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Abstract

In this paper, we study statistical inference in functional quantile regression for scalar response and a functional
covariate. Specifically, we consider a functional linear quantile regression model where the effect of the covariate on
the quantile of the response is modeled through the inner product between the functional covariate and an unknown
smooth regression parameter function that varies with the level of quantile. The objective is to test that the regression
parameter is constant across several quantile levels of interest. The parameter function is estimated by combining
ideas from functional principal component analysis and quantile regression. An adjusted Wald testing procedure
is proposed for this hypothesis of interest, and its chi-square asymptotic null distribution is derived. The testing
procedure is investigated numerically in simulations involving sparse and noisy functional covariates and in a capital
bike share data application. The proposed approach is easy to implement and the R code is published online at
https://github.com/xylimeng/fQR-testing.
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1. Introduction

The advance in computation and technology generated an explosion of data that have functional characteristics.
The need to analyze this type of data triggered a rapid growth of the functional data analysis (FDA) field; see [9, 35]
for two comprehensive treatments. Most research in functional data analysis has primarily focused on mean regression
(see, for example, [10, 19, 20, 41, 46]); only a few works accommodate higher-order moment effects [29, 38]. Quantile
regression is appealing in many applications as it allows us to describe the entire conditional distribution of the
response at various quantile levels. For example, in our capital bike share data application, it is of interest to study
how the bike rental behavior of casual users in the previous day affects the upper quantiles of total bike rentals in the
current day.

Quantile regression models for scalar responses and functional covariates have been introduced in [2]. Functional
quantile regression (fQR) models essentially extend the standard quantile regression framework to account for func-
tional covariates: the effect of the covariate on a particular quantile of the response is modeled through the inner
product between the functional covariate and an unknown smooth regression parameter function that varies with the
level of quantile. Cardot et al. [2] considered a smoothing splines-based approach to represent the functional co-
variates and derived its convergence rate; Kato [22] studied principal component analysis (PCA)-based estimation
and established a sharp convergence rate. In [5] and [4] Crambes et al. discussed nonparametric quantile regression
estimation and studied the theoretical properties of a support vector machine-based estimator, a method inspired from
[30]. Yao et al. [47] considered regularized partially fQR model by additionally incorporating high-dimensional scalar
covariates. Shi et al. [37] developed a procedure to test the adequacy of fQR based on functional PCA. Unlike these
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regularization and basis expansion-based methods, Ferraty et al. [8] and Chen and Müller [3] estimated the condi-
tional quantile function by inverting the corresponding conditional distribution function; they too studied consistency
properties of the regression estimator. Nevertheless, hitherto there is no available work on statistical inference of the
quantile regression estimator under fQR. Additionally, existing functional quantile regression research often assumes
that the functional covariate is observed either completely on the domain or at very dense grids of points and typically
with little or no error contamination. In this work, we are interested in formally assessing whether the effect of the
true smooth signal of the covariate, varies across several quantile levels of interest of the response, when the smooth
signal is observed at finite grids and possibly perturbed with error and a functional linear quantile regression model
is assumed. This problem is important in its own right, yielding a more comprehensive description of the relation-
ship between the covariate and the conditional distribution of the response. Furthermore, formally assessing such a
hypothesis is critical when one wishes to improve the estimation accuracy of the conditional quantile of the response
at some specified level. Specifically, suppose for several quantile levels around the specified level of interest, there is
no evidence that the effect of the latent covariate on these quantile levels of the response differs. In that case, one can
improve the accuracy in estimating the covariate effect on the response at the specified level of interest by borrowing
information across these quantile levels. For example, in the case of standard quantile regression with vector predic-
tors, there has been a rich literature on the so-called composite quantile regression to aggregate information across
quantile levels [21, 24, 49, 52].

In this paper, we assume a linear fQR model that relates the τth quantile level of the response to the covariate
through the inner product between a bivariate regression coefficient function and the true covariate signal. In the case
when the true signal is measured at the same time points across the study, one naive way to test the null hypothesis
that the effect of the true covariate signal is constant across several quantile levels of interest, is to treat the discretely
observed functional covariates as high dimensional covariate and apply standard testing procedures (Wald test) in
linear quantile regression for vector covariates [25]. As expected, such an approach results in inflated type I error rates
due to the high correlation between the repeated measurements corresponding to the same subject; the situation gets
progressively worse when the covariate includes noise. Another alternative is to consider a single number summary
of the covariate, such as average or median, and carry out this hypothesis testing by employing standard testing
methods in quantile regression. Our numerical investigation of this direction shows that while the Type I error rates
are preserved well, the power is substantially affected.

We propose to represent the latent smooth covariate and the quantile regression parameter function using the same
orthogonal basis system; this reduces the inner product part of the linear fQR model to an infinite sum of products
of basis coefficients of the smooth covariate and parameter function. There are various options of orthogonal basis
types: we consider the data-driven basis that is formed by the leading eigenbasis functions of the covariance of the true
covariate signal and use the percentage of variance explained criterion to determine a finite truncation for this basis.
While using a finite basis system reduces the dimensionality of the problem, an important challenge is handling the
variability of the basis coefficients of the smooth latent signal, called functional principal component (fPC) scores. We
develop the asymptotic distributions of the quantile estimators based on the estimated fPC scores, when the functional
covariate is sampled at a fine grid of points (dense design). Finally, we introduce an adjusted Wald test statistic and
develop its asymptotic null distribution. The introduced testing procedure shows excellent numerical results even in
situations when the functional covariate is sampled at few and irregular time points across the study (sparse design)
and the measurements are contaminated by error.

The theoretical study of the distribution of the quantile estimator based on the estimated fPC scores has important
differences from the standard linear quantile regression with vector covariates. First, the predictors, fPC scores, are
unknown and require estimation, which in turn introduces uncertainty; by comparison the vector covariates are known
in the standard quantile setting counterpart. We show that asymptotically the quantile estimators are still unbiased,
but their variances are inflated. This implies that, in this reduced framework, a direct application of the Wald testing
procedure for null hypotheses involving regression parameters is not appropriate. Second, dealing with estimated
fPC scores in this situation is different from the measurement errors in predictors setting. For the latter, it is typically
assumed that the measurement error and the true predictors are mutually independent or that the errors are independent
across subjects [42, 44, 45]. However, in the functional data setting the resulting errors, due to the difference between
the estimated fPC scores and the true scores, are dependent on the true predictors and are also dependent across
subjects. As a result, the theoretical investigation requires more careful quantification in terms of the estimated scores
and the use of quantile loss.
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This article makes three main contributions. First, we establish the asymptotic distribution of the coefficient
estimator for both one single quantile level and multiple quantile levels for dense sampled functional covariates. To
the best of our knowledge, this is the first work that studies inference of the quantile estimators; previous research
in functional quantile regression focused on consistency and minimax rates (see [3, 22]), and most literature on
inference in FDA is limited to the context of functional linear regression [1, 16, 26, 40, 48]. Second, we propose
an adjusted Wald test statistic to formally assess that the quantile regression parameter is constant across specified
quantile levels and derive its asymptotic null distribution. Third, we consider cases where the functional covariate is
observed sparsely and contaminated with noise and illustrate through detailed numerical investigation that the testing
procedure continues to have excellent performance. Furthermore, we demonstrates the usage of the composite quantile
regression and the corresponding advantage in terms of estimation and prediction accuracy, using a capital bike rental
data set. Composite quantile regression is well known to improve the efficiency of the quantile estimators at a single
quantile level, which becomes especially useful for extreme quantiles [43]; nonetheless, more formal investigation of
functional composite quantile regression is beyond the scope of this article.

The rest of the paper is organized as follows. Section 2 introduces the statistical framework, describes the null
and alternative hypotheses, discusses a simpler approximation of the testing procedure, and presents the estimation
approach. Section 3 develops the asymptotic normality of the proposed estimators, introduces the adjusted Wald test,
and derives its null asymptotic distribution. Section 4 presents extensive simulation studies confirming the excellent
performance of the proposed test procedure in various scenarios for both dense and sparse designs. Section 5 applies
the proposed test to a bike rental data and illustrates the improvement of combined quantile regressions compared to
a single level quantile regression after the proposed tests being used. Proofs of Theorem 1 and Theorem 2, as well as
some additional useful results, are given in Section 6.

2. Methodology

2.1. Statistical framework

Suppose we observe data {Yi, (ti j,Wi j)} for j ∈ {1, . . . ,mi} and i ∈ {1, . . . , n}, where Yi is a scalar response variable,
{Wi1, . . . ,Wimi } is the evaluation of a latent and smooth process Xi(·) measured with noise at the finite grid of points
{ti1, . . . , timi } for ti j ∈ T , and T is a bounded closed interval. It is assumed that the observed functional covariate is
perturbed by white noise, i.e., Wi j = Xi(ti j) + ei j, where ei j has mean 0 and variance σ2. Furthermore, we assume that
the true functional signal Xi(·) ∈ L2(T ) with T = [0, 1], and Xi(·) are independent and identically distributed. Our
objective is to formally assess whether the smooth covariate signal Xi(·) has constant effect at specified quantile levels
of the response.

Let QYi |Xi (τ) be the conditional τth quantile function of the response Yi given the true covariate signal Xi(·) where
τ ∈ (0, 1). We assume the following linear fQR model:

QYi |Xi (τ) = β0(τ) +

∫ 1

0
β(t, τ)Xc

i (t)dt, (1)

where β0(τ) is the quantile-level varying intercept function, and β(t, τ) is the bivariate regression coefficient function
and the main object of interest. It is assumed that for a fixed quantile level τ, β(t, τ) ∈ L2[0, 1] as a function of t.
Here Xc

i (t) is the de-meaned smooth covariate signal, defined as Xc
i (t) = Xi(t) − EXi(t). Model (1) is an extension

of the standard linear quantile regression model [25] to functional covariates. It was first introduced by [2] and later
considered by [3, 22]. For simplicity, in the following it is assumed that the smooth covariate signal has zero mean,
i.e., EXi(t) = 0 for all t ∈ [0, 1].

Let U = {τ1, . . . , τL} be a set with quantile levels of interest where τ1 < · · · < τL. Motivated by the reasons
mentioned in Section 1, our goal is to test the null hypothesis:

H0 : β(·, τ1) = · · · = β(·, τL), (2)

against the alternative hypothesis Ha : β(·, τ`) , β(·, τ`′ ), for some ` , `′ ∈ {1, . . . , L}. This null hypothesis in-
volves infinite dimensional objects, which is very different from the common null hypotheses considered in quantile
regression.
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One approach to simplify the null hypothesis is by using basis functions expansion. Specifically, let {φk(·)}k≥1 be
an orthogonal basis in L2[0, 1] such that

∫ 1
0 φk(t)φk′ (t)dt = 0 if k , k′ and 1 if k = k′. We represent the unknown

parameter function β(·, τ) using this orthogonal basis β(t, τ) =
∑

k≥1 βk(τ)φk(t) where βk(τ) =
∫
β(t, τ)φk(t)dt are un-

known parameter loadings varying with the quantile level τ. It follows that the equality β(·, τ`) = β(·, τ`′ ) is equivalent
to βk(τ`) = βk(τ`′ ), k ≥ 1. Thus, the null hypothesis (2) can be written as H0 : βk(τ1) = βk(τ2) = · · · = βk(τL) for
k ≥ 1. Furthermore, we represent the smooth covariate using the same basis function as Xi(t) =

∑
k≥1 ξikφk(t) where

ξik =
∫

Xi(t)φk(t) dt are smooth covariate loadings. Then, the linear fQR model (1) can be equivalently represented as
QYi |Xi (τ) = β0(τ) +

∑∞
k=1 βk(τ)ξik. In practice the infinite summation is typically truncated to some finite truncation K.

As a result the fQR model can be approximated by

QK
Yi |Xi

(τ) = β0(τ) +

K∑
k=1

βk(τ)ξik, (3)

and the null hypothesis to be tested can be approximated by a reduced version

HK
0 :


β1(τ1)
β2(τ1)
...

βK(τ1)

 =


β1(τ2)
β2(τ2)
...

βK(τ2)

 = · · · =


β1(τL)
β2(τL)
...

βK(τL)

 . (4)

Let θτ := (β0(τ), β1(τ), . . . , βK(τ))T be the (K + 1)-dimensional parameter vector and ζ := (θT
τ1
, . . . , θT

τL
)T the full

quantile regression parameter vector of dimension L(K + 1). Then the reduced null hypothesis (4) can be equivalently
re-written as HK

0 : R ζ = 0, where R = R1 ⊗ R2 and

R1
(L−1)×L

=


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1

 , R2
K×(K+1)

= [0K , IK].

Here 0K denotes the K-dimensional vector of zeros and IK is the K × K dimensional identity matrix.
If the loadings ξik’s were known, then model (3) is exactly the conventional quantile regression model. In such

case, a standard Wald testing procedure for HK
0 is typically formulated as TW = (Rζ̂)T (RΓ̂ζ̂R

T )−1 Rζ̂, where ζ̂ is

the quantile regression estimator of ζ and Γ̂ζ̂ is a consistent estimator of the covariance of ζ̂ conditional on the true
loadings ξik’s; see [25, Chapter 3] for a review of existing methods. However, in practice the loadings of the smooth
covariate signal ξik are unknown, and a valid approach has to account for such uncertainty.

Depending on the choice of the orthogonal basis, the approaches used to select the finite truncation K and to
develop the theoretical properties for the quantile regression estimators differ. Several choices have been commonly
used in functional data analysis literature: Fourier basis functions [39], Wavelet basis [33] or orthogonal B-splines [36,
50]. One important aspect to keep in mind when selecting the basis functions is how to handle the finite truncation K.
In this paper we consider the orthogonal basis given by the eigenfunctions of the covariance of the smooth covariate
signal Xi(·). Let G(s, t) := Cov{Xi(s), Xi(t)} be the covariance of Xi(·); Mercer’s theorem gives the following spectral
decomposition of the covariance G(s, t) =

∑∞
k=1 λkφk(s)φk(t), where {φk(·), λk}k are the pairs of eigenfunctions and

corresponding eigenvalues. The eigenvalues λk’s are nondecreasing and nonnegative and the eigenfunctions φk(·)’s
are mutually orthogonal functions in L2[0, 1]. Using the Karhunen-Loève expansion, the zero-mean smooth covariate
Xi(·) can be represented as Xi(t) =

∑∞
k=1 ξikφk(t), where ξik =

∫ 1
0 Xi(t)φk(t)dt are commonly known as functional

principal component (fPC) scores of Xi(·), satisfying that E(ξik) = 0, Var(ξik) = λk and uncorrelated over k. A popular
way to select the finite truncation, or equivalently the number of leading eigenfunctions, is the percentage of variance
explained; alternative options for selecting the finite truncation K are considered in [32] and [28].

2.2. Estimation procedure
We discuss estimation for the case when the functional covariate is observed on a fine grid of points, a setting

known in the literature by the name of dense sampling design. Nevertheless, our procedure can be successfully applied
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to the case when the covariate is observed on an irregular sampling design with few points (sparse sampling design)
and contaminated with noise, as illustrated later in the numerical investigation. When the sampling design is dense,
and thus mi is very large for each i, a common approach in functional data analysis is “smoothing first, then estima-
tion” [48]. Specifically, we first reconstruct each trajectory X̂i(·) from the data (ti j,Wi j)|

mi
j=1 using penalized regression

splines, while one can also use any other appropriate smoothing method such as the local polynomial kernel smooth-
ing technique [6]. Let X̄(·) be the sample mean of these reconstructed trajectories and denote by X̂c

i (t) := X̂i(t) − X̄(t)
the centered covariate. Furthermore, let S (·, ·) be the sample covariance of X̂i(t); the spectral decomposition of S (·, ·)
yields the pairs of estimated eigenfunctions and eigenvalues {φ̂k(·), λ̂k}k. The theoretical properties of the estimated
eigenfunctions φ̂k(·) have been well studied in the literature; see [11, 13, 48] among others. As eigenfunctions φk(·)
and φ̂k(·) are both defined up to a change in sign, we assume that the sign of φ̂k(·) is chosen such that

∫
φk(t)φ̂k(t)dt ≥ 0

throughout the paper. Finally the fPC scores ξik are estimated as ξ̂ik =
∫

X̂c
i (t)φ̂k(t)dt; in practice numerical integration

is used to approximate the integral; see also [31].
Using the estimated fPC scores ξ̂ik’s, the quantile regression parameter of the approximated linear fQR model, θτ,

is estimated by

θ̂τ = arg min
(b0,b1,...,bK )T∈RK+1

n∑
i=1

ρτ

yi − b0 −

K∑
k=1

ξ̂ikbk

 , (5)

where ρτ(x) = x{τ − I(x < 0)} is the quantile loss function and I(x < 0) is the indicator function that equals 1 if x < 0
and 0 otherwise. Although throughout this article we focus on a homogeneous truncation level K to ease presentation,
the proposed method easily generalizes to the case in which K varies with τ. We next move on to studying the
theoretical properties of the quantile regression estimator in (5).

3. Theoretical properties

3.1. Assumptions
Let Fi(y) = P(Yi < y|Xi(·)), and fi(·) be the corresponding density function. We make the following assumptions:

A1. {Yi, Xi(·), ei(·)}ni=1 are independent and identically distributed (i.i.d.) as {Y, X(·), e(·)}, and X(·) and e(·) are inde-
pendent where E{e(t)} = 0 and Cov{e(t), e(t′)} = σ2I(t = t′) for any t, t′;

A2. The conditional distribution Fi(·) is twice continuously differentiable and the corresponding density function
fi(·) is uniformly bounded away from 0 and∞ at points QYi |Xi (τ);

A3. The functional covariates X(·) satisfy that E{X(t1)X(t2)X(t3)X(t4)} < ∞ uniformly for (t1, t2, t3, t4) ∈ [0, 1]4;
A4. There exists a finite number p0 such that λ1 > λ2 > · · · > λp0 > 0 and λk = 0 if k > p0.

A2 and the i.i.d. assumption in A1 are standard in quantile regression with vector covariates; see [25, Ch. 4]. A1
assumes that the functional covariates Xi(·)’s are observed with independent white noise ei(·), making the model more
realistic compared to error free assumptions made by [22]. The assumption A3 holds for Gaussian processes and is
common in the FDA literature; for example, see [13] and the discussion therein.

Finally A4 requires that the functional covariate has a finite number of non-zero eigenvalues, making the approx-
imate model (3) exact, with K = p0. This strong assumption has been employed previously in the literature [31, 32].
In numerical studies, we found that A4 is not needed in order for the testing procedure to show excellent performance
in terms of size and power; see, for example, the simulation study in Section 4.4 under the more general model (1)
when p0 is divergent. This seems to indicate that A4 is for theoretical convenience. One possible way to relax this
assumption is to replace it with a condition on the number of principal components that are relevant in describing the
dependence between the functional covariate and the response. Another possibility is to remove it entirely and show
that the functional quantile regression QK

Yi |Xi
(τ) approximates the original model with negligible error. Nonetheless,

our attempts to prove the main results by relaxing A4 in these directions have not been productive, partly due on one
hand to the complication in the interweave of the quantile loss function and infinitely dimensional functional data and
on the other hand to the focus on hypothesis testing, as opposed to estimation. Specifically, A4 is critical to ensure a
root-n rate for the estimated coefficient functions formulated in Theorem 1 and subsequently to derive the test’s null
distribution. As noted in the preceding section, even under A4, inference on fQR based on the estimated fPC scores
differs from the standard multivariate quantile regression with vector covariates in the key aspect that estimation of
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the fPC scores induces a specific type of measurement error. Unlike the existing measurement error in covariates lit-
erature relying on certain independence assumptions [42, 44, 45], measurement errors in the estimated fPC scores are
dependent on the true predictors and are also dependent across subjects. This consideration requires a more careful
quantification in terms of the estimated scores and the use of quantile loss. In this article, we focus on addressing
the challenge posed by measurement error in quantile regression with intricate dependence induced by functional
covariates, and leave developments to relax A4 to future research.

The following assumptions are commonly used when describing a dense sampling design [31, 48]. For convenient
mathematical derivations, we assume that there are the same number of observations per subject, i.e., mi = m for all i.

B1. The time points ti j
i.i.d.
∼ g(·) for i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, where the density g(·) has bounded support [0,1]

and is continuously differentiable.

B2. m ≥ Cncm where cm > 5/4 and C is some constant.

For our theoretical development, we require the following condition for the kernel bandwidth hX that is used in
smoothing the functional covariates.

C1. hX = O(n−cm/5).

3.2. Asymptotic distribution
The following theorem gives the asymptotic distribution of the quantile estimator. Kato [22] gave the minimax rate

of the coefficient function estimation when there is no measurement error on the discrete functional covariates. The
author assumed that the number of eigenvalues is infinite instead of finite as in our assumption A4. Our established
root-n rate crucially depends on A4, which facilities downstream inference. One would need to properly scale the
estimator using a slower rate and derive the asymptotic distribution, for both θ̂τ and test statistics constructed via θ̂τ,
should A4 be relaxed. We denote D0 as the diagonal matrix whose diagonal entries are (1, λ1, · · · , λp0 ) and D1(τ) =

E[ fi{QYi |Xi (τ)}ξiξ
T
i ] which is positive definite, where ξi = (1, ξi1, . . . , ξip0 )T . Similarly, we denote ξ̂i = (1, ξ̂i1, . . . , ξ̂ip0 )T .

When K = p0, the hypothesis HK
0 in (4) is equivalent to H0 in (2), and the truncation model in (3) does not incur

approximation error as the residual
∑

k>K βk(τ)ξik degenerates to zero owing to its zero variance.

Theorem 1. Denote by θ̂τ the quantile regression estimator defined by (5) for K = p0, where τ ∈ (0, 1). Under
Conditions A1–A4, B1–B2, C1, we have

√
n(̂θτ − θτ)

d
→ N

{
0, τ(1 − τ)D−1

1 (τ)D0D−1
1 (τ) + ΘτΣ0Θτ

}
, (6)

where Θτ = 1(p0+1)×(p0+1) ⊗ θ
T
τ and the matrix Σ0 is defined in Section 6 which does not depend on τ. Moreover,

ζ̂ = (̂θT
τ1
, . . . , θ̂T

τL
)T is asymptotically multivariate normal centered at ζ = (θT

τ1
, . . . , θT

τL
)T , and for 1 ≤ ` , `′ ≤ L the

asymptotic covariance matrix for θ̂τ` and θ̂τ`′ is given by

Acov
{√

n(̂θτ` − θτ` ),
√

n(̂θτ`′ − θτ`′ )
}

= {min(τ`, τ`′ ) − τ`τ`′ }D−1
1 (τ`)D0D−1

1 (τ`′ ) + Θτ`Σ0Θτ`′ . (7)

Remark that the asymptotic covariances in both (6) and (7) contain two components: a Huber [18] sandwich term
that is typical in quantile regression theory and a “variance inflation” term. Specifically, if the true scores ξi’s were
observed, then the asymptotic variance of θ̂τ would be τ(1− τ)D−1

1 (τ)D0D−1
1 (τ), and the asymptotic covariance matrix

for θ̂τ` , θ̂τ`′ would be {min(τ`, τ`′ ) − τ`τ`′ }D−1
1 (τ`)D0D−1

1 (τ`′ ); see [25, 34]. The variance inflation terms, ΘτΣ0Θτ

in (6) and Θτ`Σ0Θτ`′ in (7), quantify the effect of uncertainty in estimating the fPC scores on the quantile regression
estimators. Thus, when the covariates are functional data, the asymptotic distribution of θ̂τ is unbiased but the variance
is inflated where the variance inflation terms depend on the true parameter value θτ.

The proof of Theorem 1 is detailed in Section 6. The reasoning follows two main steps: 1) approximate the
estimated fPC scores ξ̂i’s by linear combinations of random vectors of the true fPC scores ξi; and 2) show that the
approximation error in the predictors is negligible to the quantile loss function. Step 1 crucially relies on the dense
design assumption B2. This allows to employ various bounds on both the estimated eigenfunctions and the difference
X̂i(·) − Xi(·), which in turn enables us to derive a fine-grained characterization of the estimated scores (Lemma 1); see
the supplementary materials for more detail.
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3.3. Adjusted Wald test
Using the asymptotic properties of the quantile regression estimators, we are now ready to develop a Wald type

testing procedure for assessing the general null hypothesis (2) or its finite reduced version (4) represented in vector
form by HK

0 : R ζ = 0. Recall that ζ = (θT
τ1
, . . . , θT

τL
)T denotes the full quantile regression parameter, and ζ̂ =

(̂θT
τ1
, . . . , θ̂T

τL
)T is its estimator.

We define a modified version of Wald test, called the adjusted Wald test, by ignoring the variance inflation terms
in the above asymptotic covariances. Let Σ(τ`, τ`′ ) = σ(τ`, τ`′ )D−1

1 (τ`)D0D−1
1 (τ`′ ) with σ(τ`, τ`′ ) set to τ`(1 − τ`) if

` = `′, and {min(τ`, τ`′ ) − τ`τ`′ } otherwise. Then the asymptotic covariance matrix of ζ̂ without the inflation terms,
denoted as Γa

ζ̂
in which the superscript a indicates the adjustment by ignoring the inflation terms, i.e.,

Γa
ζ̂

L(K+1)×L(K+1)

=


Σ(τ1, τ1) Σ(τ1, τ2) · · · Σ(τ1, τL)
Σ(τ2, τ1) Σ(τ2, τ2) · · · Σ(τ2, τL)

...
...

. . .
...

Σ(τL, τ1) Σ(τL, τ2) · · · Σ(τL, τL)

 . (8)

Let Γ̂a
ζ̂

be a consistent estimator of Γa
ζ̂

constructed similarly to (8) but with a consistent estimator Σ̂(τ`, τ`′ ) of Σ(τ`, τ`′ ).
The adjusted Wald test is given by

Tn = n(Rζ̂)T (RΓ̂a
ζ̂
RT )−1 Rζ̂. (9)

This test is not a proper Wald test as the covariance matrix used is not the valid covariance of ζ̂. The following result
studies the asymptotic null distribution of Tn assuming K = p0.

Theorem 2. Assume the regularity conditions A1–A4, B1–B2 and C1 hold. If the null hypothesis is true, Rζ = 0, then
the asymptotic distribution of Tn is χ2

K .

The proof of this result relies on the observation that if Γζ̂ is the proper covariance of ζ̂ as described by Theorem
1, then R(Γa

ζ̂
− Γζ̂)R

T = 0. Intuitively, this is because the inflation terms in (6) and (7) possess a sandwich structure
with a constant matrix enclosed by Θτ, which is zeroed out if left multiplied by R under the null hypothesis that
Rζ = 0. Thus, although the estimation of the fPC scores yields inflated covariance of the regression estimator, its
effect on testing the null hypothesis (2) is negligible. Nevertheless, if one is interested in testing a different type of
null hypothesis for ζ, such as nonlinear functionals, then this variance inflated term has to be taken into account for a
proper testing procedure.

We construct Σ̂(τ`, τ`′ ) for 1 ≤ `, `′ ≤ L by a plug-in estimator that uses D̂0 =
∑n

i=1 ξ̂iξ̂
T
i /n and D̂1(τ) =∑n

i=1 f̂i(ξT
i θτ )̂ξiξ̂

T
i /n to estimate D0 and D1(τ), respectively. The consistency of these estimators can be proved by

law of large numbers-based arguments together with Lemma 1 that discusses the closeness between ξ̂i and ξi. For the
estimation of fi(ξT

i θτ) in D1(τ), we use the difference quotient method proposed by [15] and substitute the estimates
ξ̂i and θ̂τ. Theorem 2 implies that, for testing the null hypothesis of equal functional covariate effect across various
quantile levels, the common Wald test based on the estimated fPC scores provides a valid testing procedure. The
adjusted Wald test, that disregards the variance component due to the estimation uncertainty of the fPC scores, has a
chi-square asymptotic null distribution.

If the number of principal components p0 is replaced by its consistent estimator Kn, then the null distribution
of the test statistic Tn is approximately χ2

Kn
for large n. In other words, the difference in the respective cumulative

distribution functions, P(Tn ≤ t) − P(χ2
Kn
≤ t), goes to zero for any t ∈ R; it implies that the critical value of Tn is

asymptotically the same as that of χ2
Kn

. Functional data analysis literature provides a rich menu of possibilities for
selecting p0, such as the percentage of variance explained (PVE) criterion and a Bayesian information criterion (BIC)
proposed by [32]. The BIC method is proved to be consistent for both sparse and dense functional data. The PVE
criterion is defined as

Kn = min

p :
p∑

i=1

λ̂i/

q∑
i=1

λ̂i ≥ PVE

 ,
7



Fig. 1: Simulated data when n = 200 and γ = 1. The left panel plots the functional covariates and two randomly selected curves are highlighted in
blue and red; the right panel is the histogram of the response.

where q is the number of estimated eigenvalues and PVE some user-defined threshold that approaches one. The widely
used PVE approach also leads to consistent estimators of p0 given that the number of estimated eigenvalues is greater
than p0 and eigenvalues are estimated consistently, which may well be true in many applications and particularly as
suggested by our extensive simulation studies. We shall use the method of PVE in the remaining sections, and we
have found that it leads to accurate estimate of p0 in finite sample performance.

We would like to point out that the asymptotic power of the adjusted Wald test is obtainable using a non-central
chi-square distribution. However, the expression is complicated without involving stronger assumptions on Xi(·)’s,
since the equation R(Γa

ζ̂
− Γζ̂)R

T = 0 does not generally hold under the alternative thus a Wald-type test requires an
estimate of the matrix Σ0.

4. Simulation

4.1. Settings

The simulated data is of the form
{
Yi, (ti j,Wi j)|

mi
j=1

}
for i ∈ {1, . . . , n}, where Yi is the scalar response and Wi j =

Xi(ti j) + ei j is the functional covariate contaminated with measurement error ei j, ti j ∈ [0, 1], and Xi(·) is the true func-
tional covariate. We generate the data from the following heteroscedastic model: Yi =

∫
Xi(t)tdt + {1 + γ

∫
Xi(t)t2dt}ε

with ε ∼ N(0, 1). This leads to a quantile regression model of the form (1) with β0(τ) = Φ−1(τ), and β(t, τ) =

t + γt2Φ−1(τ). Note that the functional coefficient β(t, τ) is nonlinear in t when γ , 0. Here the scalar γ controls the
heteroscedasticity and determines how the coefficient function β(·, τ)(τ ∈ U) varies across τ. Specifically, if γ = 0
then the effect of Xi(·) is constant across different quantile levels of Yi|Xi(·), while if γ , 0 then the effect of Xi(·)
varies across different quantile levels of Yi|Xi(·).

The true functional covariate Xi(·) is generated from a Gaussian process with zero mean and covariance function
cov{Xi(s), Xi(t)} =

∑
k≥1 λkφk(s)φk(t), where λk = (1/2)k−1 for k = 1, 2, 3 and λk = 0 for k ≥ 4, and {φk(·)}k are the

orthonormal Legendre polynomials on [0, 1]: φ1(t) =
√

3(2t − 1), φ2(t) =
√

5(6t2 − 6t + 1), φ3(t) =
√

7(20t3 − 30t2 +

12t − 1). It is assumed that the measurement error ei j ∼ N(0, σ2). Fig. 1 plots simulated data when n = 200, γ = 1,
and σ = 1.
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Table 1: Type I error of the adjusted Wald-type test at significant level α ∈ {0.01, 0.05, 0.10} under dense design. We test H0 at two sets of quantile
levels: U1 = {0.1, 0.2, 0.3, 0.4} andU2 = {0.1, 0.2, 0.6, 0.7}. Results are based on 5000 simulations.

Scenario n 0.01 0.05 0.10 Scenario n 0.01 0.05 0.10

100 0.021 0.060 0.104 100 0.030 0.076 0.123
σ = 1 500 0.014 0.057 0.107 σ = 1 500 0.015 0.062 0.116
τ ∈ U1 1000 0.017 0.052 0.106 τ ∈ U2 1000 0.015 0.059 0.112

2000 0.011 0.051 0.101 2000 0.010 0.053 0.103
5000 0.010 0.054 0.105 5000 0.012 0.056 0.103

The objective is to test the null hypothesis H0 : β(·, τ`) = β(·, τ`′ ) for τ`, τ`′ ∈ U, that the effect of the true
functional covariate on the conditional distribution of the response is the same for all the quantile levels in a given
set U. When γ = 0, the coefficient function β(·, τ) is independent of τ, which means that null hypothesis is true;
when γ , 0 then β(·, τ) is varies with τ and thus the null hypothesis is false. We consider two sets of quantile levels:
U1 = {0.1, 0.2, 0.3, 0.4} for one-sided quantile levels, andU2 = {0.1, 0.2, 0.6, 0.7} for two-sided quantile levels.

We implement the proposed adjusted Wald test using a number of fPC selected via the PVE criterion with
PVE=95%. We use the R package refund [17] to estimate the fPC scores, where the individual trajectory is re-
constructed using penalized regression splines via the function gam and the smoothing parameter is selected using the
restricted maximum likelihood approach. We investigate the performance of the proposed test for low and high level
of measurement error in the functional covariate (σ = 0.05 and σ = 1 respectively), for varying sample sizes n from
100 to 5000. For the functional covariates, we consider a dense design in Section 4.2, a sparse design in Section 4.3,
and a setting when p0 diverges in Section 4.4.

4.2. Dense design

We first consider a dense design for the functional covariates: the grid of points for each i is an equispaced grid of
mi = 100 timepoints in [0, 1]. We are not aware of any testing procedures for testing the null hypothesis of constant
effect at various quantile levels, when the covariate is functional; however we can exploit this particular setting and
pretend the covariates are vectors and thus use or directly extend existing testing procedures from quantile regression.
In particular, we consider three alternative approaches: (1) treat the observed functional covariate as vector and use
the common Wald test for vector covariates in quantile regression (NaiveQR); (2) summarize observed functional
covariates via a single number summary of the functional covariate in conjunction with the Wald test (SSQR); and (3)
treat the observed functional covariate as a vector, reduce the dimensionality using principal component analysis and
then apply the Wald test using the vector of principal component scores (pcaQR). For the pcaQR approach, the number
of principal components are selected via PVE and using a level PVE=95%. The Wald test for vector covariates in
these three approaches is described in [25, Chapter 3.2.3].

Table 1 summarizes the empirical Type I error rates of the adjusted Wald test when testing H0 at one-sided quantile
levels (U1) as well as two-sided quantile levels (U2), when the functional covariate is observed with large (σ = 1)
measurement error. The results are presented for three significance levels α = 0.01, α = 0.05 and α = 0.10; they
indicate irrespective of quantile levels set or magnitude of the measurement error the Type I error rates are slightly
inflated for moderate sample sizes. Nevertheless the empirical Type I error rates converge to the nominal level. The
empirical Type I error rates for the alternative approaches are presented in Table 2. As expected the NaiveQR approach
has very poor performance. The NaiveQR approach does hypothesis testing when the covariates are highly correlated;
this leads to numerical instability due to singularity of the design matrix. Therefore NaiveQR produces many missing
values (reported as “–”) in the table, and yields inflated empirical Type I error rates for any significance level. Results
for σ = 0.05 are similar and omitted here.

The pcaQR approach gives relatively good performance when the magnitude of the error is small (σ = 0.05):
the empirical Type I error is close to the nominal level in results not reported here. However, Table 1 shows that
as the error variance increases (σ = 1), the empirical rejection probabilities are either excessively inflated when
n ∈ {1000, 2000, 5000}, or there are too many missing values when n ∈ {100, 500}. The results are not surprising,
because in the case of large error variance, a direct application of principal component analysis yields a large number
of principal components. As a consequence, the application of the classical Wald test for vector covariate leads
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Table 2: Type I error of alternative approaches at significant level α ∈ {0.01, 0.05, 0.10} under dense design. We test H0 at two sets of quantile
levels: U1 = {0.1, 0.2, 0.3, 0.4} and U2 = {0.1, 0.2, 0.6, 0.7}. Results are based on 5000 simulations. When one method returns error (due to
singularity of the design matrix) in more than 20% replications, we report it as “–”.

NaiveQR SSQR pcaQR
Scenario n 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

100 – – – 0.008 0.033 0.071 – – –
σ = 1 500 – – – 0.008 0.036 0.080 – – –
τ ∈ U1 1000 – – – 0.010 0.049 0.092 0.996 0.999 1.000

2000 1.000 1.000 1.000 0.009 0.048 0.097 1.000 1.000 1.000
5000 1.000 1.000 1.000 0.008 0.053 0.099 0.999 1.000 1.000

100 – – – 0.009 0.040 0.077 – – –
σ = 1 500 – – – 0.009 0.050 0.096 – – –
τ ∈ U2 1000 1.000 1.000 1.000 0.009 0.046 0.095 1.000 1.000 1.000

2000 1.000 1.000 1.000 0.010 0.048 0.099 1.000 1.000 1.000
5000 1.000 1.000 1.000 0.011 0.051 0.100 1.000 1.000 1.000

to numerical instability due to singularity of the design matrix, in a similar way to the NaiveQR approach. The
performance of SSQR approach is very good for all the scenarios considered and across various sample sizes: the
empirical Type I error rates are close to the nominal levels. This is expected, as in the case when H0 holds, the
functional covariate effect is through its mean, and this effect is invariant over quantile levels.

Next we evaluate the performance in terms of empirical rejection probabilities when the null hypothesis is not
true. We only focus on the proposed adjusted Wald testing and SSQR procedures, as they have the correct size. Fig. 2
illustrates the power curves based on 2000 simulations for large noise with σ = 1; the results are similar in the case
of low noise (σ = 0.05) and for brevity are not included. The adjusted Wald procedure is much more powerful than
SSQR irrespective of the departure from the null hypothesis as reflected by the coefficient γ. For example, when
γ = 1 the probability to correctly reject H0 using the adjusted Wald is about 100% when the sample size is 500 or
more, whereas the counterpart obtained with SSQR is less than 70% even when the sample size increases to 5000.
These results are not surprising, as SSQR summarizes the entire functional covariate through a single scalar, while the
proposed adjusted Wald test employs the full functional covariate.

4.3. Sparse design
Next, we study the performance of the adjusted Wald testing procedure when the functional covariate is observed

sparsely and with measurement error. We set an overall grid of 101 equispaced points in [0, 1] and consider two
settings: a ‘moderately sparse’ sampling design with mi = 50 randomly generated time points to form ti1, . . . , timi

for each i, and a ‘highly sparse’ design with mi = 10. Other aspects of the data generating process follow the dense
design described in the previous section. We use the adjusted Wald test which relies on sparse fPCA techniques,
that estimate the fPC scores ξik’s using conditional expectation proposed by [46]. When the sampling design of the
functional covariate is sparse, there are no obvious reasonable alternative approaches to compare. Thus in this section
we only discuss the performance of the proposed Wald-type procedure.

Table 3 shows the empirical Type I error when the noise level σ = 1. They show excellent performance of the
adjusted Wald test in maintaining the nominal levels for moderately large sample size (n = 1000 or larger) under both
moderately sparse and sparse sampling design of the functional covariate. Fig. 3 shows the power of the adjusted
Wald test for moderately sparse and highly sparse designs for σ = 1. It indicates that the sparsity of the functional
covariates slightly affects the proposed functional Wald-type procedure, as expected. Nevertheless the adjusted Wald
test continues to display excellent performance. The results are similar for low level of measurement error and for
brevity are omitted here.

4.4. Divergent p0

In this section, we study the performance of the proposed adjusted Wald test when Assumption A4 is violated. We
follow the same settings in Section 4.1 but the eigen values and eigenfunctions to generate the functional covariate
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Fig. 2: Power curves of the adjusted Wald test and SSQR under dense design. We test H0 at two sets of quantile levels: U1 = {0.1, 0.2, 0.3, 0.4}
andU2 = {0.1, 0.2, 0.6, 0.7}. The x-axis is the sample size n ∈ {100, 500, 1000, 2000, 5000}. Results are based on 2000 simulations.

Table 3: Type I error of the adjusted Wald test at significance level α ∈ {0.01, 0.05, 0.10} under sparse design. We test H0 at two sets of quantile
levels: U1 = {0.1, 0.2, 0.3, 0.4} andU2 = {0.1, 0.2, 0.6, 0.7}. The missing rate is 50% for moderate sparsity and 90% for high sparsity. Results are
based on 5000 simulations.

missing rate = 50% missing rate = 90%
Scenario n 0.01 0.05 0.10 0.01 0.05 0.10

100 0.021 0.063 0.104 0.024 0.075 0.119
σ = 1 500 0.014 0.055 0.104 0.011 0.058 0.110
τ ∈ U1 1000 0.014 0.055 0.106 0.013 0.052 0.101

2000 0.011 0.055 0.106 0.013 0.053 0.103
5000 0.011 0.052 0.100 0.010 0.048 0.100

100 0.026 0.075 0.120 0.034 0.092 0.143
σ = 1 500 0.016 0.058 0.110 0.021 0.069 0.119
τ ∈ U2 1000 0.013 0.057 0.106 0.014 0.063 0.114

2000 0.011 0.053 0.100 0.011 0.056 0.108
5000 0.010 0.048 0.103 0.011 0.049 0.100
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Fig. 3: Power curves of the adjusted Wald test for moderately sparse design with mi = 50 (blue) and highly sparse design with mi = 10
(red). We test H0 at two sets of quantile levels: U1 = {0.1, 0.2, 0.3, 0.4} and U2 = {0.1, 0.2, 0.6, 0.7}. The x-axis is the sample size
n ∈ {100, 500, 1000, 2000, 5000}. Results are based on 2000 simulations.

are given by λk = (1/2)k−1 for k ∈ {1, . . . , b
√

nc} and λk = 0 for k > b
√

nc where b·c is the floor function; the eigen
function φk is the kth function in the Fourier basis {

√
2 cos(2πt),

√
2 sin(2πt),

√
2 cos(4πt),

√
2 sin(4πt), . . .}. We set

σ = 1 for the measurement error in the functional covariate.
Table 4 presents the Type I error rates of the adjusted Wald test under various designs. We can see that even

Assumption A4 is violated, the proposed test matches the nominal level when the sample size is large, for both dense
and sparse designs. Fig. 4 plots the power curves when γ ∈ {0.5, 1, 1.5}, which indicates similar performance to
the case where p0 is a small constant. Therefore, it seems that the proposed Wald test continues to show desirable
performance when Assumption A4 does not hold, at least under the simulation settings. A theoretical justification
may be an interesting research topic.

5. Application

In this section we consider the capital bike sharing study and discuss the application of the proposed testing proce-
dure to formally assess whether the effect of the previous day casual bike rentals on the current day total bike rentals
varies across several quantile levels. The bike data [7] is recorded by the Capital Bikeshare System (CBS), Wash-
ington D.C., USA, which is available at http://capitalbikeshare.com/system-data. As the new generation
of bike rentals, bike sharing systems possess membership, rental and return automatically. With currently over 500
bike-share programs around the world [27] and the fast growing trend, data analysis on these systems regarding the
effects to public traffic and the environment has become popular. The bike data includes hourly rented bikes for casual
users that are collected during January 1st 2011 to December 31st 2012, for a total of 731 days.

Our objective is to formally assess how the previous day casual bike rentals, Xi(·), affects the distribution of the
current day total bike rentals counts, Yi, where i ∈ {1, . . . , 730} denote the ith day starting from January 2nd 2011. A
subsequent interest is to predict the 90% quantile of the total casual bike rentals. Fig. 5 plots the hourly profiles of
casual bike rentals (left) and the histogram of the total casual bike rentals (right).
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Table 4: Type I error of the adjusted Wald test at significance level α ∈ {0.01, 0.05, 0.10} when p0 is divergent under dense design (no missing) and
sparse design. We test H0 at two sets of quantile levels: U1 = {0.1, 0.2, 0.3, 0.4} andU2 = {0.1, 0.2, 0.6, 0.7}. The missing rate is 50% for moderate
sparsity and 90% for high sparsity. Results are based on 5000 simulations.

U n no missing missing rate = 50% missing rate = 90%
0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

U1

100 0.045 0.107 0.161 0.049 0.107 0.162 0.040 0.096 0.147
500 0.025 0.085 0.146 0.022 0.081 0.141 0.026 0.084 0.137

1000 0.015 0.067 0.123 0.019 0.072 0.132 0.013 0.062 0.120
2000 0.015 0.063 0.120 0.016 0.062 0.115 0.015 0.063 0.119
5000 0.010 0.052 0.107 0.010 0.059 0.117 0.012 0.055 0.101

U2

100 0.070 0.149 0.222 0.061 0.142 0.212 0.051 0.125 0.193
500 0.035 0.105 0.169 0.037 0.109 0.174 0.025 0.087 0.148

1000 0.025 0.084 0.148 0.022 0.079 0.140 0.024 0.077 0.132
2000 0.020 0.072 0.127 0.016 0.067 0.123 0.015 0.063 0.123
5000 0.013 0.056 0.111 0.014 0.058 0.104 0.012 0.057 0.110
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Fig. 4: Power curves of the adjusted Wald test when p0 is divergent. We test H0 at two sets of quantile levels: U1 = {0.1, 0.2, 0.3, 0.4} and
U2 = {0.1, 0.2, 0.6, 0.7}. In each plot, the x-axis is the sample size n ∈ {100, 500, 1000, 2000, 5000}, and a larger γ corresponds to more deviation
from the null hypothesis. Results are based on 2000 simulations.

We assume the functional quantile regression model (1), QYi |Xi (τ) = β0(τ) +
∫
β(t, τ)Xc

i (t) dt, where Yi is the total
bike casual bike rentals for the current day and Xi(·) is the true profile of the casual bike rentals recorded in the
previous day. As described earlier β0(·) is the quantile varying intercept function and β(·, τ) is the slope parameter and
quantifies the effect of the functional covariate at the τth quantile level of the distribution of the response.

To address the first objective we consider a set of quantile levels and use the proposed testing procedure to test the
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(a) Functional covariates Xi(·) (b) Histogram of yi

Fig. 5: Bike rental data (casual users). The left panel plots hourly bike rentals for casual users on the previous day Xi(t) for t ranges from 0 to 24
hours, and the right panel plots the histogram of the total casual bike rentals on the current day yi, where i ∈ {1, . . . , 730}.

Fig. 6: Estimated β(·, τ) by the proposed method at various quantile levels for the capital bike sharing study. The x-axis ranges from 0 to 24 hours.

null hypothesis
H0 : β(·, 0.20) = β(·, 0.40) = β(·, 0.60) = β(·, 0.80).

The number of fPC is selected using PVE = 99%; this choice selects three fPC. We use the adjusted Wald test Tn

and its asymptotic null distribution; the resulting p-value is close to zero indicating overwhelming evidence that low
and large number of bike rentals are affected differently by the hourly rentals on the previous day.

Next we turn to the problem of predicting the 90% quantile of the total bike rentals for the current day. When
some quantile coefficients in a region of quantile levels are constant, we may improve the estimator’s efficiency by
borrowing information from neighboring quantiles to estimate the common coefficients, especially when the quantile
level of interest is high. Here consider the quantile level set U = {0.8, 0.825, 0.85, 0.875, 0.9} around the 90%th
quantile. We apply the proposed method to estimate the coefficient functions at various quantile levelsU as shown in
Fig. 6. The corresponding adjusted Wald test leads to a p-value = 0.466, which suggests that the quantile coefficients
are not significantly different across the quantile levels. We consider combined quantile regression at U by using
the methods of quantile average estimator (QAE) and composite regression of quantiles (CRQ) with equal weights;
see [24, 43] for more technical details. We denote the single quantile regression estimation at the 90th quantile by
RQ.

We use 1000 bootstrap samples to study the efficiency of the three estimators. Fig. 7 plots the bootstrap means
and standard errors of the estimates of β(·, 0.9) by QAE, CRQ and RQ. The QAE and CRQ estimators have smaller
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(a) Bootstrap mean (b) Bootstrap standard error

Fig. 7: Bootstrap means (left) and standard errors (right) when estimating β(·, 0.9) by QAE, CRQ, and RQ. QAE and CRQ reduce the standard
error of RQ. The x-axis ranges from 0 to 24 hours.

Table 5: Prediction errors from different methods averaged over 1000 cross-validations. The maximum standard error of each row is reported in
the last column. QAE and CRQ that combine information at various quantile levels tend to yield smaller prediction errors than RQ at more extreme
quantile levels.

τ QAE CRQ RQ SE
0.8 154.163 153.073 152.396 0.277

0.825 146.163 145.598 145.504 0.268
0.85 137.028 136.758 137.071 0.259
0.875 126.138 125.949 126.819 0.252
0.9 112.774 112.842 113.823 0.238

standard errors uniformly for all t, indicating efficiency gain by combining information across quantile levels. We
also observe that the number of fPC is either 3 or 4 in all bootstrap samples, suggesting that the assumption A4 is
reasonable in this data application.

Furthermore, we conduct a cross-validation by randomly selecting 50% of the data as the training data set and
using the other half as the test data set. We use 1000 replications and calculate the prediction error for each replication
and each τ ∈ U as follows:

PE =
∑

i∈ test sample

ρτ(yi − ξ̂
T
i θ̂τ),

where the estimated coefficients θ̂τ are based on the training data and the summation is over the test data. The RQ
estimates are obtained separately at each τ ∈ U, while the QAE and CRQ estimates are shared across U. The
averaged prediction errors are reported in Table 5. We can see that the application of QAE and CRQ improves the
prediction significantly for the 87.5%th and 90%th quantiles; differences among the three methods are not significant
at the lower quantiles. This makes sense since data sparsity becomes more severe for more extreme quantile levels.
Hence, incorporating lower quantile levels improves efficiency at higher levels, while it may not benefit the prediction
performance at lower quantile levels by considering more extreme levels.

6. Proofs

In this section, we prove Theorem 1 and Theorem 2, as well as auxiliary results needed in the proofs, including
Lemma 1, Lemma 2, and Lemma 3. We use ‖ · ‖L2 as the L2-norm for a function and ‖ · ‖ as the Euclidean norm for a
vector.
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6.1. Proofs of Theorem 1 and Theorem 2
Proof of Theorem 1. The proof proceeds in three steps. In step 1, we approximate the estimated scores ξ̂i’s by linear
combinations of ξi’s. In step 2, we obtain the asymptotic distribution of θ̂τ at a single quantile level. In step 3, we
extend the results in step 2 to multiple quantile levels.
Step 1 (Approximation of the estimated scores). Most of the existing literature has been focused on establishing
error bounds for estimated eigenvalues and eigenfunctions; see for example [11, 12] and the discussion therein. The
following lemma instead characterizes the accuracy in predicting the fPC scores.

Lemma 1. Under Assumptions A4, B1, B2 and C1, we have

E‖̂ξi − ξi‖
2 = o(n−1/2). (10)

In addition,
max
1≤i≤n

∣∣∣∣̂ξi − ξi − n−1/2Bξi

∣∣∣∣ = Op(n−1), (11)

where B is a (p0 + 1) × (p0 + 1) dimensional matrix with the bottom right p0 × p0 block matrix equal to B+ described
next and the rest of the elements equal to zero. Here B+ = (bkk′ ) is a p0 × p0 random matrix such that bkk = 0 for
k ∈ {1, . . . , p0} and bkk′ = n−1/2(λk − λk′ )−1

(∑n
i=1 ξikξik′

)
if k , k′.

The result in (11) indicates that the leading term of ξ̂i − ξi is n−1/2Bξi, which is a linear combination of ξi with a
random weight matrix B that does not depend on i.
Step 2 (Quantile regression on estimated scores). We focus on a single quantile level τ in this step. For any δ ∈ Rp0+1,
let

Zn(δ) =

n∑
i=1

{ρτ (̂ui − ξ̂
T
i δ/
√

n) − ρτ(̂ui)},

where ûi = yi − ξ̂
T
i θτ. Then Zn(δ) is a convex function which is minimized at δ̂n =

√
n(̂θτ − θτ). Therefore, the

asymptotic distribution of δ̂n is determined by the limiting behavior of Zn(δ). Let ψτ(t) = τ − I(t < 0). According to
the Knight’s identity [23], we can decompose Zn(δ) into two parts: Zn(δ) = Z1n(δ) + Z2n(δ), where

Z1n(δ) = −
1
√

n

n∑
i=1

ξ̂T
i δψτ (̂ui), Z2n(δ) =

n∑
i=1

∫ ξ̂T
i δ/
√

n

0
{I (̂ui ≤ s) − I (̂ui ≤ 0)}ds =

n∑
i=1

Z2ni(δ). (12)

In order to show (6), it is sufficient to prove that

Zn(δ)
d
→ −δT W(τ) +

1
2
δT D1(τ)δ, (13)

where W(τ) ∼ N {0, τ(1 − τ)D0 + D1(τ)Σ0(τ)D1(τ)}, since one can apply the convexity lemma [34] to the quadratic
form of δ in (13).

We next derive the limiting distributions of Z1n(δ) and Z2n(δ). For Z1n(δ), similarly to its definition in (12), we
define Z∗1n(δ) based on the true scores ξi:

Z∗1n(δ) = −
1
√

n

n∑
i=1

ξT
i δψτ(ui),

where ui = yi−QYi |Xi (τ) = yi−ξ
T
i θτ = yi−

∑p0
k=0 ξikβk(τ). By a direct application of the central limit theorem (CLT), we

obtain that the asymptotic distribution of Z∗1n(δ) is N(0, τ(1 − τ)δT D0δ). However, when the predictors are estimated
with errors, the difference Z1n(δ)−Z∗1n(δ) is non-negligible. Lemma 2 provides a representation of Z1n(δ) by explicitly
formulating this difference.

Lemma 2. Under Assumptions A4, B1, B2 and C1,

Z1n(δ) = δT

− 1
√

n

n∑
i=1

{ξiψτ(ui) − D1(τ)di}

 + op(1),

where di = (0, di1, . . . , dip0 )T and dik =
∑p0

r=1,r,k(λk − λr)−1ξikξirβr(τ), k ≥ 1.
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Since ξiψτ(ui)−D1(τ)di are i.i.d., Lemma 2 allows us to directly apply Linderberg’s CLT to obtain the asymptotic
distribution of Z1n(δ). Note that E{ξiψτ(ui)} = 0 and Var{ξiψτ(ui)} = τ(1 − τ)D0. In addition, Edi = 0 because ξik and
ξir are uncorrelated and have mean 0 (when r , k). Let the matrix Σ(τ) be the covariance matrix of di whose first row
and first column is all 0 and the (k + 1, k′ + 1)th element (k, k′ = 1, . . . , p0) is given by Cov(dik, dik′ ) = θT

τ Ak,k′θτ for
some (p0 + 1) by (p0 + 1) matrix Ak,k′ . The first row and first column of Ak,k′ are all 0, and simple calculation yields
its bottom right block Ak,k′,+ = (σ j, j′ ):

σ j, j′ =

0, if j = k or j′ = k′,
(λk − λ j)−1(λk′ − λ j′ )−1E(ξ1kξ1 jξ1k′ξ1 j′ ), otherwise.

(14)

Let Θτ = 1(p0+1)×(p0+1)⊗θ
T , and Σ0 be a (p0+1)2 by (p0+1)2 matrix whose (k+1, k′+1)th block is Ak,k′ (k, k′ = 1, . . . , p0)

and (k + 1, k′ + 1)th block is 0(p0+1)×(p0+1) for k = 0 or k′ = 0. Then Σ(τ) can be rewritten as Σ(τ) = ΘτΣ0ΘT
τ .

Furthermore, we have
Cov{ξiψτ(ui), di} = E{ψτ(ui)ξT

i di} = E{ξT
i diEψτ(ui)|ξi} = 0,

which leads to

−
1
√

n

n∑
i=1

{ξiψτ(ui) − D1(τ)di}
d
→ N(0, τ(1 − τ)D0 + D1(τ)Σ(τ)D1(τ)).

Hence, we have Z1n(δ)
d
→ −δT W(τ) where W(τ) ∼ N (0, τ(1 − τ)D0 + D1(τ)Σ(τ)D1(τ)). Consequently, the following

result for Z2n(δ) concludes the asymptotic distribution in (13).

Lemma 3. Under Assumptions A4, B1, B2 and C1, we have

Z2n(δ) =
1
2
δT D1(τ)δ + op(1).

Step 3 (Asymptotic distributions across quantile levels). When considering various quantile levels, the same argu-
ments can be made via a convex optimization and the limiting distribution of the objective function. The asymptotic
covariance in (7) is obtained by the covariance between ξiψτ` (ui)+D1(τ`)di(τ`) and ξiψτ`′ (ui)+D1(τ`′ )di(τ`′ ), following
similar calculation as in (14).

Proof of Theorem 2. We just need to show that R(Γa
ζ̂
−Γζ̂)R

T = 0. The (`, `′)th block of the matrix Γa
ζ̂
−Γζ̂ is Θτ`Σ0Θτ`′ ,

where 1 ≤ `, `′ ≤ L. Therefore, we have Γa
ζ̂
− Γζ̂ = AΣ0AT where A = (Θτ1 , . . . ,ΘτL )T is a (p0 + 1)L× (p0 + 1) matrix.

Noting that Θτ` = 1(p0+1)×(p0+1) ⊗ θ
T
` for ` ∈ {1, . . . , L}, we have AT = 1(p0+1)×(p0+1) ⊗ ζ

T and thus A = 1(p0+1)×(p0+1) ⊗ ζ.
Therefore, when Rζ = 0, it follows that RA = 1(p0+1)×(p0+1) ⊗ (Rζ) = 0. This completes the proof.

6.2. Proofs of lemmas
Proof of Lemma 1. The bound in (10) follows from standard bounds for the estimated eigenfunctions and covariance
kernel in the FDA literature. According to Theorem 1 in [11], we have

‖φ̂k − φk‖L2 ≤ 81/2s−1
k |||Ĝ −G|||,

where sk = minr≤k(λr − λr+1) and |||Ĝ −G||| = [
∫ 1

0

∫ 1
0 {Ĝ(u, v) −G(u, v)}2dudv]1/2. Therefore,

|̂zik − ξik | =

∣∣∣∣∣∣
∫ 1

0
Xi(t){φ̂k(t) − φk(t)}dt

∣∣∣∣∣∣ ≤ ‖Xi‖L2 · ‖φ̂k − φk‖L2 ≤ constant · ‖Xi‖L2 s−1
k · |||Ĝ −G|||,

which leads to ‖̂ξi − ξi‖ ≤ constant · ‖Xi‖L2 s−1
p0
|||Ĝ − G|||. For any c > 0, invoking the bound E|||Ĝ − G|||c ≤ constant ·

n−c/2 [12, Lemma 3.3] leads to

E‖̂ξi − ξi‖
c ≤ constant · s−c

p0
(E|||Ĝ −G|||2c)1/2 ≤ constant · s−c

p0
n−c/2.

Thus, for finite p0, we have E‖̂ξi − ξi‖
c = o(n−c/4); in particular, there holds

√
nE‖̂ξT

i − ξ
T
i ‖

2 = o(1).
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Next we prove the representation in (11). Let G̃ be the estimator of the kernel G based on the fully observed
covariate Xi(·), and recall that Ĝ is the estimate based on the discretized Wi j with measurement error. Denote Z̃ =
√

n(G̃ −G) and Ẑ =
√

n(Ĝ −G). We use the notation
∫
Ẑφkφk′ to denote

∫ 1
0

∫ 1
0 Ẑ(u, v)φk(u)φk′ (v)dudv.

Since {φk : k ≥ 1} forms a basis of the L2 space on [0, 1], we have φ̂k =
∑∞

k′=1 akk′φ
′
k, where k ∈ {1, . . . , p0} and the

generalized Fourier coefficients akk′ =
∫ 1

0 φ̂k(t)φk′ (t)dt. Furthermore, we have the following expansion for akk′ ’s:

akk = 1 + Op(n−1); akk′ = n−1/2(λk − λk′ )−1
∫
Ẑφkφk′ + Op(n−1) if k , k′,

according to (2.6) and (2.7) in [11]. Therefore, for k ∈ {1, . . . , p0}, we have∫ 1

0
Xi(t){φ̂k(t) − φk(t)}dt =

p0∑
k′=1

{akk′ − I(k′ = k)}ξik′ =

p0∑
k′=1,k′,k

n−1/2(λk − λk′ )−1
∫
Ẑφkφk′ξik′ + Op(n−1).

A direct calculation gives that ∫
Z̃φkφk′ = n−1/2

n∑
i=1

ξikξik′ − n1/2ξ̄kξ̄k′

for k, k′ = 1, . . . , p0 and k , k′, where ξ̄k = n−1 ∑n
i=1 ξik. Since n1/2ξ̄kξ̄k′ = n−1/2 · (n1/2ξ̄k) · (n1/2ξ̄k′ ) = n−1/2 · Op(1) ·

Op(1) = Op(n−1/2), we have
∫
Z̃φkφk′ = n−1/2 ∑n

i=1 ξikξik′ + Op(n−1/2). The same approximation holds when using Ẑ
since Ẑ − Z̃ is uniformly op(n−1/2) as shown by [48]. Consequently,∫ 1

0
Xi(t){φ̂k(t) − φk(t)}dt =

p0∑
k′=1,k′,k

n−1(λk − λk′ )−1

 n∑
i=1

ξikξik′

 ξik′ + Op(n−1). (15)

This approximation will not be affected if we use X̂i(·) instead of the true curve Xi(·) because the difference X̂i(·)−Xi(·)
is negligible uniformly for all i (e.g., see Theorem 2 in [48] or Lemma 1 in [51]). Let a p0-dimension random matrix
B+ = (bkk′ ) where bkk′ = 0 if k = k′ and bkk′ = n−1/2(λk − λk′ )−1

(∑n
i=1 ξikξik′

)
if k , k′. Let B be a (p0 + 1) × (p0 + 1)

zero matrix but the bottom right block is replaced by B+, then the right hand side in (15) becomes n−1/2Bξi + Op(n−1).
Consequently, we have

ξ̂i − ξi = n−1/2Bξi + Op(n−1).

This completes the proof by noting that all the stochastic bounds starting from Op(n−1) in akk do not depend on i.

Proof of Lemma 2. We first decompose the difference between Z1n(δ) and Z∗1n(δ) into three parts S 1, S 2 and S 3 as
follows:

Z1n(δ) − Z∗1n(δ) = −
1
√

n

n∑
i=1

ξ̂T
i δψτ(̂ui) +

1
√

n

n∑
i=1

zT
i δψτ(ui)

=

− 1
√

n

n∑
i=1

(̂ξT
i − ξ

T
i )δ{ψτ (̂ui) − ψτ(ui)}

 +

− 1
√

n

n∑
i=1

(̂ξT
i − ξ

T
i )δψτ(ui)

 +

− 1
√

n

n∑
i=1

ξT
i δ{ψτ (̂ui) − ψτ(ui)}


=: S 1 + S 2 + S 3.

The proof proceeds in three steps: S 2 = op(1) (Step i), S 1 = op(1) (Step ii), and S 3 = n−1/2δT D1(τ)
∑n

i=1 di + op(1)
(Step iii). Step i and Step ii indicate that the first two terms S 1 and S 2 are negligible, and it is sufficient to show
that E(S 2

2) = o(1) and E|S 1| = o(1) according to Chebyshev’s inequality. The third term S 3 is challenging to analyze
since the function of ψτ(·) is not differentiable. In Step iii, we approximate the term S 3 mainly using the uniform
approximation on ψτ(·).
Step i. First notice that E{ψτ(ui)|ξi, ξ̂i} = 0 and E{ψτ(ui)2|ξi, ξ̂i} = τ − τ2. Therefore, we have E(S 2) = 0, and further

E(S 2
2) = E

 1
√

n

n∑
i=1

(̂ξT
i δ − ξ

T
i δ)ψτ(ui)


2

=
1
n

n∑
i=1

n∑
i′=1

E
{
(̂ξT

i − ξ
T
i )δψτ(ui) · (̂ξT

i′ − ξ
T
i′ )δψτ(ui′ )

}
.
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For i = i′,

E
{
(̂ξT

i − ξ
T
i )δψτ(ui) · (̂ξT

i′ − ξ
T
i′ )δψτ(ui′ )

}
= E

{
(̂ξT

i δ − ξ
T
i δ)ψτ(ui)

}2

= E
{
(̂ξT

i δ − ξ
T
i δ)

2E{ψ2
τ(ui)|ξi, ξ̂i}

}
= τ(1 − τ)E

{
(̂ξT

i δ − ξ
T
i δ)

2
}
.

Since ξ̂i are identically distributed for all i, we have E
{
(̂ξT

i δ − ξ
T
i δ)

2
}

= E
{
(̂ξT

1 δ − ξ
T
1 δ)

2
}
. For i , i′, we have

E
{
(̂ξT

i − ξ
T
i )δψτ(ui) · (̂ξT

i′ − ξ
T
i′ )δψτ(ui′ )

}
= 0 by noting that

E{ψτ(ui)ψτ(ui′ )|ξi, ξ̂i, ξi′ , ξ̂i′ } = E{ψτ(ui)|ξi, ξ̂i, ξi′ , ξ̂i′ } · E{ψτ(ui′ )|ξi, ξ̂i, ξi′ , ξ̂i′ } = 0.

Therefore, E(S 2
2) = τ(1 − τ)E

{
(̂ξT

1 δ − ξ
T
1 δ)

2
}

= O(E‖̂ξi − ξi‖
2) = o(1).

Step ii. For S 1, we first introduce the notation

∆i = E(ψτ (̂ui)|ξi, ξ̂i) = τ − Fi(̂ξT
i θτ) = Fi(ξT

i θτ) − Fi (̂ξT
i θτ).

For each i, this random variable ∆i satisfies that

∆i = E(ψτ (̂ui) − ψτ(ui)|ξi, ξ̂i), (16)

|∆i| = E(|ψτ (̂ui) − ψτ(ui)||ξi, ξ̂i). (17)

The result given in (16) is obtained by noting that ψτ(ui) has mean 0 conditional on ξi, while (17) holds because
|ψτ (̂ui) − ψτ(ui)| = I{min(̂ξiθτ, ξiθτ) < yi < max(̂ξiθτ, ξiθτ)}.

By Taylor’s theorem, for any a, b ∈ R, we have

F(a + b) − F(a) = f (a)b + b2
∫ 1

0
f ′(a + tb)(1 − t)dt =: f (a)b +

b2

2
R(a, b),

where |R(a, b)| ≤ C0. Therefore,

∆i = −(̂ξT
i θτ − ξ

T
i θτ) fi(ξT

i θτ) + (̂ξT
i θτ − ξ

T
i θτ)

2R(̂ξT
i , ξ

T
i ),

where |R(̂ξT
i , ξ

T
i )| ≤ 2C0. We also have the bound

E∆2
i ≤ constant · E‖̂ξi − ξi‖

2 = o(n−1/2).

Therefore, |S 1| ≤
1
√

n

∑n
i=1 |(̂ξ

T
i δ − ξ

T
i δ)| · |ψτ(̂ui) − ψτ(ui)| and consequently

E|S 1| ≤
1
√

n
E{

n∑
i=1

|(̂ξT
i δ − ξ

T
i δ)||∆i|}

=
√

nE|(̂ξT
1 δ − ξ

T
1 δ)∆1| ≤

√
nE‖̂ξi − ξi‖

2E∆2
1 = o(1).

Step iii. Define

Rn(t) =

n∑
i=1

ξi{ψτ(ui − ξ
T
i t) − ψτ(ui)},

for any vector such that ‖t‖ ≤ C for some constant C. Then the uniform approximation [14] indicates that

sup ‖Rn(t) − E{Rn(t)}‖ = Op(n1/2(log n)‖t‖1/2).

On the other hand,

E{Rn(t)} =

n∑
i=1

E[ξi{Fi(ξT
i θτ) − Fi(ξT

i θτ − ξ
T
i t)}] = nE[ξ1{F1(ξT

1 θτ) − F1(ξT
1 θτ − ξ

T
1 t)}]

= −nEξ1ξ
T
1 f1(ξT

1 θτ)t + O(nE‖ξ1‖
3‖t‖2) = −nD1(τ)t + O(n‖t‖2).
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Therefore,
Rn(t) = −nD1(τ)t + O(n‖t‖2) + Op

(
n1/2(log n)‖t‖1/2

)
. (18)

Note that ûi = ui + ξT
i θτ − ξ̂

T
i θτ and ξ̂i − ξi = Bξi up to a negligible term Op(n−1). Then

−
1
√

n

n∑
i=1

ξT
i δ{ψτ (̂ui) − ψτ(ui)} = −n−1/2Rn(n−1/2Bθτ) + op(1),

where the term op(1) is obtained by the same arguments used in Step ii via conditional expectation and Taylor the-
orem. Substituting t = n−1/2Bθτ into (18) and noting that ‖n−1/2Bθτ‖ = Op(n−1/2), we obtain that Rn(n−1/2Bθτ) =

−n1/2D1(τ)Bθτ + O(1) + Op(n1/4 log n), leading to

S 3 = −
1
√

n

n∑
i=1

ξT
i δ{ψτ (̂ui) − ψτ(ui)} = δT D1(τ)Bθτ + op(1).

According to the definition of B in (11), it is easy to verify that Bθτ = n−1/2 ∑n
i=1 di, where di = (0, di1, . . . , dip0 ) and

dik =
∑p0

r=1,r,k(λk − λr)−1ξikξirβr(τ) for k ≥ 1. Therefore, it follows that S 3 = n−1/2δT D1(τ)
∑n

i=1 di + op(1), which
concludes Step iii. This completes the proof.

Proof of Lemma 3. Recall that Z2n =
∑n

i=1 Z2ni, where

Z2ni(δ) =

∫ ξ̂T
i δ/
√

n

0
{I (̂ui ≤ s) − I (̂ui ≤ 0)}ds.

First, we have

E[Z2ni(δ)|ξi, ξ̂i] =

∫ ξ̂T
i δ/
√

n

0
Fi (̂ξT

i θτ + s) − Fi(̂ξT
i θτ)ds =

1
√

n

∫ ξ̂T
i δ

0
Fi (̂ξT

i θτ +
t
√

n
) − Fi (̂ξT

i θτ)dt.

Therefore, by Taylor’s theorem, we have

E[Z2ni(δ)|ξi, ξ̂i] =
1
√

n

∫ ξ̂T
i δ

0
fi (̂ξT

i θτ)
t
√

n
+

t2

2n
R(̂ξT

i δ,
t
√

n
)dt =

1
2n
δT ξ̂i fi (̂ξT

i θτ )̂ξ
T
i δ + Rn,i,

where Rni is the remainder satisfying that |Rni| ≤ cn−3/2 |̂ξT
i δ|

3. Consequently,

E[Z2ni(δ)|ξi, ξ̂i] =
1
2
· δT 1

n
ξ̂i fi (̂ξT

i θτ )̂ξ
T
i δ + Rni.

Therefore, the unconditional expectation of Z2ni(δ) is

EZ2ni(δ) = E{E[Z2ni(δ)|ξi, ξ̂i]} =
1
2
· δT E

(
1
n
ξ̂i fi (̂ξT

i θτ )̂ξ
T
i

)
δ + ERn =

1
2
·

1
n
δT D1(τ)δ + E(Rni),

leading to

EZ2n =
1
2
δT D1(τ)δ +

n∑
i=1

E(Rni).

The second term
∑n

i=1 E(Rni) is negligible because∣∣∣∣∣∣∣
n∑

i=1

E(Rni)

∣∣∣∣∣∣∣ ≤
n∑

i=1

E|Rni| ≤ cn−3/2
n∑

i=1

E|̂ξT
i δ|

3 = cn−1/2E|̂ξT
1 δ|

3 (19)

≤ O(n−1/2) ·
(
E‖̂ξ1‖

3
2

)
‖δ‖32 = O(n−1/2) · O(1) = o(1), (20)
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where the last step is due to the fact that ‖̂ξ1‖2 = ‖X̂1‖2 ≤ ‖X̂1 − X1‖2 + ‖X1‖2.
We next will show that max

i=1,...,n
‖ξi‖/

√
n

p
→ 0. Note that ‖ξi‖

2 = 1 + ξ2
i1 + . . . + ξ2

ip0
for i ∈ {1, . . . , n}, and ‖ξi‖

2’s are

i.i.d. with a finite second moment E‖ξi‖
2 = 1 + λ1 + . . . + λp0 < ∞. For any ε > 0, we have

P
(

max
i=1,...,n

‖ξi‖
√

n
> ε

)
≤

n∑
i=1

P(‖ξi‖ >
√

nε) ≤
1

nε2

n∑
i=1

E{‖ξi‖
2I(‖ξi‖ >

√
nε)}

=
1
ε2 E{‖ξ1‖

2I(‖ξ1‖ >
√

nε)} → 0,

according to the dominated convergence theorem. It implies that max
i=1,...,n

‖̂ξi‖/
√

n = op(1) since ‖̂ξi − ξi‖ = op(1)

uniformly for all i’s. Consequently, Var(Z2n|ξi’s, ξ̂i’s) ≤ max
i=1,...,n

‖̂ξT
i δ‖/

√
n · E(Z2ni|ξi’s, ξ̂i’s) = op(1), i.e., the conditional

variance converges to 0 in probability. Therefore, following the martingale argument in the proof of Theorem 2 in [34],
we have Z2n − E(Z2n) = op(1). This completes the proof.
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