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Abstract—Multi-microgrid formation (MMGF) is a promising 
solution for enhancing power system resilience. This paper pro-
poses a new deep reinforcement learning (RL) based model-free 
on-line dynamic MMGF scheme. The dynamic MMGF problem is 
formulated as a Markov decision process, and a complete deep 
RL framework is specially designed for the topology-
transformable micro-grids. In order to reduce the large action 
space caused by flexible switch operations, a topology transfor-
mation method is proposed and an action-decoupling Q-value is 
applied. Then, a convolutional neural network (CNN) based mul-
ti-buffer double deep Q-network (CM-DDQN) is developed to 
further improve the learning ability of the original DQN method. 
The proposed deep RL method provides real-time computing to 
support the on-line dynamic MMGF scheme, and the scheme 
handles a long-term resilience enhancement problem using an 
adaptive on-line MMGF to defend changeable conditions. The 
effectiveness of the proposed method is validated using a 7-bus 
system and the IEEE 123-bus system. The results show strong 
learning ability, timely response for varying system conditions 
and convincing resilience enhancement. 

Index Terms—Convolutional neural network (CNN), Deep re-
inforcement learning (DRL), extreme weather, distributed gener-
ation (DG), microgrids (MGs), multi-microgrid formation 
(MMGF), power system resilience. 

I.  INTRODUCTION 

IGH-IMPACT and low-probability events, such as ex-
treme weather events, are occurring with increasing inten-

sity. The extensive damage and subsequent outages of a power 
system caused by extreme events indicates the necessity of 
enhancing power system resilience [1]. Microgrids (MGs), 
which improve the flexibility of power system operation with 
both grid-connecting and islanding modes, are promising solu-
tions for power grids to withstand unplanned catastrophic 
events [2]. With the wide penetration of distributed energy 
resources (DERs), advanced metering, communication, and 
automatic control infrastructures, the distribution system (DS) 
can be easily transformed into self-supported MGs [3]. These 
self-supported MGs largely benefit power system resilience by 
improving the restoration capability of the distribution net-
works [4]-[6] as well as the survival of critical loads [7]. 

Since the ability of MGs to handle extreme conditions has 
been proven both by academic index [8] and by practical cases 
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(e.g., islanded MGs successfully survived Hurricane Sandy 
[9]), resilience-oriented MG formation, resources allocation, 
and system operation have been widely discussed. Optimal 
MG formation strategies were proposed in [4] and [10] to di-
vide original DSs into resilient MGs after major faults of the 
main grid. Allocable distributed generations (DGs) [11] and 
remotely controlled switches (RCSs) [12] have been highlight-
ed to provide a good planning study of resilient MGs. A trans-
formative architecture for the normal operation and self-
healing of multi-MGs was proposed in [13] to improve system 
self-healing capability, and [14] used a scheduling-horizon-
based optimization scheme to reduce load shedding with rea-
sonable operation cost. In addition, helpful resilient control 
strategies to benefit the operation of islanded MGs were stud-
ied in [15].  

To fully utilize DERs to enhance power grid resilience, 
forming multiple MGs using DGs has become a promising 
solution for handling extreme conditions [3]. The essence of 
the multi-MGs formation (MMGF) problem is to identify the 
desired topology subject to various constraints. For the topol-
ogy determination problem, mathematical programming [3], 
[4], [10] and heuristic search approaches [16], [17] are widely 
used methods. A mixed-integer non-linear programming 
(MINLP) model was built in [3] to sectionalize the outage area 
into networked MGs. The MMGF problem was formulated as 
a mixed-integer linear programming (MILP) model in [4], and 
the model was further improved in [10] by reducing both bina-
ry and continuous variables. Based on the graph theory, [16] 
developed a graph-theoretic search algorithm to identify a 
post-outage DS topology. Another heuristic approach was pro-
posed in [17] to approximately solve the MG formation prob-
lem of large-scale systems with tractable computation. A good 
summary of existing methods, especially for the radial topolo-
gy consideration when MGs are being formed, was provided in 
[18]. 

The aforementioned MG formation strategies are mainly 
based on observable system conditions and environments with 
short-term considerations, while conditions under natural dis-
asters might be uncertain and changeable [7]. The uncertain 
output of RES-DGs and unexpected damage to grids reduces 
the efficiency or even damages the initially formed MGs. 
Therefore, an adaptive and dynamic MG formation strategy is 
needed to further enhance the resiliency under unexpected 
system conditions. By continuously interacting with the envi-
ronment and obtaining feedbacks, the deep reinforcement 
learning (DRL) method [19] promises to help the MMGF 
scheme obtain adaptability to changeable conditions.  
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 As an efficient solution to handle Markov decision process-
es (MDPs), DRL methods have become an attractive method 
for intractable problems in power systems. Ref. [20] cast the 
volt-VAR optimization to a deep Q-network (DQN) frame-
work and finally realized adaptive voltage control under time-
varying operating conditions. To achieve real-time service 
restoration, [21] proposed an imitation learning (IL) frame-
work to improve the training efficiency of DRL methods. In 
terms of MGs, the DRL method showed satisfying perfor-
mance in energy management problems [22]-[24]. However, 
because of the difficulty of ensuring feasible radial topology, 
few studies have discussed the MMGF problem using DRL 
methods. For the MMGF problem, the action space of DRL 
methods has exponential growth with the increase of the num-
ber of switches, which deteriorates the learning ability of DRL 
methods. Therefore, the DRL based dynamic MMGF is a val-
uable but challenging problem to study.  

For the purpose of realizing an on-line dynamic MMGF, a 
new deep RL-based model-free real-time adaptive scheme is 
proposed in this paper to enhance grid resilience over a long 
time-horizon. First, the dynamic MMGF problem is formulat-
ed as an MDP, and the deep Q-learning based RL method is 
introduced as a promising solution. Second, holding the fea-
tures of a spanning forest, a topology transformation method 
and an action-decoupling method based on convolutional neu-
ral networks (CNN) are developed to reduce the action space 
and mitigate tricky topology issues. Finally, several techniques, 
such as double DQN (DDQN), Epsilon-greedy based explora-
tion, and specially designed multi-buffers, are implemented to 
improve the learning ability of the proposed DRL method. 

The contributions of this paper can be summarized as fol-
lows: 1) A new DRL supported on-line dynamic MMGF 
scheme is proposed. A long time-horizon is considered to fully 
utilize the available DGs under major faults of the main grids. 
The original problem is reformulated using an MDP and a 
complete DRL framework is specially designed for the topolo-
gy-transformable MGs. 2) The problem of large action space 
when applying DRL methods is mitigated. The topology trans-
formation method and the CNN-based action-decoupling Q-
network are developed to efficiently handle the issue of expo-
nentially increasing action numbers. 3) The learning ability of 
the DDQN method is further improved to become the CNN-
based multi-buffer double DQN (CM-DDQN) method. The 
CM-DDQN method has strong learning ability and satisfactory 
computational performance to provide a real-time adaptive 
MMGF strategy according to the newly updated system infor-
mation.  

The rest of the paper is organized as follows: Section II re-
formulates the dynamic MMGF problem as a DRL based MDP. 
The topology transformation and the CNN based action-
decoupling Q-network methods are provided in Section III. 
Section IV shows the detailed designs for the training and on-
line application of the CM-DDQN based dynamic MMGF 
scheme. Section V provides case study results and discussions, 
followed by the conclusions of this work. 

II.  MMGF PROBLEM FORMATION USING DRL FRAMEWORK 

This section introduces the dynamic MMGF problem with a 
DRL based MDP form. First, the dynamic MMGF problem is 
formulated to fit into an MDP from. Then, the solution is de-
signed using the deep Q-learning structure with characteristics 
of the MMGF problem.  

A.  Formulate dynamic MMGF as an MDP 

The goal of the MMGF is transforming a DS into several 
self-supported islanded MGs [4]. Under a changeable envi-
ronment, such as during extreme weather events, the dynamic 
MMGF maintains load supply during a time period by adap-
tively adjusting the topologies of multi-MGs. It is a sequential 
decision-making problem in a multi-step process. At each step, 
a topology configuration is determined to form islanded MGs 
through system reconfiguration and splitting based on the cur-
rent state and the MMGF action of the last step.  

Therefore, the dynamic MMGF problem can be described 
by an MDP which consists of four essential elements: state S, 
action A, state transition probability P, and reward r. In the 
MDP of the MMGF problem, the agent can be the distribution 
system operator (DSO). As shown in Fig. 1, the agent takes an 
action At based on the environment’s state St at each time step 
t. Consequently, the agent gains a reward r(St, At) and the state 
transitions to St+1 according to the state transition probability 
P(St+1|St, At). This state–action–next-state process is an inter-
action between the environment and agent, and it continues 
until the terminal state or the last step of setup [19]. 

 
Fig. 1 MDP for the MMGF problem 

Assume that the original DS totally has n nodes, l lines, w 
RCSs (w ≤ l), ng DG nodes and nL load nodes and the time 
horizon is T. The binary variable α denotes the close (α = 1) or 
open (α = 0) statues of RCSs. Each MG that is derived from 
the original DS should be energized by a DG [4], [10]. 

1) State. The state is a part or all of characteristics of the 
current environment observed by the agent. The state is com-
posed of the current network topology configuration α = [α1,…, 
αw], active and reactive DG output condition pDG = 
[pDG,1,…pDG,ng] and qDG = [qDG,1,…qDG,ng], load amount pL = 
[pL,1,…pL,ng] and qL = [qL,1,…qL,ng] and the time t. Accordingly,  
the state at time t is defined as St = [αt, pDG,t, pDG,t, pL,t, qL,t]. 

2) Action. The action is the reaction of the agent to the cur-
rent state. In the dynamic MMGF problem, the action at time t 
At can be represented by changing the configuration of net-
works in St. Therefore, the action space contains all the com-
binations of topology configuration αt. However, the action 
space is quite large with 2^w combinations. Since the large ac-
tion space creates problems of non-convergence in DRL meth-
ods, this will be further handled in Section III.  

3) Reward. The reward is the feedback of the environment 
after the agent takes some action in a state. For the dynamic 
MMGF process, the action should first maintain the radial 
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network of each individual MG. Further, the security con-
straints such as voltage and branch flow limits should be con-
sidered. The reward function (1) defines the MMGF problem.  
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The reward function contains the first term as the reward 
and the last two terms as penalties of the current action. Spe-
cifically, the first term ftopo (.) represents the reward if switch 
action αt+1 successfully forms multi-MGs with radial networks. 
The second term function fAC (.) represents the penalty based 
on AC power flow results. The third function fswi (.) punishes 
frequent close/open actions of each switch. The last function 
fpb (.) represents the penalty for insufficient power supply.  

Note that the reward provides immediate feedback for step 
one. However, the dynamic MMGF problem is concerned with 
long-term feedback with cumulative rewards. Thus, the return 
(2) in which the accumulation of the current reward and the 
discounted future rewards is defined. 
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where γk is the discount factor.  

B.  Dynamic MMGF using deep Q-learning 

Different from classic dynamic programming methods, the 
DRL method does not require either explicit policies and value 
functions for MDPs or complete knowledge of MDPs. [19]. 
Therefore, DRL is a promising approach to solving the com-
plex dynamic MMGF problem. The well-trained DRL method 
can quickly provide an on-line scheme for dynamic MMGF, 
which helps the original grid give an adaptive reaction under 
changeable environments. This further enhances system resili-
ence.  

As introduced in Subsection II-A, the dynamic MMGF 
problem has both is with  discrete action space as well as con-
tinuous state space. This feature makes it suitable to apply the 
DQN method [25]. The DQN method is a combination of a 
deep neutral network (DNN) and Q-learning which updates the 
action-value function iteratively. For a policy π, define the 
action-value (Q-value) function as (3),  

 Q , = , ,
t t t t t

S A R S A  
               (3) 

where Q-value is the expected discounted reward for executing 
action At at state St and following policy π. The objective of Q-
learning is to estimate the value for an optimal policy. It has 
been proven that an optimal policy can be derived from the 
optimal Q-values Q* (St, At) = max Qπ(St, At)  by selecting the 
action with the highest Q-value in each state [26]. Therefore, 
the agent can decide how to properly perform actions by learn-
ing the Q values. For the dynamic MMGF problem, the Q-
value can guide proper MMGF decisions in the MDP intro-
duced in subsection II A. 

Based on the Bellman equation, (3) can be further repre-
sented as a recursive format (4). As a form of temporal differ-
ence (TD) learning, Eq. (5) can update the Q-value towards 
the targeted Q-value with the learning rate η. 

   Q , = Q ,
t

S A r S A   
   1 1t t t t             (4) 
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(5) 
Theoretically, the convergence of the iterative process is 

guaranteed, which means that Q* (St, At) can be found [26]. 
The agent can be guided to optimally perform actions using Q* 
(St, At). However, it is difficult to function the Q-value in the 
dynamic MMGF problem, and it is hard to provide a reasona-
ble Q-table because of continuous state space. Therefore, the 
Q-value function is approximated via a deep neural network 
(DNN) parameterized by θ (6). As such, the original Q-
learning method is transformed into the DQN method [25]. 

   Q , Q , 
t t t t

S A S A                (6) 

The DNN based Q-value is updated with a loss function 
representing the mean-squared TD error, as shown in (7). For 
the MDP, the first two terms in (7) represent the direct reward 
of the current action and the potential value of the current ac-
tion for a future MDP, respectively. Together, they measure 
the value of the current action. The last term directly generates 
the value of the current action using the Q-network. By mini-
mizing the loss function, the Q-network gradually learns to 
generate Q-values guiding proper MMGF schemes. 

     
+1

+1 +1
max Q , Q ,

2

L         t
t t t t tA
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III.  ACTION GENERATION OF DYNAMIC MMGF PROCESS 

In this section, the problem of large action space when ap-
plying DRL methods is mitigated. First, a topology transfor-
mation method is used to handle the radial topology require-
ment. Then, the CNN-based action-decoupling Q-value is de-
signed to further handle the large action number.  

A.  Search space reduction of spanning forest  

Since the action space contains all the combinations of to-
pology configuration αt, the original scale of the action space 
is 2^w. This exponentially increasing action space creates prob-
lems for the convergence of (5), and it contains tremendous 
infeasible network configurations because the radial network 
of each MG needs to be maintained [4], [18]. Moreover, the 
infeasible topology and the computation burden make power 
flow calculation-based environment interaction difficult to 
perform. Therefore, topological issues need be addressed. 

From the point of changing topology, splitting a tree leads to 
several trees. Therefore, the MMGF problem includes the re-
configuration and splitting of the original DS. As shown in Fig. 
2, all the reasonable radial MGs can be found by: 1) reconfig-
uring the original radial DS via switching operations, and 2) 
splitting the reconfigured DS by opening any closed switches.  
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Fig. 2 The process of multi-MGs formation  

 

The essence of the reconfiguration and splitting process is to 
find all the spanning forests of a network topology. Since it is 
intractable to directly trace all the spanning forests, a topology 
transformation method, as shown in Fig. 3, is applied to sim-
plify the problem.  
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Fig. 3 Topology transformation for MMGF 

 

First, the DG nodes are picked up and connected using a vir-
tual node (the blue node in Fig. 3). Accordingly, the spanning 
forest problem can be simplified as the spanning tree problem. 
In this way, finding MMGFs is equivalently transformed into 
the problem of finding radial networks of the new topology. 
The radial topology of the new topology can be ensured by 
two conditions [18]: 1) n-ng RCSs switch on (the virtual node 
is not included in n) and 2) all the nodes must be connected. 

The first condition reduces the action space from the expo-
nential form (2^w) to the polynomial form Cw 

n-ng
. This is how it 

works: the original DS has n nodes, ng DG nodes and w RCSs 
in total. So, the number of original possible combinations is 2w. 
After applying the proposed topology transformation method, 
the new topology has n + 1 nodes (including the virtual node) 
and w + ng lines (including the virtual lines between the virtual 
node and DG nodes). To ensure radial topology, the new net-
work should have n lines in operation. Because ng virtual lines 
have already been in operation, n - ng RCSs should be 
switched on. Therefore, the problem is transformed into pick-
ing up n - ng RCSs in w RCSs, which has Cw 

n-ng
 possible combi-

nations. This is significantly less than the original 2^w combi-
nations.  

Based on the first condition, the second condition can be 
used to check the feasibility of the network.  

B.  CNN-based action-decoupling Q-value 

The key purpose of the DQN method is to learn Q values by 

building and training the neural network. Regarding power 
related applications, the DQN method is normally based on the 
structures of an artificial neural network (ANN) [27] or DNN 
[18], [28]. However, as defined in (3), the Q-value is the ex-
pected accumulation of the discounted reward functions. The 
reward function for the MMGF problem heavily depends on 
the AC power flow calculation which has a sparse function 
relationship [29], [30], while the neighboring branches have a 
stronger topology relationship. Therefore, the neural network 
is organized using a CNN which has a strong automatic feature 
learning ability for processing data with a grid-like topology 
with sparsely connected features. The CNN promises to better 
learn the Q values of the MMGF problem.  

The data preprocessing for the deep CNN of the Q-value is 
based on the new topology in Fig. 3. The input data contains 
node active and reactive power injection vectors P0 and Q0, 
branch resistance and reactance elements R0 and X0 elements, 
switch open/close statues W and frequencies of switching op-
eration F. In order to ensure the consistent dimension, P0 and 
Q0 are extended with l-n zeros (if l > n) to become P and Q, 
and R and X are formed by considering the original branch 
parameters R0 and X0, as well as the switch status W. The input 
is organized as [P; Q; R; X; F].  

Fig. 4 shows the process of generating a Q-value using the 
CNN structure. Assuming the first convolutional layer has fil-
ters of the size [3, 3, 1, 12] where the first three numbers are 
the height, width and depth of one filter and the last number is 
the number of filters. Zero-padding is applied to maintain the 
original size of the input data. The filter of Conv2 has the size 
[3, 3, 12, 24]. Hence, the output of Conv2 has the size [5, w, 
24] and it is further flattened as a vector with the size [1, 
5×w×24] and goes through a FC1 layer. Using a matrix of the 
weight parameters with the size [5×w×24, w] and a [1, w] pa-
rameter, the output will become a vector with the size [1, w].  

...

 
Fig. 4 Structure of CNN for Q-value 

 

...

 
Fig. 5 Design of action-decoupling Q-value 

 

Although the action number has been reduced by the topol-
ogy transformation method, the amount of CNN output data 
can still be large if each action is considered as an output. 
Therefore, instead of taking each output data as an action, an 
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action-decoupling method is designed, as shown in Fig. 5, by 
setting the CNN output V as the values of switches. Accord-
ingly, the Q-value does not take a specific value of the DQN 
output; instead, it is set to the average value of a selected sub-
set in the CNN output data V. That is, top n-ng values in V are 
selected and extracted as V’ and the Q-value (8) is the average 
of values in V’. In general, the action-decoupling method takes 
the outputs V of CNN as values for each switch, selects the 
closing switches, and then calculates the Q-value. When trans-
forming V to V’, we may record the switch index numbers of 
the top n-ng values, set 1 (closed) to these switches and 0 
(open) to the remaining switches. Then, the new switch statues 
in W’ are obtained by closing the selected switches and open-
ing the remaining ones. 

   
+1 +1

sum '
Q ,  

t t
g

S A
n n

V
    (8) 

 
A min_max_scaler transformation is applied to normalize 

the input data P; Q; R; X and output data V. The frequencies 
of switching operations in F are normalized by dividing the 
total step number. Switch open/close statues in W are original-
ly binary. Through normalization, the values of the data are 
within the range [0, 1] which helps create a more regular 
search region for faster convergence of the algorithm. The loss 
function used to train the CNN is given by (7). The reward 
function for the MMGF problem is formulated considering the 
topology requirements, power balance, voltage, branch flow 
and switch operation times which will be further functioned in 
Section IV-B.  

IV.  LEARNING AND APPLICATION OF CM-DDQN  

The learning and application of the proposed CM-DDQN 
method are discussed in this section. First, techniques for bet-
ter learning are incorporated in the DRL method. Then, de-
tailed designs of the reward function and the RL process for a 
dynamic MMGF are presented. Finally, the entire method as 
well as the on-line application framework is shared. 

A.  Techniques for better learning 

The key to realizing the DRL based dynamic MMGF is to 
let the Q-network learn the proper reactions in the MDP. Many 
techniques have been studied for the efficient DQN learning. 
The experience replay, Epsilon-greedy based exploration, and 
fixed network are the three most efficient techniques.  

1) Experience replay and multiple buffers 
The DQN learns the Q-value based on previous experiences. 

However, for the MDP, the previous experiences are overwrit-
ten with new experiences. This largely reduces data efficiency. 
Therefore, the experience replay method [25] is applied to 
memorize the experiences and re-train the Q-network. Accord-
ingly, each experience can be used repeatedly, and bias due to 
correlation between training samples can be eliminated. 

The experience replay consists of a memory part and a re-
play part. The memory contains a list of previous experiences 
and observations to re-train the Q-network. In the MDP, state 

St, action At, reward rt,, next state St+1 and topology surviving 
condition D are appended to the memory1. As long as the 
memory stores enough experiences, the replay part is activated.  

 1
1 , , , , , ,... ...   t t t t+ t

memory S A r S D                   (9) 

Since the learning of the Q-network largely depends on the 
experience, reserving a part of the good experience helps the 
Q-network learn proper reactions. For the MMGF problem, 
good experiences have high reward values and feasible topol-
ogy. Accordingly, multi-buffers are constructed with extra 
memories to reserve good experience extracted from the origi-
nal memory. The replay part randomly extracts some experi-
ences from buffers to organize a minibatch to train the Q-
network. 

 *

1
2 , , , , , ,... ...   t t t t+ t

memory S A r S D           (10) 

 *

1
3 , , , , , ,... ...   t t t+ t

memory S A r S D            (11) 

The training of the Q-network is enhanced using the mini-
batch in the MDP. 

 
 
 

random.sample 1, 1 ,

random.sample 2, 2 ,

random.sample 3, 3

 
 

  
 
  

memory batch_size

minibatch memory batch_size

memory batch_size

(12) 

2) Epsilon-greedy based exploration 
Since the CNN based Q-network is initialized with random 

weights and biases, it’s difficult for its performance to be satis-
fying in the early stages. Therefore, instead of selecting actions 
that directly use the not well-trained Q network, it is better to 
try all possibilities before the pattern starts to. The random 
selection of actions is called ‘exploration’, while the prediction 
using DQN is ‘exploitation’. The Epsilon represents the explo-
ration rate which is a certain percentage at which the agent 
randomly selects its actions. The Epsilon-greedy method uses 
an annealing ε value to guide ‘exploration’ and ‘exploitation’. 
As shown in (13), with the constant k controlling the annealing 
speed, the ε value gradually decreases after the DQN training 
begins. In each MDP step, the agent randomly extracts a value 
of [0, 1]. Then, the agent selects the action with the largest Q 
value if the random value is less than ε; otherwise, a random 
action will be selected. 

min

min min

k      

   

  


  


  
                           (13) 

3) Fixed Q network (Double DQN) 
Because the update process (5) picks up the maximum Q 

value of the next state, the overestimation becomes a long-
standing problem for all Q-learning based algorithms. In order 
to address this issue, a DDQN is proposed [30] with better 
results on ATARI 2600 games than other Q-learning based 
methods. Therefore, it is applied in the deep Q learning based 
MMGF scheme.  

The DDQN has two separate neutral networks: the original 
Q network and the target Q (T-Q) network, which decouples 
the action selection and action evaluation. The original Q 
network is used to select the action with maximum Q value 
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while the T-Q network evaluates the Q value of the selected 
action. The T-Q network is a fixed network which is not 
updated in the Q network updating process. The fixed features 
enhance the efficiency and stability in the learning process. 
The loss function (7) is adjusted into (14) accordingly.  
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

  



  

   
  
    

t

t t t

t t t tA

t t

r Q S A t

r Q S A
t

Q S A

  (14) 

Based on the original deep Q learning structure, the extra 
designs 1-3) give the DQN good performance in dealing with 
the overestimation issue and provide better learning processes. 
At this point, all the designs for the CM-DDQN method are 
presented.  

B.  CM-DDQN learning process 

Defining a suitable reward function is an indispensable part 
to completing the learning process of DRL methods. The de-
tailed reward function (1) is shown in (15) to help determine 
the Q network of the dynamic MMGF problem.  
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(15) 

where Stopo is the signal to show whether the switch action αt 
successfully forms multi-MGs with radial networks, and Mg is 
the set of newly formed MGs. As shown in (16), if Stopo = 1, 
ftopo(.) provides the reward w; otherwise, ftopo (.) gives punish-
ment –w and the ‘game over’ signal of an MDP is triggered 
because of the infeasible topology. Functions related to AC 
power flow fAC,i(.), switch status fswi(.) and power balance fpb(.) 
are further explained in (17), (18) and (19), respectively. 

  topo
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The AC power flow related function fAC,i(.) provides the pun-
ishment value of forming MG i. It contains penalties of voltage 
violation pvol,j (21), system power loss of ploss,i, and branch 
overflow pbran,l (22). The fswi(.) function punishes frequent 
close/open actions of each switch using (23) which works if 
switch j exceeds the allowed number of operations in the 
whole dynamic MMGF process. As shown in (19) and (20), 
fpb(.) gives punishes to MG i if it has power deficiency. 

,
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(23) 

where Vj is the voltage amplitude of node j, Ll and Lupp,l are 
respectively the absolute value and upper bound of branch 
power of line l, Bbase is the base value to standardize the 
branch flow penalty, Supp,j is the allowed operation number of 
switch j, and Nstep is the required step of the dynamic MMGF 
process.  

 
Algorithm: CM-DDQN learning process  
Input: DG generation data set { p1 

DG,…, pT 
DG} and { q1 

DG,…, q
T 
DG}, load data set { p1 

L ,…, pT 
L  } and { q1 

L ,…, qT 
L }. Initial topol-

ogy of the original DS α0 = [α0 
1 ,…, α0 

w ]. Apply topology 
transformation in Fig. 3. 
Output: well-trained action-value Q network 
S1: Initialization. Initialize Q network and T-Q network 

with same random weights and bias. Initial replay 
memory1-3 with capacity maxlen. Set Dstep = 0. Set 
batch size, Episode M, step number T and Epsilon-
greedy parameters. 

S2: for Episode from 0 to M do 
Initialize state S0 =[P0; Q0; R0; X0; F0]  
for Step from 1 to T do 

Perform Epsilon-greedy, and randomly select an 
action αstep or αstep= argmax [Q(St, At)].  
Calculate reward value (15). If topology infeasi-
ble, set Dstep = 1. 
Organize new state Sstep+1. Note that R, X and F
are updated according to αstep+1 while P and Q fol-
low DG generation and load data sets. 
Add record [Sstep, αstep+1, rstep+1, Sstep+1, Dstep,] in 
memory. Add record to memory2 if rstep+1≥rstd. 
Add record to memory3 if Dstep = 0. 
If topology is infeasible/ Dstep ==1 do 
    Update T-Q-CNN as Q-CNN 
    Break; 

           End if 
If conditions for replay are satisfied do 
    Randomly select batch size records from

memory. Train Q network (Q-CNN) using loss 
function (14). 

    If Step = T do 
          Update T-Q-CNN as Q-CNN 
    End if 
End if 

       End for 
End for 

S3: Obtain the Q-CNN.  
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The CM-DDQN learning process for the MMGF problem is 

provided in the above algorithm description. Therein, there are 
hard constraints and soft constraints. A “game over” is trig-
gered if any hard constraint is violated, while soft constraint 
violations lead to certain consequences instead of an immedi-
ate “game over”. In the dynamic MMGF problem, the hard 
constraint is the feasible topology requirement. If the switch 
actions cannot ensure a radial network for each MG, there will 
be a ‘game over’ and the MDP is directly ended. The voltage 
limit, branch flow limit, switching number limit and power 
balance limit belong to soft constraints which form penalties to 
organize the reward value of the switch on/off decisions in the 
current step. 

C.  Deep RL based dynamic model-free MMGF scheme 

The whole DRL based on-line dynamic MMGF process is 
shown in Fig. 6. Since the feasible topology is hard to learn 
quickly, a pre-training part is prepared to make the Q-network 
capture some topology and power flow related features of the 
original system. This helps the DRL scheme to be used direct-
ly under emergencies or major fault conditions of the main 
grid. In a major fault event process, the pre-trained Q-network 
will quickly provide the MMGF scheme to make full use of the 
current available DERs. Meanwhile, new experience will be 
recorded in the buffer and the Q-network can be further updat-
ed when the training condition is trigged. Specifically, in the 
on-line application process, a ‘do-nothing’ module [32] can be 
added to ensure the topology feasibility. The actions produced 
by the Q-network will be re-checked using the topology check 
module in the environment. The ‘do-nothing’ module is trig-
gered if the re-organized network is infeasible, and the pro-
duced action will not be implemented to maintain the feasible 
radial network of the last step.  
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Fig. 6 CM-DDQN based dynamic MMGF process 

 
As such, the DRL based dynamic MMGF scheme can satis-

fy the real-time computation requirement of the on-line appli-
cation because the RL agents obtain switch on/off decisions 
very quickly through simple numerical calculations. Without 
the actual power system modeling or power flow equations, the 
on-line application can be performed in a model-free way. On 

the other hand, the agent can keep on learning new experiences 
according to newly updated system conditions and resilient 
reactions, which improves the system’s adaptability to handle 
changeable event conditions. The essence of the proposed dy-
namic MMGF scheme is to enhance system resilience by flex-
ibly changing topology to form different self-supported MGs 
according to the newly updated system conditions. 

V.  Case Study 

In this section, the training and application performance of 
the proposed CM-DDQN based dynamic MMGF scheme is 
demonstrated. The dynamic MMGF scheme is compared with 
the conventional initially-formed MGs schemes [4], [10]. The 
proposed CM-DDQN is compared with the DDQN [28]. 

Two systems are used: the 7-bus system with 2 DGs and the 
IEEE 123-bus system with 12 integrated DGs. The time hori-
zon is set as 200 minutes, and each MG formation transfor-
mation step is set as 10 minutes. The switch limit for each RCS 
is set as 4. The initial value of ε is 1 and εmin = 0.1. Filters of 
the CNN are with the size [5, 5, 1, 12] and [5, 5, 1, 24]. The 
uncertain data of DG outputs follow a 3 sigmas normal distri-
bution with 20% forecast error from the expected values. The 
DRL codes and the corresponding environment are written and 
compiled in Python 3.7 while the CNN is built using Tensor-
Flow 2.2. and Keras 2.4. Pypower 5.1 is applied to solve the 
power flow calculation in the environment. All simulation 
studies were conducted on a computer with Intel® Core (TM) 
i7-8550U CPU and 16 GB RAM. 

A.  DRL based dynamic MMGF process using 7-bus system 

 
Fig. 7. The 7-bus system 

1) Pre-training of deep RL 
For the 7-bus system, the episode number for training is 500, 

and the DG output values for each step of the 500 episodes are 
randomly generated. The numbers of input and output data are 
5×8 and 8. Since the feasible topology is regarded as the hard 
constraint, the topology condition is the primary concern 
throughout the entire process. Note that the switch on/off deci-
sions are obtained from the Q-network output value of each 
switch. Using the method introduced in Section III-B, the 
switches with the top 5 highest values according to the CNN 
output data V, are regarded as switched on, and the rest are 
switched off.  

The deep deterministic policy gradient (DDPG) method is 
applied in this case to compare with the proposed CM-DDQN. 
The actor-network of DDPG has 8 outputs representing 8 
switches, and the output of the actor-network is limited to 0~1. 
If the output value is larger than 0.5, then, switch on; otherwise, 
switch off. 

The number of steps with radial networks of each MG is 
shown in Fig. 8. A 20-step feasible topology condition means a 
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successful dynamic MMGF process, while any infeasible to-
pologies in the process directly lead to a ‘game over’ which 
means the end of an episode. As can be observed, after almost 
350 episodes, the proposed DRL method successfully learned 
how to form feasible topologies by providing switch on/off 
decisions in the dynamic multi-step process. 

 

0 50 100 150 200 250 300 350 400 450 500
0
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15

CM-DDQN

DDPG

20

Episode number  
Fig. 8. Successful MMGF steps in the training process 

 
After the switch statues are determined, the reward function 

(16) can be calculated according to the topology check and AC 
power flow calculation in the environment. The convergence 
process of the return, which is obtained using the Q value and 
the reward, is shown in Fig. 9. The values of the return are 
organized according to ten separate trainings. The maximum 
and minimum return values are extracted from the ten separate 
trainings and become the upper and lower bounds, which form 
the light blue area in Fig. 9. As shown in the figure, from 0 to 
330, the return first goes through an exploration process with 
low values; then, it increased rapidly with an episode increas-
ing from 330 to 370. After that, the return value becomes rela-
tively stable with small oscillations. Since the return value 
contains a comprehensive consideration of the topology condi-
tion, voltage violation, branch overflow, switch number limits 
and power balance, the convergence means the Q-network can 
reasonably judge the performance of an action. As the compar-
ison shows, the output values of the DDPG critic-network stay 
below zero, meaning it is an unsuccessful learning process. 
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Fig. 9. Convergence process of the return  

 
2) Comparison of performances of different schemes 
After the Q-network learned to properly judge the perfor-

mance of actions, a series of uncertain output of DGs in the 
MDP is randomly extracted to test the performance of the pro-
posed method. The total DG output in 20 steps is shown with 
the green line in Fig. 10. With the same DG output conditions, 
the proposed DRL based dynamic MMGF scheme 
(Dy_MMGF) is compared with the conventional mathematical 
programming based MMGF scheme (Con_MMGF) [4], [10]. 

In steps 1-16, both schemes hold all the loads. However, the 
conventional MMGF scheme (Con_MMGF) sheds loads in 
steps 17-20, while the dynamic MMGF scheme (Dy_MMGF) 
still holds all the loads. With the whole dynamic process con-
sidered, the DRL based scheme properly dispatches RCS ac-
tions, and adjusts the topology based on newly updated system 
conditions. According, it shows better load-supplying ability. 

 

 
Fig. 10. DG output and reserved load amount in 20 steps 

 
As shown in Fig. 11, the proposed deep RL method changed 

the formation of MGs, and this action avoided load shedding. 
The uncertain output of DG1 is reduced to 45MW ~ 49MW in 
steps 17-20. If the original MG formation is reserved, the 
MG1 will have to shed load L2 to ensure power balance and 
voltage security. Then, the Con_MMGF scheme has an 18 
MW load reduction while the proposed Dy_MMGF scheme 
successfully holds all the load in the entire system. 
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Fig. 11. Dynamic Multi-MG formation 

B.  Performance of CM-DQN in IEEE 123-bus system 

The basic data of the IEEE 123-bus system is obtained from 
[33]. The modified IEEE 123-bus system has 124 buses (in-
cluding the main substation), 11 DGs, 125 lines and 13 RCSs. 
The original possible topology is 8192, and the number is re-
duced to 3432 using the topology transformation method in 
Subsection III-A. The size of input data is 125×5, while the 
output size is 13×1.  

1) Comparison of learning abilities of DRL methods 
Using the modified IEEE 123-bus system, the learning abil-

ity of the proposed CM-DDQN is compared with the DDQN 
[28] method and the CNN based DDQN (C-DDQN) without 
the multi-buffer part.  

As shown in Fig. 12, the large action space creates problems 
for the DDQN. Although it has the tendency to learn proper 
behavior with an increasingly successful MMGF step in the 
early period (about 1-50 episodes), the features are lost in the 
following training episodes, and finally lead to a failed training 
process. Without the multi-buffer part, the learning ability of 
the C-DDQN is unstable. Although it has learned proper ac-
tions with 20 successful MMGF steps in some episodes (e.g., 
about 430 and 740 episodes), it quickly lost the features and 
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finally led to an unstable training process. With an improved 
CNN structure and a multi-buffer design, the proposed CM-
DDQN successfully captures the feasible topology feature af-
ter about 1000 training episodes.  
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Fig. 12. Comparison of successful MMGF steps of two methods 
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Fig. 13. Convergence process of the return 

 

The corresponding return values of the three methods are 
demonstrated in Fig. 13. The DDQN and C-DDQN method 
fail to provide proper evaluation for actions, while the return 
of the CM-DDQN method reaches to a relatively stable 
condition. That is because the CNN has strong automatic fea-
ture learning ability in processing data with a grid-like topolo-
gy with sparse connectivity, while the designed reward value is 
based on the AC power flow in the sparsely connected power 
system. In addition, the multi-buffer design provides stable and 
satisfying experiences for the learning process, which avoids 
losing good results explored previously. Note that the large 
fluctuation in steps 1000-1200 is caused by the exploration 
design (random action generation) with the lowest 1% 
probability. Even the Q-network is already well-trained in the 
training process, so the surviving of feasible topology may be 
reduced by following a randomly generated infeasible action.  

2) Computation performance of the CM-DDQN 
Taking a set of test data with a series of uncertain DG 

outputs as an example, the proposed CM-DDQN ensures 
radial networks with three topology forms (topo1, topo2 and 
topo3) in the 20 steps. Fig. 14 shows the worst voltage 
condition of the three topology forms. Because the voltage 
belongs to the soft constraint, there are few violations in the 
whole process with the proposed CM-DDQN. However, these 
slight violations are less than 1% of rated bus voltages and are 
easy to eliminate by local compensates. The corresponding 
power losses and most frequently operated switches 8-135 and 
13-152 are presented in Fig. 15. The topology transformation 
happened at step 1, step 3 and step 17. The most frequently 
operated switch has 3 actions in the whole process, which is 
within the limit of 4 actions. 

To verify the on-line application performance of the CM-
DDQN method, 100 episodes of complete MDPs (2000 steps) 
are randomly extracted from the test data. The result is listed 

in Table I. For the two systems, there are no hard constraint 
violations, which means that the proposed method successfully 
ensures topology feasibility. For the soft constraints, the small-
scale systems all have satisfaction performance without any 
violations. The large-scale system has 4 steps of voltage 
violations of 5 buses. However, the violations are all within 
0.005 p.u., since serious voltage violations bring high penalties 
for the reward function. In the 100 episodes of MDP, there are 
3 occurrences of switch violations with 5, 5 and 6 instances of 
switch operations, respectively. This phenomenon can be 
mitigated by increasing the corresponding penalty in the 
reward function. However, it is not suggested to enhance the 
consideration of switching actions because it will not lead to 
security problems, and over-focus on soft constraints will 
influence the performance regarding hard constraints. 
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Fig. 14. Voltage conditions of three MMGF topologies 
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Fig. 15. Power loss and switch conditions of the whole process 

 
In on-line applications, the CM-DDQN provides a feasible 

MMGF strategy with about 0.1 s computational time even for 
the 123-bus system. Although the system scale is extended 
from the 7-bus to 123-bus, the computation time only increases 
slightly because the proposed method derives results from the 
model-free DRL structure rather than via the actual power-
system model or power flow equation. This feature supports 
the dynamic on-line MMGF scheme by providing a timely 
topology-adjusting strategy according to newly updated system 
conditions. 

 
TABLE I. RESULTS OF 100 EPISODES OF MDP  

Case 
Training 
time (h) 

On-line 
computa-
tion time 

Hard cons 
violation 

Voltage 
violation 

Switch 
violation 

Brach flow 
violation 

7-bus 5.27h 0.06s 0% 0% 0% 0% 
123-bus 58.08h 0.104 0% 0.2% 3% 0% 
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VI.  Conclusions 

The changeable conditions caused by extreme events reduce 
the efficiency or even damage initially-formed MGs. In order 
to improve the adaptability of the MMGF scheme, this paper 
proposes a new DRL based dynamic on-line MMGF scheme. 
A DRL based MDP is designed to provide a solution for the 
transformable MMGF problem over a long time-horizon. A 
topology transformation as well as a CNN based action-
decoupling Q-value is developed to handle the large action 
space problem. The DDQN is improved to formulate the CM-
DDQN which enhances the learning ability for large-scale sys-
tems. The case study results demonstrate that the proposed 
dynamic on-line MMGF scheme enhances system resilience by 
holding all of the loads using feasible topology adjustment. 
The proposed CM-DDQN has strong learning ability, distin-
guished computation speed in real-time, and a satisfactory se-
curity guarantee.  
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