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Abstract

In this note, we study a large class of stochastic wave equations with spatial dimension
less than or equal to 3. Via a soft application of Malliavin calculus, we establish that
their random field solutions are spatially ergodic.
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1 Introduction
In this article, we fix d € {1, 2,3} and consider the stochastic wave equation

0%u .
ﬁ_Au—&-o(u)W, (1.1)

on R; x R? with initial conditions u(0,z) = 1 and %(O7 x) =0, where A is Laplacian in
the space variables and W is a centered Gaussian noise with covariance

E[W(t, )W (s,y)] = do(t — s)v(x —y). (1.2)
Throughout this article, we fix the following conditions:

(C1) o: R — R is Lipschitz continuous with Lipschitz constant L € (0, c0).
(C2) v is a tempered nonnegative and nonnegative definite measure, whose Fourier
transform u satisfies Dalang’s condition:

p(dz)
/Rd TH R < (1.3)

where | - | denotes the Euclidean norm on R¢.

Conditions (C1) and (C2) ensure that equation (1.1) has a unique random field solution,
which is adapted to the filtration generated by W, such that sup {E[|u(t,z)[*] : (¢, z) €
[0,T] x R} is finite for all T € (0,00) and k > 2, and

u(t,z) =1+ /0 " Gt — s,z —y)o(u(s,y))W(ds,dy), (1.4)
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Spatial ergodicity of stochastic wave equations

where the stochastic integral is defined in the sense of Dalang-Walsh and G(t — s,z — y)
denotes the fundamental solution to the corresponding deterministic wave equation, i.e.

1 .
§l{|o|<t}7 ifd=1
1 .
Glt,e) = Wlwq}, ifd=2 (1.5)
1 .
RO}, lfd:37

with o; denoting the surface measure on 9B, := {z € R? : |z| = t}; see Example 6 and
Theorem 13 in Dalang’s paper [3]. The proof of [3, Theorem 13] follows from a standard
Picard iteration scheme, from which one can see that u(t,z) = 1if o(1) = 0.

It is not difficult to see that for each fixed ¢ > 0, {u(t,z) : € R} is strictly stationary
meaning its law is invariant under spatial shift. Indeed, for each y € R, the random
field {u(t,z +y) : = € R%} coincides almost surely with the random field  driven by the
shifted noise W, given by

W)= [ [ olsr—u)Wids.de). o € O (R xR,

Here C°(Ry x RY) is the set of real infinitely differentiable functions with compact
support defined on R, x R%. The noise W, has the same distribution as W, which is
enough for us to conclude the stationarity property. We refer readers to Lemma 7.1 in
[2] and footnote 1 in [4] for similar arguments.

Then it is natural to define an associated family of shifts {6, : y € R?} by setting

0, ({ut,z),x € R"}) = {u(t,x +y),z € R},
which preserve the law of the process. Then the following question arises:
Are the invariant sets for {0, : y € R} trivial?

That is, for each fixed ¢ > 0, is {u(t,z) : # € R?} ergodic? See the book [11] for more
account on ergodic theory. In the following theorem, we provide an affirmative answer
to the above question.

Theorem 1.1. Assume that the spectral measure has no atom at zero, i.e. u({O}) =0,
then for each t > 0, {u(t,z) : z € R} is ergodic.

Condition u({()}) = 0 echoes Maruyama’s early work [6] on ergodicity of stationary

Gaussian processes and it also finds its place in the recent work of Chen, Khoshnevisan,
Nualart and Pu [2] on the solution to stochastic heat equations.
Remark 1.2. Under Dalang’s condition (1.3), property p({0}) = 0 is equivalent to
7(Bgr) = o(R?%), as R — +o0; see [2, Theorem 1.1]. Here and throughout the paper we
will make use of the notation B = {z € R?: |x| < R} for any R > 0. As a consequence,
if v is a function, property 1({0}) = 0 is equivalent to

1

lim —— x)dx =0,
R Bl S, 7
which means that the asymptotic average of y is zero.

The ergodicity gives us the first-order result: With w,; denoting the volume of By,

1 R—o0
t,x)de —— 1
R /}BRu( ,x)dx

in L?(Q2). Then it is natural to investigate the corresponding second-order fluctuations.
They have been established in several cases briefly recalled below:
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* When d = 1, the Gaussian noise is white in time and behaves as a fractional noise
in space with Hurst parameter H € [1/2,1), the authors of [4] prove the Gaussian
fluctuations for spatial averages.

* The authors of [1] investigate the case where d = 2 and ¥(z) = |2|~# with 3 € (0, 2).

e In [10], we continued the study of the 2D stochastic wave equation when the
covariance kernel v is integrable.

Our Theorem 1.1 (see also Remark 1.2) establishes the spatial ergodicity for all these
cases. The key ingredient in the aforementioned references is a fundamental L?(2)-
estimate of the Malliavin derivative of the solution:

[Dsyult,2)||, S Geeslz = y), (1.6)

where D is the Malliavin derivative operator defined over the isonormal Gaussian process
{W(¢): ¢ € H} that will be defined in Section 2. Such an inequality fails to work when
d = 3, as the fundamental solution G(t, ) is a measure for d = 3 (see (1.5)). The Malliavin
derivative Du(t, ), unlike in previous works, is a random measure and it is not clear how
to make sense of the left expression in (1.6). We leave this problem for future research
that will require some novel ideas in dealing with the Malliavin derivative. In this paper,
we do not consider the case of space dimension d > 4, because the fundamental solution
G is a not a nonnegative distribution.

The rest of the article is organized as follows: In Section 2, we briefly collect
preliminary facts for our proofs that will be presented in Section 3.

2 Preliminaries

In this section we present some preliminaries on stochastic analysis and Malliavin
calculus.

2.1 Basic stochastic analysis

Let § be defined as the completion of C>°(R, x R?) under the inner product

(ado= [ Fsadals, 2l = 2)dydzds @
- / / F (5,6 Fg(s,—€)u(de)ds,
R, JRd

where Z# f(s,€) = f]Rd e 1€ f(s, x)dx. Throughout this article, we may abuse the notation
~v(x) as v is assumed to be a measure; for example, the equality in (2.1) should be
understood as

/ f(s,9)[g(s, ) x 7] (y)dyds
R4+ xR

with * denoting the convolution in space. Consider an isonormal Gaussian process
associated to the Hilbert space §), denoted by W = {W(¢) : ¢ € $}. Thatis, W is a
centered Gaussian family of random variables such that E[W (¢)W (¢)] = (¢,v)s for any
¢, € 5. As the noise W is white in time, a martingale structure naturally appears. First
we define F; to be the o-algebra generated by the P-negligible sets and the family of
random variables {W(¢) : ¢ € C> (R4 xR%) has compact support contained in [0, {] x R},
so we have a filtration F = {7, : t € Ry.}. If {®(s,y) : (s,y) € Ry x R?} is an F-adapted
random field such that E[[|®[%] < +oc, then

Mt = / (D(Sa y)W(dS7 dy)7
[0,t] xR
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interpreted as the Dalang-Walsh integral ([3, 8, 13]), is a square-integrable [F-martingale
with quadratic variation

(M), = / (s, y)B(s, )1y — 2)dydzds.
[0,t] x R2d

A suitable version of Burkholder-Davis-Gundy inequality (BDG for short) holds in this
setting: If {®(s,y) : (s,y) € Ry x R?} is an adapted random field with respect to I such
that ||®||s € LP(Q?) for some p > 2, then

see e.g. [5, Theorem B.1], here || o ||, denotes the usual L?({2)-norm.

2
<dp ;o (2.2)

p/2

/ B(s,y)W (ds, dy) / B(s,4)B(s, 2)y(y — 2)dydzds
[0,t] xR [0,¢] x R24

P

2.2 Malliavin calculus

Now let us recall some basic facts on the Malliavin calculus associated with W.
For any unexplained notation and result, we refer to the book [7]. We denote by
Cp2(R™) the space of smooth functions with all their partial derivatives having at most
polynomial growth at infinity. Let & be the space of simple functionals of the form
F = f(W(hy),...,W(hy)) for f € C;°(R") and h; € $, 1 <14 < n. Then, the Malliavin
derivative DF' is the $)-valued random variable given by

DF = Z; gﬂi (W(h1),...,W(hn))hi .

The derivative operator D is closable from LP(2) into LP(Q2;$) for any p > 1 and we
define D'? to be the completion of S under the norm

IF |, = (E[[FP] +E[IDF|E])"" .

The chain rule for D asserts that if F/ € D2 and h : R — R is Lipschitz, then h(F) € D2
with

D[h(F)] = h/(F)DF, (2.3)
where h' denotes any version of the almost everywhere derivative (in view of Rade-
macher’s theorem) satisfying

T 0
h(z) = h(0) + /O W(t)dt forz >0, h(0)=h(z)+ / W(t)dt forz <0

and ||h/||« is bounded by the Lipschitz constant of h.
We denote by ¢ the adjoint of D given by the duality formula

E[5(u)F] = E[(u, DF)g] (2.4)

for any F' € D2 and v € Domd C L?(€; $), the domain of . The operator  is also called
the Skorohod integral and in our context, the Dalang-Walsh integral coincides with the
Skorohod integral: Any adapted random field ® that satisfies E[||®[|Z] < oo belongs to
the domain of § and

0(®) = /000 /Rd O(s,y)W(ds,dy). (2.5)
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The operators D, ¢ satisfy the Heisenberg’s commutation relation:
(D§ —6D)(V) =V.

From this relation, we have for any adapted random field ® belonging to D*?($)) given
as in (2.5),

Ds7y/0 /]Rd O(r, z)W(dr,dz) = ®(s,y) +/0 " D; ,®(r, z)W (dr,dz). (2.6)

It is known that for a random variable F' € D2, one can represent it as a stochastic
integral:

F=TE[F] + / E[D, , F|F,]W (ds, dy)
]R+ x R4

(see e.g. [2, Proposition 6.3]). This is known as Clark-Ocone formula and it leads to the
following Poincaré inequality: For any such two random variables F,G € D2, we have

|Cov(F,G)|§/ /d||Ds7yF||2||DS,ZG\|27(y—z)dydzds. 2.7)
0 R?2

Throughout this note, we write A < B to mean that A < K B for some immaterial
constant which may vary from line to line.

3 Proof of Theorem 1.1

We first introduce the following regularization of the kernel G: Given a nonnegative
function ¢ € C2°(R?) such that [, 1(z)dz = 1, we define 1, (z) = ny(nz) for all z € R?
and

Gp(t,z) = /]Rd G(t,dy)tn(z —y). (3.1)

Here G(t,dy) denotes G(t,y)dy, when d = 1,2. Consider the approximating sequence of
random fields {u,},>1 defined by

t
up(t,z) =1 +/ / Gn(t— s,z — y)a(un(s,y))W(ds, dy). (3.2)
0 JRd
It holds that, for any p > 1

ngrf}m (tx)&&%xﬁd ||un(t,x) B u(t7x)Hp =0 (3.3)

for any T € (0,00), see [12, Proposition 1]. Fix n > 1 and consider the Picard iteration

scheme for u,,: We put u, o(t,z) = 1 and for k > 0,

t
un,k+1(t7l‘) =1+ / ., Gn(t — 5T — y)a(u'rL,k(S7y))W(dSa dy) (34)
0 JR

It is known that for any 7' > 0 and any p € [1,00),

lim sup Un s (E, ) — up(t, z)|| =05 (3.5)
k=00 (¢,2)e[0,T]x R4 H Hp

the proof can be done following the same arguments as in the proof of [3, Theorem 13].

In the following, we present the key ingredient to prove our main result.
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Proposition 3.1. Let u,, ; be given as in (3.4) and fix T € (0, 00). Then for any p > 1, the
following estimate holds for all (t,z) € [0,T] x R? and for almost every (s,y) € [0,t] x R?

||styun7k(t7:€)||p S/ 1IBa(k’+1)+T (‘T - y)a

where B, = {z € R?: |2| < a} contains the support of i) for some a > 0 and the implicit
constant only depends on (p, T, L,~v,n, k).

Before we proceed with the proof of Proposition 3.1 we show two technical lemmas.

Lemma 3.2. Suppose the Dalang’s condition (1.3) is satisfied. For any T € (0,0), we
have

Up = sup/ ‘ﬁlﬂgb(f)|2u(d§)<oo. (3.6)
be[0,7] JRa

Proof. Let us recall from [9, Lemma 2.1] that

2

(P, = | [ e ixda| = (2m) il 4 01¢]%,
By
where, for p > 0,
2)P T
Ip(x) == \/7%/0 (sin 0)?” cos(x cos 0)df

is the Bessel function of first kind with order p, which satisfies

(@) sup {|Jp(z)| : x € Ry} < o0,
(ii) |J,(z)| < C|z|~'/2 for any = € R and for some absolute constant C' > 0.

It is also clear that | #1p,| < b%. Thus,

|17 utae) = [

l€l<1

| F 1, (6) 2 de) + / | F 1, ()] u(de)

[€1>1

S € BTl < 1) 48 [l al0le)*u(de)

1€1>1

<Phu((e e R : Je] < 1)) + b / €4 ()

[€1>1

using point (ii) in the last step. Because of (1.3) and d > 1, the two integrals in the last
display are both finite. Hence the result (3.6) follows. O

Lemma 3.3. Foreachn > 1 and T € (0, 00)

O(T,n) := sup |G(t, )| < 0.
(t,z)€[0,T]xR%

Proof. By definition,
|G (t,2)] = /Rd Un(z — )G (t, dy) < ||[UnlleeG(t, RY).

It is known that sup,. G(t,R?) is finite for any T' € (0,00), so that (T, n) < co. O

Proof of Proposition 3.1. Recall the Picard iterations from (3.4). Now let us fix p € [2, 00),
T € (0,00) and the integers n, k. Then, by standard arguments one can show that for any
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(t,x) € [0,T] x R%, up k11(t, z) belongs to the space D and, in view of (2.3) and (2.2),
we can write for almost all (s, y) € [0,¢] x RY,

Ds,yun,k+1(t7 {II) = Gn(t —S5T— y)U(un,k(87 y))
t
+ / / Gn(t =1, — 2)0" (un k(r, 2)) Dg ytin i (1, 2) W (dr, dz).
s JRA
Iterating this equation yields, with ro = ¢, zg = «,
D87yun7k+1(t7 37) = Gn(t - 5T = y)a(un,k(sa y))
t
+ / , Gn(t — 11,2 — 21)0 (Un i (r1,21)) Gn(r1 — 8,21 — y)o (un,k—1(s,4)) W (dr1, dz)
s JR?2
k t Te—1
+ U(Un,k—e(&y)) / / Gn(re —s,20 —y)
s s R4t

=2
k

£
X H Gn(Tj_l —Tj,25—1 — zj)a’(umkﬂ_j(rj, Zj))W(d?“j, dZ]) =: ZT@. (37)
j=1 =0

Note that by the uniform LP-convergence of u,, ;(t,z) as k — oo and n — oo, we have

A(T,p) := sup sup sup
n,k>1t€[0,T] x€R4

U(un,k(t, J;)) Hp < 0.

Now let us estimate ||7}||, for each ¢ € {0,1,...,k}.

Case ( = 0: It is clear that ||To||, < A(t,p)Gn(t — s,z — y). From now on, let us assume
that

the support of v is contained in B, for some a > 0.

Then the function z € R? — G, (t,x) has a compact support that is contained in Bay.
So that

Gn(t—s,x—y) <O(t—sn)lp.,, (v —y). (3.8)
It follows that
HTOHp S A(T7p)®(T7 n)lB%+T (Qj‘ - y)' (3.9)

Case ¢ = 1: By the BDG inequality (2.2),

t
HTle, <dp / dry /2,1 dz1d2 G (t — 11, @ — 21)0" (Un i (r1, 21)) Gul(r1 — 5,21 — )
s R

X G (t — 11,2 — 2)0" (U (r1,21)) Gu(r1 — 8,21 — )0 (Un k—1(s,9))y(21—21)

p/2
t
< 4PL2A(T7P)2/ d7“1/ dz1dz1Gy(t — 1,0 — 21)Gp(r1 — 8,21 — y)
s R2d
X Gt —r1,0 —21)Gp(ri—s, 21 —y)y(z1 — 27).

Note that a necessary condition for G,,(t — r1,x — 21)Gn(r1 — 8,21 —y) # 0is

T— 2z € ]B%H,Tl and z; —y € IB%HI,S
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which implies x — y € IBzfaH_s. This fact, together with Lemma 3.3 and (3.8), leads to
2
|71][, < 4pL*A(T, p)*O(T, n)*1p,, ,, (x — y)

/ drl/ dz1d21Gp(t — 11,2 — 21)Gr(t — 1,2 — 27)v(21 — 21)
R2d
< 4pL*(t — 5)A(T,p)*O(T, n)41132a @y

X / dzuizillgQH (x —21)1Ba,,(z — 2)7v(z1 — 21)
de n n

< 4pLA(t — s)A(T,p)*O(T, n)4u;‘7+TllB27a+T (x —v),

by Lemma 3.2. It follows that

IT1]l, < 2¢/PUsr(t = $)MT, p)O(T, 7)1, (z = y). (3.10)

Case ( € {2,...,k}: We can first represent 7T} as

t
T, = / Gn(t —r1,2 = 21)0" (Un i (r1,21)) T (11, 20)W (dry, dz1),
s JR4

with J(rq1, z1) defined by

\7(7“1721)2/ / . / 0 (tnk—e(5,9))Gn(re — s, 20 — y)
Rd¢—d

¢
H (o1 = 15,221 — 25)0" (Un kg1—5 (rj, 2;) )W (drj, dzj).
In this way, we get ||T2Hi bounded by

t
4PL2/ dry /2d dz1dzyy(21 — 21)Gn(t — 11,0 = 21)Ga(t — 11,2 — 20) 1T (11, 20) T (11, Z1)||g
s R

t
< 4pL2 / dry /]de ledZi")/(Zl - Zi)Gn(t —T,T = Zl)Gn(t — T, T — zll)”j(rla Z1)||]2)7

IXI2+1Y13
2

using symmetry and the fact that | XY, < | X|[[,[|Y], < . Iterating the

above procedure for finite times yields

t Te_2 -
|7l < ape2) ™ [ [ [ 1wzl
s s R2d¢—2d

X H ’}/(Zj — Z})Gn(Tj_l —Tj,25—-1 — Zj)Gn(’I“j_l —Tj,25—-1 — Z;)dZ]dZ;,

with j(m_l, z¢—1) given by

Te—1
/ /d 0 (Un k—0(8,Y))Gn(r — 8,2 — y)Gp(re—1 — 1, 20-1 — 2)0" (U k+1—0(r, 2) )W (dr, dz).
s R
Similarly to how we estimate ||T}||,, we get

||j(7“£71,2471)Hi < 4PL2TA(T7P)2@(T ”) U@ Tllea+ ( 1Y)
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As in Case ¢/ = 1, we have the following implication:

-1
11132#“67175(22—1 ) H Gn(rj—1 —rj,2j-1 — 25)Gn(rj—1 — 75,251 — 25) #0
j=1
—Tr—Yyc ]Ba(€+l)+t78.
Note also that using (3.8) and integrating out dz,_1dz;_,, ..., dz2dz} and dz1dz] yields

-1
/]dez_zd H V(25 = 25)Gulrj—1 — 7, 25-1 — 2)Gn(rj-1 — 15, 2j—1 — 2;)d2z;d2]
J=1

@(T??,M Q/RM MHV _Z)llBa+T(Z] 1—23)1113a+T(Z] 1—z)dzjdz

-1
= O(T,n)*2 (/R?d v(z — z’)l]B%” (z)leJrT(z')dzdz’) < O(T, n)%_QZ/{éjrlT,
where Us 17 is defined in Lemma 3.2. This leads to

2 _ AT,p)*O(T,n)*
HTpr = (¢=1)!

Combining the above cases, we obtain

¢
(4pL2TZ/I%+T@(T, n)?) 1]Ba(l+1)+T (x —vy).

HDS,ywk+1(tﬂ CE < Z ”T@”p ~ 1Ba(k+1) T( - y)
£=0

That is, Proposition 3.1 is proved. O
We finally proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. In view of [2, Lemma 7.2], it suffices to prove

V(R) := Var /Hg] (t,z+¢7))dz LBz,

le

for any fixed ¢',...,(™ € R? and g1, ..., gm € Cy(R) such that each g; vanishes at zero
and has Lipschitz constant bounded by 1.

Using the elementary fact Var(X + Y) < 2Var(X) + 2Var(Y) for any two square-
integrable random variables X and Y, we write

V(R) < 2Var (Rd Rn,k(x)da;> + 4Var (Rd /]B {Rn(x) - Rn,k(x)}dx)

Br
+ 4Var (Rd /B [R(z)Rn(x)}dm> 1= 2Vi i (R) +4V2 0k (R) +4V3 0 (R),

where

m m

Hg] (t,z+(7)), R (:E)zng (un(t,z+¢’)) and ’Rn,k(ac):ng (i (t, z+¢7)).

j=1 j=1
Using the stationarity and Minkowski’s inequality,
2

2 < (R_d/BR R () —R(x)|\2dg;>2

- wg(‘vzn(o) - R(O)H 120 ) by (3.3).

Vi) < |t [ [Rule) = R
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The above limit takes place uniformly in R > 0. Therefore, for any given € > 0, we can
find n > N, big enough such that V3 ,,(R) < ¢, VR > 0. From now on, let us fix such an
integer n. And we can estimate V5 ,, ,(R) similarly: Using Minkowski’s inequality,

2
< w? su
> Wg Sup
2 z€R?

Ra() = Raa(@)], 225 0,

Vi) < [ [ [ (o) = Ryt

as a consequence of (3.5). So we can find some big k¥ > K., such that V5, x(R) < ¢,
VR > 0. From now on, let us fix such an integer k.

Finally, let us estimate the term V3 ,, x(R): First by using the Poincaré inequality (2.7),
we obtain

Vin(B) < R72T | dady|Cov(Rok(x), Rak(y))]
IBR

t
= e ~/]BZ /0 /]de HDS,Z'Rn,k(x)H2||Ds,z’Rn,k(y)”2 Y(z - Z/)dZdzldexdy' (3.11)
2 ,

By the chain rule (2.3),

m

m
Ds,an,k(x)’ < 1(O,t) (3) Z H gj (un,k(tvx + Cj)) |Ds,yun,k(tax + Cjo)
Jo=1|j=1.j#jo

which implies, for any s € [0, ],

IDs 2R k()2 < r5§5<||gj||$1 > syt z+¢)|, £ 1p, (z—y+¢), (3.12)

Jo=1 Jo=1

where b = a(k+1)/n+T, as a consequence of Proposition 3.1. Plugging (3.12) into (3.11),
yields

m t
Vink(R) S R Z /1132 /0 /1R2d 1p, (z — 2+ ), (y — 2/ + (2 — 2)dzd2 dsdzdy
R

jil=1

SR /132 /de Lp, (¢ — 2z + (), (y — 2’ + (2 — 2')dzd' dady.
je=1"Bx

Therefore using Fourier transform, we write

v ::/ / 1, (z — 2+ g, (y — 2/ + )y(z — 2/)dzd2 dady

B2, JR2
= / / efi(xfy+éj*Cl)E’gleb (5)‘2,u(d§)da:dy.
B2, JRa
Put (5(§) = [p. e *"¥)¢dzdy, which is a nonnegative function. So we get
R
V< [ tn© 710, Pue)dndy = [ [ 08 0, (0) Pl dady
R4 B2, JR4
— et [ et P, (0 Pude)dedy,
B2 JR4

That is,

R247 < /Rd (/132 e—iR(w—y)ﬁdxdy> |y1Bb(£)|2u(d§).
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Since 1({0}) = 0, for y-almost every &, f]B% e 1E(E@-v)Edxrdy converges to zero as R — oo,
by Riemann-Lebesgue’s lemma. Thus, by dominated convergence theorem with the
dominance condition (3.6), we deduce that R—24Y converges to zero as R — +4o00. This
leads to Vi, x(R) — 0, as R — +o0. It follows that limsupp_, , ., V(R) < 8¢, where ¢ > 0
is arbitrary. Hence we can conclude our proof. O
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