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Abstract—Multi-microgrid formation (MMGF) is a promising
solution for enhancing power system resilience. This paper pro-
poses a new deep reinforcement learning (RL) based model-free
on-line dynamic MMGF scheme. The dynamic MMGF problem is
formulated as a Markov decision process, and a complete deep
RL framework is specially designed for the topology-
transformable micro-grids. In order to reduce the large action
space caused by flexible switch operations, a topology transfor-
mation method is proposed and an action-decoupling Q-value is
applied. Then, a convolutional neural network (CNN) based mul-
ti-buffer double deep Q-network (CM-DDQN) is developed to
further improve the learning ability of the original DQN method.
The proposed deep RL method provides real-time computing to
support the on-line dynamic MMGF scheme, and the scheme
handles a long-term resilience enhancement problem using an
adaptive on-line MMGF to defend changeable conditions. The
effectiveness of the proposed method is validated using a 7-bus
system and the IEEE 123-bus system. The results show strong
learning ability, timely response for varying system conditions
and convincing resilience enhancement.

Index Terms—Convolutional neural network (CNN), Deep re-
inforcement learning (DRL), extreme weather, distributed gener-
ation (DG), microgrids (MGs), multi-microgrid formation
(MMGF), power system resilience.

I. INTRODUCTION

IGH-IMPACT and low-probability events, such as ex-
treme weather events, are occurring with increasing inten-
sity. The extensive damage and subsequent outages of a power
system caused by extreme events indicates the necessity of
enhancing power system resilience [1]. Microgrids (MGs),
which improve the flexibility of power system operation with
both grid-connecting and islanding modes, are promising solu-
tions for power grids to withstand unplanned catastrophic
events [2]. With the wide penetration of distributed energy
resources (DERs), advanced metering, communication, and
automatic control infrastructures, the distribution system (DS)
can be easily transformed into self-supported MGs [3]. These
self-supported MGs largely benefit power system resilience by
improving the restoration capability of the distribution net-
works [4]-[6] as well as the survival of critical loads [7].
Since the ability of MGs to handle extreme conditions has
been proven both by academic index [8] and by practical cases
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(e.g., islanded MGs successfully survived Hurricane Sandy
[9]), resilience-oriented MG formation, resources allocation,
and system operation have been widely discussed. Optimal
MG formation strategies were proposed in [4] and [10] to di-
vide original DSs into resilient MGs after major faults of the
main grid. Allocable distributed generations (DGs) [11] and
remotely controlled switches (RCSs) [12] have been highlight-
ed to provide a good planning study of resilient MGs. A trans-
formative architecture for the normal operation and self-
healing of multi-MGs was proposed in [13] to improve system
self-healing capability, and [14] used a scheduling-horizon-
based optimization scheme to reduce load shedding with rea-
sonable operation cost. In addition, helpful resilient control
strategies to benefit the operation of islanded MGs were stud-
ied in [15].

To fully utilize DERs to enhance power grid resilience,
forming multiple MGs using DGs has become a promising
solution for handling extreme conditions [3]. The essence of
the multi-MGs formation (MMGF) problem is to identify the
desired topology subject to various constraints. For the topol-
ogy determination problem, mathematical programming [3],
[4], [10] and heuristic search approaches [16], [17] are widely
used methods. A mixed-integer non-linear programming
(MINLP) model was built in [3] to sectionalize the outage area
into networked MGs. The MMGF problem was formulated as
a mixed-integer linear programming (MILP) model in [4], and
the model was further improved in [10] by reducing both bina-
ry and continuous variables. Based on the graph theory, [16]
developed a graph-theoretic search algorithm to identify a
post-outage DS topology. Another heuristic approach was pro-
posed in [17] to approximately solve the MG formation prob-
lem of large-scale systems with tractable computation. A good
summary of existing methods, especially for the radial topolo-
gy consideration when MGs are being formed, was provided in
[18].

The aforementioned MG formation strategies are mainly
based on observable system conditions and environments with
short-term considerations, while conditions under natural dis-
asters might be uncertain and changeable [7]. The uncertain
output of RES-DGs and unexpected damage to grids reduces
the efficiency or even damages the initially formed MGs.
Therefore, an adaptive and dynamic MG formation strategy is
needed to further enhance the resiliency under unexpected
system conditions. By continuously interacting with the envi-
ronment and obtaining feedbacks, the deep reinforcement
learning (DRL) method [19] promises to help the MMGF
scheme obtain adaptability to changeable conditions.



As an efficient solution to handle Markov decision process-
es (MDPs), DRL methods have become an attractive method
for intractable problems in power systems. Ref. [20] cast the
volt-VAR optimization to a deep Q-network (DQN) frame-
work and finally realized adaptive voltage control under time-
varying operating conditions. To achieve real-time service
restoration, [21] proposed an imitation learning (IL) frame-
work to improve the training efficiency of DRL methods. In
terms of MGs, the DRL method showed satisfying perfor-
mance in energy management problems [22]-[24]. However,
because of the difficulty of ensuring feasible radial topology,
few studies have discussed the MMGF problem using DRL
methods. For the MMGF problem, the action space of DRL
methods has exponential growth with the increase of the num-
ber of switches, which deteriorates the learning ability of DRL
methods. Therefore, the DRL based dynamic MMGF is a val-
uable but challenging problem to study.

For the purpose of realizing an on-line dynamic MMGF, a
new deep RL-based model-free real-time adaptive scheme is
proposed in this paper to enhance grid resilience over a long
time-horizon. First, the dynamic MMGF problem is formulat-
ed as an MDP, and the deep Q-learning based RL method is
introduced as a promising solution. Second, holding the fea-
tures of a spanning forest, a topology transformation method
and an action-decoupling method based on convolutional neu-
ral networks (CNN) are developed to reduce the action space
and mitigate tricky topology issues. Finally, several techniques,
such as double DQN (DDQN), Epsilon-greedy based explora-
tion, and specially designed multi-buffers, are implemented to
improve the learning ability of the proposed DRL method.

The contributions of this paper can be summarized as fol-
lows: 1) A new DRL supported on-line dynamic MMGF
scheme is proposed. A long time-horizon is considered to fully
utilize the available DGs under major faults of the main grids.
The original problem is reformulated using an MDP and a
complete DRL framework is specially designed for the topolo-
gy-transformable MGs. 2) The problem of large action space
when applying DRL methods is mitigated. The topology trans-
formation method and the CNN-based action-decoupling Q-
network are developed to efficiently handle the issue of expo-
nentially increasing action numbers. 3) The learning ability of
the DDQN method is further improved to become the CNN-
based multi-buffer double DQN (CM-DDQN) method. The
CM-DDQN method has strong learning ability and satisfactory
computational performance to provide a real-time adaptive
MMGEF strategy according to the newly updated system infor-
mation.

The rest of the paper is organized as follows: Section II re-
formulates the dynamic MMGF problem as a DRL based MDP.
The topology transformation and the CNN based action-
decoupling Q-network methods are provided in Section III.
Section IV shows the detailed designs for the training and on-
line application of the CM-DDQN based dynamic MMGF
scheme. Section V provides case study results and discussions,
followed by the conclusions of this work.
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II. MMGF PROBLEM FORMATION USING DRL FRAMEWORK

This section introduces the dynamic MMGF problem with a
DRL based MDP form. First, the dynamic MMGF problem is
formulated to fit into an MDP from. Then, the solution is de-
signed using the deep Q-learning structure with characteristics
of the MMGF problem.

A. Formulate dynamic MMGF as an MDP

The goal of the MMGEF is transforming a DS into several
self-supported islanded MGs [4]. Under a changeable envi-
ronment, such as during extreme weather events, the dynamic
MMGF maintains load supply during a time period by adap-
tively adjusting the topologies of multi-MGs. It is a sequential
decision-making problem in a multi-step process. At each step,
a topology configuration is determined to form islanded MGs
through system reconfiguration and splitting based on the cur-
rent state and the MMGF action of the last step.

Therefore, the dynamic MMGF problem can be described
by an MDP which consists of four essential elements: state S,
action A, state transition probability P, and reward r. In the
MDP of the MMGF problem, the agent can be the distribution
system operator (DSO). As shown in Fig. 1, the agent takes an
action At based on the environment’s state St at each time step
t. Consequently, the agent gains a reward 7(St, A¢) and the state
transitions to St+1 according to the state transition probability
P(St++1|St, Ar). This state—action—next-state process is an inter-
action between the environment and agent, and it continues
until the terminal state or the last step of setup [19].

Time

Rewar

Reward
Fig. 1 MDP for the MMGF problem

Assume that the original DS totally has » nodes, / lines, w
RCSs (w < I), ng DG nodes and n; load nodes and the time
horizon is T. The binary variable a denotes the close (o = 1) or
open (a = 0) statues of RCSs. Each MG that is derived from
the original DS should be energized by a DG [4], [10].

1) State. The state is a part or all of characteristics of the
current environment observed by the agent. The state is com-
posed of the current network topology configuration @ = [ay,...,
ow], active and reactive DG output condition ppg =
[PDG,1,-.-PpGag]l and gpG = [¢DG,1,---gDGng], l0ad amount pr. =
[PL1,-.-PLAg] and gL = [qL 1,...qLxg] and the time 7. Accordingly,
the state at time ¢ is defined as S; = [a+, ppG.s, P0Gt PLt> Lt

2) Action. The action is the reaction of the agent to the cur-
rent state. In the dynamic MMGF problem, the action at time ¢
A; can be represented by changing the configuration of net-
works in Sw. Therefore, the action space contains all the com-
binations of topology configuration @, However, the action
space is quite large with 2" combinations. Since the large ac-
tion space creates problems of non-convergence in DRL meth-
ods, this will be further handled in Section III.

3) Reward. The reward is the feedback of the environment
after the agent takes some action in a state. For the dynamic
MMGF process, the action should first maintain the radial



network of each individual MG. Further, the security con-

straints such as voltage and branch flow limits should be con-

sidered. The reward function (1) defines the MMGF problem.
I"(S A)= f;opo(az)_fAC(pﬂqz’ar) (1)
o _fswi(aOV'"at)_fpb(pr’at)

The reward function contains the first term as the reward
and the last two terms as penalties of the current action. Spe-
cifically, the first term fiopo (.) represents the reward if switch
action a;+ successfully forms multi-MGs with radial networks.
The second term function fac (.) represents the penalty based
on AC power flow results. The third function fei () punishes
frequent close/open actions of each switch. The last function
Job (1) represents the penalty for insufficient power supply.

Note that the reward provides immediate feedback for step
one. However, the dynamic MMGF problem is concerned with
long-term feedback with cumulative rewards. Thus, the return
(2) in which the accumulation of the current reward and the
discounted future rewards is defined.

T-1
R =%, 7'y 7 ef0.1] )
where ¥ is the discount factor.

B. Dynamic MMGF using deep Q-learning

Different from classic dynamic programming methods, the
DRL method does not require either explicit policies and value
functions for MDPs or complete knowledge of MDPs. [19].
Therefore, DRL is a promising approach to solving the com-
plex dynamic MMGF problem. The well-trained DRL method
can quickly provide an on-line scheme for dynamic MMGF,
which helps the original grid give an adaptive reaction under
changeable environments. This further enhances system resili-
ence.

As introduced in Subsection II-A, the dynamic MMGF
problem has both is with discrete action space as well as con-
tinuous state space. This feature makes it suitable to apply the
DQN method [25]. The DQN method is a combination of a
deep neutral network (DNN) and Q-learning which updates the
action-value function iteratively. For a policy 7z, define the
action-value (Q-value) function as (3),

Q" (S.4)=B[R|S,4,7] 3)
where Q-value is the expected discounted reward for executing
action Ar at state St and following policy z. The objective of Q-
learning is to estimate the value for an optimal policy. It has
been proven that an optimal policy can be derived from the
optimal Q-values Q" (St, Ar) = max Q(St, A) by selecting the
action with the highest Q-value in each state [26]. Therefore,
the agent can decide how to properly perform actions by learn-
ing the Q values. For the dynamic MMGF problem, the Q-
value can guide proper MMGF decisions in the MDP intro-
duced in subsection II 4.

Based on the Bellman equation, (3) can be further repre-
sented as a recursive format (4). As a form of temporal differ-
ence (TD) learning, Eq. (5) can update the Q-value towards
the targeted Q-value with the learning rate 7.

Q” (St’Ai) = E|:rz + }/Q” (St+1’A1+1 ):| (4)
Q(S,.4) « Q(St,AI)+77{rt +ynjixQ(SM,AM)—Q(S,,A,)}
)

Theoretically, the convergence of the iterative process is
guaranteed, which means that Q" (Si, A4r) can be found [26].
The agent can be guided to optimally perform actions using Q"
(St, Ar). However, it is difficult to function the Q-value in the
dynamic MMGF problem, and it is hard to provide a reasona-
ble Q-table because of continuous state space. Therefore, the
Q-value function is approximated via a deep neural network
(DNN) parameterized by 6 (6). As such, the original Q-
learning method is transformed into the DQN method [25].

Q(S,.4)=Q(s,.4 o) 6)

The DNN based Q-value is updated with a loss function
representing the mean-squared TD error, as shown in (7). For
the MDP, the first two terms in (7) represent the direct reward
of the current action and the potential value of the current ac-
tion for a future MDP, respectively. Together, they measure
the value of the current action. The last term directly generates
the value of the current action using the Q-network. By mini-
mizing the loss function, the Q-network gradually learns to
generate Q-values guiding proper MMGF schemes.

1(0) - [r’ +ymaxQ(s,.,, 4.,[0) - Q(S,. 4 |9)T (7)

III. ACTION GENERATION OF DYNAMIC MMGF PROCESS

In this section, the problem of large action space when ap-
plying DRL methods is mitigated. First, a topology transfor-
mation method is used to handle the radial topology require-
ment. Then, the CNN-based action-decoupling Q-value is de-
signed to further handle the large action number.

A. Search space reduction of spanning forest

Since the action space contains all the combinations of to-
pology configuration a;, the original scale of the action space
is 2™. This exponentially increasing action space creates prob-
lems for the convergence of (5), and it contains tremendous
infeasible network configurations because the radial network
of each MG needs to be maintained [4], [18]. Moreover, the
infeasible topology and the computation burden make power
flow calculation-based environment interaction difficult to
perform. Therefore, topological issues need be addressed.

From the point of changing topology, splitting a tree leads to
several trees. Therefore, the MMGF problem includes the re-
configuration and splitting of the original DS. As shown in Fig.
2, all the reasonable radial MGs can be found by: 1) reconfig-
uring the original radial DS via switching operations, and 2)
splitting the reconfigured DS by opening any closed switches.
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Fig. 2 The process of multi-MGs formation

The essence of the reconfiguration and splitting process is to
find all the spanning forests of a network topology. Since it is
intractable to directly trace all the spanning forests, a topology
transformation method, as shown in Fig. 3, is applied to sim-

plify the problem.
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Fig. 3 Topology transformation for MMGF

First, the DG nodes are picked up and connected using a vir-
tual node (the blue node in Fig. 3). Accordingly, the spanning
forest problem can be simplified as the spanning tree problem.
In this way, finding MMGFs is equivalently transformed into
the problem of finding radial networks of the new topology.
The radial topology of the new topology can be ensured by
two conditions [18]: 1) n-n, RCSs switch on (the virtual node
is not included in 7) and 2) all the nodes must be connected.

The first condition reduces the action space from the expo-
nential form (2™) to the polynomial form C,,. This is how it
works: the original DS has » nodes, n; DG nodes and w RCSs

in total. So, the number of original possible combinations is 2.

After applying the proposed topology transformation method,
the new topology has n + 1 nodes (including the virtual node)
and w + ng lines (including the virtual lines between the virtual
node and DG nodes). To ensure radial topology, the new net-
work should have » lines in operation. Because n, virtual lines
have already been in operation, n - n, RCSs should be
switched on. Therefore, the problem is transformed into pick-
ing up n - ng RCSs in w RCSs, which has C;,, possible combi-
nations. This is significantly less than the original 2™ combi-
nations.

Based on the first condition, the second condition can be
used to check the feasibility of the network.

B. CNN-based action-decoupling Q-value
The key purpose of the DQN method is to learn Q values by

4

building and training the neural network. Regarding power
related applications, the DQN method is normally based on the
structures of an artificial neural network (ANN) [27] or DNN
[18], [28]. However, as defined in (3), the Q-value is the ex-
pected accumulation of the discounted reward functions. The
reward function for the MMGF problem heavily depends on
the AC power flow calculation which has a sparse function
relationship [29], [30], while the neighboring branches have a
stronger topology relationship. Therefore, the neural network
is organized using a CNN which has a strong automatic feature
learning ability for processing data with a grid-like topology
with sparsely connected features. The CNN promises to better
learn the Q values of the MMGEF problem.

The data preprocessing for the deep CNN of the Q-value is
based on the new topology in Fig. 3. The input data contains
node active and reactive power injection vectors P® and Q°,
branch resistance and reactance elements R® and X° elements,
switch open/close statues W and frequencies of switching op-
eration F. In order to ensure the consistent dimension, P° and
Q" are extended with /-n zeros (if / > n) to become P and Q,
and R and X are formed by considering the original branch
parameters R® and X°, as well as the switch status W. The input
is organized as [P; Q; R; X; F].

Fig. 4 shows the process of generating a Q-value using the
CNN structure. Assuming the first convolutional layer has fil-
ters of the size [3, 3, 1, 12] where the first three numbers are
the height, width and depth of one filter and the last number is
the number of filters. Zero-padding is applied to maintain the
original size of the input data. The filter of Conv2 has the size
[3, 3, 12, 24]. Hence, the output of Conv2 has the size [5, w,
24] and it is further flattened as a vector with the size [1,
Sxwx24] and goes through a F'CI layer. Using a matrix of the
weight parameters with the size [Sxwx24, w] and a [1, w] pa-
rameter, the output will become a vector with the size [1, w].

ReLU

-0

o RO N

F Reshape
D:
Q-value Fxfrac FC1
W,EDID@D:D@H\H O 111
D: {1, nng)

i, D: [1, $owx24]
Drll,wl 11 1. 50241

Fig. 4 Structure of CNN for Q-value

Output values Picking up RCSs with

n-n, highest values

[ n-ng

RCS 1
RCS 2

Calculate the Q
value using (8)

=) G

RCS 2

ork |
network

RCSw

RCS w-1

Fig. 5 Design of action-decoupling Q-value

Although the action number has been reduced by the topol-
ogy transformation method, the amount of CNN output data
can still be large if each action is considered as an output.
Therefore, instead of taking each output data as an action, an



action-decoupling method is designed, as shown in Fig. 5, by
setting the CNN output V as the values of switches. Accord-
ingly, the Q-value does not take a specific value of the DQN
output; instead, it is set to the average value of a selected sub-
set in the CNN output data V. That is, top n-ng values in V are
selected and extracted as V" and the Q-value (8) is the average
of values in V. In general, the action-decoupling method takes
the outputs ¥ of CNN as values for each switch, selects the
closing switches, and then calculates the Q-value. When trans-
forming V to V”, we may record the switch index numbers of
the top n-ng values, set 1 (closed) to these switches and 0
(open) to the remaining switches. Then, the new switch statues
in W are obtained by closing the selected switches and open-

ing the remaining ones.
sum (V)
9) - /— ng (8)

A min_max_scaler transformation is applied to normalize
the input data P; Q; R; X and output data V. The frequencies
of switching operations in F are normalized by dividing the
total step number. Switch open/close statues in W are original-
ly binary. Through normalization, the values of the data are
within the range [0, 1] which helps create a more regular
search region for faster convergence of the algorithm. The loss
function used to train the CNN is given by (7). The reward
function for the MMGF problem is formulated considering the
topology requirements, power balance, voltage, branch flow
and switch operation times which will be further functioned in
Section IV-B.

QS 4,

IV. LEARNING AND APPLICATION OF CM-DDQN

The learning and application of the proposed CM-DDQN
method are discussed in this section. First, techniques for bet-
ter learning are incorporated in the DRL method. Then, de-
tailed designs of the reward function and the RL process for a
dynamic MMGF are presented. Finally, the entire method as
well as the on-line application framework is shared.

A. Techniques for better learning

The key to realizing the DRL based dynamic MMGF is to
let the Q-network learn the proper reactions in the MDP. Many
techniques have been studied for the efficient DQN learning.
The experience replay, Epsilon-greedy based exploration, and
fixed network are the three most efficient techniques.

1) Experience replay and multiple buffers

The DQN learns the Q-value based on previous experiences.

However, for the MDP, the previous experiences are overwrit-
ten with new experiences. This largely reduces data efficiency.
Therefore, the experience replay method [25] is applied to
memorize the experiences and re-train the Q-network. Accord-
ingly, each experience can be used repeatedly, and bias due to
correlation between training samples can be eliminated.

The experience replay consists of a memory part and a re-
play part. The memory contains a list of previous experiences
and observations to re-train the Q-network. In the MDP, state
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S, action A,, reward r,, next state i and topology surviving
condition D are appended to the memoryl. As long as the
memory stores enough experiences, the replay part is activated.

memorylz[...,(Sl,Al,r[,S D),...J 9

+1° 7t

Since the learning of the Q-network largely depends on the
experience, reserving a part of the good experience helps the
Q-network learn proper reactions. For the MMGF problem,
good experiences have high reward values and feasible topol-
ogy. Accordingly, multi-buffers are constructed with extra
memories to reserve good experience extracted from the origi-
nal memory. The replay part randomly extracts some experi-
ences from buffers to organize a minibatch to train the Q-
network.

(10)
(11

The training of the Q-network is enhanced using the mini-
batch in the MDP.

random.sample (memoryl , batch_sizel) ,

t 4177t

memory2 = [...,(S,,A[,r*,S D ),J

memory3 = [...,(Sf,At,r,S D*),...J

127t

minibatch = random.sample(memoryZ,batch_sizeZ), (12)

random.sample (memory3, batch_size3)

2) Epsilon-greedy based exploration

Since the CNN based Q-network is initialized with random
weights and biases, it’s difficult for its performance to be satis-
fying in the early stages. Therefore, instead of selecting actions
that directly use the not well-trained Q network, it is better to
try all possibilities before the pattern starts to. The random
selection of actions is called ‘exploration’, while the prediction
using DQN is ‘exploitation’. The Epsilon represents the explo-
ration rate which is a certain percentage at which the agent
randomly selects its actions. The Epsilon-greedy method uses
an annealing ¢ value to guide ‘exploration’ and ‘exploitation’.
As shown in (13), with the constant k controlling the annealing
speed, the ¢ value gradually decreases after the DQN training
begins. In each MDP step, the agent randomly extracts a value
of [0, 1]. Then, the agent selects the action with the largest Q
value if the random value is less than ¢; otherwise, a random
action will be selected.

ke
E =
gmin

3) Fixed Q network (Double DQN)

Because the update process (5) picks up the maximum Q
value of the next state, the overestimation becomes a long-
standing problem for all Q-learning based algorithms. In order
to address this issue, a DDQN is proposed [30] with better
results on ATARI 2600 games than other Q-learning based
methods. Therefore, it is applied in the deep Q learning based
MMGEF scheme.

The DDQN has two separate neutral networks: the original
Q network and the target Q (T-Q) network, which decouples
the action selection and action evaluation. The original Q
network is used to select the action with maximum Q value

&> &

(13)

e<ée



while the T-Q network evaluates the Q value of the selected
action. The T-Q network is a fixed network which is not
updated in the Q network updating process. The fixed features
enhance the efficiency and stability in the learning process.
The loss function (7) is adjusted into (14) accordingly.

[r-0(s.4 |9)T (t=T)
o+ 7/r1/}axT - Q(S,+1’At+1
-0(s,.40)

Based on the original deep Q learning structure, the extra
designs 1-3) give the DQN good performance in dealing with
the overestimation issue and provide better learning processes.
At this point, all the designs for the CM-DDQN method are
presented.

B. CM-DDQN learning process
Defining a suitable reward function is an indispensable part
to completing the learning process of DRL methods. The de-
tailed reward function (1) is shown in (15) to help determine
the Q network of the dynamic MMGF problem.
ftopo (ar )_ Z fAC,i (R,Q,,a,)

ieM,

_fswi (aov-"at)_fpb,i (I)r’ar)
-flopo (at ) Stopo = 0

where Siopo is the signal to show whether the switch action a,
successfully forms multi-MGs with radial networks, and M, is
the set of newly formed MGs. As shown in (16), if Sipo = 1,
Siopo(.) provides the reward w; otherwise, fipo (.) gives punish-
ment —w and the ‘game over’ signal of an MDP is triggered
because of the infeasible topology. Functions related to AC
power flow fac.i(.), switch status fwi(.) and power balance fyu(.)
are further explained in (17), (18) and (19), respectively.

L,(0)= (14)

gTar) e

Stapo :1
n(8,.4)= (15)

W Swpo =1 16
ftopo (al) - —w Slopo _ O ( )
fAC,i (I)tﬂQﬂat) = vaol,j +ploss,i +2pbran,l (17)
jei lei
foi (@) =21, (18)
jew
0 M<0
fosBa) =1 0 (19)
M:ZpL,j+ploss,i_zpDG,j (20)

Jei Jei
The AC power flow related function faci(.) provides the pun-
ishment value of forming MG i. It contains penalties of voltage
violation pyol; (21), system power loss of piossis and branch
overflow poran: (22). The fou(.) function punishes frequent
close/open actions of each switch using (23) which works if
switch j exceeds the allowed number of operations in the
whole dynamic MMGF process. As shown in (19) and (20),
fob(.) gives punishes to MG i if it has power deficiency.

0 0.95<V,<1.05
pvu/ J = ? (21)
’ Do otherwise
L-L, )/ B L>L
pbran,[ = ( ' upp.! )/ base 1 upp,/ (22)
0 L<L,,
p;= ’ ZH @js _af»"*1| S (23)

/ N, otherwise

t
Zm |aj,s T

where V; is the voltage amplitude of node j, L; and Ly, are
respectively the absolute value and upper bound of branch
power of line /, Buase is the base value to standardize the
branch flow penalty, Sypp, is the allowed operation number of
switch j, and Nip is the required step of the dynamic MMGF
process.

Algorithm: CM-DDQN learning process
Input: DG generation data set { Pic,..., Poc} and { Goc,., q
b}, load data set { pi,..., pi } and { qL,..., q. }. Initial topol-
ogy of the original DS & = [a},..., a.]. Apply topology
transformation in Fig. 3.
Output: well-trained action-value Q network
S1: Initialization. Initialize Q network and T-Q network
with same random weights and bias. Initial replay
memoryl-3 with capacity maxlen. Set D% = (. Set
batch size, Episode M, step number T and Epsilon-
greedy parameters.
§2: for Episode from 0 to M do
Initialize state S° =[P°; Q°; R%; X°; F]
for Step from 1 to T do
Perform Epsilon-greedy, and randomly select an
action @™ or ¢™*P= argmax [Q(St, A7)].
Calculate reward value (15). If topology infeasi-
ble, set DSP = 1.
Organize new state $***!' Note that R, X and F
are updated according to ¢¥**! while P and Q fol-
low DG generation and load data sets.
Add record [sstep’ astep+1’ rstep+1’ Sst€p+1’ Dstep’] in
memory. Add record to memory2 if P! =y
Add record to memory3 if D = (.
If topology is infeasible/ D*? ==1 do
Update T-Q-CNN as Q-CNN
Break;
End if
If conditions for replay are satisfied do
Randomly select batch size records from
memory. Train Q network (Q-CNN) using loss

function (14).
If Step=T do
Update T-Q-CNN as Q-CNN
End if
End if
End for
End for

$3: Obtain the Q-CNN.




The CM-DDQN learning process for the MMGF problem is
provided in the above algorithm description. Therein, there are
hard constraints and soft constraints. A “game over” is trig-
gered if any hard constraint is violated, while soft constraint
violations lead to certain consequences instead of an immedi-
ate “game over”. In the dynamic MMGF problem, the hard
constraint is the feasible topology requirement. If the switch
actions cannot ensure a radial network for each MG, there will
be a ‘game over’ and the MDP is directly ended. The voltage
limit, branch flow limit, switching number limit and power
balance limit belong to soft constraints which form penalties to
organize the reward value of the switch on/off decisions in the
current step.

C. Deep RL based dynamic model-free MMGF scheme

The whole DRL based on-line dynamic MMGF process is
shown in Fig. 6. Since the feasible topology is hard to learn
quickly, a pre-training part is prepared to make the Q-network
capture some topology and power flow related features of the
original system. This helps the DRL scheme to be used direct-
ly under emergencies or major fault conditions of the main
grid. In a major fault event process, the pre-trained Q-network
will quickly provide the MMGF scheme to make full use of the
current available DERs. Meanwhile, new experience will be
recorded in the buffer and the Q-network can be further updat-
ed when the training condition is trigged. Specifically, in the
on-line application process, a ‘do-nothing’ module [32] can be
added to ensure the topology feasibility. The actions produced
by the Q-network will be re-checked using the topology check
module in the environment. The ‘do-nothing” module is trig-
gered if the re-organized network is infeasible, and the pro-
duced action will not be implemented to maintain the feasible
radial network of the last step.
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Fig. 6 CM-DDQN based dynamic MMGF process

As such, the DRL based dynamic MMGF scheme can satis-
fy the real-time computation requirement of the on-line appli-
cation because the RL agents obtain switch on/off decisions
very quickly through simple numerical calculations. Without
the actual power system modeling or power flow equations, the
on-line application can be performed in a model-free way. On
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the other hand, the agent can keep on learning new experiences
according to newly updated system conditions and resilient
reactions, which improves the system’s adaptability to handle
changeable event conditions. The essence of the proposed dy-
namic MMGF scheme is to enhance system resilience by flex-
ibly changing topology to form different self-supported MGs
according to the newly updated system conditions.

V. Case Study

In this section, the training and application performance of
the proposed CM-DDQN based dynamic MMGF scheme is
demonstrated. The dynamic MMGF scheme is compared with
the conventional initially-formed MGs schemes [4], [10]. The
proposed CM-DDQN is compared with the DDQN [28].

Two systems are used: the 7-bus system with 2 DGs and the
IEEE 123-bus system with 12 integrated DGs. The time hori-
zon is set as 200 minutes, and each MG formation transfor-
mation step is set as 10 minutes. The switch limit for each RCS
is set as 4. The initial value of ¢ is 1 and emin = 0.1. Filters of
the CNN are with the size [5, 5, 1, 12] and [5, 5, 1, 24]. The
uncertain data of DG outputs follow a 3 sigmas normal distri-
bution with 20% forecast error from the expected values. The
DRL codes and the corresponding environment are written and
compiled in Python 3.7 while the CNN is built using Tensor-
Flow 2.2. and Keras 2.4. Pypower 5.1 is applied to solve the
power flow calculation in the environment. All simulation
studies were conducted on a computer with Intel® Core (TM)
17-8550U CPU and 16 GB RAM.

A. DRL based dynamic MMGF process using 7-bus system

r
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Fig. 7. The 7-bus system

1) Pre-training of deep RL

For the 7-bus system, the episode number for training is 500,
and the DG output values for each step of the 500 episodes are
randomly generated. The numbers of input and output data are
5x8 and 8. Since the feasible topology is regarded as the hard
constraint, the topology condition is the primary concern
throughout the entire process. Note that the switch on/off deci-
sions are obtained from the Q-network output value of each
switch. Using the method introduced in Section III-B, the
switches with the top 5 highest values according to the CNN
output data V, are regarded as switched on, and the rest are
switched off.

The deep deterministic policy gradient (DDPG) method is
applied in this case to compare with the proposed CM-DDQN.
The actor-network of DDPG has 8 outputs representing 8
switches, and the output of the actor-network is limited to 0~1.
If the output value is larger than 0.5, then, switch on; otherwise,
switch off.

The number of steps with radial networks of each MG is
shown in Fig. 8. A 20-step feasible topology condition means a



successful dynamic MMGF process, while any infeasible to-
pologies in the process directly lead to a ‘game over’ which
means the end of an episode. As can be observed, after almost
350 episodes, the proposed DRL method successfully learned
how to form feasible topologies by providing switch on/off
decisions in the dynamic multi-step process.
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Fig. 8. Successful MMGEF steps in the training process
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After the switch statues are determined, the reward function
(16) can be calculated according to the topology check and AC
power flow calculation in the environment. The convergence
process of the return, which is obtained using the Q value and
the reward, is shown in Fig. 9. The values of the return are
organized according to ten separate trainings. The maximum
and minimum return values are extracted from the ten separate
trainings and become the upper and lower bounds, which form
the light blue area in Fig. 9. As shown in the figure, from 0 to
330, the return first goes through an exploration process with
low values; then, it increased rapidly with an episode increas-
ing from 330 to 370. After that, the return value becomes rela-
tively stable with small oscillations. Since the return value
contains a comprehensive consideration of the topology condi-
tion, voltage violation, branch overflow, switch number limits
and power balance, the convergence means the Q-network can
reasonably judge the performance of an action. As the compar-
ison shows, the output values of the DDPG critic-network stay
below zero, meaning it is an unsuccessful learning process.
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Fig. 9. Convergence process of the return
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2) Comparison of performances of different schemes

After the Q-network learned to properly judge the perfor-
mance of actions, a series of uncertain output of DGs in the
MDP is randomly extracted to test the performance of the pro-
posed method. The total DG output in 20 steps is shown with
the green line in Fig. 10. With the same DG output conditions,
the proposed DRL based dynamic MMGF scheme
(Dy_MMGF) is compared with the conventional mathematical
programming based MMGF scheme (Con. MMGF) [4], [10].
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In steps 1-16, both schemes hold all the loads. However, the
conventional MMGF scheme (Con MMGF) sheds loads in
steps 17-20, while the dynamic MMGF scheme (Dy MMGF)
still holds all the loads. With the whole dynamic process con-
sidered, the DRL based scheme properly dispatches RCS ac-
tions, and adjusts the topology based on newly updated system
conditions. According, it shows better load-supplying ability.

160

T
* Sum l)(

140} —D\ _MMGF

Con_MMGF
120 1

100} 1
80 |

6

4

2

0 2 3 4 56

1 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Step number of the dynamic MMGF process

O

System active power (MW)

=)

=}

Fig. 10. DG output and reserved load amount in 20 steps

As shown in Fig. 11, the proposed deep RL method changed
the formation of MGs, and this action avoided load shedding.
The uncertain output of DG1 is reduced to 45SMW ~ 49MW in
steps 17-20. If the original MG formation is reserved, the
MG1 will have to shed load L2 to ensure power balance and
voltage security. Then, the Con. MMGF scheme has an 18
MW load reduction while the proposed Dy MMGF scheme
successfully holds all the load in the entire system.
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Fig. 11. Dynamic Multi-MG formation

B. Performance of CM-DQON in IEEE 123-bus system

The basic data of the IEEE 123-bus system is obtained from
[33]. The modified IEEE 123-bus system has 124 buses (in-
cluding the main substation), 11 DGs, 125 lines and 13 RCSs.
The original possible topology is 8192, and the number is re-
duced to 3432 using the topology transformation method in
Subsection III-A. The size of input data is 125%5, while the
output size is 13x1.

1) Comparison of learning abilities of DRL methods

Using the modified IEEE 123-bus system, the learning abil-
ity of the proposed CM-DDQN is compared with the DDQN
[28] method and the CNN based DDQN (C-DDQN) without
the multi-buffer part.

As shown in Fig. 12, the large action space creates problems
for the DDQN. Although it has the tendency to learn proper
behavior with an increasingly successful MMGF step in the
early period (about 1-50 episodes), the features are lost in the
following training episodes, and finally lead to a failed training
process. Without the multi-buffer part, the learning ability of
the C-DDQN is unstable. Although it has learned proper ac-
tions with 20 successful MMGF steps in some episodes (e.g.,
about 430 and 740 episodes), it quickly lost the features and



finally led to an unstable training process. With an improved
CNN structure and a multi-buffer design, the proposed CM-
DDOQN successfully captures the feasible topology feature af-
ter about 1000 training episodes.
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Fig. 13. Convergence process of the return

The corresponding return values of the three methods are
demonstrated in Fig. 13. The DDQN and C-DDQN method
fail to provide proper evaluation for actions, while the return
of the CM-DDQN method reaches to a relatively stable
condition. That is because the CNN has strong automatic fea-
ture learning ability in processing data with a grid-like topolo-
gy with sparse connectivity, while the designed reward value is
based on the AC power flow in the sparsely connected power
system. In addition, the multi-buffer design provides stable and
satisfying experiences for the learning process, which avoids
losing good results explored previously. Note that the large
fluctuation in steps 1000-1200 is caused by the exploration
design (random action generation) with the lowest 1%
probability. Even the Q-network is already well-trained in the
training process, so the surviving of feasible topology may be
reduced by following a randomly generated infeasible action.

2) Computation performance of the CM-DDQON

Taking a set of test data with a series of uncertain DG
outputs as an example, the proposed CM-DDQN ensures
radial networks with three topology forms (topol, topo2 and
topo3) in the 20 steps. Fig. 14 shows the worst voltage
condition of the three topology forms. Because the voltage
belongs to the soft constraint, there are few violations in the
whole process with the proposed CM-DDQN. However, these
slight violations are less than 1% of rated bus voltages and are
easy to eliminate by local compensates. The corresponding
power losses and most frequently operated switches 8-135 and
13-152 are presented in Fig. 15. The topology transformation
happened at step 1, step 3 and step 17. The most frequently
operated switch has 3 actions in the whole process, which is
within the limit of 4 actions.

To verify the on-line application performance of the CM-
DDQN method, 100 episodes of complete MDPs (2000 steps)
are randomly extracted from the test data. The result is listed

in Table I. For the two systems, there are no hard constraint
violations, which means that the proposed method successfully
ensures topology feasibility. For the soft constraints, the small-
scale systems all have satisfaction performance without any
violations. The large-scale system has 4 steps of voltage
violations of 5 buses. However, the violations are all within
0.005 p.u., since serious voltage violations bring high penalties
for the reward function. In the 100 episodes of MDP, there are
3 occurrences of switch violations with 5, 5 and 6 instances of
switch operations, respectively. This phenomenon can be
mitigated by increasing the corresponding penalty in the
reward function. However, it is not suggested to enhance the
consideration of switching actions because it will not lead to
security problems, and over-focus on soft constraints will
influence the performance regarding hard constraints.
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Fig. 14. Voltage conditions of three MMGF topologies
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In on-line applications, the CM-DDQN provides a feasible
MMGEF strategy with about 0.1 s computational time even for
the 123-bus system. Although the system scale is extended
from the 7-bus to 123-bus, the computation time only increases
slightly because the proposed method derives results from the
model-free DRL structure rather than via the actual power-
system model or power flow equation. This feature supports
the dynamic on-line MMGF scheme by providing a timely
topology-adjusting strategy according to newly updated system
conditions.

TABLE I. RESULTS OF 100 EPISODES OF MDP

T'ralmng On-line Hard cons Voltage  Switch Brach flow
Case time (h) computa- . L . L
. . violation violation violation violation
tion time
7-bus 5.27h 0.06s 0% 0% 0% 0%
123-bus  58.08h 0.104 0% 0.2% 3% 0%




VI. Conclusions

The changeable conditions caused by extreme events reduce
the efficiency or even damage initially-formed MGs. In order
to improve the adaptability of the MMGF scheme, this paper
proposes a new DRL based dynamic on-line MMGF scheme.
A DRL based MDP is designed to provide a solution for the
transformable MMGF problem over a long time-horizon. A
topology transformation as well as a CNN based action-
decoupling Q-value is developed to handle the large action
space problem. The DDQN is improved to formulate the CM-
DDQN which enhances the learning ability for large-scale sys-
tems. The case study results demonstrate that the proposed
dynamic on-line MMGF scheme enhances system resilience by
holding all of the loads using feasible topology adjustment.
The proposed CM-DDQN has strong learning ability, distin-
guished computation speed in real-time, and a satisfactory se-
curity guarantee.
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