
Electron. Commun. Probab. 25 (2020), article no. 80, 1–11.
https://doi.org/10.1214/20-ECP361
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Spatial ergodicity of stochastic wave equations in

dimensions 1, 2 and 3*

David Nualart† Guangqu Zheng‡

Abstract
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1 Introduction

In this article, we fix d ∈ {1, 2, 3} and consider the stochastic wave equation

∂2u

∂t2
= ∆u+ σ(u)Ẇ , (1.1)

on R+ ×Rd with initial conditions u(0, x) = 1 and ∂u
∂t (0, x) = 0, where ∆ is Laplacian in

the space variables and Ẇ is a centered Gaussian noise with covariance

E[Ẇ (t, x)Ẇ (s, y)] = δ0(t− s)γ(x− y). (1.2)

Throughout this article, we fix the following conditions:

(C1) σ : R → R is Lipschitz continuous with Lipschitz constant L ∈ (0,∞).

(C2) γ is a tempered nonnegative and nonnegative definite measure, whose Fourier
transform µ satisfies Dalang’s condition:

∫

Rd

µ(dz)

1 + |z|2
< ∞, (1.3)

where | · | denotes the Euclidean norm on Rd.

Conditions (C1) and (C2) ensure that equation (1.1) has a unique random field solution,
which is adapted to the filtration generated by W , such that sup

{
E
[
|u(t, x)|k

]
: (t, x) ∈

[0, T ]×Rd
}

is finite for all T ∈ (0,∞) and k ≥ 2, and

u(t, x) = 1 +

∫ t

0

∫

Rd

G(t− s, x− y)σ(u(s, y))W (ds, dy), (1.4)
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Spatial ergodicity of stochastic wave equations

where the stochastic integral is defined in the sense of Dalang-Walsh and G(t− s, x− y)

denotes the fundamental solution to the corresponding deterministic wave equation, i.e.

G(t, •) :=




1

2
1{|•|<t}, if d = 1

1

2π
√
t2 − | • |2

1{|•|<t}, if d = 2

1

4πt
σt, if d = 3,

(1.5)

with σt denoting the surface measure on ∂Bt := {x ∈ R3 : |x| = t}; see Example 6 and
Theorem 13 in Dalang’s paper [3]. The proof of [3, Theorem 13] follows from a standard
Picard iteration scheme, from which one can see that u(t, x) ≡ 1 if σ(1) = 0.

It is not difficult to see that for each fixed t > 0,
{
u(t, x) : x ∈ Rd

}
is strictly stationary

meaning its law is invariant under spatial shift. Indeed, for each y ∈ Rd, the random
field {u(t, x+ y) : x ∈ Rd} coincides almost surely with the random field u driven by the
shifted noise Wy given by

Wy(φ) =

∫

R+

∫

Rd

φ(s, x− y)W (ds, dx), φ ∈ C∞
c (R+ ×Rd).

Here C∞
c (R+ × Rd) is the set of real infinitely differentiable functions with compact

support defined on R+ × Rd. The noise Wy has the same distribution as W , which is
enough for us to conclude the stationarity property. We refer readers to Lemma 7.1 in
[2] and footnote 1 in [4] for similar arguments.

Then it is natural to define an associated family of shifts {θy : y ∈ Rd} by setting

θy({u(t, x), x ∈ Rd}) = {u(t, x+ y), x ∈ Rd},

which preserve the law of the process. Then the following question arises:

Are the invariant sets for {θy : y ∈ Rd} trivial?

That is, for each fixed t > 0, is
{
u(t, x) : x ∈ Rd

}
ergodic? See the book [11] for more

account on ergodic theory. In the following theorem, we provide an affirmative answer
to the above question.

Theorem 1.1. Assume that the spectral measure has no atom at zero, i.e. µ
(
{0}

)
= 0,

then for each t > 0, {u(t, x) : x ∈ Rd} is ergodic.

Condition µ
(
{0}

)
= 0 echoes Maruyama’s early work [6] on ergodicity of stationary

Gaussian processes and it also finds its place in the recent work of Chen, Khoshnevisan,
Nualart and Pu [2] on the solution to stochastic heat equations.

Remark 1.2. Under Dalang’s condition (1.3), property µ
(
{0}

)
= 0 is equivalent to

γ(BR) = o(Rd), as R → +∞; see [2, Theorem 1.1]. Here and throughout the paper we
will make use of the notation BR = {x ∈ Rd : |x| ≤ R} for any R > 0. As a consequence,
if γ is a function, property µ

(
{0}

)
= 0 is equivalent to

lim
R→+∞

1

|BR|

∫

BR

γ(x)dx = 0,

which means that the asymptotic average of γ is zero.

The ergodicity gives us the first-order result: With ωd denoting the volume of B1,

1

ωdRd

∫

BR

u(t, x)dx
R→∞−−−−→ 1

in L2(Ω). Then it is natural to investigate the corresponding second-order fluctuations.
They have been established in several cases briefly recalled below:
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Spatial ergodicity of stochastic wave equations

• When d = 1, the Gaussian noise is white in time and behaves as a fractional noise
in space with Hurst parameter H ∈ [1/2, 1), the authors of [4] prove the Gaussian
fluctuations for spatial averages.

• The authors of [1] investigate the case where d = 2 and γ(z) = |z|−β with β ∈ (0, 2).

• In [10], we continued the study of the 2D stochastic wave equation when the
covariance kernel γ is integrable.

Our Theorem 1.1 (see also Remark 1.2) establishes the spatial ergodicity for all these
cases. The key ingredient in the aforementioned references is a fundamental Lp(Ω)-
estimate of the Malliavin derivative of the solution:

∥∥Ds,yu(t, x)
∥∥
p
� Gt−s(x− y), (1.6)

where D is the Malliavin derivative operator defined over the isonormal Gaussian process{
W (φ) : φ ∈ H

}
that will be defined in Section 2. Such an inequality fails to work when

d = 3, as the fundamental solution G(t, •) is a measure for d = 3 (see (1.5)). The Malliavin
derivative Du(t, x), unlike in previous works, is a random measure and it is not clear how
to make sense of the left expression in (1.6). We leave this problem for future research
that will require some novel ideas in dealing with the Malliavin derivative. In this paper,
we do not consider the case of space dimension d ≥ 4, because the fundamental solution
G is a not a nonnegative distribution.

The rest of the article is organized as follows: In Section 2, we briefly collect
preliminary facts for our proofs that will be presented in Section 3.

2 Preliminaries

In this section we present some preliminaries on stochastic analysis and Malliavin
calculus.

2.1 Basic stochastic analysis

Let H be defined as the completion of C∞
c (R+ ×Rd) under the inner product

〈f, g〉H =

∫

R+×R2d

f(s, y)g(s, z)γ(y − z)dydzds (2.1)

=

∫

R+

∫

Rd

Ff(s, ξ)Fg(s,−ξ)µ(dξ)ds,

where Ff(s, ξ) =
∫
Rd e

−ix·ξf(s, x)dx. Throughout this article, we may abuse the notation
γ(x) as γ is assumed to be a measure; for example, the equality in (2.1) should be
understood as ∫

R+×Rd

f(s, y)
[
g(s, •) ∗ γ

]
(y)dyds

with ∗ denoting the convolution in space. Consider an isonormal Gaussian process
associated to the Hilbert space H, denoted by W =

{
W (φ) : φ ∈ H

}
. That is, W is a

centered Gaussian family of random variables such that E
[
W (φ)W (ψ)

]
= 〈φ, ψ〉H for any

φ, ψ ∈ H. As the noise W is white in time, a martingale structure naturally appears. First
we define Ft to be the σ-algebra generated by the P-negligible sets and the family of
random variables

{
W (φ) : φ ∈ C∞(R+×Rd) has compact support contained in [0, t]×Rd

}
,

so we have a filtration F = {Ft : t ∈ R+}. If
{
Φ(s, y) : (s, y) ∈ R+ ×Rd

}
is an F-adapted

random field such that E
[
‖Φ‖2H

]
< +∞, then

Mt =

∫

[0,t]×Rd

Φ(s, y)W (ds, dy),
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Spatial ergodicity of stochastic wave equations

interpreted as the Dalang-Walsh integral ([3, 8, 13]), is a square-integrable F-martingale
with quadratic variation

〈M〉t =
∫

[0,t]×R2d

Φ(s, y)Φ(s, z)γ(y − z)dydzds.

A suitable version of Burkholder-Davis-Gundy inequality (BDG for short) holds in this
setting: If

{
Φ(s, y) : (s, y) ∈ R+ ×Rd

}
is an adapted random field with respect to F such

that ‖Φ‖H ∈ Lp(Ω) for some p ≥ 2, then

∥∥∥∥∥
∫

[0,t]×Rd

Φ(s, y)W (ds, dy)

∥∥∥∥∥
2

p

≤ 4p

∥∥∥∥∥
∫

[0,t]×R2d

Φ(s, y)Φ(s, z)γ(y − z)dydzds

∥∥∥∥∥
p/2

; (2.2)

see e.g. [5, Theorem B.1], here ‖ • ‖p denotes the usual Lp(Ω)-norm.

2.2 Malliavin calculus

Now let us recall some basic facts on the Malliavin calculus associated with W .
For any unexplained notation and result, we refer to the book [7]. We denote by
C∞

p (Rn) the space of smooth functions with all their partial derivatives having at most
polynomial growth at infinity. Let S be the space of simple functionals of the form
F = f(W (h1), . . . ,W (hn)) for f ∈ C∞

p (Rn) and hi ∈ H, 1 ≤ i ≤ n. Then, the Malliavin
derivative DF is the H-valued random variable given by

DF =

n∑
i=1

∂f

∂xi
(W (h1), . . . ,W (hn))hi .

The derivative operator D is closable from Lp(Ω) into Lp(Ω;H) for any p ≥ 1 and we
define D1,p to be the completion of S under the norm

‖F‖1,p =
(
E
[
|F |p

]
+ E

[
‖DF‖pH

])1/p
.

The chain rule for D asserts that if F ∈ D1,2 and h : R → R is Lipschitz, then h(F ) ∈ D1,2

with

D[h(F )] = h′(F )DF, (2.3)

where h′ denotes any version of the almost everywhere derivative (in view of Rade-
macher’s theorem) satisfying

h(x) = h(0) +

∫ x

0

h′(t)dt for x ≥ 0, h(0) = h(x) +

∫ 0

x

h′(t)dt for x < 0

and ‖h′‖∞ is bounded by the Lipschitz constant of h.
We denote by δ the adjoint of D given by the duality formula

E[δ(u)F ] = E[〈u,DF 〉H] (2.4)

for any F ∈ D1,2 and u ∈ Dom δ ⊂ L2(Ω;H), the domain of δ. The operator δ is also called
the Skorohod integral and in our context, the Dalang-Walsh integral coincides with the
Skorohod integral: Any adapted random field Φ that satisfies E

[
‖Φ‖2H

]
< ∞ belongs to

the domain of δ and

δ(Φ) =

∫ ∞

0

∫

Rd

Φ(s, y)W (ds, dy). (2.5)
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Spatial ergodicity of stochastic wave equations

The operators D, δ satisfy the Heisenberg’s commutation relation:

(Dδ − δD)(V ) = V.

From this relation, we have for any adapted random field Φ belonging to D1,2(H) given
as in (2.5),

Ds,y

∫ ∞

0

∫

Rd

Φ(r, z)W (dr, dz) = Φ(s, y) +

∫ ∞

0

∫

Rd

Ds,yΦ(r, z)W (dr, dz). (2.6)

It is known that for a random variable F ∈ D1,2, one can represent it as a stochastic
integral:

F = E[F ] +

∫

R+×Rd

E
[
Ds,yF |Fs

]
W (ds, dy)

(see e.g. [2, Proposition 6.3]). This is known as Clark-Ocone formula and it leads to the
following Poincaré inequality: For any such two random variables F,G ∈ D1,2, we have

|Cov(F,G)| ≤
∫ ∞

0

∫

R2d

‖Ds,yF‖2‖Ds,zG‖2γ(y − z)dydzds. (2.7)

Throughout this note, we write A � B to mean that A ≤ KB for some immaterial
constant which may vary from line to line.

3 Proof of Theorem 1.1

We first introduce the following regularization of the kernel G: Given a nonnegative
function ψ ∈ C∞

c (Rd) such that
∫
Rd ψ(z)dz = 1, we define ψn(z) = ndψ(nz) for all z ∈ Rd

and

Gn(t, x) =

∫

Rd

G(t, dy)ψn(x− y). (3.1)

Here G(t, dy) denotes G(t, y)dy, when d = 1, 2. Consider the approximating sequence of
random fields {un}n≥1 defined by

un(t, x) = 1 +

∫ t

0

∫

Rd

Gn(t− s, x− y)σ
(
un(s, y)

)
W (ds, dy). (3.2)

It holds that, for any p ≥ 1

lim
n→+∞

sup
(t,x)∈[0,T ]×Rd

∥∥un(t, x)− u(t, x)
∥∥
p
= 0 (3.3)

for any T ∈ (0,∞), see [12, Proposition 1]. Fix n ≥ 1 and consider the Picard iteration
scheme for un: We put un,0(t, x) = 1 and for k ≥ 0,

un,k+1(t, x) = 1 +

∫ t

0

∫

Rd

Gn(t− s, x− y)σ
(
un,k(s, y)

)
W (ds, dy). (3.4)

It is known that for any T > 0 and any p ∈ [1,∞),

lim
k→+∞

sup
(t,x)∈[0,T ]×Rd

∥∥un,k(t, x)− un(t, x)
∥∥
p
= 0; (3.5)

the proof can be done following the same arguments as in the proof of [3, Theorem 13].
In the following, we present the key ingredient to prove our main result.
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Proposition 3.1. Let un,k be given as in (3.4) and fix T ∈ (0,∞). Then for any p ≥ 1, the
following estimate holds for all (t, x) ∈ [0, T ]×Rd and for almost every (s, y) ∈ [0, t]×Rd

∥∥Ds,yun,k(t, x)
∥∥
p
� 1B a(k+1)

n
+T

(x− y),

where Ba = {x ∈ Rd : |x| ≤ a} contains the support of ψ for some a > 0 and the implicit
constant only depends on (p, T, L, γ, n, k).

Before we proceed with the proof of Proposition 3.1 we show two technical lemmas.

Lemma 3.2. Suppose the Dalang’s condition (1.3) is satisfied. For any T ∈ (0,∞), we
have

UT := sup
b∈[0,T ]

∫

Rd

∣∣F1Bb
(ξ)

∣∣2µ(dξ) < ∞. (3.6)

Proof. Let us recall from [9, Lemma 2.1] that

∣∣F1Bb
(ξ)

∣∣2 =

∣∣∣∣
∫

Bb

e−ixξdx

∣∣∣∣
2

= (2πb)d|ξ|−dJ d
2
(b|ξ|)2,

where, for p > 0,

Jp(x) :=
(x/2)p

√
πΓ(p+ 1

2 )

∫ π

0

(sin θ)2p cos(x cos θ)dθ

is the Bessel function of first kind with order p, which satisfies

(i) sup
{
|Jp(x)| : x ∈ R+

}
< ∞,

(ii) |Jp(x)| ≤ C|x|−1/2 for any x ∈ R and for some absolute constant C > 0.

It is also clear that |F1Bb
| � bd. Thus,

∫

Rd

∣∣F1Bb
(ξ)

∣∣2µ(dξ) =
∫

|ξ|≤1

∣∣F1Bb
(ξ)

∣∣2µ(dξ) +
∫

|ξ|>1

∣∣F1Bb
(ξ)

∣∣2µ(dξ)

� b2dµ
(
{ξ ∈ Rd : |ξ| ≤ 1}

)
+ bd

∫

|ξ|>1

|ξ|−dJd/2(b|ξ|)2µ(dξ)

� b2dµ
(
{ξ ∈ Rd : |ξ| ≤ 1}

)
+ bd−1

∫

|ξ|>1

|ξ|−d−1µ(dξ)

using point (ii) in the last step. Because of (1.3) and d ≥ 1, the two integrals in the last
display are both finite. Hence the result (3.6) follows.

Lemma 3.3. For each n ≥ 1 and T ∈ (0,∞)

Θ(T, n) := sup
(t,x)∈[0,T ]×Rd

∣∣Gn(t, x)
∣∣ < ∞.

Proof. By definition,

∣∣Gn(t, x)
∣∣ =

∫

Rd

ψn(x− y)G(t, dy) ≤ ‖ψn‖∞G(t,Rd).

It is known that supt≤T G(t,Rd) is finite for any T ∈ (0,∞), so that Θ(T, n) < ∞.

Proof of Proposition 3.1. Recall the Picard iterations from (3.4). Now let us fix p ∈ [2,∞),
T ∈ (0,∞) and the integers n, k. Then, by standard arguments one can show that for any
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(t, x) ∈ [0, T ]×Rd, un,k+1(t, x) belongs to the space D1,p and, in view of (2.3) and (2.2),
we can write for almost all (s, y) ∈ [0, t]×Rd,

Ds,yun,k+1(t, x) = Gn(t− s, x− y)σ
(
un,k(s, y)

)

+

∫ t

s

∫

Rd

Gn(t− r, x− z)σ′(un,k(r, z)
)
Ds,yun,k(r, z)W (dr, dz).

Iterating this equation yields, with r0 = t, z0 = x,

Ds,yun,k+1(t, x) = Gn(t− s, x− y)σ
(
un,k(s, y)

)

+

∫ t

s

∫

Rd

Gn(t− r1, x− z1)σ
′(un,k(r1, z1)

)
Gn(r1 − s, z1 − y)σ

(
un,k−1(s, y)

)
W (dr1, dz1)

+

k∑
�=2

σ
(
un,k−�(s, y)

) ∫ t

s

· · ·
∫ r�−1

s

∫

Rd�

Gn(r� − s, z� − y)

×
�∏

j=1

Gn(rj−1 − rj , zj−1 − zj)σ
′(un,k+1−j(rj , zj)

)
W (drj , dzj) =:

k∑
�=0

T�. (3.7)

Note that by the uniform Lp-convergence of un,k(t, x) as k → ∞ and n → ∞, we have

Λ(T, p) := sup
n,k≥1

sup
t∈[0,T ]

sup
x∈Rd

∥∥∥σ(un,k(t, x)
)∥∥∥

p
< ∞.

Now let us estimate ‖T�‖p for each � ∈ {0, 1, . . . , k}.

Case � = 0: It is clear that ‖T0‖p ≤ Λ(t, p)Gn(t− s, x− y). From now on, let us assume
that

the support of ψ is contained in Ba for some a > 0.

Then the function x ∈ Rd 	−→ Gn(t, x) has a compact support that is contained in B a
n+t.

So that

Gn(t− s, x− y) ≤ Θ(t− s, n)1B a
n

+t
(x− y). (3.8)

It follows that

∥∥T0

∥∥
p
≤ Λ(T, p)Θ(T, n)1B a

n
+T

(x− y). (3.9)

Case � = 1: By the BDG inequality (2.2),

∥∥T1

∥∥2
p
≤ 4p

∥∥∥∥∥
∫ t

s

dr1

∫

R2d

dz1dz
′
1Gn(t− r1, x− z1)σ

′(un,k(r1, z1)
)
Gn(r1 − s, z1 − y)

×Gn(t− r1, x− z′1)σ
′(un,k(r1, z

′
1)
)
Gn(r1 − s, z′1 − y)σ2

(
un,k−1(s, y)

)
γ(z1−z′1)

∥∥∥∥
p/2

≤ 4pL2Λ(T, p)2
∫ t

s

dr1

∫

R2d

dz1dz
′
1Gn(t− r1, x− z1)Gn(r1 − s, z1 − y)

×Gn(t− r1, x− z′1)Gn(r1−s, z′1 − y)γ(z1 − z′1).

Note that a necessary condition for Gn(t− r1, x− z1)Gn(r1 − s, z1 − y) �= 0 is

x− z1 ∈ B a
n+t−r1 and z1 − y ∈ B a

n+r1−s
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which implies x− y ∈ B 2a
n +t−s. This fact, together with Lemma 3.3 and (3.8), leads to

∥∥T1

∥∥2
p
≤ 4pL2Λ(T, p)2Θ(T, n)21B 2a

n
+T

(x− y)

×
∫ t

s

dr1

∫

R2d

dz1dz
′
1Gn(t− r1, x− z1)Gn(t− r1, x− z′1)γ(z1 − z′1)

≤ 4pL2(t− s)Λ(T, p)2Θ(T, n)41B 2a
n

+T
(x− y)

×
∫

R2d

dz1dz
′
11B a

n
+t
(x− z1)1B a

n
+t
(x− z′1)γ(z1 − z′1)

≤ 4pL2(t− s)Λ(T, p)2Θ(T, n)4U a
n+T1B 2a

n
+T

(x− y),

by Lemma 3.2. It follows that

∥∥T1

∥∥
p
≤ 2

√
pU a

n+T (t− s)Λ(T, p)Θ(T, n)21B 2a
t

+T
(x− y). (3.10)

Case � ∈ {2, . . . , k}: We can first represent T� as

T� =

∫ t

s

∫

Rd

Gn(t− r1, x− z1)σ
′(un,k(r1, z1)

)
J (r1, z1)W (dr1, dz1),

with J (r1, z1) defined by

J (r1, z1) =

∫ r1

s

· · ·
∫ r�−1

s

∫

Rd�−d

σ
(
un,k−�(s, y)

)
Gn(r� − s, z� − y)

×
�∏

j=2

Gn(rj−1 − rj , zj−1 − zj)σ
′(un,k+1−j(rj , zj)

)
W (drj , dzj).

In this way, we get
∥∥T�

∥∥2
p

bounded by

4pL2

∫ t

s

dr1

∫

R2d

dz1dz
′
1γ(z1 − z′1)Gn(t− r1, x− z1)Gn(t− r1, x− z′1)‖J (r1, z

′
1)J (r1, z1)‖ p

2

≤ 4pL2

∫ t

s

dr1

∫

R2d

dz1dz
′
1γ(z1 − z′1)Gn(t− r1, x− z1)Gn(t− r1, x− z′1)‖J (r1, z1)‖2p,

using symmetry and the fact that ‖XY ‖p/2 ≤ ‖X‖p‖Y ‖p ≤ ‖X‖2
p+‖Y ‖2

p

2 . Iterating the
above procedure for finite times yields

∥∥T�

∥∥2
p
≤

(
4pL2

)�−1
∫ t

s

dr1 · · ·
∫ r�−2

s

dr�−1

∫

R2d�−2d

‖Ĵ (r�−1, z�−1)‖2p

×
�−1∏
j=1

γ(zj − z′j)Gn(rj−1 − rj , zj−1 − zj)Gn(rj−1 − rj , zj−1 − z′j)dzjdz
′
j ,

with Ĵ (r�−1, z�−1) given by

∫ r�−1

s

∫

Rd

σ(un,k−�(s, y))Gn(r − s, z − y)Gn(r�−1 − r, z�−1 − z)σ′(un,k+1−�(r, z))W (dr, dz).

Similarly to how we estimate ‖T1‖p, we get

∥∥Ĵ (r�−1, z�−1)
∥∥2
p
≤ 4pL2TΛ(T, p)2Θ(T, n)4U a

n+T1B 2a
n

+r�−1−s
(z�−1 − y).
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As in Case � = 1, we have the following implication:

1B 2a
n

+r�−1−s
(z�−1 − y)

�−1∏
j=1

Gn(rj−1 − rj , zj−1 − zj)Gn(rj−1 − rj , zj−1 − z′j) �= 0

=⇒ x− y ∈ B a(�+1)
n +t−s

.

Note also that using (3.8) and integrating out dz�−1dz
′
�−1, . . . , dz2dz′2 and dz1dz

′
1 yields

∫

R2d�−2d

�−1∏
j=1

γ(zj − z′j)Gn(rj−1 − rj , zj−1 − zj)Gn(rj−1 − rj , zj−1 − z′j)dzjdz
′
j

≤ Θ(T, n)2�−2

∫

R2d�−2d

�−1∏
j=1

γ(zj − z′j)1B a
n

+T
(zj−1 − zj)1B a

n
+T

(zj−1 − z′j)dzjdz
′
j

= Θ(T, n)2�−2

(∫

R2d

γ(z − z′)1B a
n

+T
(z)1B a

n
+T

(z′)dzdz′
)�−1

≤ Θ(T, n)2�−2U�−1
a
n+T ,

where U a
n+T is defined in Lemma 3.2. This leads to

∥∥T�

∥∥2
p
≤ Λ(T, p)2Θ(T, n)2

(�− 1)!

(
4pL2TU a

n+TΘ(T, n)2
)�
1B a(�+1)

n
+T

(x− y).

Combining the above cases, we obtain

∥∥Ds,yvk+1(t, x)
∥∥
p
≤

k∑
�=0

‖T�‖p � 1B a(k+1)
n

+T
(x− y).

That is, Proposition 3.1 is proved.

We finally proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. In view of [2, Lemma 7.2], it suffices to prove

V (R) := Var


R−d

∫

BR

m∏
j=1

gj
(
u(t, x+ ζj)

)
dx


 R→∞−−−−→ 0,

for any fixed ζ1, . . . , ζm ∈ Rd and g1, . . . , gm ∈ Cb(R) such that each gj vanishes at zero
and has Lipschitz constant bounded by 1.

Using the elementary fact Var(X + Y ) ≤ 2Var(X) + 2Var(Y ) for any two square-
integrable random variables X and Y , we write

V (R) ≤ 2Var

(
R−d

∫

BR

Rn,k(x)dx

)
+ 4Var

(
R−d

∫

BR

[
Rn(x)−Rn,k(x)

]
dx

)

+ 4Var

(
R−d

∫

BR

[
R(x)−Rn(x)

]
dx

)
:= 2V1,n,k(R)+4V2,n,k(R)+4V3,n(R),

where

R(x)=

m∏
j=1

gj
(
u(t, x+ζj)

)
, Rn(x)=

m∏
j=1

gj
(
un(t, x+ζj)

)
and Rn,k(x)=

m∏
j=1

gj
(
un,k(t, x+ζj)

)
.

Using the stationarity and Minkowski’s inequality,

V3,n(R) ≤
∥∥∥∥R−d

∫

BR

[
Rn(x)−R(x)

]
dx

∥∥∥∥
2

2

≤
(
R−d

∫

BR

∥∥Rn(x)−R(x)
∥∥
2
dx

)2

= ω2
d

∥∥∥Rn(0)−R(0)
∥∥∥
2

2

n→+∞−−−−−→ 0, by (3.3).
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The above limit takes place uniformly in R > 0. Therefore, for any given ε > 0, we can
find n ≥ Nε big enough such that V3,n(R) ≤ ε, ∀R > 0. From now on, let us fix such an
integer n. And we can estimate V2,n,k(R) similarly: Using Minkowski’s inequality,

V2,n,k(R) ≤
∥∥∥∥R−d

∫

BR

[
Rn(x)−Rn,k(x)

]
dx

∥∥∥∥
2

2

≤ ω2
d sup
x∈Rd

∥∥∥Rn(x)−Rn,k(x)
∥∥∥
2

2

k→∞−−−−→ 0,

as a consequence of (3.5). So we can find some big k ≥ Kε,n such that V2,n,k(R) ≤ ε,
∀R > 0. From now on, let us fix such an integer k.

Finally, let us estimate the term V1,n,k(R): First by using the Poincaré inequality (2.7),
we obtain

V1,n,k(R) ≤ R−2d

∫

B2
R

dxdy
∣∣Cov(Rn,k(x),Rn,k(y))

∣∣

≤ R−2d

∫

B2
R

∫ t

0

∫

R2d

‖Ds,zRn,k(x)‖2‖Ds,z′Rn,k(y)‖2 γ(z − z′)dzdz′dsdxdy. (3.11)

By the chain rule (2.3),

∣∣Ds,zRn,k(x)
∣∣ ≤ 1(0,t)(s)

m∑
j0=1

∣∣∣∣∣∣
m∏

j=1,j �=j0

gj(un,k(t, x+ ζj))

∣∣∣∣∣∣
∣∣Ds,yun,k(t, x+ ζj0)

∣∣,

which implies, for any s ∈ [0, t],

‖Ds,zRn,k(x)‖2 ≤ m
max
j=1

‖gj‖m−1
∞

m∑
j0=1

∥∥Ds,yun,k(t, x+ζj0)
∥∥
2
�

m∑
j0=1

1Bb

(
x−y+ζj0

)
, (3.12)

where b = a(k+1)/n+T , as a consequence of Proposition 3.1. Plugging (3.12) into (3.11),
yields

V1,n,k(R) � R−2d
m∑

j,�=1

∫

B2
R

∫ t

0

∫

R2d

1Bb
(x− z + ζj)1Bb

(y − z′ + ζ�)γ(z − z′)dzdz′dsdxdy

� R−2d
m∑

j,�=1

∫

B2
R

∫

R2d

1Bb
(x− z + ζj)1Bb

(y − z′ + ζ�)γ(z − z′)dzdz′dxdy.

Therefore using Fourier transform, we write

V̂ :=

∫

B2
R

∫

R2d

1Bb
(x− z + ζj)1Bb

(y − z′ + ζ�)γ(z − z′)dzdz′dxdy

=

∫

B2
R

∫

Rd

e−i(x−y+ζj−ζ�)ξ
∣∣F1Bb

(ξ)
∣∣2µ(dξ)dxdy.

Put �R(ξ) =
∫
B2

R
e−i(x−y)ξdxdy, which is a nonnegative function. So we get

V̂ ≤
∫

Rd

�R(ξ)
∣∣F1Bb

(ξ)
∣∣2µ(dξ)dxdy =

∫

B2
R

∫

Rd

e−i(x−y)ξ
∣∣F1Bb

(ξ)
∣∣2µ(dξ)dxdy

= R2d

∫

B2
1

∫

Rd

e−iR(x−y)ξ
∣∣F1Bb

(ξ)
∣∣2µ(dξ)dxdy.

That is,

R−2dV̂ ≤
∫

Rd

(∫

B2
1

e−iR(x−y)ξdxdy

)∣∣F1Bb
(ξ)

∣∣2µ(dξ).
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Spatial ergodicity of stochastic wave equations

Since µ({0}) = 0, for µ-almost every ξ,
∫
B2

1
e−iR(x−y)ξdxdy converges to zero as R → ∞,

by Riemann-Lebesgue’s lemma. Thus, by dominated convergence theorem with the
dominance condition (3.6), we deduce that R−2dV̂ converges to zero as R → +∞. This
leads to V1,n,k(R) → 0, as R → +∞. It follows that lim supR→+∞ V (R) ≤ 8ε, where ε > 0

is arbitrary. Hence we can conclude our proof.
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