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Abstract:Inarecentwork(Antonovetal.,PhysicalReviewLetters123,243903(2019)),itwasshown

thatitispossibletoamplifyatrainofattosecondpulses,whichareproducedfromtheradiation

ofhighharmonicsoftheinfraredfieldofthefundamentalfrequency,intheactivemediumofa

plasma-basedX-raylasermodulatedbyareplicaoftheinfraredfieldofthesamefrequency.Inthis

paper,weshowthatmuchhigheramplificationcanbeachievedusingthesecondharmonicofthe

fundamentalfrequencyformodulatingofahydrogen-likeactivemedium.Thephysicalreasonfor

suchenhancedamplificationisthepossibilitytouseall(evenandodd)sidebandsinducedinthegain

spectruminthecaseofthemodulatingfieldofthedoubledfundamentalfrequency,whileonlyone

setofsidebands(eitherevenorodd)couldparticipateinamplificationinthecaseofthemodulating

fieldofthefundamentalfrequencyduetothefactthatthespectralcomponentsofthehigh-harmonic

fieldareseparatedbytwicethefundamentalfrequency. Usingtheplasmaofhydrogen-likeC5+

ionswithaninvertedtransitionwavelengthof3.38nminthewaterwindowasanexample,itis

shownthattheuseofamodulatingfieldatadoubledfundamentalfrequencymakesitpossibleto

increasetheintensityofamplifiedattosecondpulsesbyanorderofmagnitudeincomparisonwith

thepreviouslystudiedcaseofafundamentalfrequencymodulatingfield.

Keywords:attosecondpulses;X-rayoptics;plasma-basedX-raylaser;strongopticalfield;Stark

effect;high-orderharmonicamplification

1.Introduction

Thebeginningofthe21stcenturywasmarkedbytheemergenceandrapiddevelop-

mentofattosecondphysics—aninterdisciplinaryfieldofresearchaimedatprobingand

controllingtheultrafastdynamicsofchargecarriersinatoms,molecules,andsolidsontheir

owntimescales[1–7].ThemaininstrumentofattosecondphysicsisattosecondX-rayand

vacuumultraviolet(VUV)pulsesproducedduetohigh-orderharmonicgenerationunder

theactionofopticallaserfieldonagasmediuminthetunnelingionizationregime[8–10].

Suchsourcesmakeitpossibletogenerateaspectrumofharmonicswithawidthofmore

than1keVandupto12octaves[11],aswellastogeneratepulseswithadurationofdown

to40–50as[12–14].However,theenergyofsuchpulsesintheX-rayrange,fromseveral

hundredeVandabove,asarule,doesnotexceedhundredsofpJor,atbest,fewnJ[15,16],

whichlimitsthepossibilitiesoftheirpracticalapplications,inparticular,forsingle-pulse

measurementsofultrafastprocessesinmatter,aswellasinmeasurementsbasedonthe

“attosecondpump–attosecondprobe”scheme[17,18].

Inrecentwork[19],weproposedamethodforamplifyingatrainofattosecondpulses

formedbyasetofhigh-orderharmonicsoftheinfrared(IR)fieldinahydrogen-likeactive
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medium of a plasma-based X-ray laser, which is simultaneously irradiated with a replica
of the fundamental-frequency IR field used to generate the high harmonics. Due to the
linear Stark effect, the positions of the excited-state energy levels of the resonant ions of
the active medium follow the local value of the electric field of the laser wave in time
and space. As a result, the gain of the medium, initially localized in the vicinity of the
frequency of the inverted transition, appears at the combination frequencies spaced from
the resonance by even multiplies of the modulating field frequency. In this case, if one of
the high-order harmonics of the modulating field is tuned into resonance with the time-
averaged transition frequency of the active medium, then the harmonics of other orders are
automatically in resonance with the induced gain lines. If the active medium exhibits strong
plasma dispersion at the frequency of the modulating field, then harmonics of different
orders are amplified independently of each other, and their relative phases are preserved.
Moreover, the gain coefficients for harmonics of different orders can be made nearly equal
to each other by a choice of an optimal intensity of the modulating field. In this case, if the
harmonics of different orders at the entrance to the medium are comparable in amplitude,
are in-phase, and form a sequence of attosecond pulses, then in the process of amplification,
the spectral-temporal properties of radiation (such as the relative amplitudes and phases
of harmonics and, as a consequence, the shape and duration of the pulses) are preserved.
In [19], it was shown that it is possible to amplify attosecond pulses formed by a set of high
harmonics in the “water window” range (2.3–4.4 nm) by one to two orders of magnitude in
intensity in the active medium of hydrogen-like C5+ ions.

At the same time, if the plasma dispersion at the frequency of the modulating field
is moderate, then a particular high-order harmonic tuned into resonance with any of
the induced gain lines of the active medium is not only amplified, but also generates
radiation at combination frequencies spaced from the seed frequency by even multiple of
the modulating field frequency. Under certain conditions, the generated Raman spectral
components turn out to be in phase with the radiation of the amplified harmonic, which
leads to the formation of a train of subfemtosecond pulses [20–22]. If several harmonics
are present in the incident field, and they are spaced from each other by an even multiple
of the modulating field frequency, then in a plasma medium with a low free-electron
concentration, the amplified harmonics are scattered into each other, which opens up the
possibility to control their amplitudes and phases via interference of the amplified incident
and generated scattered fields [23].

Previous work [19] referred to the case when (i) an active medium is modulated by an
IR field of the fundamental frequency (the same frequency as the field used for HHG) and
(ii) only a set of the induced gain lines, separated from the resonance by even multiples
of the fundamental frequency, participates in amplification of the high harmonics. In this
paper, it is shown that the gain spectrum of a modulated hydrogen-like medium contains
sidebands not only at even, but also at odd combination frequencies; these frequencies
are spaced from the resonance by odd multiples of the modulating field frequency. We
show that if the second harmonic of the fundamental field is used for modulation of an
active medium, then all gain components (both odd and even sidebands) induced by that
field participate in amplification of a train of attosecond pulses produced by the HHG of
the fundamental IR field frequency. It opens up a possibility to significantly enhance the
amplification of attosecond pulses. Thus, the two representative cases are studied and
compared in this work: (a) when the modulating field is of the fundamental frequency,
while harmonics in the spectrum of the seed are tuned into resonance with the gain lines of
either even or odd orders, (b) when the modulating field is of the doubled fundamental
frequency, while harmonics are tuned into resonance with the gain lines of both even and
odd orders.

The paper is organized as follows. Section 2 presents a theoretical model describing
the amplification of high harmonics of the IR field in a modulated hydrogen-like active
plasma medium. In Section 3, an analytical solution is derived, which makes it possible to
better understand the main laws governing the amplification of harmonics. In Section 4, on
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the basis of the obtained analytical solution, the optimal conditions for amplification of a
train of attosecond pulses formed by a combination of different numbers of high harmonics
are found. In Section 5, the conclusions of the analytical theory are compared with the
results of the numerical solution of the system of equations given in Section 2. Finally,
Section 6 summarizes the main results of the work.

2. Theoretical Model

We will consider a plasma-based X-ray laser with population inversion at the transi-
tion from the first excited energy level to the ground state of a hydrogen-like ion C5+, n = 2
↔ n = 1, where n is the principal quantum number; the laser wavelength is 3.38 nm. Such
an active medium can be prepared by irradiating carbon atoms with a laser pulse with an
intensity of the order of 1019 W/cm2 and a duration of several tens of femtoseconds [24].
In this case, the population inversion at the n = 2 ↔ n = 1 transition of hydrogen-like
C5+ ions arises as a result of the recombination of electrons with the nuclei of fully ion-
ized carbon atoms and subsequent relaxation of ions to the states with n = 2. As shown
in [24], the addition of hydrogen atoms makes it possible to increase the gain due to a
decrease in the effective temperature of free electrons in the plasma. In this case, the
optimal values of the concentrations of carbon and hydrogen atoms are nC~1019 cm−3

and nH~1020 cm−3, respectively, and the intensity gain at the inverted transition is about
180 cm−1. Thus, the concentration of free electrons in the active medium can be estimated
as ne ≈ 5nC + nH~1.5 × 1020 cm−3.

In what follows, we will assume that the active medium is a thin cylinder elongated
parallel to the x axis and irradiated by two fields linearly polarized along the z axis, namely,
resonant radiation of high-order harmonics and an intense IR laser field with a frequency Ω.
We will assume that the transverse and longitudinal distributions of the IR field amplitude
are much wider than the cross section and length of the plasma channel, respectively, which
allows us to assume that the amplitude of the laser field is constant throughout the entire
volume of the active medium. In addition, we will assume that the IR pulse duration
is quite large compared to the time it takes to establish the induced polarization of the
medium and to the lifetimes of the populations of excited states of C5+ ions with n = 2. In
this case, the laser field can be represented as a plane monochromatic wave that propagates
along the axis of the plasma channel (x axis) with a phase velocity VL:

→
E L(x, t) =

→
z 0E(0)

L cos[Ω(t− x/VL)], (1)

where E(0)
L is the IR field amplitude,

→
z 0 is the unit polarization vector, VL = c/n(Ω)

pl , c is

the speed of light in vacuum, n(Ω)
pl =

√
1−ω2

pl/Ω2 is the refractive index of plasma at the

frequency of the IR field, ωpl =
√

4πnee2/me is the plasma frequency, and e and me are the
charge and mass of the electron. Note that the frequency of the laser field in the visible or
infrared range, Ω, is much (at least one and a half to two orders of magnitude) lower than
the frequencies of all quantum transitions from populated states of hydrogen-like C5+ ions.
Thus, it does not experience resonant interaction with the medium and, as a consequence,
does not change during the propagation process.

Under the action of the laser field (1), the upper energy level of the inverted transition is
split into three sublevels. Two of them correspond to states |2〉 = (|2s〉+ |2p, m = 0〉)/

√
2

and |3〉 = (|2s〉 − |2p, m = 0〉)/
√

2, where m is the projection of the orbital angular mo-
mentum onto the direction of polarization of the laser field, i.e., on the z axis. The energies
of these states follow in time and space the local value of the electric field of the laser wave
due to the linear Stark effect, and also experience a constant displacement, which is small in
comparison with the photon energy of the laser field, }Ω, due to the quadratic Stark effect:

E2(x, t) = −
[
mee4Z2/

(
8}2)]{1 + 21F2

L/4 + 3FL cos[Ω(t− x/VL)]
}

,
E3(x, t) = −

[
mee4Z2/

(
8}2)]{1 + 21F2

L/4− 3FL cos[Ω(t− x/VL)]
}

,
(2)
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where FL = (2/Z)3E(0)
L /EA is the dimensionless laser field amplitude, EA = m2

e e5/}4 ≈
5.14 × 109 V/cm is the atomic field, Z = 6 is the carbon nucleus charge number, and }
is the reduced Planck’s constant. In what follows, the laser field will also be referred to
as the modulating field. The dipole moments of transitions from states |2〉 and |3〉 to the

ground state |1〉 = |1s〉 are oriented along the z axis:
→
d 12 =

→
z 0dtr,

→
d 13 = −→z 0dtr, where

dtr = 27

35Z ea0 and a0 = }2

mee2 is the Bohr radius. The third sublevel corresponds to states
|4〉 = |2p, m = 1〉 and |5〉 = |2p, m = −1〉, the energies of which experience only a small
constant displacement due to the quadratic Stark effect:

E4 = E5 = −
[
mee4Z2/

(
8}2
)](

1 + 39F2
L/8

)
. (3)

The dipole moments of transitions from these states to the ground state |1〉 have

components along the x and y axes:
→
d 14 =

(
i
→
y 0 +

→
x 0

)
dtr,

→
d 15 =

(
i
→
y 0 −

→
x 0

)
dtr; however,

the field propagating along the axis of the plasma channel lies in the yz plane and does not
interact with the x component of the dipole moments, which allows it to be neglected. It
should be noted that the lower energy level |1〉 = |1s〉 corresponding to the ground state
of hydrogen-like C5+ ions also turns out to be shifted relative to its unperturbed position
under the action of the modulating field:

E1 = −
[
mee4Z2/

(
2}2
)](

1 + 9F2
L/256

)
. (4)

In addition, the IR field (1) causes tunneling ionization of C5+ from excited states |2〉,
|3〉 and |4〉, |5〉 with velocities W(2,3)

ion and W(4,5)
ion , respectively,

W(2,3)
ion = mee4Z2

16}3

√
3FL
π

[
4
FL

e3 +
(

4
FL

)3
e−3
]

e−2/(3FL),

W(4,5)
ion = mee4Z2

4}3

√
3FL
π

(
4
FL

)2
e−2/(3FL),

(5)

where the quantities W(2,3)
ion and W(4,5)

ion are averaged over the period of the laser field (the
rate of ionization from the ground state is negligible). To ensure that ionization does not
hinder amplification at an inverted transition in the active medium, in what follows we
will consider a laser field with an intensity at which the ionization rates (5) are significantly
lower than the rates of radiative decay of states |2〉–|5〉. In the case of C5+ ions, this condition

limits the intensity of the modulating field IL = c
(

E(0)
L

)2
/(8π) to 2.3 × 1016 W/cm2. In

this case, both the shifts of the resonance energy levels due to the quadratic Stark effect
and the ionization rate turn out to be much smaller than the frequency of the modulating
field of the visible or near/mid-IR range, which allows one to take into account their
effect as time-independent additions to the energy and decay rate of the corresponding
states [22,25,26]. In addition, in this case, the corrections to the Stark effect of the third and
higher orders turn out to be negligible.

In addition to the laser field (1), the medium is irradiated with X-ray seed radia-
tion formed by a set of NH high-order harmonics of fundamental frequency ΩF linearly
polarized along the z axis:

→
E X−ray(x = 0, t) =

→
z 0

1
2

ẼX−ray,z(x = 0, t)e−iωX−rayt + c.c., (6)

where

ẼX−ray,z(x = 0, t) =
qmax

∑
q=qmin

Ãqa(t)e−iq2ΩFt (7)

is the slowly changing amplitude of seed radiation, ωX−ray = (2q∗ + 1)ΩF is its carrier
frequency, q∗ � 1 is a natural number, ΩF is the fundamental frequency, i.e., the frequency
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of the laser field used to generate high harmonics, Ãq is the complex amplitude of the
harmonic with the frequency ωX−ray + q2ΩF, a(t) is the envelope of the field of each
individual harmonic, and qmax − qmin + 1 = NH . We will further assume that at the
entrance to the medium, all harmonics are in phase and have the same amplitudes, i.e.,
Ãq = A0 for any q. In the next section, an analytical solution will be obtained that is valid
for an arbitrary envelope a(t). At the same time, in numerical calculations, the envelope of
the harmonic signal of the following form will be used:

a(t) = sin2(πt/∆tH)[θ(t)− θ(t− ∆tH)], (8)

where ∆tH = 50 fs and θ(t) is the Heaviside function. It is assumed that the FWHM of the
harmonic signal at the input to the medium is 17.5 fs.

In what follows, we will assume that the carrier frequency of the harmonic radiation is
close to the frequency of the inverted transition of the active medium, ωX−ray ≈ 2πc/λ

(0)
21 .

As shown in [19,20,22], in this case the propagation of X-ray radiation (6) in a hydrogen-like
active medium of a plasma-based X-ray laser is described by the system of Maxwell–Bloch
equations in a five-level approximation:

∂2
→
E X−ray
∂x2 − εX−ray

c2
∂2
→
E X−ray
∂t2 = 4π

c
∂2
→
P

∂t2 ,
→
P(x, t) = Nion

[→
d 12ρ21 +

→
d 13ρ31 +

→
d 14ρ41 +

→
d 15ρ51 + c.c.

]
,

∂ρ11
∂t = γ11

5
∑

j=2
ρjj − i

}
[
Ĥ, ρ̂

]
11,

∂ρij
∂t = −γijρij − i

}
[
Ĥ, ρ̂

]
ij, i, j = {1, 2, 3, 4, 5}, ij 6= 11,

(9)

where Nion is the concentration of C5+ ions, which at the time of arrival of the harmonic
signal are in one of the states |1〉–|5〉 (in what follows, the initial population of the ground
state is assumed to be zero); εX−ray =

√
1−ω2

pl/ω2
X−ray is the dielectric constant of the

plasma at the frequency of X-ray radiation; γij is the relaxation rate of the element ρij of the
density matrix of the medium,

γ21 = γ31 = γcoll + W(2,3)
ion /2 + Γrad/2 ≡ γz,

γ41 = γ51 = γcoll + W(4,5)
ion /2 + Γrad/2 ≡ γy,

γ32 = γcoll + W(2,3)
ion + Γrad, γ54 = γcoll + W(4,5)

ion + Γrad,
γ42 = γ52 = γ43 = γ53 = γcoll + W(2,3)

ion /2 + W(4,5)
ion /2 + Γrad,

γ11 = Γrad, γ22 = γ33 = W(2,3)
ion + Γrad, γ44 = γ55 = W(4,5)

ion + Γrad,

(10)

γcoll is the rate of collisional relaxation of off-diagonal elements of the density matrix
(according to [24], in the medium under consideration γcoll

−1 ≈ 20 fs); Γrad is the rate of
radiative relaxation of states |2〉–|5〉, Γrad

−1 ≈ 1.23 ps. The Hamiltonian of the system (9)
under consideration, in the presence of a resonant X-ray field and a modulating laser field,
has the form:

Ĥ =


E1 −EX−ray,zdtr EX−ray,zdtr −iEX−ray,ydtr −iEX−ray,ydtr

−EX−ray,zdtr E2(x, t) 0 0 0
EX−ray,zdtr 0 E3(x, t) 0 0
iEX−ray,ydtr 0 0 E4 0
iEX−ray,ydtr 0 0 0 E5

. (11)

Here Ei, i = 1,2,3,4,5 are determined by Equations (2)–(4), and EX−ray,z and EX−ray,y
denote the polarization components of the X-ray field, oriented along the z and y axes.
While the z-component of the field is present in the seed radiation, the y-component arises
in the active medium due to the amplified spontaneous emission at transitions |4〉 → |1〉
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and |5〉 → |1〉 . These transitions lead to an increase in the population of the ground
state and, as a consequence, to a decrease in the population inversion and amplification
at the modulated transitions |2〉 → |1〉 and |3〉 → |1〉 , with which the z-polarized X-ray
radiation interacts.

Next, we make a change of variables x, t→ x, τ = t− x√εX−ray/c and look for a
solution to system (9) in the slowly varying amplitude approximation for the X-ray field
and resonant polarization of the medium, as well as in the resonance approximation (the
rotating wave approximation) for the density matrix elements:

→
E X−ray(x, τ) = 1

2

[→
z 0ẼX−ray,z(x, τ) +

→
y 0ẼX−ray,y(x, τ)

]
e−iωX−rayτ + c.c.,

→
P(x, τ) = 1

2

[→
z 0P̃z(x, τ) +

→
y 0P̃y(x, τ)

]
e−iωX−rayτ + c.c.,

ρi1(x, τ) = ρ̃i1(x, τ)e−iωX−rayτ , i = {2, 3, 4, 5},
ρij(x, τ) = ρ̃ij(x, τ), ij 6= {21, 31, 41, 51},
ρ̃ij(x, τ) = ρ̃∗ji(x, τ),

(12)

where ẼX−ray,z, ẼX−ray,y, P̃z, P̃y, and ρ̃ij (i, j = 1÷ 5) satisfy the inequalities 1
|F̃|
∣∣∣ ∂F̃

∂x

∣∣∣ �
ωX−ray

√
εX−ray/c and 1

|F̃|
∣∣∣ ∂F̃

∂τ

∣∣∣ � ωX−ray, F̃ ≡
{

ẼX−ray,z, ẼX−ray,y, P̃z, P̃y, ρ̃ij

}
. Expres-

sions (12) also imply the unidirectional propagation of X-ray radiation, which takes place
in the absence of reflections from the boundaries of the medium at εX−ray ' 1. The explicit
form of the equations in the aforementioned approximations is given in [20] and, because
of its cumbersomeness, will not be reproduced here.

To solve the formulated system of equations, it is necessary to set the initial and
boundary conditions. When εX−ray ' 1, the X-ray field at the front boundary of the
medium coincides with the seed field (6)–(8). To set the initial conditions, we will assume
that at the time instant τ = 0 (before the arrival of resonance radiation at a given point of
the medium), the C5+ ions in the amount Nion per unit volume of the medium are with
equal probability in one of the excited states |2〉, |3〉, |4〉, and |5〉, the ground state is not
populated, while the carbon ions in other states do not interact with the X-ray field. Thus,

ρ̃11(x, τ = 0) = 0,
ρ̃22(x, τ = 0) = ρ̃33(x, τ = 0) = ρ̃44(x, τ = 0) = ρ̃55(x, τ = 0) = n(0)

tr = 0.25,
(13)

where n(0)
tr is the initial population difference at the transitions |i〉 → |1〉 , i = {2,3,4,5}.

At the same time, the initial values of the coherences on inverted transitions |i〉 → |1〉 ,
i = {2,3,4,5} are random functions of the longitudinal coordinate x, which makes it possible
to take into account the amplified spontaneous emission of the active medium [22,27–30],
while the initial values of the coherences on the other transitions are equal to zero:

ρ̃i1(xk−1 ≤ x ≤ xk, τ = 0) = Ai,k
exp[i(ϕi,k+φi)]
2NionπR2lelem

, i = {2, 3, 4, 5},
ρ̃ij(x, τ = 0) = 0, i 6= j, i, j 6= 1,

(14)

where R is the radius of the plasma channel, which further, in accordance with [24], we
assume equal to 5 µm; xk = klelem, where k = 1,2, . . . ,kmax is a natural number, and lelem is the
thickness of the elementary layer, in which the initial value of coherence ρ̃i1 is assumed to be
a random variable independent of x. In this case, the thickness lelem should be much greater
than the wavelength λX−ray = 2πc/ωX−ray of the X-ray field and, at the same time, much
smaller than the thickness of the active medium L: λX−ray � lelem � L. In addition, in (14)
φ2 = 0, φ3 = π, and φ4 = φ5 = π/2, while the amplitudes Ai,k and phases ϕi,k are random
and statistically independent quantities that obey the following probability distributions:

W
(

A2
i,k

)
= 1

Ni,k
exp

(
−A2

i,k/Ni,k

)
, 0 ≤ A2

i,k < ∞,
W(ϕi,k) = 1/(2π), 0 ≤ ϕi,k < ∞,

(15)
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where Ni,k = n(0)
tr NionπR2lelem is the number of particles that are initially in the excited

state |i〉 in the volume of the k-th elementary layer.
In the next section, we derive an analytical solution for the amplified radiation of

harmonics in the X-ray range, which will be further compared with the numerical solution
of the system of Equations (9), (11) and (12) with the initial and boundary conditions (13),
(14) and (7), respectively.

3. Analytical Solution

To derive an analytical solution, we will make a number of additional approximations.
First, we will assume that the interaction of X-ray radiation with the medium occurs in a
linear regime, and the change in the population differences at inverted transitions can be
neglected. In this case, the z- and y-polarization components of the X-ray field are amplified
independently of each other, and the amplified spontaneous emission does not affect the
character of the amplification of the seed radiation [21]. Accordingly, when deriving an
analytical solution for the emission of z-polarization harmonics, we exclude the transitions
|4〉 → |1〉 and |5〉 → |1〉 from consideration. As a result, the system of equations for slowly
varying X-ray field amplitudes and coherences at transitions |2〉 → |1〉 and |3〉 → |1〉 takes
the form

∂ẼX−ray,z
∂x = i

4πωX−ray Niondtr
c√εX−ray

(ρ̃21 − ρ̃31),
∂ρ̃21
∂τ +

[
i
(

ω
(z)
tr −ωX−ray

)
+ γz − i∆Ω cos(Ωτ + ∆Kx)

]
ρ̃21 = −i dtrntr

2} ẼX−ray,z,
∂ρ̃31
∂τ +

[
i
(

ω
(z)
tr −ωX−ray

)
+ γz + i∆Ω cos(Ωτ + ∆Kx)

]
ρ̃31 = i dtrntr

2} ẼX−ray,z,

(16)

where ω
(z)
tr =

[
3mee4Z2/

(
8}3)](1− 109F2

L/64
)

is the time-average frequency of transitions
|2〉 → |1〉 and |3〉 → |1〉 , ∆Ω = 3mee4Z2FL/

(
8}3) is the amplitude of the linear Stark effect

in the modulating field, and ∆K = Ω
(√

εX−ray/c− 1/VL

)
is the difference between the

wave numbers of the X-ray and IR fields, due to the plasma dispersion. Similar to [21,22],
within the analytical solution, we will neglect the amplified spontaneous emission of
z-polarization, which is justified at a sufficiently high intensity of the X-ray field at the
entrance to the medium, and assume ρ̃21(x, τ = 0) = ρ̃31(x, τ = 0) = 0. At the same time,
in contrast to the previous works [21,22], in the analytical solution we will not specify the
form of the temporal envelope of the seed radiation. We will further represent the slowly
varying amplitude of the X-ray field, ẼX−ray,z, as the Fourier integral:

ẼX−ray,z(x, τ) =

∞∫
−∞

Sω(x, ω)e−iωτdω, (17)

where Sω(x, ω) denotes the complex amplitude of the spectral component of the X-ray field
at the frequency ω at the depth x inside the medium. In particular, the Fourier transform of
the slowly varying amplitude of the seed radiation (7), (8), formed by a set of NH high-order
harmonics, has the form

Sω(x = 0, ω) =
qmax

∑
q=qmin

S(a)
ω (ω− q2ΩF), S(a)

ω (ω) =
A0∆tH

2
1 + exp[iω∆tH ]

ω2∆tH2 − π2 , (18)

where S(a)
ω (ω) is the amplitude spectrum of the electric-field-envelope of an individual

harmonic at the entrance to the medium.
We will further consider the second equation of system (16). We will look for its

solution in the following form:

ρ̃21(x, τ) = ρ̂21(x, τ) exp[iPΩ sin(Ωτ + ∆Kx)], (19)
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where PΩ = ∆Ω/Ω is the modulation index (the dimensionless ratio of the amplitude of
the modulating field to its frequency), and the function ρ̂21(x, τ) satisfies the equation

∂ρ̂21
∂τ +

[
i
(

ω
(z)
tr −ωX−ray

)
+ γz

]
ρ̂21 =

−i dtrn(0)
tr

2}
∞
∑

k=−∞
Jk(PΩ)e−ik∆Kx

∞∫
−∞

Sω(ω− kΩ, x)e−iωτdω,
(20)

which is obtained from (17) taking into account the equality exp[iPΩ sin(Ωt)] =
∞
∑

k=−∞
Jk(PΩ)

exp(ikΩt), where Jk(x) is the Bessel function of the first kind of order k. We will represent

ρ̂21 in the form of a Fourier integral ρ̂21 =
∞∫
−∞

ρ̂
(ω)
21 (x, ω)e−iωτdω. Then from (20) it is easy

to obtain an algebraic equation for the spectral amplitude ρ̂
(ω)
21 (x, ω) and, then, a solution

for coherence ρ̃21(x, τ):

ρ̃21(x, τ) = −i dtrn(0)
tr

2}
∞
∑

m,k=−∞
Jm(PΩ)Jk(PΩ)ei(m−k)∆Kx

×
∞∫
−∞

Sω(ω+(m−k)Ω,x)

γz+i
(

ω
(z)
tr −ωX−ray−ω−mΩ

) e−iωτdω.
(21)

In a similar way, one can obtain a solution to the third equation of system (16):

ρ̃31(x, τ) = −i dtrn(0)
tr

2}
∞
∑

m,k=−∞
(−1)m−k Jm(PΩ)Jk(PΩ)ei(m−k)∆Kx

×
∞∫
−∞

Sω(ω+(m−k)Ω,x)

γz+i
(

ω
(z)
tr −ωX−ray−ω−mΩ

) e−iωτdω.
(22)

Substituting (21) and (22) into the first equation of system (16) and performing some
transformations, we obtain an equation for the spectral amplitude of the X-ray field:

∂Sω(ω,x)
∂x = g0

∞
∑

k=−∞

J2
k (PΩ)

1−i
[
ω−

(
ω
(z)
tr −ωX−ray+kΩ

)]
/γz

Sω(ω, x)

+g0
∞
∑

k, p = −∞
p 6= 0

Jk(PΩ)J2p+k(PΩ)ei2p∆Kx

1−i
[
ω−

(
ω
(z)
tr −ωX−ray−(2p+k)Ω

)]
/γz

Sω(ω + 2pΩ, x). (23)

where g0 = 4πωX−rayd2
trn(0)

tr Nion/
(
}c√εX−rayγz

)
is the amplitude amplification factor of

resonant radiation in the absence of modulation. In accordance with (23), in a modulated
active medium, the X-ray field at a frequency ω is amplified as a result of self-action (the
first term in (23)), and also changes as a result of coherent scattering of spectral components
spaced from the considered frequency by an even multiple, 2pΩ, of the modulating field
frequency. As shown in [23], taking into account the second term in Equation (23) leads to
various interference effects, in particular, to mutual amplification of high-order harmonics
or to interference suppression of their amplification. However, the degree of influence of
the second term in (23) is determined by the ratio g0/∆K; specifically, if it is small, i.e., if
the length of the coherent interaction of the X-ray and IR fields, which is limited by the
dispersion of the plasma, is much shorter than the amplification length of the X-ray field,
then the second term can be neglected. In the considered case of a plasma of hydrogen-
like C5+ ions with an unperturbed gain g0 ≈ 90 cm−1 and concentration of free electrons
ne ≈ 1.5 × 1020 cm−3, for a modulating IR field with a wavelength Λ = 2πc/Ω ≥ 800 nm,
we have g0/∆K ≤ 0.025 � 1. Accordingly, the influence of mutual coherent scattering
of spectral components of X-ray radiation can be neglected. The applicability of this
approximation is confirmed in Section 5 by comparing the analytical solution given below
with the results of numerical calculations, which take into account, in particular, the mutual
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harmonic scattering. In this case, the X-ray field at the exit from the modulated active
medium can be written as:

ẼX−ray,z(x, τ) =

∞∫
−∞

Sω(x = 0, ω) exp

{
∞

∑
k=−∞

Gk(ω)x

}
e−iωτdω, (24)

where

Gk(ω) =
g0 J2

k (PΩ)

1− i
(
ω− δωX−ray − kΩ

)
/γz

. (25)

Here δωX−ray = ω
(z)
tr − ωX−ray is the detuning of the carrier frequency of the seed

radiation (6), (7) from the time-average frequency of the transitions |2〉 → |1〉 and |3〉 → |1〉
with which it interacts. According to (24) and (25), the gain spectrum of the modulated
active medium is centered at the frequency ω

(z)
tr . In this case, the induced gain lines are

spaced apart from each other by the frequency of the modulating field Ω (and not by
2Ω, as was assumed in [19,23]), and the corresponding gains differ from the gain of the
unmodulated medium by a factor of J2

k (PΩ). Thus, the resulting gain spectrum of the
modulated medium turns out to be symmetric with respect to the time-average frequency

of transitions |2〉 → |1〉 and |3〉 → |1〉 . Note also that since
∞
∑

k=−∞
J2
k (PΩ) = 1, the sum of

the gains of the modulated active medium over the induced gain lines of all orders is equal
to the gain in the absence of the modulating field.

4. Discussion

Consider the amplification of a set of high-order in-phase harmonics with equal
amplitudes (7), (8), and (18), which form a train of attosecond pulses. Substituting (18) into
(24), after some transformations, we obtain:

ẼX−ray,z(x, τ) =
qmax

∑
q=qmin

e−iq2ΩFτ
∞∫
−∞

S(a)
ω (ω) exp

{
∞
∑

k=−∞

g0xJ2
k (PΩ)

1−i[ω−δωX−ray−(kΩ−q2ΩF)]/γz

}
e−iωτdω.

(26)

In what follows, we will consider two typical cases: (a) Ω = ΩF, i.e., the modulating
field is a replica of the laser field used to generate high harmonics, and (b) Ω = 2ΩF,
i.e., the modulating field is the second harmonic of the laser field of the fundamental
frequency. In either case, if δωX−ray = sΩ, where s is an integer, each of the harmonics
will be in resonance with the corresponding gain line, which makes it possible to amplify
the entire set of harmonics. In addition, we will assume that the frequencies Ω and 2ΩF,
which determine the distance between both the induced gain lines and harmonics in the
emission spectrum of the seed, are much greater than the width of the gain lines, 2γz, and
the width of the spectrum of each individual harmonic, which is inversely proportional to
the duration of its envelope, ∆tH , i.e., Ω/γz � 1, ΩF/γz � 1 and Ω∆tH � 1, ΩF∆tH � 1.
In the case of a plasma of C5+ ions with the considered parameters, γz

−1~γcoll
−1 ≈ 20 fs,

and the conditions specified above are satisfied for any fields in the near and mid-IR ranges.
In this case, the largest contribution to the sum in the exponent of (26) will be due to the
term for which the resonance condition is fulfilled:

2qΩF − kΩ = δωX−ray. (27)

It follows from condition (27) and the above assumptions (in particular, δωX−ray = sΩ)
that the harmonic with number q interacts with only one gain line with number k + s.

In the following, we will assume that the emission spectrum of harmonics at the
entrance to the medium is symmetric with respect to the frequency ω

(z)
tr . In this case, to

the left and to the right of the frequency ω
(z)
tr , there is an equal number of high harmonics
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(in this case, if the frequencies ωX−ray and ω
(z)
tr do not coincide and δωX−ray 6= 0, then

qmin 6= −qmax). Due to the symmetry of the induced gain spectrum of the modulated
medium, this makes it possible to amplify in the same way both the left and right (with
respect to frequency ω

(z)
tr ) parts of the high harmonic spectrum, which ensures the homo-

geneity of their amplification. In the case of a modulating field of a fundamental frequency,
Ω = ΩF, at δωX−ray = 0, the condition (27) is satisfied for k = 2q. Accordingly, the
harmonics in the emission spectrum of the seed are in resonance with the gain lines of even
order (even k), while the number of harmonics NH is odd. It is this case that was considered
in [19]. At the same time, at Ω = ΩF and δωX−ray = −Ω, the harmonics are in resonance
with the amplification lines of odd orders, corresponding to k = 2q+ 1, while the number of
amplified harmonics is even. In practice, this or that case can be realized by fine tuning the
harmonic frequencies. Note that in both cases, half of the amplification lines are not used,
which reduces the efficiency of signal amplification. Other integer values are equivalent to
δωX−ray = 0 or δωX−ray = −Ω, since the carrier frequency of the harmonics is determined
with an accuracy of 2ΩF (and the spectrum of harmonics may be asymmetric with respect
to the carrier frequency, while remaining symmetric with respect to the frequencies of
transitions |2〉 → |1〉 and |3〉 → |1〉 ).

In the case of a modulating field of doubled fundamental frequency, Ω = 2ΩF, at
δωX−ray = 0 the condition (27) is satisfied for k = q. In this case, the spectral components
of the seed radiation are in resonance with the gain lines of both even and odd orders, and
the gain of the active medium is used most efficiently.

Next, we investigate the optimal conditions for amplification of attosecond pulse
trains formed by a set of high-order harmonics resonant with the induced gain lines of
(a) even, (b) odd, and (c) all orders. In contrast to [19], we will formalize the search for
optimal values of the modulation index corresponding to both the most efficient and the
most uniform amplification of harmonics of different orders.

The efficiency of harmonic amplification will be characterized by the value

gaver =
1

NH

NH

∑
k

J2
k (PΩ), (28)

which determines the average harmonic gain normalized to the gain in the absence of a
modulating field, g0. The summation in (28), as well as in (29), is carried out over those k
for which condition (27) is satisfied, where qmin ≤ q ≤ qmax, i.e., over harmonics of those
orders that are present in the spectrum of incident radiation (6), (7). In this case, NH denotes
the number of terms, not the upper limit of summation.

The homogeneity of the gain distribution of different harmonics will be characterized
by the value

δg/gaver =

√
1

NH

NH
∑
k

(
J2
k (PΩ)− gaver

)2

gaver
, (29)

which corresponds to the root-mean-square (rms) deviation of the normalized gain factors
of harmonics from their mean value, gaver.

The most efficient harmonic amplification requires maximizing the value gaver. At
the same time, for the most uniform amplification of harmonics of different orders, it is
required to minimize the value δg/gaver. Typical dependences of gaver and δg/gaver on the
modulation index are shown in Figure 1. Figure 1a illustrates the case of amplification of a
set of 7 harmonics resonant with even-order gain lines (k = {0, ±2, ±4, ±6}, with NH = 7
in sums (28) and (29), whereas Figure 1b shows amplification of a set of 6 harmonics
resonant with the gain lines of odd orders (k = {±1, ±3, ±5}, with NH = 6). In both
cases, the modulating field of the fundamental frequency, Ω = ΩF, is used. At the same
time, Figure 1c corresponds to the modulating field of the doubled fundamental frequency,
Ω = 2ΩF, and the amplification of 7 harmonics resonant with the gain lines of all orders
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(k = {0, ±1, ±2, ±3} and NH = 7). The dotted lines in Figure 1a,b show the sums of the
squares of the Bessel functions of all even and odd orders, divided by the number of

amplified harmonics: Seven = 1
NH

∞
∑

k=−∞
J2
2k(PΩ) and Sodd = 1

NH

∞
∑

k=−∞
J2
2k+1(PΩ), respectively.

In Figure 1c, the dotted line shows the sum Seven + Sodd = 1/NH . As follows from these
figures, at low values of the modulation index, PΩ < NH , the value gaver in Figure 1a,b
is gaver ≈ Seven and gaver ≈ Sodd, respectively. Similarly, when PΩ < NH/2, for gaver
in Figure 1c we have gaver ≈ 1/NH . In this case, the average harmonic gains reach their
maximum values, while their standard deviation is also close to the maximum. At PΩ ≈ NH
in Figure 1a,b and PΩ ≈ NH/2 in Figure 1c, the average harmonic gain remains rather large,
while the rms deviation decreases significantly. With a further increase in the modulation
index, PΩ > NH in Figure 1a,b and PΩ > NH/2 in Figure 1c, the average gain falls off
rapidly, while the rms deviation becomes an oscillating function of PΩ.
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Figure 1. Dependences of gaver (28) (left axis, blue solid curve) and δg/gaver (29) (right axis, red solid
curve) on the modulation index PΩ for the cases of (a) amplification of NH = 7 high harmonics
resonant with even gain lines (k = {0; ±2; ±4; ±6}), (b) amplification of NH = 6 high harmonics
resonant with odd gain lines (k = {±1; ±3; ±5}), and (c) amplification of NH = 7 high harmonics
resonant with gain lines of all orders (k = {0; ±1; ±2; ±3}). Blue dashed curves (left axis) show the
sums of the squares of the Bessel functions of (a) all even orders, (b) all odd orders, and (c) all orders,
divided by the number of amplified harmonics, NH.

This behavior of the dependences gaver(PΩ) and (δg/gaver)(PΩ) is typical for any
number of amplified harmonics and is explained as follows. In the absence of modulation,
at PΩ = 0, the gain is concentrated at the unperturbed frequency of the inverted transition.
In this case, only the central component, which is resonant with the gain line with k = 0, is
amplified in the harmonic emission spectrum. With an increase of the modulation index,
the gain is redistributed over the combination frequencies in the amplification bandwidth
∆ωampl ' 2PΩΩ. However, as long as PΩ < NH − 1 in the case of a modulating field of the
fundamental frequency, Ω = ΩF, or PΩ < NH/2− 1/2 in the case of a modulating field of a
doubled fundamental frequency, Ω = 2ΩF, the gain spectrum of the active medium remains
narrower than the emission spectrum of the seed, ∆ωH = 2(NH − 1)ΩF < ∆ωampl . As a
result, the harmonics furthest from the time-average transition frequency are not amplified,
which leads to a narrowing of the X-ray spectrum and an increase in the duration of
attosecond pulses in the process of their amplification, and also causes a large rms deviation
of the gains of harmonics of different orders. At PΩ ≈ NH − 1 for the modulating field of
the fundamental frequency, Ω = ΩF, or PΩ ≈ NH/2− 1/2 for the modulating field of the
doubled fundamental frequency, Ω = 2ΩF, the width of the gain spectrum of the active
medium reaches the width of the seed emission spectrum, ∆ωampl ≈ ∆ωH . In this case,
the gains become noticeably nonzero for all harmonics in the emission spectrum of the
seed, which makes it possible to preserve the spectral width and duration of the amplified
attosecond pulses and leads to a noticeable decrease of the rms deviation of the harmonic
gains from their mean value. A further increase in the modulation index to PΩ > NH − 1
for Ω = ΩF and to PΩ > NH/2− 1/2 for Ω = 2ΩF leads to the fact that the gain spectrum
of the medium becomes wider than the emission spectrum of the seed, ∆ωampl > ∆ωH .
In this case, the gain is redistributed, among other things, over combination frequencies
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absent in the seed radiation spectrum, which, taking into account the constancy of the sum
of the gains over all frequencies, leads to a decrease in the average harmonic gain.

Thus, the optimal combination of efficiency and homogeneity of harmonic amplifica-
tion is achieved under conditions of approximate equality of the width of the gain spectrum
and the width of the emission spectrum of the seed,

∆ωampl ≈ ∆ωH , (30)

and corresponds to the modulation index at which the minimum value of δg/gaver is
achieved in the vicinity of PΩ ≈ NH − 1 for the modulating field of the fundamental
frequency, Ω = ΩF, and of PΩ ≈ NH/2− 1/2 for the modulating field of the doubled
fundamental frequency, Ω = 2ΩF. Next, we investigate the dependences of the efficiency
and homogeneity of harmonic amplification on the modulation index in this regime.

For this, it will be convenient to define the number of harmonics consistent with the
gain spectrum of the medium, Nmatch, as a following continuous function (which is a real
number) of the modulation index:

Nmatch(PΩ) =
∞

∑
k=−∞

fk(PΩ), (31)

where fk(PΩ) is a weighting factor that differs from zero only for those values of k, which at
a given modulation index correspond to gain lines with a substantially nonzero amplitude:

fk(PΩ) =



0, k < −(PΩ + ∆k),
cos2

(
π
2 ·

k+PΩ
∆k

)
, −(PΩ + ∆k) ≤ k ≤ −PΩ,

1, −PΩ < k < PΩ,
cos2

(
π
2 ·

k−PΩ
∆k

)
, PΩ ≤ k ≤ PΩ + ∆k,

0, k > PΩ + ∆k,

(32)

where ∆k = 1/2 in the case of harmonics resonant with the gain lines of even or odd
orders (Ω = ΩF), and ∆k = 1/4 for harmonics resonant with the gain lines of all orders
(Ω = 2ΩF). The average gain of the harmonic spectrum, which corresponds to definition
(31), (32), normalized to the gain in the absence of modulation, has the form

g(match)
aver =

1
Nmatch(PΩ)

∞

∑
k=−∞

fk(PΩ)J2
k (PΩ), (33)

while the normalized rms deviation of the (normalized) gains from their mean value is
determined by:

(δg/gaver)match =
1

g(match)
aver (PΩ)

√
1

Nmatch(PΩ)

∞

∑
k=−∞

fk(PΩ)
(

J2
k (PΩ)− g(match)

aver (PΩ)
)2

. (34)

Note that the quantity Nmatch(PΩ) characterizes with good accuracy the number of gain
lines of a modulated active medium with a substantially nonzero amplitude. Accordingly,
the quantities g(match)

aver and (δg/gaver)match are intrinsic characteristics of the efficiency and
homogeneity of the gain spectrum of the modulated medium (and depend only on the
modulation index), which distinguishes them from the parameters gaver (28) and δg/gaver
(29), which characterize the amplification of an arbitrary number of harmonics (these
quantities are functions of two variables, the number of harmonics and the modulation
index). The dependencies (28), (29) approximately coincide with (33), (34) only if the
condition (30) is fulfilled, which makes this regime special and serves as an additional
confirmation of its optimality. It should be noted here that the rms deviation of the harmonic
amplification factors (29) can be reduced relative to the value (34) at the cost of reducing
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the average harmonic amplification factor (28) relative to the value (33) by increasing the
modulation index relative to its optimal value (PΩ ≈ NH − 1 in the case Ω = ΩF and
PΩ ≈ (NH − 1)/2 in the case Ω = 2ΩF) and transition to the regime ∆ωampl > ∆ωH (see,
in particular, Figure 1).

Next, we analyze the dependences (33) and (34) on the modulation index for harmonics
resonant with the gain lines of even, odd, and all orders. Note again that, in contrast to
(28) and (29), these dependences imply that the number of amplified harmonics changes in
proportion to the modulation index (30)–(32).

First of all, we will consider the case of harmonics resonant with the amplification
lines of even orders: Ω = ΩF, δωX−ray = 0. The corresponding dependences of the normal-

ized average gain g(match)
aver (33) and the rms deviation of the gains from their mean value

(δg/gaver)match (34), as well as the number of harmonics matched with the gain spectrum of
the medium Nmatch (31), (32) on the modulation index PΩ for this case are shown in Figure 2
as solid curves. The circles in Figure 2c show the minimum values of the function δg/gaver
(29) for an odd number of harmonics in the vicinity of the modulation index PΩ ≈ NH − 1.
In Figure 2b, circles mark the corresponding values of the normalized average harmonic
gain gaver (28), whereas in Figure 2a, the circles mark the optimal (minimizing the function
δg/gaver) values of the modulation index for the indicated values NH . In all cases, the circles
lie on the solid curves, while in Figure 2c, the circles are located near the local minima of the
function (δg/gaver)match. This agreement is achieved for the values of the modulation index
corresponding to the local minima of the function δg/gaver under condition (30), makes
the choice of these local minima special and indicates the optimality of the corresponding
values. In this case, the degree of agreement between the values of the functions gaver and
g(match)

aver , as well as between δg/gaver and (δg/gaver)match, is determined by the value ∆k in
the definition of the weight coefficients (32): for larger values of ∆k, the difference between
the functions increases, while for smaller values of ∆k, functions (33) and (34) become less
smooth. The dotted curves in Figure 2a,b show the functions PΩ + 1 and 1/(2PΩ + 2),
respectively, reflecting the main trend of the dependences of the number of harmonics
Nmatch and the normalized average gain g(match)

aver on the modulation index in the considered
gain regime.
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Figure 2. (a) Number of harmonics matched with the gain spectrum of the medium, Nmatch (31),

(b) the normalized average gain of the matched harmonic spectrum, g(match)
aver (33), and (c) the nor-

malized standard deviation of the gains, (δg/gaver)match (34), as functions on the modulation index
PΩ for harmonics resonant with even-order amplification lines. The circles mark the quantities NH,
gaver, and δg/gaver, which correspond to the minima of function (29) for an odd number of harmonics
3 ≤ NH ≤ 19 in the vicinity of PΩ ≈ NH − 1; solid curves show dependences (31)–(34), and dashed
lines in (a,b) correspond to analytical estimates Nmatch ≈ PΩ + 1 and gaver

(match) ≈ 1/(2PΩ + 2).

As follows from Figure 2, the most efficient and uniform gain is achieved for a com-
bination of 3, 5, or 7 harmonics. In these cases, the optimal values of the modulation
index are equal to (PΩ)

(even)
3H ' 1.84, (PΩ)

(even)
5H ' 4.22, and (PΩ)

(even)
7H ' 6.45, respec-

tively, the average gains are (gaver)
(even)
3H ' 0.1, (gaver)

(even)
5H ' 0.1, and (gaver)

(even)
7H ' 0.084,

and the standard deviations are equal to (δg/gaver)
(even)
3H ' 0, (δg/gaver)

(even)
5H ' 0.171,

and (δg/gaver)
(even)
7H ' 0.111. A further increase in the number of amplified harmonics
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leads to a sharp (several times) increase of the ratio δg/gaver with a gradual decrease of
the average gain gaver. For example, for a set of seventeen harmonics, (PΩ)

(even)
17H = 16.9,

(gaver)
(even)
17H ' 0.028, and (δg/gaver)

(even)
17H ' 0.729.

Next, we will consider the case of amplification of a set of high harmonics resonant
with the gain lines of odd orders: Ω = ΩF, δωX−ray = −Ω. The corresponding depen-

dences of Nmatch, g(match)
aver , and (δg/gaver)match on the modulation index in the regime of

matching the widths of the amplification and harmonic emission spectra are shown in
Figure 3. Designations are the same as in Figure 2. The circles show the values of the
modulation index in the vicinity of PΩ ≈ NH − 1, minimizing the ratio δg/gaver for an
even number of harmonics 2 ≤ NH ≤ 18 (Figure 3a), as well as the values of the functions
gaver and δg/gaver for the given modulation indices (Figure 3b,c). Note that for NH = 16
the corresponding circle is not shown, since the value PΩ ≈ 15 turns out to be in the
vicinity of the local maximum instead of the minimum of the function (δg/gaver)match for
this number of harmonics; the nearest minima are reached at PΩ ≈ 14 and PΩ ≈ 18. For
uniform amplification of the combination of 16 harmonics, one should choose PΩ ≈ 18;
in this case, the gain efficiency is the same as for the set of 18 harmonics. The dotted
curves in Figure 3a,b depict the functions PΩ + 1 and 1/(2PΩ + 2), respectively, reflect-
ing the main trend of Nmatch(PΩ) and g(match)

aver (PΩ) dependences. As follows from Fig-
ure 3, one can amplify most efficiently and with minimal distortions the sets of 2, 4, 6,
or 8 harmonics. The optimal values of the modulation index in these cases are equal
to (PΩ)

(odd)
2H = 1.84, (PΩ)

(odd)
4H = 3.05, (PΩ)

(odd)
6H = 5.27, and (PΩ)

(odd)
8H = 7.76, respec-

tively; the normalized mean harmonic gains are (gaver)
(odd)
2H ' 0.339, (gaver)

(odd)
4H ' 0.102,

(gaver)
(odd)
6H ' 0.101, and (gaver)

(odd)
8H ' 0.067, and the normalized standard deviations of

the gains are (δg/gaver)
(odd)
2H = 0, (δg/gaver)

(odd)
4H ' 0.007, (δg/gaver)

(odd)
6H ' 0.134, and

(δg/gaver)
(odd)
8H ' 0.322.
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harmonics, and the choice between them is determined by the carrier frequency of the 
seed radiation (i.e., by the value X rayδω − ). 

Finally, we will consider the case of a modulating field of doubled fundamental 
frequency and harmonics resonant with gain lines of all orders: 2 FΩ = Ω , 

0X rayδω − = . The dependences of the quantities matchN , ( )match
averg , and ( )aver matchg gδ  

(as well as averg  and averg gδ  under condition (30)) on the modulation index for this 
case are shown in Figure 4. The designations are the same as in Figures 2 and 3. The 
dotted curves in Figure 4a,b show estimates for the number of amplified harmonics 
matched with the gain spectrum of the medium (30) and the average harmonic gain, 
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Solid curves are plotted according to (31)–(34), and dashed lines in (a,b) correspond to estimates
Nmatch ≈ PΩ + 1 and gaver

(match) ≈ 1/(2PΩ + 2).

In general, Figure 3 is similar to Figure 2. These figures show that, to amplify a larger
number of harmonics, it is necessary to use larger values of the modulation index; with
an increase of the modulation index, the efficiency of harmonic amplification decreases,
and the amplification spectrum becomes more inhomogeneous. It is seen that, if the value
of the modulation index is optimal (minimizes the value δg/gaver) for gain lines of even
orders, Figure 2c, it will be the least suitable for the gain lines of odd orders, Figure 3c;
see also Figure 1a,b. In addition, the values of the modulation index corresponding to
the most uniform amplification of a certain number of harmonics resonant with gain lines
of odd orders, are in the interval between the values of the modulation index, which are
optimal for amplification of the nearest number of harmonics resonant with amplification
lines of even orders. From the above, one can conclude that the gain lines of even and odd
orders can be used with equal success to amplify a set of high harmonics, and the choice
between them is determined by the carrier frequency of the seed radiation (i.e., by the value
δωX−ray).
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Finally, we will consider the case of a modulating field of doubled fundamental
frequency and harmonics resonant with gain lines of all orders: Ω = 2ΩF, δωX−ray = 0.

The dependences of the quantities Nmatch, g(match)
aver , and (δg/gaver)match (as well as gaver and

δg/gaver under condition (30)) on the modulation index for this case are shown in Figure 4.
The designations are the same as in Figures 2 and 3. The dotted curves in Figure 4a,b show
estimates for the number of amplified harmonics matched with the gain spectrum of the
medium (30) and the average harmonic gain, 2PΩ + 1 and 1/(PΩ + 1), respectively. As
follows from the comparison of Figure 4 with Figures 2 and 3, the case under consideration
differs significantly from the case of the modulating field of the fundamental frequency
and harmonics resonant with the gain lines of even or odd orders (see also Figure 1).
To amplify a fixed number of harmonics, the optimal value of the modulation index in
Figure 4 is approximately two times smaller, and the average value of the harmonic gain is
approximately two times larger than in Figures 2 and 3. For example, for amplification of
seven harmonics resonant with the gain lines of even orders, the optimal modulation index
is (PΩ)

(even)
7H = 6.45, and the average value of the normalized gain is (gaver)

(even)
7H ' 0.084,

while for amplification of seven harmonics resonant with the gain lines of all orders,
(PΩ)

(all)
7H = 3.05 and (gaver)

(all)
7H ' 0.138, respectively. However, for not too many amplified

harmonics (and small values of the modulation index), the gain spectrum turns out to be
much more inhomogeneous than for harmonics resonant with the gain lines of even or
odd orders (see Figures 2c, 3c and 4c). In particular, for seven harmonics resonant with
gain lines of even orders, (δg/gaver)

(even)
7H ' 0.111, while for seven harmonics resonant

with gain lines of all orders, (δg/gaver)
(all)
7H ' 0.467. On the other hand, as can be seen

from the comparison of Figures 2 and 4 and Figure 3, with an increase in the number of
amplified harmonics, the difference in the degree of gain inhomogeneity decreases, and in
certain cases, the use of gain lines of all orders makes it possible to achieve a lower value of
δg/gaver. Together with the large average harmonic gain, this makes the use of gain lines of
all orders preferable for the number of harmonics NH ≥ 10. For example, when amplifying
17 harmonics using gain lines of all orders, the optimal modulation index is (PΩ)

(all)
17H = 7.75,

which corresponds to (gaver)
(all)
17H ' 0.057 and (δg/gaver)

(all)
17H ' 0.616, while when using

amplification lines of even orders, we have (PΩ)
(even)
17H = 16.9, (gaver)

(even)
17H ' 0.028, and

(δg/gaver)
(even)
17H ' 0.729. In addition, efficient amplification of the seed radiation when

using gain lines of all orders increases the ratio of the intensity of the useful signal to
the intensity of the amplified spontaneous emission of y-polarization generated at the
transitions |4〉 → |1〉 and |5〉 → |1〉 of the active medium.
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Summarizing this section, we note that the sum of the gains over all the induced
gain lines does not depend on the modulation index, which is expressed by equality

∞
∑

k=−∞
J2
k (PΩ) = 1. With an increase of the modulation index, the number of gain lines

with a substantially nonzero amplitude increases proportional to PΩ, and the average
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gain along such lines decreases proportional to 1/PΩ. In this case, the gain is distributed
approximately equally between the even- and odd-order gain lines, which makes them
equally suitable for amplifying a set of high harmonics. The best amplification of a set of
harmonics is achieved if the width of the harmonic spectrum is approximately equal to the
width of the gain spectrum of the medium (30). In this case, to amplify a small number of
harmonics, 2 ≤ NH ≤ 8, it is preferable to use the gain lines of even or odd orders and,
accordingly, the modulating field of the fundamental frequency, which for these values of
NH makes it possible to achieve the most uniform amplification of harmonics of different
orders. At the same time, for a larger number of harmonics, NH ≥ 10, it is preferable
to use the gain lines of all orders and, accordingly, the modulating field of the doubled
fundamental frequency, which in this case makes it possible to double the gain coefficients
without losing the homogeneity of the gain spectrum.

In the next section, the above conclusions of the analytical theory are compared with
the results of the numerical solution of the system of equations presented in Section 2, in its
most general form, taking into account the nonlinearity of the medium, as well as amplified
spontaneous emission on inverted transitions. We will consider the cases of (a) a relatively
small number of harmonics, namely (i) 7 harmonics resonant with gain lines of even orders,
(ii) 6 harmonics resonant with lines of odd orders, and (iii) 7 harmonics resonant with lines
of all orders, as well as (b) a larger number of harmonics, namely, a set of 17 harmonics
resonant with the amplification lines of (i) even and (ii) all orders.

5. Numerical Results

In numerical calculations, we assumed that high-order in-phase harmonics (7), (8)
generated by a laser field with a wavelength ΛF = 2πc/ΩF = 2.1 µm are present at the
entrance to the medium. These harmonics form a train of attosecond pulses, the temporal
envelope of which is determined by Equation (8) and the peak intensity is I0 = 1012 W/cm2,
regardless of the number of amplified harmonics.

First of all, we will compare the cases of amplification of (i) 7 harmonics resonant with
even order gain lines, (ii) 6 harmonics resonant with odd order lines, and (iii) 7 harmonics
resonant with gain lines of all orders. In these cases, the pulse duration will be 430 as and 530
as for a combination of 7 and 6 harmonics, respectively. In the case of 7 harmonics resonant
with even order gain lines, the optimal modulation index is equal to (PΩ)

(even)
7H = 6.45

and corresponds to the intensity (IL)
(even)
7H ' 2.74× 1015 W/cm2 of the modulating field

of the fundamental frequency (with a wavelength of 2.1 µm). For 6 harmonics resonant
with odd order gain lines, it is necessary to use a modulating field of the same wavelength
(2.1 µm) and a slightly lower intensity (IL)

(odd)
6H ' 1.83× 1015 W/cm2, which corresponds

to the modulation index (PΩ)
(odd)
6H = 5.27. To amplify 7 harmonics resonant with the gain

lines of all orders, the modulating field must have a doubled fundamental frequency and a
wavelength of 1.05 µm. In this case, the optimal intensity of the modulating field is equal to
(IL)

(all)
7H ' 2.45× 1015 W/cm2 and corresponds to the modulation index (PΩ)

(all)
7H = 3.05.

The results of numerical calculations for the above three cases and an active medium
5 mm thick with an unperturbed amplitude gain g0 = 90 cm−1 are shown in Figure 5. In the
cases of modulation of the active medium by a laser field of fundamental frequency and
amplification of a set of six, Figure 5a,b, or seven, Figure 5c,d, harmonics, resonant with the
gain lines of odd or even orders, respectively, the shape of attosecond pulses is preserved
with good accuracy, which is due to insignificant distortion of the spectra of harmonics,
see Figure 5b,d. In these cases, in accordance with the conclusions of the analytical theory,
with a decrease in the number of amplified harmonics and, as a consequence, in the used
modulation index, the amplification efficiency increases. For example, the peak intensity
of pulses formed by a set of 7 and 6 harmonics resonant with the gain lines of even and
odd orders, respectively, increases by a factor of 26 and 49 during the amplification process.
At the same time, in both cases, the amplified signal turns out to be several times weaker
than the amplified spontaneous emission of y-polarization. The intensity of harmonic
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radiation can be raised to the level of amplified spontaneous emission by modulating the
active medium of an X-ray laser by the second harmonic of the IR field of the fundamental
frequency, Figure 5e,f. In this case, the train of pulses formed by a set of seven harmonics
resonant with the gain lines of all orders, at the same thickness of the medium, is amplified
in intensity by a factor of 220. However, the shape of the pulses in this case is significantly
distorted, see the inset in Figure 5e, due to the less uniform amplification of harmonics of
different orders, Figure 5f. Particularly, harmonics detuned from the time-average transition
frequency by ±4ΩF are amplified faster than the others, which leads to a transformation
of the pulse sequence into the beats of these two spectral components with an increase
in the thickness of the medium. It should be noted that the spectral-temporal distortions
of radiation decrease with decreasing optical thickness of the medium, which, together
with a high amplification efficiency, makes the use of a modulating field with a doubled
fundamental frequency and gain lines of all orders preferable in the case of an active
medium with a limited optical thickness. Thus, the use of a modulating field with a
doubled fundamental frequency softens the requirements for the active medium of a
plasma-based X-ray laser, since it makes it possible to achieve a prescribed amplification of
the harmonic signal with a smaller optical thickness of the medium.

1 
 

 

Figure 5. (a,c,e) Time dependence of the intensity of z-polarized harmonic radiation (left axis,
blue curve), as well as y-polarized amplified spontaneous radiation (right axis, red curve) at the
exit from a modulated active plasma of C5+ ions with a thickness of 5 mm, free-electron density of
ne = 1.5 × 1020 cm−3 and an unperturbed amplitude gain of g0 = 90 cm−1. The intensity is normalized
to the peak intensity of the seed, I0 = 1012 W/cm2. (a) corresponds to the case of 6 harmonics resonant

with the gain lines of odd orders with (PΩ)
(odd)
6H = 5.27; (c)—to the case of 7 harmonics resonant

with even order gain lines with (PΩ)
(even)
7H = 6.45; (e)—7 harmonics resonant with the gain lines of

all orders with (PΩ)
(all)
7H = 3.05. The insets show the pulse shapes at the entrance (black curve) and

exit (blue curve) from the medium in the envelope maxima of the corresponding pulse sequences.
(b,d,f) Amplitude spectra of the amplified harmonic emission (left axis, blue curve), as well as
the harmonic phases at their carrier frequencies (right axis, red stars). The spectral amplitude is
normalized to the amplitude of harmonics in the emission spectrum of the seed.

Next, we will consider the amplification of a set of 17 harmonics that form a train of
pulses with a duration of 160 as. If the active medium is modulated by a laser field of funda-
mental frequency (with a wavelength of 2.1 µm) and the harmonics are in resonance with the
gain lines of even orders, then the optimal value of the modulation index is (PΩ)

(even)
17H = 16.9
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and corresponds to the intensity of the modulating field (IL)
(even)
17H ' 1.88× 1016 W/cm2. At

the same time, for a modulating field of doubled fundamental frequency with a wavelength
of 1.05 µm and harmonics in resonance with the gain lines of all orders, the optimal values
of the modulation index and intensity of the modulating field are (PΩ)

(all)
17H = 7.75 and

(IL)
(all)
17H ' 1.58× 1016 W/cm2, respectively. The results of numerical calculations for these

cases and an active medium 5 mm thick with an unperturbed amplitude gain g0 = 90 cm−1

are shown in Figure 6. As follows from Figure 6a, when using gain lines of even orders, the
peak intensity of the pulse train increases by a factor of only 3.1, while when using the gain
lines of all orders, the pulses are amplified by a factor of about 13 (Figure 6c). In this case,
despite the less homogeneous spectrum of harmonics when they are in resonance with gain
lines of all orders (compare Figure 6d with Figure 6b), the shape of the generated pulses is
well preserved, and only the distortions of the pedestal are quite significant. Note also that
due to the narrowing of the spectrum of each individual harmonic during amplification,
the duration of the amplified signal envelope in Figures 5 and 6 turns out to be longer than
the duration of the seed radiation (8).
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Finally, we will compare the analytical solution obtained in Section 3 with the results
of numerical calculations. Figure 7 shows the corresponding spatial dependences of the
peak intensity of harmonic radiation for the cases considered above (see Figures 5 and 6). It
can be seen that the analytical solution is in good agreement with numerical calculations
in the region of small thicknesses of the medium, where the interaction of X-ray radiation
with the medium occurs in a linear regime, and the change in the population differences at
inverted transitions is negligible. Such an agreement justifies the approximations made
in deriving the analytical solution, in particular, the neglect of mutual coherent scattering
of the harmonics. At the same time, with an increase in the thickness of the medium, the
analytical solution overestimates the value of the peak radiation intensity, since it does
not take into account the decrease in population inversion at resonance transitions. With a
further increase in the thickness of the medium, the slope of the analytical dependences
increases, which is due to the degeneration of the harmonic spectrum into a set of two
(symmetric relative to the average transition frequency) spectral components that are in
resonance with the most intense gain lines. The amplification factors for these harmonics
exceed the average value, which leads to their dominance at a sufficiently large medium
thickness. For example, in the case of amplification of 7 harmonics using gain lines of all
orders, harmonics detuned from the average transition frequency by ±4ΩF dominate. In
numerical calculations, this effect is not observed, since the exponential growth of harmonic
amplitudes is limited by the influence of nonlinearity caused by changes in the populations
of the resonant states. As a result, starting with a certain thickness of the medium, the
growth of the peak radiation intensity slows down and, ultimately, stops. This is due to the
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depletion of the population inversion by the amplified radiation (including the amplified
spontaneous emission of y-polarization) and the consequent shift of the time interval,
during which the amplification is achieved, to the leading edge of the harmonic pulse.
Specifically, at a sufficiently large thickness of the medium, the duration of amplification
becomes shorter than the duration of the amplified signal. In this case, the maximum of the
envelope of the pulse train shifts towards earlier times, and the peak intensity of the pulses
remains constant.
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Figure 7. Dependence of the peak intensity of the amplified harmonic radiation on the thickness of
the active medium, x, with an unperturbed gain in amplitude of g0 = 90 cm−1 and the free-electron
density of ne = 1.5 × 1020 cm−3. Green curves correspond to a set of 7 harmonics resonant with

the gain lines of all orders and the modulation index (PΩ)
(all)
7H = 3.05, blue curves—to a set of

6 harmonics resonant with the gain lines of odd orders and (PΩ)
(odd)
6H = 5.27, red curves—to a set of

7 harmonics resonant with the gain lines of even orders and (PΩ)
(even)
7H = 6.45, black curves—to a set

of 17 harmonics resonant with the gain lines of all orders and (PΩ)
(all)
17H = 7.75, and orange curves—to

a set of 17 harmonics resonant with the gain lines of even orders and (PΩ)
(even)
17H = 16.9. Solid curves

show the results of the numerical solution of the system (9), and the dashed lines show the results
of the analytical solution (24). The purple dashed curve shows the spatial dependence of the peak
intensity of the amplified spontaneous emission of y-polarization.

Figure 7 also shows a typical spatial dependence of the peak intensity of the amplified
spontaneous emission of y-polarization (purple dashed curve). It can be seen that amplified
spontaneous emission can be neglected for the medium lengths up to 2.3 mm, since its
intensity is much lower than the intensity of the amplified signal. Note that Figure 7 shows
only one curve for the y-polarization radiation, since the modulating field and harmonic
emission have no significant effect on its envelope, see Figures 5 and 6.

6. Conclusions

In this work, we investigated the efficiency of amplification of attosecond pulses
formed by a set of high-order in-phase harmonics of the IR field (separated by a doubled
fundamental frequency of the IR field) in the hydrogen-like active medium of a plasma-
based X-ray laser modulated either by a laser field of fundamental frequency or its second
harmonic. The optimal conditions for the amplification of a set of a given number of
harmonics in both cases are found. An analytical solution is obtained that describes the
amplification of a set of high-order harmonics with an arbitrary envelope (and an arbitrary
shape of the spectral line of an individual harmonic). It is shown that modulating the
hydrogen-like active medium with the second harmonic of the fundamental frequency
allows to significantly enhance an amplification.

When the modulating field of fundamental frequency is used, the harmonics can be in
resonance with the gain lines of either even or odd orders. The choice between the gain
lines to be used is determined only by the carrier frequency of the harmonic radiation,
since they are equally suitable for amplifying attosecond pulses (providing comparable
efficiency and homogeneity of harmonic amplification). Using the modulating field of
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the doubled fundamental frequency allows all sidebands (even and odd) produced by
this field in the gain spectrum to contribute to amplification of high-harmonics. However,
for a set of a small number of harmonics, the gain spectrum becomes much less uniform.
Nevertheless, with an increase in the number of amplified harmonics, the difference in
the homogeneity of the gain spectrum in all three cases (gain lines of even, odd, or all
orders) practically disappears, which makes preferable the use of a modulating field with a
doubled fundamental frequency.

The conclusions of the analytical theory were compared with the results of the numer-
ical solution of the Maxwell–Bloch system of equations for an active plasma medium based
on hydrogen-like ions C5+ and resonant radiation of harmonics with a wavelength in the
vicinity of 3.4 nm (in the “water window” range). In particular, for realistic parameters
of the active medium, it was shown that it is possible to amplify a train of pulses with a
duration of 430 as, formed by a combination of seven high-order harmonics of a laser field
with a wavelength of 2.1 µm, by a factor of 220 in intensity when using a modulating field
of doubled fundamental frequency. When using the modulating field of the fundamental
frequency with the same parameters of the active medium, the pulses are amplified by
a factor of 26. In addition, it is shown that it is possible to amplify a sequence of 160 as
pulses, formed by 17 high-order harmonics of a laser field with a wavelength of 2.1 µm,
by a factor of 13 in intensity when using a modulating field with a doubled fundamental
frequency, which is by a factor of 4.2 greater than for an active medium modulated by a
laser field of fundamental frequency.

The obtained results open up the possibility of efficient amplification of high-harmonic
radiation, soften the requirements for the parameters of an active medium of a plasma
X-ray laser, and allow for more variable selection of the parameters of IR sources. Enhanced
spectral combs and sequences of attosecond VUV/X-ray radiation pulses can be used in
X-ray spectroscopy, as well as attosecond metrology and chronoscopy.
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