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Branching Dueling Q-Network-Based Online Scheduling of a Microgrid
With Distributed Energy Storage Systems
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Abstract—This letter investigates a Branching Dueling
Q-Network (BDQ) based online operation strategy for a
microgrid with distributed battery energy storage systems
(BESSs) operating under uncertainties. The developed deep rein-
forcement learning (DRL) based microgrid online optimization
strategy can achieve a linear increase in the number of neural
network outputs with the number of distributed BESSs, which
overcomes the curse of dimensionality caused by the charge and
discharge decisions of multiple BESSs. Numerical simulations
validate the effectiveness of the proposed method.

Index Terms—Deep reinforcement learning (DRL), distributed
energy storage, microgrid optimization, uncertainty.

I. INTRODUCTION

ICROGRID is a promising concept for addressing the
challenges of integrating distributed renewable energy
and energy storage systems into power networks. Online
optimization, which schedules the operation of microgrids
according to the real-time state of the system, is a key
technique to ensure the economic operation of microgrids.
However, the uncertainties of renewable energy bring
great challenges to the online optimization of microgrids.
To address this problem, researchers have proposed several
online optimization methods, such as model predictive control
(MPC) [1], and approximate dynamic programming (ADP)
based algorithm [2]. Nevertheless, the online optimization
performance of the above methods relies on forecasting
information. So, the performance is affected by the forecasting
accuracy of renewable energy and load power. To decrease the
dependence on forecasting, several other online optimization
approaches for microgrids have been proposed, including the
Lyapunov optimization [3], the CHASE algorithm [4], and
the recently developed deep reinforcement learning (DRL)
based optimization methods (e.g., deep Q Network (DQN) [5],
MuZero [6]).
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Compared with the conventional microgrid online
optimization approaches (e.g., MPC), DRL based algorithms
learn to operate the system via historical renewable power
generation and load sequences, and can make near-optimal
scheduling without using any forecasting information [6].
However, the above-mentioned works mainly focus on the
online optimization of a microgrid with a single battery
energy storage system (BESS), which fails to address
the distributed location characteristic of BESSs. With the
rapid development of commercial and home energy storage
techniques, plenty of BESSs will be installed in distributed
locations of microgrids. The huge action space introduced by
multiple BESSs brings great challenges to the discrete-action
based DRL optimization methods. For instance, the number of
actions that need to be explicitly represented in the DQN [5]
or MuZero [6] based agents grows exponentially with an
increasing number of BESSs. As a result, the DRL based
optimization approaches proposed in [5], [6] are difficult to
adapt for a microgrid with distributed BESSs.

To overcome the drawbacks of discrete-action based DRL
optimization methods for microgrids mentioned above, this let-
ter develops a novel Branching Dueling Q-Network (BDQ) [7]
based online optimization strategy for a microgrid with dis-
tributed BESSs, which is the main contribution of this work.
The designed BDQ based intelligent agent contains a shared
decision module followed by several network branches, one
for each BESS. The advantage of the developed algorithm is
that it can achieve a linear increase of the number of neural
network outputs with the number of distributed BESSs, which
will provide great scalability and increase the applicability of
the algorithm. In addition, to accommodate the characteris-
tics of historical renewable energy power generation and load
power sequences, a long short-term memory (LSTM) based
shared decision module architecture is designed for the BDQ
agent in this letter to extract features from historical data.

This letter is organized as follows. Section II formulates
the microgrid online optimization problem as a mixed inte-
ger second-order cone programming (MISOCP) problem by
adopting a branch power flow model. In Section III, the
BDQ based online optimization algorithm for the microgrid
is designed. The numerical simulations are presented in
Section I'V. Section V concludes this work.

II. OPTIMIZATION MODEL OF THE MICROGRID

The microgrid investigated in this letter works in a grid
connection mode and consists of electric loads, BESSs,
controllable distributed generators (DGs) (e.g., diesel gener-
ators), and uncontrollable DGs (e.g., PV panel systems and
wind turbines). The goal of online optimization is to mini-
mize the operation cost of the microgrid over the optimization
horizon under the necessary constraints. The objective func-
tion consists of the fuel cost of controllable DGs, the power
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exchange cost of the microgrid and the utility grid, the degra-
dation cost of BESSs, and the renewable energy curtailment
cost. The operational constraints considered in this work
include the power generation limit and ramp rate constraints,
the power exchange limit between the microgrid and the utility,
the charge/discharge power limit of BESSs, the branch power
flow constraints, etc. The details of the microgrid optimization
model can be found in [6, eq. (1)—(25)].

ITI. BDQ BASED ONLINE OPTIMIZATION STRATEGY FOR
A MICROGRID WITH DISTRIBUTED BESSS

The decision variables of the online optimization problem
include the complex power generation of controllable DGs, PV
panels, and wind turbines; the charge and discharge power of
distributed BESSs; the complex power exchange between the
microgrid and the utility grid; the branch current; the bus volt-
age; etc. However, the high-dimensional continuous actions
force us to face the curse of dimensionality when applying
the reinforcement learning methods to solving our problem. To
this end, we develop the BDQ [7] based online optimization
approach for a microgrid with distributed BESSs, as illus-
trated in Fig. 1. The BDQ agent only determines the charge
and discharge power of distributed BESSs, while the remain-
ing decisions are obtained by solving the single-time period
optimal power flow (OPF) subproblem. The advantage of the
proposed optimization architecture is that it can operate the
system without dependence on any renewable and load power
prediction information.

The designed network architecture of the BDQ agent is
also given in Fig. 1. The shared decision module consists of
three LSTM units and a fully connected network. The LSTM
units extract features from load power and renewable energy
power sequences, then the extracted features concatenate with
the current state of the microgrid and are then fed into a
multilayer network. The features computed by the shared deci-
sion module are then used to compute the state value and the
state-dependent action advantages on the subsequent indepen-
dent branches [7]. Note that each branch corresponds to a
BESS in this work. The state value and the state-dependent
action advantages are combined and input to neural networks
to compute the Q-values for each BESS charge and discharge
dimension. We discretize the charge and discharge decision
of each BESS into n feasible values. The individual branch’s
Q-value at state s when taking decision PZ can be given by:

I ;
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where d € {1,2, ..., N} represents the dth BESS:; V(s) is the
state value output by the shared decision module; Agy(s, PZ)
is the state-dependent action advantage, and Pf} e Xy Xy
represents the feasible action space of the dth BESS.

The neural network weights of the BDQ agent are updated
by minimizing the following loss function:
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Fig. 1.  The developed BDQ based online optimization strategy for a
microgrid with distributed BESSs.

where yg is the temporal-difference (TD) target for the BDQ
agent which can be computed by:

1 _ ’ ’ ’
Va=r+ VNZQJ s, arg le,IZIX Qd<s.PZ) (3)
d Pd eXy

where r represents the reward after taking decision P?; y
is the discount factor. The details of the training process of
the developed BDQ based online optimization algorithm for a
microgrid with multiple BESSs is shown in Algorithm 1.

IV. CASE STUDY

To demonstrate the effectiveness of the proposed BDQ
based microgrid optimization algorithm, we tested the
performance of the algorithm on a 6-bus microgrid, a mod-
ified IEEE 33-bus microgrid, and a modified IEEE 69-bus
microgrid. All the simulations are conducted on an Intel
Core 17-8650U @1.90GHz Windows based computer with
16GB RAM.

The topology of the adopted 6-bus microgrid can be found
in [6], and the utilized training and testing dataset of solar
power, wind power, load power, and electricity price are the
same as in [6]. Although the 6-bus microgrid only contains
one BESS, the proposed BDQ based optimization algorithm is
also suitable. The convergence process of the proposed algo-
rithm is shown in Fig. 2. From the result, the total returns
optimized by the BDQ algorithm approaches the optimal value
optimized by the MISOCP method under the condition of per-
fect information. Note that the MISOCP method needs to know
the accurate renewable generation and load power information
of all the future time steps, so the optimal objective can be
achieved by the method.

To test the online optimization performance of the proposed
algorithm, we compared the BDQ based algorithm with sev-
eral state-of-the-art online optimization algorithms. Using
the results optimized by myopic policy as the baseline,
the performance improvement of the methods is shown in
Table I. We find that the proposed online optimization algo-
rithm outperforms the Lyapunov optimization, ADP, and Deep
Deterministic Policy Gradient (DDPG) based optimization
algorithms. Although the proposed algorithm performs worse
than the MuZero based online optimization method proposed
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Algorithm 1 The Training Process of the BDQ Based Online
Optimization Algorithm for Microgrid
I: Initialize the neural networks of the BDQ agent; Initialize expe-
rience replay memory; Set the total number of episode N, and
the training frequency fy, and set the training step nsep = 0.
2: for ne < Ne do
3 Randomly select a day of renewable energy and load
sequences from the training data.

4 for t = At,2At,--- . T do

LE Get the current state information of the microgrid sy,
and the previous H hours of solar, wind, and load power.

6: Compute the charge/discharge decisions of the BESSs
using the BDQ agent.

7: Recompute the charge/discharge decisions using e-greedy
policy.

8: Check overcharge/overdischarge limits and get the opti-
mal decisions P5*(1) (d € {1,2,--- ,N}).

9: Solve the OPF sub-problem to get the remaining
decisions.

10: Execute the optimal decisions x; to obtain the reward ry,
and calculate the next state of the system s;4A;.

11: Store the data (s¢, X7, 1, S+A¢) in the replay buffer.

12: if (ngiep % fn = 0) then

13: Sample a minibatch of data from the replay buffer.

14: Update the main network weights of the BDQ agent

to minimize the loss function.

15: Update priorities of sampled data.

16: Nstep = Nstep + 1.

17: Update target network periodically.

18: if (n, % 500 = 0) then > Evaluate every 500 episodes.

19: Evaluate the optimization performance of the BDQ agent.

20: Ne = ne + 1.
21: Return the well-trained BDQ agent parameters.
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Fig. 2. The convergence process of the proposed BDQ based online

optimization algorithm on the 6-bus microgrid system. Blue solid line indi-
cates median returns across 5 separate training runs. The yaxis represents the
average total returns for the 10 validation days.

in [6], the MuZero based algorithm is difficult to apply in
microgrids with multiple BESSs since the tree search space
increases exponentially with the number of BESSs.

To validate the proposed algorithm’s ability to solve
the online scheduling of microgrids with multiple BESSs,
the modified IEEE 33-bus microgrid system was designed
as shown in Fig. 3, which contains 5 distributed BESSs.
Similarly, the online optimization performance of the proposed
algorithm is evaluated and compared with the state-of-the-
art methods. The results are given in Table II. Note that the
MuZero based approach and look-up table ADP method face
the curse of dimensionality due to the huge action space
brought by multiple BESSs. Thus, the comparable meth-
ods include only the Lyapunov optimization and the DDPG
method. Besides, the average time consumption of the BDQ
based algorithm, Lyapunov optimization, DDPG, and myopic
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Fig. 3. The diagram of the modified IEEE 33-bus microgrid system.

TABLE 1
PERFORMANCE OF DIFFERENT METHODS COMPARED TO MYOPIC
POLICY ON THE 100-DAY TESTING DATASET FOR THE 6-BUS MICROGRID

(’erf ormance Mean | Maximum | Minimum Smﬂd(."d
improvement dc‘umtmn
BDQbased | g 5700 | 19,949 3.19% 2.65%
optimization
Online | MuZero based | g 350 | ¢ 6o, 5.8% 2.12%
methods optimization
Lyapunov 3.76% | 9.89% 1.93% 1.65%
optimization
ADP 657% | 14.78% 1.16% 1.92%
DDPG 555% | 981% 841% T16%
Oft-line | MISOCP (perfect| ;) 550, | 9328, 6.45% 3.02%
method information)
TABLE II

PERFORMANCE OF DIFFERENT METHODS COMPARED TO MYOPIC POLICY
ON THE 100-DAY TESTING DATASET FOR THE IEEE 33-BUS MICROGRID

Perfarmance Mean | Mazimum | Minimum S t(l’(Ldl.lTli
mprovement deviation
BDQbased | 7 jo0, | 1348% | 4.26% 1.97%
optimization
Online 1 Lyapunov 1 5 516 | ¢ ggqp 2.22% 1.08%
methods optimization
DDPG 6.64% 15.27% 2.56% 2.82%
Ofline | MISOCP (perbect | 15000 || 5 409 6.58% 2.98%
method information)

policy to make one single time-step scheduling are 0.0438s,
0.782s, 0.035s, and 0.676s, respectively. It can be found
that the proposed algorithm performs better than the com-
pared online optimization methods, and the scheduling results
of the proposed algorithm are near the optimal value opti-
mized by the MISOCP method under the condition of perfect
information.

To validate the scalability of the proposed BDQ based
scheduling algorithm, the simulations on a modified IEEE
69-bus microgrid system with different number of distributed
BESSs were conducted. The topology and parameters of the
microgrid system can be found in the ‘case69.m’ file of
MATPOWER. In the modified system, there are six diesel
generators which are connected to buses 17, 18, 24, 30, 40,
and 58, respectively. Three distributed PV systems are con-
nected to buses 22, 27, and 45, respectively. Three wind
turbines are connected to buses 34, 50, and 59, respectively.
The parameters of DGs and the BESS can be found in [6].
The performance of the BDQ based scheduling algorithm
was tested when there are 1, 3, 5, and 7 BESSs in the
microgrid system. The simulation results are shown in Fig. 4.
It can be found that the scheduling results of the BDQ based
optimization strategy are near the optimal values optimized
by MISOCP method under perfect information. And the time
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Fig. 4. Performance improvements of BDQ algorithm and MISOCP method
compared to myopic policy on the modified IEEE 69-bus microgrid.

consumption of the BDQ agent to make one single time-step
scheduling increases linearly with the number of BESSs. Note
that the performance improvement of the BDQ based schedul-
ing strategy and MISOCP method increase with the number
of BESSs. This can be attributed to the increase in the market
arbitrage capacity and renewable energy integration capac-
ity of the microgrid as the energy storage capacity increases,
so the gap between the solution of myopic policy and the
optimal solution (under perfect information) becomes larger.
In addition, we also compared the performance improvement
of different methods on the modified IEEE 69-bus microgrid
system with 5 BESSs. The average performance improvement
of the proposed method, Lyapunov optimization, DDPG, and
MISOCP are 6.28%, 2.56%, 5.45%, and 7.61%, respectively.

From the above simulations, the effectiveness and scalability
of the proposed BDQ based online scheduling algorithm were
validated. Specifically, the proposed BDQ based microgrid
scheduling algorithm outperforms many state-of-the-art online
scheduling strategies for microgrids in terms of optimization
performance and time-consumption.
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V. CONCLUSION

A novel BDQ based online optimization algorithm for
microgrids with multiple BESSs was proposed in this letter.
The proposed approach enables the linear growth of the
total number of agent outputs with increasing BESSs,
which provides great scalability and increases the applica-
bility of the algorithm. The simulations indicate that the
online optimization performance of the proposed BDQ based
approach outperforms the state-of-the-art online optimization
methods, such as Lyapunov optimization, ADP, DDPG based
method, and MuZero based method. The easy implementation
of the algorithm gives it a good application prospect.
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