observations suggest spot movement must be driven by the
flux of single bacterial cells leaving and joining the aggregate. In the direction of movement,
individual cells join the aggregate and lose the motility (53 Video), whereas at the trailing edge
motility is regained and cells leave the aggregate (S4 Video).

Aggregate merging analysis

Next, we analyze the merging of two or more aggregates. The subregions studied for quantify-
ing spot motility were also used for analyzing merging events (S5 Fig). As shown in Fig 5A, the
movement of aggregates sometimes results in the combination and merging of multiple aggre-
gates into a single aggregate. Fig 5A shows merging of two sets of aggregates. Upon analysis of
the trajectories for 495 aggregates, 64.6% of aggregates did not merge, 31.1% aggregates
merged with another aggregate, and 4.2% of aggregates merged with two other aggregates.
Examples of mergers involving more than two aggregates are shown in S9 Fig. The remainder
of the analysis is done for merging events with one other aggregate, which we define as two-
spot mergers. Within this subset, only 46 out of the 77 trajectories were included in the
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highlighted in the boxed regions. The trajectories are plotted in blue for non-merging aggregates and in red for mergers of two aggregates. (B) Relative distance vs. time
for all merging processes, color coded with total aggregate area. (C) The acceleration is positively correlated with the total aggregate area (spearman’s rho 0.30 and p-value
0.040). (D) Distribution of aggregate speed for two-spot mergers and non-merging spots. The average (shown with a dashed line) illustrates that aggregates that eventually
merge, on average, move faster. (E) Distribution of trajectory distance divided by displacement for two-spot mergers and non-merging spots. On average, the path taken

by aggregates that eventually merge is more direct.

https://doi.org/10.1371/journal.pchi.1009153.g005

analysis, i.e., leaving out merging trajectories with less than 20 positional data points whose
dynamics could not be determined with a similarly high degree of accuracy.

The trajectories taken by merging aggregates are shown in Fig 5B. The relative distance of
the two merging aggregates is defined as d,(¢) = |7, () — 7, (¢)|, where 7, (t) and 7, (t) are
the two-dimensional position vectors of aggregate A and B at time t. The trajectory taken by
most merging aggregates was similar, exhibiting an increase in aggregate velocity as the dis-
tance between aggregates decreased. With this observation in mind, we hypothesized the exis-
tence of a distance dependent force law that governs the attraction between aggregates.
However, both exponential and power law fits to the acceleration versus relative distance of
the trajectories resulted in a wide distribution of exponents and coefficients (S10 Fig). Thus, to
quantify the dynamics of the merging spots, we took a simple approach, and the trajectories
were treated with a constant acceleration model.

To quantify the merging dynamics, the relative distance versus time for each trajectory was fit
to a quadratic function. The quadratic fit was excellent for the majority of trajectories, with an
average error of 0.15 pixels. The fit revealed the acceleration of each aggregate, and as shown in
Fig 5C, the acceleration was found to be correlated with aggregate size (Spearman rank-order cor-
relation coefficient correlation 0.3, p-value 0.040). Quantifying the relative position of the aggre-
gates relative to point of collision gave similar results, see S11 Fig. Curiously, unlike inertia
dominated systems, the smaller spots do not necessarily move more than larger spots (512 Fig).
As shown in Fig 5D and 5E, the aggregates that merged moved fast on average and took a more
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direct path. The non-merging aggregates had a mean speed of 0.042 mm/hr, whereas the mergers
had a mean speed of 0.050 mm/hr, with a statistically significant difference of 0.007 mm/hr

(p = 0.0001 for an unpaired t-test). The fact that merging aggregates are on average faster and fol-
low a more direct path suggests the presence of an effective attractive force between aggregates.

Simulation

Based on the experimental observations, a 2D agent-based model was developed to explain the
phenomena observed in aggregates of chemotactic bacteria. Our simulations were based on a
model proposed in (9), with algorithms discussed in [30-32]. Briefly, 100,000 cells move in
space, with movement biased by a chemoattractant molecule produced by the cells. There are
two responses to the chemoattractant: 1) at low concentration of attractant the cells move
towards regions of higher chemoattractant and 2) at high concentrations of the attractant the
cells transition to an immotile state. Cells are revived from the immotile state after a period of
time and regain motility. Cells do not grow or divide within the simulation, as the patterns
observed in experiments are formed after the cultures enter the stationary phase.

In more detail, 100,000 agents (cells) perform random Brownian motion while experienc-
ing a chemotactic drift force. The chemotactic drift force on a given agent is equal to the gradi-
ent of the chemoattractant evaluated at the agent’s current position multiplied by a coefficient
of chemotactic sensitivity. Regarding chemotactic sensitivity, receptor law sensitivity was used
[9], i.e., the chemotactic force magnitude increases with the slope of the chemoattractant gradi-
ent but decreases with the concentration, a formulation motivated by the saturation of bacteria
surface receptors. Chemoattractant is produced and expelled by each agent, and the chemoat-
tractants undergo diffusion and decay over time. Within the model, chemoattractant under-
goes degradation within the environment. Although not tested here, chemoattracts could be
taken up and removed from the environment by cells, which could alter the chemoattractant
gradients at short length scales and potentially alter larger scale patterns of cell density. The
model does not incorporate cell division, death or food gradients. Further rules were imple-
mented to make the simulation more realistic and capture experimental results: agents were
attributed a finite size and they experience a chemoattractant dependent motility transition
(See S2 Appendix for detailed model description).

Based on our observation that cells within the aggregates are immotile, the model was gen-
eralized to include a mechanism whereby an agent can transition from being motile to immo-
tile and vice versa. To that end, a chemoattractant threshold was introduced, beyond which
bacteria transition to an immotile state. Since the chemoattractant concentration is propor-
tional to the local density inside the aggregates, using a chemoattractant threshold corresponds
to a density-dependent motility transition. As shown in S13 Fig, introduction of the density-
dependent motility transition resulted in a greater fraction of motile cells within the popula-
tion. Including only the density-dependent transition to the immotile state would lead to the
eventual absorption of the vast majority of cells in aggregates. In experiments, however, the
aggregates coexist with freely swimming cells throughout the course of the experiment. Fur-
thermore, the analysis of aggregate movement in Fig 4 indicates examples of the departure of
cells from the aggregate interface. Therefore, a rule for reactivating motility was needed, even
within high cell density regions. There are examples in the literature of a timed motility switch
[33], so a rule was incorporated for motility to be regained after a random interval of time.

More specifically, an agent stays in the immotile state for a fixed interval of time, after
which there is a constant probability of regaining motility per iteration. To enable newly mobi-
lized cells to leave regions of high cell density after regaining motility, cells ignore the chemoat-
tractant gradient for a short period, performing Brownian motion, after switching from the
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immotile to motile state. The expected value for the time scale for an agent to regain motility
was set to 33 mins (3 minutes of a fixed immotile state and an expected value of 30 minutes for
stochastic regain of motility) and the time scale for Brownian motion after regaining motility
was set to 15 mins. Lacking experimental data for the details of the motility transition, we had
to choose the aforementioned parameters. The duration of Brownian motion was chosen such
that an agent can transverse a distance of the order of a millimeter after regaining motility.
Finally, the timescale for regaining motility was set to approximately double the duration of
Brownian motion such that motile agents make up a significant fraction of the agent popula-
tion. For a given aggregate, assuming that agents get immediately reabsorbed after regaining
motility and performing Brownian motion, this choice approximately sets one third of agents
to be in the motile state and two thirds in the immotile state.

The spatial scale of the simulation was set by equalizing the average aggregate radius of the
simulation with the experiment. The time scale was set by equalizing the average speed of an
agent with that of Enterobacter cloacae, as measured in [6]. To perform this scale calibration,
the average speed of every motile agent was calculated from the simulation and equated to the
experimental value. The parameters were chosen by numerical testing and are shown along
with a laconic description in S1 Table. The goal of the numerical exploration was to retrieve
formation of aggregates while qualitatively capturing the relative aggregate size and spacing
seen in the experiment. Exploration of systematically varying different parameters and compo-
nents of the model are shown in S14, S15 and S16 Figs. The model has 13 parameters and is
non-linear and stochastic, so it is simply not feasible computationally to systematically test the
entire parameter space and analyze the emergent properties. The goal of these simulations was
not to extract and use precise numerical values for unknown parameters, but instead to explore
whether an established model of chemotactic behavior combined with the experimentally
observed motility transition would be able to qualitatively reproduce the experimentally
observed phenomena.

Our simulations, using these rules for motility switching, reproduce the formation of bacte-
ria aggregates observed in experiments. Over time, high cell density aggregates composed of
mainly immotile cells form. After the formation of aggregates and throughout the simulation,
motile and immotile cell populations coexist with approximately 40% of cells retaining their
motility at any given time (S17 Fig). As a consequence of setting the spatial scale using the
experiment, these aggregates have a diameter of around 1 mm. The size distribution resembles
experimental results but exhibits higher variance. As shown in Fig 6B and 6C, the spatial order
of aggregates observed in the simulations is similar to the experimental measurements. The
pattern retains short range order, described by an exclusion region, resembling a liquid, and
disorder at long spatial distances, resembling a gas.

In addition to forming a large-scale pattern of aggregates, a collective motility of cells within
the aggregate and aggregate merging is also observed. In Fig 6E, 6F, 6G and 6H, we analyze the
merging trajectories in the simulation. In this case, the motion is also well described by a con-
stant acceleration model. However, in contrast to the experiment, the aggregate size depen-
dence of the acceleration is not found to be statistically significant, with a Spearman rank-
order correlation coefficient of 0.01 and a p-value of 0.962. Nonetheless, the average speed and
trajectory distance divided by displacement probability densities, for both merging and non-
merging aggregates (Fig 6G and 6H) resemble the experiment. Notably, the trajectories in the
simulation for non-merging aggregates are less directed. Finally, the merging frequency in the
simulation is lower than in the experiment, with only 6% of spots merging in the simulation,
compared with 35% in the experiment.

The model is not able to quantitatively capture all aspects of the experiment. The motility
profile of non-merging aggregates reported in the experiments (Fig 5D and 5E), and the
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Fig 6. Computational Model: Spatial Structure and Merging. A)- D) Spatial Structure of Aggregates. (A) The simulated spot area
distribution has an average of 0.97mm?and a standard deviation of 0.38 mm?>. (B) The simulated nearest neighbor distribution has an
average of 3.30mm and a standard deviation of 2.49 mm. (C) The spatial correlation function of the simulated aggregates mirrors the
saturation of the experimental structure, with saturation to 1 at 3.50 mm. (D) Snapshots before (T = 5.0 h) and after (T = 46.5 h) the
merging of two segmented aggregates (see Materials and Methods for segmentation details). E)-H) Merging dynamics in the
simulations. (E) Relative distance vs. time for all merging processes, color coded with total aggregate area. (F) The acceleration is not
found to be correlated with aggregate size (spearman’s rho 0.01 and a p-value of 0.962). (G) Distribution of aggregate speed for two-
spot mergers and non-merging spots. The average (shown by a dashed line) illustrates that mergers, on average, move faster. The
speeds of the simulated aggregates are on the same order of magnitude as found in the experiments. (H) Distribution of the ratio of
trajectory distance divided by displacement for two-spot mergers and non-merging spots. On average, the paths taken by spots that
merge are more direct. Non-merging spots follow a less direct path as compared to the experiments.

https://doi.org/10.1371/journal.pcbi.1009153.9006

respective motility profile in the simulations (Fig 6G and 6H) are quantitatively different.
Using distance over displacement as a measure, merging aggregates in the simulation take on
average a 47% more direct path while in the experiment they take a 28% more direct path. Fur-
thermore, merging aggregates in the simulation are on average 77% faster than non-mergers
while in the experiment the merging aggregates were only 17% faster. This discrepancy illus-
trates a limitation of the computational model to capture the motility profile of non-merging
aggregates. Notably, the average speed of merging aggregates in the simulation, 0.047 mm/hr,
was only 6% from the respective value in the experiment (0.050 mm/hr). Finally, the distribu-
tion of areas in the simulation is quantitatively different from the experiment. Specifically, the
standard deviation of the aggregate areas in the simulation is larger than the experiment by
41%. This difference might be explained by the presence of fewer cells in simulated aggregates
as compared to the aggregates observed in the experiments. In both the simulation and experi-
ment, agents can regain motility and exit the aggregates. However, due to the small number of
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agents per aggregate in the simulation, a small number of agents leaving an aggregate can lead
to significant fluctuations in aggregate size. When the ability to transition to motile state or the
random walk after regaining motility is removed (S14 Fig), the resulting area distributions
become narrow, with respective standard deviations 23% and 31% lower than their experimen-
tal counterpart.

Aspects involving the motility switch were investigated systematically (S14, S15 and S16
Figs). Variation or withdrawal of aspects of the motility mechanism do not change the spatial
characteristics of the pattern (S14 and S15 Figs) This highlights the fact that the spatial order of
the pattern is a direct consequence of chemotaxis. An analysis of the effect of motility on merg-
ing was also conducted (S16 Fig). Removing the motility switch altogether results in approxi-
mately twice the merging events, but merging and non-merging aggregates does not yield
distinct average speed distributions. Thus, the motility switch improves the agreement
between simulation and experiment. In addition, the decrease of merging events due to the
motility transition prolongs the lifetime of the aggregate pattern. Finally, removing the ability
of agents to random walk after regaining motility leads to approximately three times the merg-
ing events, but the non-merging aggregates are effectively immotile. This is expected, as cells
are less likely to escape an aggregate after regaining motility and thus leading to less motile
aggregates.

In the simulation, merging events are caused by an imbalanced flux of agents into and out
of the aggregate. An example of a typical merging event is shown in Fig 7A, 7B and 7C. To
keep track of the cells in each aggregate in this example, Fig 7D and 7E show the changes in
the number of motile and immotile cells over time. When a sufficient number of cells exits the
spot and its vicinity, the core of immotile cells collectively dissolves, as the chemoattractant
drops below the motility threshold (Fig 7D arrow). This aggregate consists of only motile cells,
as shown in Fig 7B, and it moves towards and joins the other aggregate.

In the simulations, prior to fully merging, one of the colonies becomes enriched in motile
cells, which then join the other colony. This may account for the accelerated colony velocity
during merging events observed in both simulations and experiments, but the experimental
data does not directly show this process. Furthermore, it is consistent with the observation that
merging events in the experiment lead to the formation of a new radially symmetric aggregate.
The merging process depicted in Fig 7 is ubiquitous—more examples of mergers, with visuali-
zation of the motility of the agents, are shown in S5 Video. This emergent phenomenon of col-
lective regain of motility is not responsible for the non-merging aggregate speeds reported in
Fig 6G. Non-merging aggregates in the simulations consist of immotile cells that move due to
the exchange of agents.

Discussion

Many examples of pattern formation and collective motility within bacterial populations have
been reported, and here we examine such phenomena within populations of Enterobacter cloa-
cae. This system displays two unique characteristics that have not been reported previously in
the context of bacterial emergent behavior: the formation of bacterial aggregates via a transient
motility transition and the collective motility of aggregates of swimming bacteria. Such behav-
iors are reminiscent of other bacterial systems, notably swarming and fruiting body formation
in Myxococcus xanthus. Fruiting bodies are complex aggregates of cells that form as a result of
bacterial swarming, and work over the years has shown that aggregates form as a result of con-
tact-dependent and diffusive signaling, and that cells within the aggregate display a reduced
velocity and changes in cell alignment [34-36]. Enterobacter cloacae accomplishes similar
complex behaviors using different molecular and physical mechanisms. There have been

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009153  January 4, 2022 13/24


https://doi.org/10.1371/journal.pcbi.1009153

PLOS COMPUTATIONAL BIOLOGY Collective motion of bacterial aggregates

A) T=2.7h
- e
og © 0.
®
@ ..
'
. .
P ) 1mm
[ ]
(o.
Bottom Aggregate Center Aggregate
D)125 E) 250 SEICE
Motil Il
2100 otile Cells g
3 I
200
< 75 <
o . o
5 50 Immotile Cells
< I
2 E 150
é’ 25 b=
0 \ Cells collectively regain 100
4 6 . 12 14 motility 4 6 ‘8 10 12 14
Time (hrs) Time (hrs)

Fig 7. Merging at the scale of agents in the simulation. A-C) Three frames of the same region at different times in the
simulation. The two aggregates, both consisting of motile (blue) and immotile cells (red), eventually merge. (D) The number of
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fluctuations in the number of cells and eventually receives the motile cells from the proximal aggregate.

https://doi.org/10.1371/journal.pchi.1009153.9007

several previous reports related to chemotaxis in E. cloacae, including work on phosphate che-
motaxis [37,38], although these pathways are not as well characterized as those found in E. coli.
Prior work has shown multiple isolates closely related to the strain used in this study form
swarm rings and other chemotactic patterns [6]. Genomic sequences have revealed E. cloacae
contain genes related to chemotactic response and flagellar synthesis [39], and key chemotactic
proteins in Enterobacter cloacae had 87-95% homology with those in E. coli [40,41]. Enterobac-
ter genes were also able to restore swarm ring formation in E. coli mutants [42]. We observed
that Enterobacter aggregate motility on soft agar surface is a result of flagella- driven swimming
and not because of swarming or gliding of bacterial cells on semi- solid surface [43]. Secondly,
aggregate formation and movement are associated with a density-dependent motility transi-
tion in which cells temporarily lose motility upon entering regions of high cell density. Because
of these important differences, Enterobacter cloacae could serve as an important new model
system for studying bacterial collective behavior.

The observed motility transition that occurs in regions of high cell density is potentially a
unique mechanism of bacterial aggregate formation. A transition between motile and immotile
cells is more typically associated with cells of multicellular organisms, such as the epithelial-
mesenchymal transition [44]. The active matter community has examined the cell motility and
pattern formation [45-47]. Cells used here demonstrated a complete loss of motility, as
opposed to reduced motility in regions of high cell density, suggesting the transition is not due
to physical processes such as crowding and jamming. Such a complete loss of motility has been
reported in Escherichia coli due to depletion of oxygen [48]. The loss of motility led to the for-
mation of a ring of bacteria. Here a similar motility transition was associated with aggregate
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formation, and in fact the transition was shown to be transient. As shown in S4 Video, cells
that were initially immotile within an aggregate boundary regained motility as the aggregate
boundary receded. Transient changes in motility have been reported for Bacillus subtilis, in
which molecular “clock” switches immotile cells in a chaining phenotype back to a motile state
after several hours [49]. In that system, the timing of the transition was regulated by protein
dilution via cell division. In the Enterobacter cloacae, it is unclear if cell division is occurring
within dense aggregates, especially given the likelihood of low nutrient conditions within
aggregates, so potentially another molecular mechanism would be needed to regulate such a
transition.

The results herein constitute a first step towards reporting, quantifying and understanding
the novel phenomena of bacterial aggregate motility and merging; future work is warranted
for deeper insight into mechanism. The quantitative analysis of macroscopic components such
as aggregate motility and merging serve primarily as a quantification of the reported phenom-
ena. For instance, it remains unclear how aggregate motility and merging dynamics can be
explained by a set of rules or analytical equations. Perhaps future studies can uncover underly-
ing mechanisms by analysis of the existing data or by perturbing the system in new ways that
more clearly reveal the underlying principles of aggregate dynamics. The simple approach of
performing a quadratic fit of merging trajectories was able to infer that acceleration during
merging correlates with aggregate size and can provide insight in future considerations and
model building. In the context of future work, the role and effect of vertical direction of the
system should be investigated. For instance, it is unclear if aggregate area is a good description
of size as compared to aggregate volume. Furthermore, there could be oxygen gradients that
form in the vertical direction that affect the system, as oxygen can play an important role in
bacterial motility [48]. There are also multiple additional components that can control the
aggregate migration dynamics: agar variations, oxygen, chemoattractant and nutrient gradi-
ents that can play a role in the details of migration and merging. Notably, these quantities are
hard to measure and new experiments should be developed at this front. Finally, in the micro-
scopic scale, future work is warranted to uncover the details behind the mechanism that con-
trols the observed cellular motility transition that drives motility in the scale of aggregates,
potentially through analysis of mutations that modulate aggregate formation and motility.

The potential benefits of aggregate formation, especially aggregates composed of immotile
cells, remain unclear. Previous studies have proposed that the clustering of cells into high den-
sity aggregates and biofilms is a stress response that enables cells to survive under harsh condi-
tions such as low availability of nutrients or exposure to toxins [47,50]. Would additional
benefits be conferred to aggregates of immotile cells? Aggregate formation does not require a
motility transition, although as suggested by the agent-based model developed here, the motil-
ity transition did produce a more stable pattern of aggregates. Immotile cells may be more
energetically efficient. The length scale of the aggregates could also be set by adjustment of the
molecular mechanisms that set the threshold density and timing of the motility switch, see S3
Appendix. The transient nature of the observed motility switch did enable migration and
merging of the aggregates once formed. The scheme for migration suggested by the experi-
ments is that unbalanced fluxes of cells on different sides of the aggregate resulted in collective
movement of the aggregate. Whether such symmetry breaking was random or the result of
asymmetry in the chemical and environmental conditions surrounding the cell remains
unclear. Potentially, if the direction of the movement of individual aggregates over multiple
aggregate lengths is biased by chemical conditions, this may serve to position cells in a more
favorable location. The merging process after formation may also be a mechanism to optimize
the pattern of aggregates for maximum benefit to the cells.
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Materials and methods
Bacterial strains and culturing conditions

Enterobacter cloacae Eccl used for the experiment was isolated from the Caltech turtle pond
and confirmed using 16s rRNA analysis [6]. Primary cultures of Enterobacter cloacae Eccl
were grown overnight in Luria- Bertani broth (Difco) at 37°C under constant shaking at 180
rpm. Cultures were then washed thrice with 1X PBS (VWR, life science) and resuspended in 5
ml 1X PBS before inoculating in M9 minimal agar [6].

Aggregate formation in BioAssay plate

To observe aggregate formation, soft agar was prepared by mixing M9 medium (Difco) supple-
mented with 4% glucose (aMResco) with 0.26% of bacteriological agar (Sigma-aldrich). Pri-
mary culture of Enterobacter cloacae Eccl was added to sterilized minimal agar to final OD of
0.0002. 95.6 ml of the mix was poured into a 20 X 20 cm Bioassay dish (Thermo Fisher Scien-
tific) with a lid. The BioAssay plate was allowed to set at room temperature for 1 hour before
sealing it with parafilm.

The plate was incubated at room temperature for 2 days on a glass table. Reflection of the
base of the Bioassay plate using a mirror was captured automatically by camera (Canon, EOS
REBEL) every 15 minutes.

Aggregate formation in Lab-Tek chamber

Culture was made visible by mixing Enterobacter cloacae Eccl expressing REP with Enterobac-
ter cloacae Eccl to a final concentration of 5%. Culture was mixed with 10 ml soft minimal
agar to final OD of 0.0002. 2 ml of mix was allowed to set in the Lab-Tek chamber (Nunc,
Thermo Fisher Scientific) for 40 minutes, before sealing the chamber with parafilm. The entire
assembly was incubated at room temperature for 24 hours, at that time visible aggregates had
formed. The setup was mounted on a microscope for imaging.

Aggregates were imaged in phase contrast and RFP channels using 100X oil objective (1.5 NA
CFI plan apochromat) on Nikon Eclipse Ti-E microscope with a sSCMOS Camera (Zyla 5.5
sCMOS, Andor) at a 1 minute time interval with an exposure time of 30 and 100 ms respectively.

Measurement of growth rate

To measure the growth rate of E. cloacae Eccl transformed with pZE25-RFP and wild-type E.
cloacae Eccl, primary cultures of both the strains were inoculated in 1 ml M9 + (0.4%) glucose
media to adjust final OD approximately at 0.0002 similar to cultures used in experiments with
bioassay plate and Lab-Tek chamber. 200 pl culture from this stock were distributed per well
in 96- well plate (Costar, Corning incorporated) to start three parallel experiments for each
culture. OD at 600 nm was measured at room temperature with intermittent shaking using
plate reader (TECAN, infinite M200PRO) at the interval of 30 mins for 20 hrs. Readings
obtained were fit to logistic equation in MATLAB (R2020a, MathWorks) using cftool to obtain
growth rate for each strain.

Estimation of cellular motility

Primary cultures of E. cloacae Eccl wild- type as well as transformed with pZE25-RFP were
diluted ten times. 5 pl of diluted culture was spotted on a microscope slide, which was then
covered with glass coverslip (22 mm X 22 mm). Movement of an individual cell in a drop was
recorded using 40X objective on Nikon Eclipse Ti-E microscope with a sSCMOS Camera (Zyla
5.5 sCMOS, Andor) with a time interval of 0.1 sec.
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Image analysis

The 1X plate frames were processed with background subtraction and enhanced contrast such
that only 0.01 percent of pixels are saturated using imageJ [51,52]. The processed frames were
segmented using Weka, a machine learning algorithm for microscopic pixel segmentation
[53], example segmentation shown from frame T = 22.5h in S18 Fig. Finally, dim segmented
aggregates were filtered according to maximum pixel brightness, a process depicted in detail in
S6 Video. Plotting the distribution of maximum pixel intensity, the threshold value of 0.45 was
chosen to remove detected regions that were not high-density aggregates.

To perform the motility and merging analysis, tracking analysis was performed in image]
via the Trackmate plugin [54]. The software is capable of producing tracks for all the seg-
mented aggregates. Trajectories that did not lead to a merger were analyzed to determine the
motility of non-merging spots. Trajectories that only contained merging events with strictly
two aggregates were subject to the merging analysis. Although the aggregate size was also iden-
tified by Trackmate, the aggregate size as determined from the segmentation was used instead
for greater precision and accuracy.

Images acquired at 100X were analyzed to evaluate the speed of aggregate movement using
Image]J 1.53a [51]. Initial and final time frames were Otsu thresholded to find aggregate
boundary, which was then marked using a freehand line tool. XY-coordinates of the centroid
of the resultant line were extracted and used to calculate the distance covered by the progress-
ing aggregate front using the Euclidean distance formula.

To measure motility of an individual cell of E. cloacae Eccl and E. cloacae Eccl + RFP, time-
lapse movies of bacterial movement were opened in ImageJ 1.53a. The centroid of a single cell
was tracked manually over time and its XY-coordinates were used to calculate temporal dis-
placement of the cell, which in turn was used to measure the velocity of the cell per second.
Movements of 25 cells were analyzed manually over time for each strain.

Radial pair correlation and structure factor

The pair correlation function also known as the radial distribution function was calculated
by considering the point patterns generated by the aggregate positions. All aggregates were
considered in a given square region, except for aggregates that lie within a radius of 7,,,,
from the boundary. For each point, the distance between all other points was calculated.
Then, the unnormalized probability density distribution was obtained for all the distances
obtained. To obtain the probability density, the bins were set according to the desired reso-
lution, defined from 0 up to and including r,,,, in increments of dr. Furthermore, the prob-
ability density was divided with the number density of the pattern, p = Nyora/L?, where Nyysal
is the total number of points and L is the length of the region. Finally, the value in the nth
bin was divided with the area of the respective annulus that spans from the bin range, with
an inner radius of r;, = n * dr and an outer radius of r,,, = (n + 1) * dr. Finally, the values of
the resulting probability density was averaged for all points to retrieve the pair correlation
function. Furthermore, the structure factor was obtained by taking the fourier transform of
the correlation. Thus, by integrating the pair correlation function we can obtain the struc-

Tmax

ture factor: s(k) = 1 4 2np/k / (g(r) — Vysin(kr)dr [55].

Simulation

The simulation code was written in Cuda, compiled in gcc version 4.9.4 and run on Cuda ver-
sion 9.2.88, executed on a single GPU node. System size was set to a 384x384 pixel grid with
periodic boundary conditions. At the beginning of the simulation, 100,000 motile agents were
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placed on random points in the grid. The chemoattractant concentration was initialized to a
value of zero. The simulation final time was set to 2000 with a step size of At = 0.005. Chemoat-
tractant concentration, agent position and velocity were outputted in text file format for fur-
ther analysis and plotting. The main parameter set used can be found in S1 Table and is
termed the control parameter set and the complete code can be found in S4 Appendix.

The output of the simulation was segmented and tracked. To segment the aggregates from
the simulation results, a MATLAB script was written. For each pixel, the number of agents
within a radius of 3 pixels was determined. When the number of agents exceeded 40, the pixel
was considered to belong to an aggregate, an example segmentation is shown in S19 Fig. In
addition, aggregates that consisted of less than 10 pixels were discarded. The parameters cho-
sen to segment aggregates were empirically chosen by comparing segmentations with the
respective agent density plot as in S19 Fig. To track the aggregates, the segmented images were
entered into imageJ] where the Trackmate [54] plugin was used to track the aggregates and out-
put the trajectories.

Supporting information

S1 Video. Whole plate timelapse.
(MOV)

S2 Video. Experimental replicates. Video shows spot formation in three different set ups
under identical growth conditions at the time interval of 15 mins. A few merging aggregates in
three different plates have been indicated with cyan arrows. The middle video shows the plate
that was used for all analysis shown in paper. Scale bar- 10 mm. Time stamp- hrs: mins.

(AVI)

S3 Video. Aggregate advancing edge. Microscopic images of aggregate movement captured
in RFP channel with 1 min time interval. Solid yellow line indicates the progression of the
aggregate front. Scale bar- 40 pm. Time stamp- hrs: mins.

(AVI)

$4 Video. Aggregate receding edge. Microscopic images of the aggregate movement recorded
in phase contrast channel with frames 1 min apart. Trailing front of the spot has approximately
been denoted by the solid yellow line. Scale bar- 40 pm. Time stamp- hrs: mins.

(AVI)

S5 Video. Motility and merging. In the agent-based simulations, the process that leads to
merging in simulations is ubiquitously described by a collective regain of motility of the aggre-
gates. In the video, multiple merging events take place. Cells marked in red are immotile and
in blue are motile.

(MOV)

S6 Video. Thresholding dimmer aggregates. In this video of a zoomed in region of the plate,
the processing step of thresholding dimmer aggregates is shown for the course of the experi-
ment. The left panel highlights aggregates that were kept for further analysis with blue and
aggregates that were not considered with red. The right panel shows the same image as the left,
but without highlighting spot boundaries, for a clearer view of the aggregates.

(AVI)

S1 Appendix. Experimental data for aggregate trajectories.
(Z1P)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009153  January 4, 2022 18/24


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009153.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009153.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009153.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009153.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009153.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009153.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009153.s007
https://doi.org/10.1371/journal.pcbi.1009153

PLOS COMPUTATIONAL BIOLOGY Collective motion of bacterial aggregates

S$2 Appendix. Mathematical description and simulation components.
(PDF)

$3 Appendix. A model for steady state colony size.
(PDF)

S$4 Appendix. Code for simulation.
(Z1P)

S1 Table. Parameters for simulation.
(XLSX)

S2 Table. Data used to create main text figures.
(XLSX)

S1 Fig. Distribution of areas, nearest neighbors and pair correlation functions of aggregate
positions for replicate experiments. Spatial quantities are calculated for three different plates
at 22.5 hrs. The first two columns are unused replicate experiments, and the third column is
obtained from the plate used throughout the study. The quantities are calculated for a
10x10cm subregion in the center of the plate to account for edge effects. A-C) Aggregate area
distributions. D-F) Nearest neighbor distance distributions. G-H) Pair correlation functions.
(TIF)

S2 Fig. Distribution of areas, nearest neighbors and pair correlation functions for aggre-
gate positions at different times for both the whole experimental plate and the subregion
of interest. Spatial quantities for three time points 17.5 h, 22.5 h and 27.5 h from left to right.
The quantities were plotted with blue for the whole plate and green for the subregion used in
the main text, shown in S3 Fig. A-C) Aggregate area distributions. D-F) Nearest neighbor dis-
tance distributions. G-H) Pair correlation functions.

(TIF)

S3 Fig. Spatial aggregate density fluctuations. The aggregate number variations are visual-
ized for the frame used for the spatial analysis, at T = 22.5 h. The highlighted region marks the
spatial subset of the plate analyzed in Fig 2.

(TIF)

S4 Fig. Pair correlation for hard sphere model point pattern. (A) A hard sphere model pat-
tern in a 100x1007m° region generated by assigning 650 points a random position with the con-
dition that they do not lie within a distance of 3.33 mm from any neighboring points. The
value 3.33mm is taken from the average nearest neighbor distance in the experimental subre-
gion analyzed in Fig 2. (B) Pair correlation of the respective point patterns. The dotted hori-
zontal line represents the pair correlation factor of a random point pattern for large system
size. The pair correlation of the hard sphere model captures the spatial characteristics observed
in the pair correlation of the bacterial aggregate pattern. Note that a deterministic radius of
exclusion makes the peak at the average nearest neighbor distance more pronounced than in
the experiment and leads to a smoother curve.

(TIF)

S5 Fig. Regions of the plate used for analysis of motility and merging.
(TIF)

S6 Fig. Trajectory characterization. Average speed versus average minimum nearest neigh-
bor distance for all analyzed aggregate trajectories. To obtain the latter quantity for a single tra-
jectory, the nearest neighbor distances were calculated for each frame, the minimum was
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extracted and averaged over all frames. Spearman rank-order correlation coefficient correla-
tion yielded -0.12, with a p-value of 0.034.
(TIF)

S7 Fig. Depiction of experimental set- up using bioassay plate and Lab-Tek chamber. The
height of agar in both the vessels was 2 mm. Representative images taken by using DLSR cam-
era and 4X objective on Nikon microscope for respective set- up has been shown. Spot forma-
tion in the Lab-Tek chamber was imaged in time-lapse microscopy using 100X 0il/1.5 NA
objective.

(TIF)

S8 Fig. Control measurements for RFP producing populations. Enterobacter cloacae Eccl
cells transformed to express RFP protein were compared with Enterobacter cloacae Eccl cells
for single cell motility (A and B). (C) Their respective growth in M9 + Glucose at room tem-
perature was fit to the logistic growth equation (solid lines) to calculate their respective growth
rates as shown in (D). n = 3. Error bars- Standard deviations.

(TIF)

S9 Fig. Three aggregate merging instances. Merging of three aggregates. 4.2% of aggregates
took part in a merger involving three aggregates. The top and bottom row show two instances
of a three-aggregate merger over time.

(TIF)

$10 Fig. Merging dynamics and distance dependent force laws. Probability density distribu-
tions of the coefficients obtained by fitting acceleration versus relative distance for each two-
spot merging trajectory in Fig 3 with an exponential (A) and a power law (B). Exponents were
included for fits that yielded exponents with one standard deviation error that was less than
50% of their respective value. (A) Distribution of the decay exponent, n, obtained by assuming
an exponentially dependent force: a(d, ) = A, e "*. (B) Distribution of the power law expo-
nent, n, obtained by assuming a power law dependent force: a(d,.;) = A¢/d,". It is not possible
to distinguish whether a power or exponential law best describes the acceleration profile. Both
distributions of the inferred coefficients are wide, a result that does not support the existence
of an underlying exponential, or a power law dependent force.

(TIF)

S11 Fig. Aggregate acceleration during merging when analyzed with respect to collision
point. This is an additional analysis performed on two-spot merging trajectories observed in
experimental measurements. In this instance, the distance of each spot relative to the collision
point versus time is fitted to a quadratic equation. Approximating the trajectory as constant
acceleration motion, the acceleration is obtained from the quadratic equation. Finally, it is
plotted with respect to the other merging aggregate area. The two quantities have a spearman
rank-order correlation coefficient of 0.31 with a p-value of 0.002. The color of each data point
corresponds to a merging event taking place in the respectively colored subregion in S5 Fig.
(TIF)

$12 Fig. In this plot of experimentally derived quantities, for each two-spot merging event,
the difference in average speed is plotted versus the difference of aggregate size between
the two aggregates. Small aggregates do not necessarily move faster than big aggregates during
two-spot merging events. This is the case since the difference of speeds is not always positive,
even when the size difference is significant.

(TIF)
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$13 Fig. In the simulation, introducing a motility transition dramatically increased the
proportion of cells not bound in aggregates over long time scales. (A) With no motility
transition. (B) With the motility transition.

(TIF)

S14 Fig. Effect of varying essential parameters of the simulation on spatial structure. (A)
Chemotactic attraction magnitude (B) Immotility transition threshold (C) Timescale of
regaining motility (D) Timescale of random walk after regaining motility.

(TIF)

S15 Fig. Effect of removing aspects of the simulation on spatial structure. (A) Chemotactic
attraction magnitude (B) Immotility transition threshold (C) Timescale of regaining motility
(D) Timescale of random walk after regaining motility.

(TIF)

S16 Fig. Effect of removing aspects of the simulation on metility and merging. (A) Original
simulation results for comparison (B) Removing the introduced motility transition (C)
Removing random walk process after cells regain motility.

(TIF)

$17 Fig. Evolution of motile and immotile cells in the simulations. During the simulations,
the distribution of motile and immotile cells reaches and retains a mixed steady state.
(TIF)

S18 Fig. Identification of aggregates using Weka segmentation. A) Experimental image of
the entire plate at T = 22.5 h. B) Aggregates identified after using Weka software.
(TTF)

$19 Fig. Segmentation of the simulation. A) Density heat map of simulation results. For
every pixel, the number of agents within a radius of 3 pixels is used to calculate the local cell
density. B) Segmentation results after only considering pixels with a density value greater than
40 and aggregates with an area greater than 10 pixels.

(TIF)
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