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Consider a moving average process X of the form X (1) = fioo ot —u)dZ,,t >0, where Z is a (non Gaussian)
Hermite process of order ¢ > 2 and ¢ : R4 — R is sufficiently integrable. This paper investigates the fluctuations,
as T — oo, of integral functionals of the form 7 — fOTt P(X(s))ds, in the case where P is any given polynomial
function. It extends a study initiated in (Stoch. Dyn. 18 (2018) 1850028, 18), where only the quadratic case P (x) =
x2 and the convergence in the sense of finite-dimensional distributions were considered.
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1. Introduction

Hermite processes occur naturally when we consider limits of partial sums associated with long-range
dependent stationary series. They have become increasingly popular in the recent literature, see for
example the book [15] by Pipiras and Taqqu, in particular Section 4.11, which contains bibliographical
notes on their history and recent developments. They form a family of stochastic processes, indexed
by an integer ¢ > 1 and a self-similarity index H € (%, 1), called the Hurst parameter, that contains the
fractional Brownian motion (¢ = 1) and the Rosenblatt process (¢ = 2) as particular cases. We refer
the reader to Section 2.2 and the references therein for a precise definition of the Hermite processes.
Of primary importance in the sequel is the parameter Hy, given in terms of H and g by

1—H 1
Hy=1———¢€(1-—,1). (D)
q 2q

The goal of the present paper is to investigate the fluctuations, as 7 — oo, of the family of stochastic
processes

Tt
‘o f P(X(s))ds. 1€[0.1](say). @
0

in the case where P (x) is a polynomial function and X is a moving average process of the form

t
X(l)=/ ot —uw)dZy, 1=0, 3)

—00
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with Z a Hermite process and ¢ : R4 — R a sufficiently integrable function. We note that integral
functionals such as (2) are often encountered in the context of statistical estimation, see, for example,
[7] for a concrete example.

Let us first consider the case where ¢ = 1, that is to say the case where Z is the fractional Brownian
motion. Note that this is the only case where Z is Gaussian, making the study a priori much simpler
and more affordable. By linearity and passage to the limit, the process X is also Gaussian. Moreover,
it is stationary, since the quantity E[X () X (s)] =: p(t — s) only depends on ¢ — s. For simplicity and
without loss of generality, assume that p(0) = 1, that is, X (#) has variance 1 for any ¢. As is well
known since the eighties (see [4,8,18]), the fluctuations of (2) heavily depends on the centered Hermite
rank of P, defined as the integer d > 1 such that P decomposes in the form

P=E[P(X(0)]+ > axH. “)
k=d

with Hj the kth Hermite polynomials and a4 # 0. (Note that the sum (4) is actually finite, since P is a
polynomial, so that #{k : a; # 0} < 00.)

The first result of this paper concerns the fractional Brownian motion. Even if it does not follow
directly from the well-known results of Breuer—Major [4], Dobrushin—-Major [8] and Taqqu [18], the
limits obtained are somehow expected. In particular, the threshold H =1 — ﬁ is well known to spe-
cialists. However, the proof of this result is not straightforward, and requires several estimations which
are interesting in themselves.

Theorem 1. Let Z be a fractional Brownian motion of Hurst index H € (%, 1), and let 9 € L' (Ry) N
L# (R4). Consider the moving average process X defined by (3) and assume without loss of generality
that Var(X (0)) = 1 (if not, it suffices to multiply ¢ by a constant). Finally, let P(x) = Zfzv:o a,x" be a
real-valued polynomial function, and let d > 1 denotes its centered Hermite rank.

(1) Ifd >2and H € (4,1 — 55), then

T2 {/()Tt(P(X(s)) - E[P(X(s))])ds} (5)

te(0,1]

converges in distribution in C([0, 1]) to a standard Brownian motion W, up to some multiplica-
tive constant C1 which is explicit and depends only on ¢, P and H.
() IfH € (1 — 55, 1) then

recm= [ (e - [ (x(0) s} ©)

tel0,1]

converges in distribution in C ([0, 1]) to a Hermite process of index d and Hurst parameter
1 —d(1 — H), up to some multiplicative constant Cy which is explicit and depends only on ¢,
P and H.

Now, let us consider the non-Gaussian case, that is, the case where ¢ > 2. As we will see, the situ-
ation is completely different, both in the results obtained (rather unexpected) and in the methods used
(very different from the Gaussian case). Let L > 0. We define Sy, to be the set of bounded functions
1:R; — Rsuch that y“I(y) — 0 as y — oo. We observe that S C LI(R+)0L% (Ry) forany L > 1.
We can now state the following result.
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Theorem 2. Let Z be a Hermite process of order q > 2 and Hurst parameter H € (%, 1), and let
¢ € St for some L > 1. Recall Hy from (1) and consider the moving average process X defined by (3).
Finally, let P(x) = 217:0 anx™ be a real-valued polynomial function. Then, one and only one of the
following two situations takes place at T — 00:

(i) If q is odd and if a,, # O for at least one odd n € {1, ..., N}, then

rol [ (p(xio) - Blp(x(o))as]

t€[0,1]

converges in distribution in C ([0, 1]) to a fractional Brownian motion of parameter Hy := H,
up to some multiplicative constant K1 which is explicit and depends only on ¢, P, q and H, see
Remark 3.

(ii) If q is even, orif q is odd and a, =0 for all odd n € {1, ..., N}, then

riol [ (e - [ (x(0) s

tel0,1]

converges in distribution in C ([0, 1]) to a Rosenblatt process of Hurst parameter Hy :=2Hy— 1,
up to some multiplicative constant K, which is explicit and depends only on ¢, P, q and H, see
Remark 3.

Remark 3. Whether in Theorem 1 or Theorem 2, the multiplicative constants appearing in the limit
can be all given explicitly by following the respective proofs. For example, the constant K; and K7 of
Theorem 2 are given by the following intricate expressions:

N
K = Z anc’hy  Kon,1
n=3,n odd
N
K> = Zanc’;{,quo,n,z +a1]1{q:2}/ o(v)dv
) Ry
n=
with
Cu K
Koni= > el o,

CH.: i
a€Ay g.nq—2la|=i Hj.i

where the sets and constants in the previous formula are defined in Sections 2, 3 and 4.

Remark 4. Note that, unlike the case of a fractional Brownian motion X, where the limit depends
on the Hermite rank of the polynomial P, here the Hermite rank of P plays no role and the limit
depends on the parity of the non-vanishing coefficients of P. This is not really surprising in our non-
Gaussian context, since the Hermite rank of P is defined by means of its decomposition into Hermite
polynomials, and these latter polynomials only have good probabilistic properties when evaluated in
Gaussian random variables.

We note that our Theorem 2 contains as a very particular case the main result of [7], which corre-
sponds to the choice P(x) = x2 and thus situation (ii). Moreover, let us emphasize that our Theorem
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2 not only studies the convergence of finite-dimensional distributions as in [7], but also provides a
functional result.

Because the employed method is new, let us sketch the main steps of the proof of Theorem 2, by
using the classical notation of the Malliavin calculus (see Section 2 for any unexplained definition or
result); in particular we write / f (h) to indicate the pth multiple Wiener—Itd integral of kernel 4 with
respect to the standard (two-sided) Brownian motion B.

Step 1. In Section 3, we represent the moving average process X as a gth multiple Wiener—It6 integral
with respect to B:

X()=cuqgll(g,-),

where cp 4 is an explicit constant and the kernel g(z, -) is given by

t q H()*é
p—v)[[0—Epy *dv, (7)

j=1

g(t’$1’~--’$q)=/

for &y, ..., &, € R,t > 0. Thanks to this representation, we compute in Lemma 5 the chaotic expansion
of the nth power of X () for any n > 2 and ¢ > 0, and obtain an expression of the form

Xn(t) = cr[l{,q Z Cotlyfgquhﬂ (®(g(t1 ')7 LR} g(t’ )))1

a€Ay 4 o

where we have used the novel notation ®a (g(t,),...,g(t,-)) toindicate iterated contractions whose
precise definition is given in Section 2.1, and where C, are combinatorial constants and the sum runs
over a family A, , of suitable multi-indices @ = (¢, 1 <i < j < n). As an immediate consequence,
we deduce that our quantity of interest can be decomposed as follows:

| Y (P(X ) — E[P(X())]) ds

Tt
=a0/ X(s)ds
0
N Tt
+> anchy, > Caf I,g_2a|<®(g(s,~),...,g(s, -))) ds. (8)
n=2 a€Ay q.ng—2la|>1 o

Step 2. In Proposition 6, we compute an explicit expression for the iterated contractions ), (g(, -),
.., g(t,-)) appearing in the right-hand side of (8), by using that g is given by (7).
To ease the description of the remaining steps, let us now set

Tt
Fogar(t) = fo 12 o (®(g(s, SN -))) ds. ©)

o

Step 3. As T — oo, we show in Proposition 7 that, if ng — 2|«a| < ﬁ, then T~ 1+ -Ho)(ng=2la)
Fy,q.,0,7(t) converges in distribution to a Hermite process (whose order and Hurst index are specified)
up to some multiplicative constant. Similarly, we prove in Proposition 9 that, if ng — 2|«| > 3, then
T F, 4. 1(t) is tight and converges in L2(2) to zero, where ay is given in (28).
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Step 4. By putting together the results obtained in the previous steps, the two convergences stated in
Theorem 2 follow immediately.

To illustrate a possible use of our results, we study in Section 6 an extension of the classical fractional
Ornstein—Uhlenbeck process (see, e.g., Cheridito et al. [6]) to the case where the driving process is
more generally a Hermite process. To the best of our knowledge, there is very little literature devoted
to this mathematical object, only [12,16].

The rest of the paper is organized as follows. Section 2 presents some basic results about multiple
Wiener-It6 integrals and Hermite processes, as well as some other facts that are used throughout the
paper. Section 3 contains preliminary results. The proof of Theorem 1 (resp. Theorem 2) is given in
Section 5 (resp. Section 4). In Section 6, we provide a complete asymptotic study of the Hermite—
Ornstein—Uhlenbeck process, by means of Theorems 1 and 2 and of an extension of Birkhoff’s ergodic
Theorem. Finally, Section 6 contains two technical results: a power counting theorem and a version of
the Hardy—Littelwood inequality, which both play an important role in the proof of our main theorems.

2. Preliminaries on multiple Wiener-Ito integrals and Hermite
processes

2.1. Multiple Wiener-It6 integrals and a product formula

A function f : R? — R is said to be symmetric if the following relation holds for all permutation
o €GB(p):
f@, ... tp)=flec)s - tap))s t,... tp €ER

The subset of L?(R”) composed of symmetric functions is denoted by L% RP).
Let B = {B(#)};er be a two-sided Brownian motion. For any given f € L?(RP ), we consider the
multiple Wiener—It6 integral of f with respect to B, denoted by

I,?(f)=/R f1, . 1p)dB() - dB(tp).
¥4
This stochastic integral satisfies E[/ pB (fH)l=0and

E[1,(N1] (] =1p=) P f. &) 12 @)

for f e LE(RI’ )and g € Lf.(]Rq ), see [11] and [13] for precise definitions and further details.

It will be convenient in this paper to deal with multiple Wiener—It6 integrals of possibly nonsym-
metric functions. If f € LZ(R?), we put [ 5 (=1 f (f), where f denotes the symmetrization of f,
that is,

~ 1
f(xl, . ..,)Cp) = —' Z f(xg(l), e ,xg(p)).

“0eB(p)

We will need the expansion as a sum of multiple Wiener—Itd integrals for a product of the form

n
[117 @,
k=1
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where g > 2 is fixed and the functions 4 belong to Lf,(Rq) for k =1,...,n. In order to present this
extension of the product formula and to define the relevant contractions between the functions 4; and
h; that will naturally appear, we introduce some further notation. Let A, 4 be the set of multi-indices

a=(ajj,1 <i < j<n)suchthat, foreachk=1,...,n,
Z aijlietijy <q.
I<i<j<n

Set |Ol| = Zl§i<j§n ij,

Bl=q— Y dijlieij). 1<k<n

1<i<j<n
and
n
m::m(a):Zﬁ,?:nq—2|a|. (10)
k=1
Foreach 1 <i < j <n, the integer ;; will represent the number of variables in /; which are contracted
with i ; whereas, for each k =1, ..., n, the integer /3,9 is the number of variables in &; which are not
contracted. We will also write S = Zl;zl ,3? fork=1,...,n and By = 0. Finally, we set
q !I‘l
Cy = . (11)
0
[Tizi BTl <i<j<n aj!
With these preliminaries, for any element o € A, ; we can define the contraction ®a (hi,..., hy) as

the function of ng — 2|e| variables obtained by contracting «;; variables between h; and h; for each
couple of indices 1 <i < j < n. Define the collection (u"/)|<;, j<n,i=; in the following way:

i
u'™! = otmin(, j),max(i, j)-
We then have

Q... )G Eng-2ja)

k1 k,n k.n
/]lenhk I Y R ERRRTE ..,suk,,,,éw,ak,l,...,gﬁk)
i,j i,j
l_[ dsy”...ds (12)
I<i<j<n

When 1 = 2, & has only one component o 5 and ), (i1, h2) = hi ), , b2 is the usual contraction of

o1,2
1,2 indices between /1 and h;. Notice that the function Q) (h1, ..., hy) is not necessarily symmetric.
Then, we have the following result.
Lemma 5. Let n, g > 2 be some integers and let h; € L?(Rq)fori =1,...,n. We have

HIB(hk)_ > Culf 2|a|(®(h1,...,hn)>. (13)

a€Ay 4
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Proof. The product formula for multiple stochastic integrals (see, for instance, [14], Theorem 6.1.1,
or formula (2.1) in [2] for n = 2) says that

[tk (®0) ) "
k=1 Py Py

k=1

where P denotes the set of all partitions {1,...,q} = J; U (Ug=1,....n k=i lix), where for any i, j =

1,...,n, I;; and I;; have the same cardinality o;;, v;; is a bijection between I;; and I;; and ,3,? = |Jxl.
Moreover, (Q;_; hr)p,y denotes the contraction of the indexes € and v;;(¢) for any £ € I;; and any
i,j=1...,n. Then, formula (13) follows form (14), by just counting the number of partitions, which

is
n

M=—2

0
k=1 [Tior o i B!

and multiplying by the number of bijections, which is H1§i< j<n ij!- ]

Notice that when n = 2, formula (13) reduces to the well-known formula for the product of two
multiple integrals. That is, for any two symmetric functions f € L2(R”) and g € L2(R%) we have

min(p,q)
EHife= > r!(’,’) (‘1> g2 (f ®r 8).

r=0
where, for 0 < r < min(p, q), f ®, g € L*(RPT472") denotes the contraction of r coordinates between

fand g.

2.2. Hermite processes

Fixg>1land H € (%, 1). The Hermite process of index ¢ and Hurst parameter H can be represented
by means of a multiple Wiener—It6 integral with respect to B as follows, see, for example, [9]:

zH*q(z)ch,,,/ /[O]r[(s—x,)+ 2dsdB(x))-- dB(x,), teR. (15)
t

Here, x4 = max{x, 0}, the constant cy , is chosen to ensure that Var(ZH4(1)) = 1, and

1-H 1
Hy=1-——¢€(1-—,1).
q 2q

Note that Z#-4 is self-similar of index H. When g = 1, the process Z>! is Gaussian and is nothing
but the fractional Brownian motion with Hurst parameter H. For g > 2, the processes Z 1.9 are no
longer Gaussian: they belong to the gth Wiener chaos. The process Z -2 is known as the Rosenblatt
process.

Let |H| be the following class of functions:

|’H|={f:R—)R‘/R/R‘f(u)“f(v)ﬂu—v|2H_2dudv<oo}.
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Maejima and Tudor [9] proved that the stochastic integral fR f(u)dZ™4u) with respect to the Her-

mite process 7H.9 is well defined when f belongs to |H|. Moreover, for any order ¢ > 1, index
H e (%, 1) and function f € |H]|,

f f)dz™9w)
R

q 3
=CH,q./]R (/H;f(”)l_[(”—fj)fo_zdu) dB(&))---dB(&,). (16)
q ]:1

As a consequence of the Hardy-Littlewood—Sobolev inequality featured in [1], we observe that
1
LIR)NLT(R) C [H].

3. Chaotic decomposition of [,'* P (X (s)) ds

Assume ¢ € |H| and g > 1. Using (16) and bearing in mind the notation and results from Section 2, it
is immediate that X can be written as

X (1) =cugqll (g, ), (17)
where g(t, -) is given by
t
g(r,sl,...,sq)=/ go(z—v)]"[(v—sn ! (18)
_ P

and cp 4 is defined as in (15).

3.1. Computing the chaotic expansion of X (¢)" when n > 2

Let us denote by A0 the set of elements o € A, 4 such that ng — 2|a| =0 and A1 will be the set of

elements o € A 4 such that ng — 2|a| > 1. Notice that when nq is odd, AO nq 18 empty Using (13), we
obtain the following formula for the expectation of the nth power (n > 2) of X given by (3):

E[X()'] = (cng)" Y Call_ 2|a|(®(g(t, SIS ->)). (19)
ozeA0

We observe in particular that E[X (¢)"] = 0 whenever ng is odd. From (13) and (19), we deduce for
n > 2 that

X" —E[X(0)"]=(cng)" Y ca1,{§[_2|a|<®(g(;, Dsens gt .))). (20)

1 [
aeAmq

To clarify this formula, let us write down detailed a expression in the cases n =2 and n = 3. When
n =2, the right-hand side of (20) is

q—1 2
(crg)* Y r! (3) Iy 5 (8, ) ®r (),
r=0
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because « has just one component o1 > =: r and condition « € A,ll 4 means 0<r<gqg—1.Forn=3,
we have

Az g ={la1p, 013, m3) 12 +o13<q.a12+a3<q,a13+a23=<q}

and the right-hand side of (20) is

(cng)? Y. Calzg (®(g(t, ), 88,9, 8, -))),

a€A3 4:3qg2|a|>1 o

where

(qH?

Cy= .
applayslar (g —arp —a13)!(g —a12 —a23)!(g —a1,3 — oy3)!

In this case, the contraction &), (g(z, ), g(t,-), g(¢, -)) is the function of 3¢ — 2|e| variables defined
by

/ g(e,s,u)g(x,s,v))g(o,u,v)dsdudv,
Rlel

with s = (s1, ..., 8¢y ,)s 4 = (U], ..., Uqg 3) and V= (V], ..., Vgy3)-
From (20), we obtain

Tt
/0 (P(X()) —E[P(X(5))])ds
Tt N Tt
:al/o X(s)ds+ Y an(crg)" Y C"‘/o 1n€12a|<®(g(s,.),...,g(s, .)))ds. @21
n=2 o

aeA},yq

3.2. Expressing the iterated contractions of g
We now compute an explicit expression for the iterated contractions appearing in (21).

Proposition 6. Fixn>2,qg>1anda € A, ,. We have

1 lo|
®(g(ts ')7"'7g(t’ ))(E) =,3<HO — 5,2—2[‘]0)

o

n
x/ dvl...dvnl_[(p(t—vk) 1_[ |v; _vj|(2H()*2)Olij
(ool k=1

1<i<j<n
n Bx o3
0=2
<[] J] —é&y 2
k=1¢=14Pr_1

with the convention By = 0.
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Proof. The proof is a straightforward consequence of the following identity

f (=60 — )32 g = ﬂ(Ho - % 2— 2Ho> v — w|?H0=2), (22)
R

whose proof is elementary, see, for example, [3]. O

4. Proof of Theorem 2

We are now ready to prove Theorem 2. To do so, we will mostly rely on the forthcoming Proposition
7, which might be a result of independent interest by itself, and which studies the asymptotic behavior
of F,f gaT given by (9). We will denote by f.d.d. the convergence in law of the finite-dimensional
distributions of a given process. Notice that the hypothesis on ¢ is a bit weaker than the one in the

main theorem, the fact that ¢ € Sy, being required in the forthcoming Proposition 9.

Proposition 7. Fixn>2,q > 1 and a € A, ;. Assume the function ¢ belongs to L'R)N L# R4),
recall Hy from (1) and let m be defined as in (10). Finally, assume that 2m < ﬁ (which is automati-
cally satisfied when m =1 or m =2). Then, as T — 00,

CoKy o Hy ZH(m)’m(t)> ’ (23)
te[0,1]

— — fd.d.
T 1+(1 H())mF T(t) AN (
( n.q,o, )te[O,l] CH(m).m

where ZH™-" denotes the mth Hermite process of Hurst index H(m) =1 — %(1 — H) and the con-
stants Cy and Ky o H, are defined in (11) and (24), respectively. Furthermore,

—14-(1—H,
[T~ O)m(Fn’q,o,,T(t))te[O!l], T>0)}
is tight in C ([0, 1]).
Remark 8. Note that for m| < my the chaos of order m| dominates the chaos of order m.

Proof of Proposition 7. Letn >2,g>1anda € A, 4.

Step 1: We will first show the convergence (23). We will make several change of variables in order to
transform the expression of F; 4 « 7(¢). By means of an application of stochastic’s Fubini’s theorem,
we can write

Fogar(t) = Ca fR Wr (L. En) dBED) - dB(En),

where
Tt n
LONGIE R / ds f dvi -+ dv, [ Tots = v
0 —00,s5]" k=1
n Bk

x l_[ |vi—vj|(2H°_2)°‘fjl_[ l_[ (Uk—ée)fr%-

1<i<j<n k=10=1+pBi_1
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Using the change of variables s — T's and vy — T's — vk, 1 <k <n, we obtain

t n
Wy, ... En) = T'"<1—H0>/ ds/ dvy - dvy, l_[go(Ts — )
0 (—o00,Ts]?

k=1

n Bk
—D)ay; Ho—3
< ] lwi—vi®0 2 [T J] -8y 2

I<i<j<n k=10=1+pBi_,
t n

= T_T/ ds/ dvy--- dvnntp(vk)
0 [0,00)" el

_3
x T i vj1@H- m,,ﬁ 1—[ (___%f)f() "

I<i<j<n k=1€0=1+4PBr_1

By the scaling property of the Brownian motion, the processes

(F”s‘ba’r(t))aeAn.q,ZgngN tel0,1]
and

(FWL%T(t))aeAn_,,,zgngN 1el0.1]

have the same probability distribution, where

Fogar(®) = Co /R BrEr. . En)dBE) - dB(En)

t n
Bret)i= [ ds [ dviean[Tow
0 (—00,0]" bl

(SN

Hy
T sy f] (e

I<i<j<n k=1L=14Pr_1
Set
- 4 i Ho—3
W, ..., 6m) = Kga,a,Ho/ ds H(S_EZ)+ 2
0 =1
where
n
Ky Hy = / dvy -+ dvy, H‘/’(Uk) l‘[ v — vj|@Ho—Dei; (24)
R} k=1 I<i<j<n

Notice that, by Lemma 15, K o H, is well defined. We claim that

lim U7 =0, (25)

T—o00
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where the convergence holds in LZ(R’”). This will imply the convergence in L2() of I/*"\,,,q’a,T(t), as
T — oo to a Hermite process of order m, multiplied by the constant Cy Ky o, H,,-

Proof of (25): 1t suffices to show that the inner products (@T, @T)Lz(Rm) and (@T, @)Lz(Rm) con-
verge, as T — 00, to

T 1 " (2Hy—2)
W17 2 oy = Ké’a’Hoﬂ<Ho - 52— 2H0> /[0 ] dsds'|s — /|70,
,t

which is finite because m < 2(T1HO) = ﬁ. We will show the convergence of ((IJ\T, @T) L2(R™) and
the second term can be handled by the same arguments. We have

”(I?T”%}(]R”’) = \/[;) - deS//zn dUl “ee dvndvg . dvl/’L
it i

n
x Hsﬂ(vk)go(v,i) l_[ lv; — vj|FHo=eij |y — v}|(2H°_2)a"f

k=1 I<i<j<n
n Br 7 | (2Ho—2)Bi
1 Vg — U
X Hy— —,2 —2H, s—s5 —
[1 ﬂ( 075 0) T
k=1
Let us first show that given wy e R, 1 <k <n,
(2Ho 2)Br
lim dsds’ 1_[ s—s — = =/ ds ds’|s - s”(ZHO_z)m (26)
T— 00 [0,£]2 [0,7]2
and, moreover,
sup / dsds’ H]s — k|(2H°72)’3" < 00. 27
wreR, 1<k<n J[0,]?

By the dominated convergence theorem and using Lemma 15, (26) and (27) imply (25).

To show (26), choose € such that [wi|/T <€, 1 <k <n, for T large enough (depending on the fixed
wg’s). Then, we can write

" @Hy-D)f
/ dsds’ 1_[ s—s — = —|s = s'|(2H0_2)m
[0.112 k=1 T
n g @HDE
<if a2 ~ Jg|@Ho2m
El>2 |y

n
+2t sup f dg | | 1& — wy|@Hom 2P
§1<2€

[wi |<e k=1

= B; + Bj.
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The term B; tends to zero a T — 00, for each € > 0. On the other hand, the term B, tends to zero as
€ — 0. Indeed,

n
By =2t ?Ho=2mt1l g / d& 1_[ & — wy| @Ho=DPx,
lwg|<1J]§]<2 _

Note that the above supremum is finite because the function (wy, ..., wy) — flé\ < d&[Ti, 1€ —

wi|2H0=2Pk is continuous.
Property (27) follows immediately from the fact that the function

n
2Hy—2
(w1, ..., wg) = dsds’l—“s—s’—wk( =2
[0,11?
is continuous and vanishes as |(wy, ..., wi)| tends to infinity.
We have Hy=1 — I_TH =1- #(m) with H (m) as above. As a result, we obtain the convergence

of the finite-dimensional distributions of 7 —1T(1—Hom Fy.4,0,7 () to those the mth Hermite process

ZHm).m myltiplied by the constant %;’H"

Step 2: Tightness. Fix 0 <s <t < 1. To check that tightness holds in C([0, 1]), let us compute the
squared L2($2)-norm

—14(1— 2
o7 =T~ HIHOME(|Fy g1 (0) = Fuga()])-
Proceeding as in the first step of the proof, we obtain

WTZE(

n

[ aBe-apn / du / dvy -+ dv, [ (o)

k=1
n Ho—% 2
X l_[ lvi —v; |(2H0 Daij l_[ l_[ (u———&)
I<i<j<n k=1£=14+Br_1 +
<t [ ety [ / dor-+-du T oo
R n k 1
n Ho—% 2
X l_[ v — v @0~ 2)“”1_[ l_[ (u———§z>
1<i<j<n k=14=14pk—1 +

Using (22) yields

‘-IJTfm!/ dudu’/ dvy -+ dv, dv} - dv),
[s,7] R

+

n
% 1_[ §0(Uk)§0(U1/<) 1_[ |Ui o vj|(2H0—2)ot,'j |vl/ o U} |(2H0—2)0tij

k=1 I<i<j<n

n 1 B
X ]‘[,3(110—5,2—2110)

k=1

7 |(2Ho—2) Bk
;o Uk T
u—u —
T
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1
Sm!(t—s)/ d&[ dv; - dv, dv} - - dv,
-1 R%

n
X 1_[ QD(Uk)(P(U/Q) 1_[ |Ui _ Uj|(2H0—2)a,-j ‘vl/ _ v‘li ’(2H0—2)Olij

k=1 I<i<j<n
n 2Hy—2) B
1 Bk Uk—l)/ (2Hy
Xl—[ﬂ<Ho—§,2—2Ho> f————
k=1
<C(t—ys).

Then the equivalence of all L?(£2)-norms, p > 2, on a fixed Wiener chaos, also known as the hyper-
contractivity property, allows us to conclude the proof of the tightness. |

We will make use of the notation
ag=(1— 2H0)1{nq is even} — HOl{nq is odd}- (28)

Proposition 9. Fix n,q > 2 and a € A, 4, assume that the function ¢ belongs to Sy for some L >
1 and that m > 3. Then for any t € [0,1], T*F, , o 7(t) converge in L2(Q) to zero as T — o0
furthermore, the family {(Fy .o, (t))re0,1), T > 0} is tight in C([0, 1]).

Proof. If (2Hy — 2)m > —1, by Proposition 7, we know that 7—1+m(1—Ho) Fy g.a,7(t) converges
to zero in L*(Q) as T — oo. This implies the convergence to zero in L>(Q2) as T — oo of
T7%F, 4.a71 () because —1+m(1 — Hy) > ap. We should then concentrate on the case (2Hy —2)m <
—1. Once again, we shall divide the proof in two steps:

Step I: Let us first prove the convergence in L%(2). Fix a € Ap,q. We are going to show that

lim T2°‘°E(|Fn,q,a,r(t)|2) =0.

T—00

We know that

2
T2a0]E(|ELq,a,T(f)|2) =T%0m! x

d S T ,-
f{w s@)(8(5.). ... 8(s.))

o

L2(R’").

In view of the expression for the contractions obtained in Proposition 7, it suffices to show that

lim T2°‘0/ dsds’/ / / dvy -+ dv, dvy -+~ dv, d&; - - d&y
T—o0 [0,T7]2 m J(—o0,s]" J (—o0,s']

n

« Hw(s . vk)go(s/ . U]/() l_[ i — vj|(2H072)a,-j |vl/ _ v}|(2H0*2)Otij
k=1

I<i<j<n
n ﬂj ﬂj

1 T1 ee-e?7 [T w-e)f <o

k=1t=1+B;- =148y
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Integrating in the variables &’s and using (22), it remains to show that

lim TZ“O/ dsds’/ f dvy -+ dv, dv) - dv),
T—o0 [0,Tt]? —00,s]" J (—00,s']"

n

x [Tot—voe(s’—vp) [T i — v @2 |y — v | 072

k=1 I<i<j<n

» ﬁ!vk | CHB g,
k=1

Set
dr = TZ“O/ dsds’/ / dvy -+ dv, dv} - dv),
[0,T¢12 (—00,s1" J (—00,s']"
n
x [Tt —voels’ —vi) T 1o — oI @Ho2i ]y — o o=
k=1 1<i<j<n
n 2 2
(2Hp—
X l_[|vk — [ W
k=1
Making the change of variables wy =5 — vg, w;, =s" — v fork =1,...,n, yields

®T=T2“°/ dsds’/ / dwi -+ dw, dw) - dw,
[0,T¢]? R’} J[0,00)"
n

N 2Hy—2)at;;
XH‘P(wk)(p(wl/c) H lw; — w;| @A~ wl{—w}( 0

k=1 I<i<j<n

n
X 1_[|s —s —wi + w]/(|(2H072)/3k.
k=1

Now we use Fubini’s theorem and make the change of variables s — s’ = £ to obtain

O = tT2°‘°+1/ dwy -+ dw, dw} --- dw),

R
n
« H|‘P(wk)‘ﬂ(wl/c)| 1—[ lwi — wj|(2H0—2)a,_,- |wl/ _ wH(2H()-2)0£ij
k=1 l<i<j<n '
i - 2Hy—2
x/ dél_“E—wk—i—w,’(!( 0=Dbx
—tT k=1

We shall distinguish again two subcases:
Case (2Hp — 2)m < —1: Notice that the exponent 2« + 1 is negative:
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(i) If ng is even, then g = 1 — 2Hy and
200+ 1=3—-4Hy <0

because Hy > %.
(i1) If nq is odd, then og = —Hp and

2ap+1=1—2Hy <O0.

Therefore, in order to show that lim7_, o ®7 = 0, it suffices to check that

n
J = '/Rzn dwy -+ dw, dw} - - dw), l_[|90(wk)¢(wl/c)i

k=1
_ .. 2Hyp—2)a;;
x [T twi = wy GH0=2 |y — gy @072
1<i<j<n
n
2Hy—2
x/dél_“é—wk—i-w“( 0D _ o, (29)
R
k=1

where, by convention ¢ (w) = 0 if w < 0. We will apply the Power Counting Theorem 14 to prove that
this integral is finite. We consider functions on R+ with variables {(WK)k<n, (w,/()kf,,, &}. The set of
linear functions is
T:{a)k,w,/(,lSkgn}u{wi—wj,wl{—w},lgi <j§n}
U{g—wk+wl/{,1§k§n}.

The corresponding exponents (uys, vyr) for each M € T are (0, —L) for the linear functions wy and
w, (taking into account that ¢ € Sp), (2Ho — 2)a;; for each function of the form w; — w; or w; — w’,

j
and (2Ho — 2) . for each function of the form & — wy + wy.
Then J < oo, provided conditions (a) and (b) are satisfied.
o Verification of (b): Let W C T be a linearly independent proper subset of 7', and

doo=2n+1—dim(Span(W)+ > vy
MeT\(Span(W)NT)

Let S be the following subset of T: § = {wy, w,/(, 1 <k <n}. Let e = Card(S N Span(W)). Consider
the following two cases:

(i) There exists k < n such that £ — wy + wj, € Span(W) N T. Then dim(Span(W)) > e+ 1. As a
consequence,

doo <2n+1—(e+1)— (2n—e)L <O,

because L > 1 and in this case, we should have e < 2n because W is a proper subset of T'.
(i) Otherwise,

deo <2n+1—e—2n—e)L+ (2Hy —2)m <0,

because L > 1 and (2Hy —2)m < —1.
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e Verification of (a): A direct verification would require to solve a seemingly difficult combinatorial
problem. We can simply remark that

/ ) dw - dw, dw} -+ dw,,
[_1!1] n

~Da;; 2Hy—2)a;
x Tt = wy GHo=2 [y — gy | GH0720

1<i<j<n

1 n
x / e [TIE — wi + w2725
- k=1

1 ! ?
:m!ﬂ(Ho — % o 2H0)|0‘E|:</0 I,Z,zw(f(s, Voo [, ))> ] <00

where f(s,&1,...5,) = fj;o T—1.19(s — v) ]_[;].:1(1) - éj)fo_S/z dv. Since ¢ € Sy, ¢ is bounded on

[—1, 1]. This implies that (a) is verified by the converse side of the Power Counting theorem.
Case (2Hyp — 2)m = —1: In this case, we can apply Holder and Jensen inequalities to @7 in order to
get

1
o < TZO‘OHAIE?BW,

with 200 + 1 <0, A = ([ lo(w)|dw)?* and

n
b= /Rzn duwy - dundwy - dw;ﬂlﬂwk)cp(wm
x H lw; — wj|(2H(;—2)a,-j |wl/ _ w}|(2H(;—2)aij

I<i<j<n

n
i [ e [Tle = s+ g5,
R

k=1

where Hj = Ho(l 4 €) — €. If € is small enough, Hj can still be expressed as 1 — I_TH for some

% < H' < H.Moreover, in this case (2Hj —2)m < —1 so we are exactly in the situation of the previous
case, and the integral B is finite.

Step 2: Using the same arguments as previously and the hypercontractivity property, we deduce that
there exists a constant K > O such that forall0 <s <t <1,

E(|Fn,q,a,T(t) - Fn,q,a,T(S)|4) <K|t - S|2a

which proves the tightness in C ([0, 1]). U

It remains to study what happens when n = 1. The proof of Proposition 10 is very similar to that of
Proposition 7 (although much simpler) and details are left to the reader.
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Proposition 10. Fix g > 1 and assume the function ¢ belongs to L' (Ry) N L7 (Ry). Then the finite-
dimensional distributions of the process

Tt
GT(t);qu“*Hw*l/ ds1(g(s.)). te€l0.1], (30)
0

where g(s, -) is defined in (18), converge in law to those of a qth Hermite process of Hurst parameter
1 — g(1 — Ho) multiplied by the constant cl_{;’q fooo @(w)dw, and the family {(G(t))ic[0,11, T > 0} is
tight in C ([0, 1]).

We are now ready to make the proof of Theorem 2.
Proof of Theorem 2. It suffices to consider the decomposition (21) and to apply the results shown in
Propositions 7 and 9. ]

5. Proof of Theorem 1

Let Z be a fractional Brownian motion of Hurst index H € (%, 1), and let ¢ € L'(R4) N L%(RQ.
Consider the moving average process X defined by

t
X(t):/ o(t—uwydz,, t=>0,
—0oQ

which is easily checked to be a stationary centered Gaussian process. Denote by p : R — R the cor-
relation function of X, thatis, p(t —s) = E[X (#) X (s)], s, ¢ > 0. By multiplying the function ¢ by a
constant if necessary, we can assume without loss of generality that p(0) = 1 (= Var(X (¢)) for all #).
Let P(x) = ny:o apx™ be a real-valued polynomial function, and let d denotes its centered Hermite
rank.

5.1. Proof of (6)

In this section, we assume that d > 1 and that H € (1 — ﬁ, 1), and our goal is to show that

pd(—H)-1 {/TI(P(X(S)) — E[P(X(s))])ds}te[o’l]

0

converges in distribution in C ([0, 1]) to a Hermite process of index d and Hurst parameter 1 — d(1 —
H), up to some multiplicative constant C;. Since P has centered Hermite rank d, it can be rewritten as

N
P(x) =E[P(X ()] + ) biHi(x),
I=d

for some by, ..., by € R, with by # 0 and H; the /th Hermite polynomial. As a result, we have

Tt N Tt
/0 (P(X(s))—]E[P(X(s))])ds=Zb,(cH,1)’/o 12 (g(s,)®") ds,
I=d

and the desired conclusion follows thanks to Propositions 7 and 10.
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5.2. Proof of (5)

In this section, we assume that d > 2 and that H € (%, 1-— ﬁ), and our goal is to show that

[T e ex) - mlp(xo))as]

converges in distribution in C ([0, 1]) to a standard Brownian motion W, up to some multiplicative con-
stant C1. To do so, we will rely on the Breuer—Major theorem, which asserts that the desired conclusion
holds as soon as

te(0,1]

/‘,o(s)‘dds<oo, @31
R

where p(s) =E[X (s)X (0)] (see, e.g., [5] for a continuous version of the Breuer—Major theorem).
The rest of this section is devoted to checking that (31) holds true. Let us first compute p:

pt —5) =E[X(X(5)]

=HQH-1) f/ @t — )1 o0.] (@G5 — )1 (—oos) @) v — u* "2 dudv
RZ

=HQRH — 1)// o))t —s —v+ u|2H72du dv,
R2
with the convention that ¢ (u) = 0 if u < 0. This allows us to write

p(s) =cul@* (I*9)](s),

where @(u) = ¢(—u), I*~1 is the fractional integral operator of order 2H — 1 and cy is a constant

depending on H. As a consequence, applying Young’s inequality and Hardy-Littlewood’s inequality
(see [17], Theorem 1) yields

2H-1 2
lollLay < cullelr@|! <P||Lq(R) <cupllelir )

where 5 = % + é — 1 and é = % — (2H —1). This implies p = (H + ﬁ)_l and we have |l¢|lLr®) <

00, because p € (1, %) and ¢ € L'(R) N L% (R). The proof of (5) is complete.

6. The stationary Hermite—Ornstein—Uhlenbeck process

We dedicate this section to the study of the extension of the Ornstein—Uhlenbeck process to the case
where the driving process is a Hermite process. To our knowledge, there is not much literature about
this object. Among the few existing references, we mention [16] and [12]. The special case in which the
driving process is a fractional Brownian motion has been, in contrast, well studied, see, for instance,
[6]. In what follows, we will prove a first-order ergodic theorem for the stationary Hermite—Ornstein—
Uhlenbeck process. Then, we will use Theorem 2 to study its second order fluctuations.

Let @ > 0. Consider the function ¢(s) = e **I. and let Z H.9 pe 3 Hermite process of order g > 1
and Hurst index H > % Then ¢ € Sy forall L > 0, and we can define the stationary Hermite—Ornstein—
Uhlenbeck process as:

t
(U)o = / ot —s)dz!. (32)

—00
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As its name suggests, this process is strongly stationary, that is, for any 4 > 0 the processes (U;)s>0
and (U;4+n):>0 have the same finite-dimensional distributions. We then state the following general
ergodic type result.

Proposition 11. Let (u;);>0 be a real valued process of the form u; = IqB (ft), where f; € L%(Rq)for
each t > 0. Assume that u is strongly stationary, has integrable sample paths and satisfies, for each
I<r=gq,

/o ®r fsllL2@aa—2ry 2 0

Then, for all measurable function such that E[| f (ug)|] < +o0,

1 (7 as
7/0 fus)ds T:;E[f(uo)].

Proof. According to Theorem 1.3 in [10], the process u is strongly mixing if forall# > 0and 1 <r <
q, the following convergence holds

—oy —> 0.
I ft ®r fitsll2mea-2ry fve
Taking into account that u is strongly stationary, we can write
I/t & frtsllLzwea-—2ry = I fo & fsllp2mea-2r),
and the conclusion follows immediately from Birkhoff’s continuous ergodic theorem. 0

We can now particularize to the Hermite—Ornstein—Uhlenbeck process.

Theorem 12. Let U be the Hermite—Ornstein—Uhlenbeck process defined by (32). Let f be a measur-
able function such that | f (x)| < exp(|x|V) for some y < %. Then,

T
lim l/ fWUy)ds =E[f(Uo)] as.
0

T—oo T
Proof. We shall prove that the process U verifies the conditions of Proposition 11. We have U; =
IqB( f:) with
t 9 3
fi(xt, ..o xg) = cH gli—0o,na (X1, ..., Xg) et H(u —xj)0=2 gy,
X1V Vg i=1
Step 1. Let us first show the mixing condition, that is
blinolo I fo ®r fsllp2r2a-2ry =0
forallr € {1,...,q}. We can write

Jo®r fs(1,s ..., yzqur)

0 r q—r s ,
=c%1,,,f f T T —x0 2 @ —yp™=2 du
(—00,0]" XV VX VYV Vg —p

i=1j=1
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s
x / e—ot(s—u)
X1V VXV Yg—r41VY2q—2r

2g—2r

.
Xl_[ H (“_xi)HO%(M—Yj)HO%du) dxi--- dx,

i=1j= —r+1

5 0 s (5—v)
ou —a(s—v
Y1V-Vyg—r Yg—r4+1V-Vy2q-2r

,
X (f (u—x)HO_%(v—x)HO_%dx)
(—oo,unv]

q—r 2q—2r 3 3
<1 T1 @-ypf-3w-y=3dvdu
j=l1=q—r+l
) 1 ror0 S 2Hp—2
=CH’qﬂ<HO_§a2_2HO> / eau/ e—a(s—v)|u—v|r( 0—2)
VIV VYg—r Yg—r+1VVYag—2r
q—r 2q-2r 3 3
[T TT w=-yp™ 2@-yw™ >dvdu,
j=ll=q—r+1

where we used again the identity (22). We then have

2
”fO ®r fS ||L2(R2q—2r)

4 ! 2
:Cqu,B(H()— 5,2—2H0>

x / f eot(u+u|)e—a(2s—(v+v1))|u —u |(q—r)(2Ho—2)
(—00,012 J (00,512

x v — v | @A) 1y ) rCHO=D) o P CHOD) gy dv duy du

1 24
< c‘,‘,,qﬂ<Ho —5:2- ZHO) AoAsR?,

with

1

A, = (/ e a0 @r—(utuD) y _yy1aH=2) gy du1> ‘
(—00,x]?

and

1

0 K b
R, — (/ /Y oA —wHO) |y, _ y(a(CH=2) dvdu) g
—00 J—00
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where we used the Holder inequality with a = qur’ b= 4. Making the change of variable x —u = v,
X —uj] = v, we obtain

/ e*t]O((Z}C*(u‘I'ul))'M _ u1|q(2H072) du dl/l]
(—00,x]?
:/ etV 1y 9 [9CHO=D) gy dyy < 0.
[0,00)2

On the other hand, we have g(2Hy —2) =2H — 2, so

Rf = COV(UOH, USH)
where U ¥ is a stationary Ornstein Uhlenbeck process driven by a fractional Brownian motion of index
H (and with o = ga). According to [6], Lemma 2.2, one has R? = O, (s~ ), implying in turn
that lim;_, oo Ry = 0 and concluding the proof of the mixing condition.

Step 2. We now show the integrability condition E[| f(Up)|] < co. From the results of [6], we have

E[Ug] = # ['(2H). A power series development yields

=1
E[| £ Wol]=>_ ElIUo],
k=0

where U is an element of the gth Wiener chaos. By the hypercontractivity property, for all k > %
vk
vk 7o ’
E[lUo/" ] =gty :i= k=1 ( 5T CH) | .
Stirling formula allows us to write
k
2 (k) k—1)# (AgT@H) 7 ek -
0 “k—
k! kK ok
and the associated series converges if yq < 2. O

The next result analyzes the fluctuations in the ergodic theorem proved in Theorem 12.

Theorem 13. (A) [Case ¢ = 1] Let f be in L*(R, y) for y = N(0, FQH)) We denote by (a;)i>o the
coefficients of f in its Hermite expansion, and we let d be the centered Hermite rank of f. Then,

oif%<H<l—ﬂ,

1 Tt fdd
—= [ Gwo-Elrwn)as 22 e

o ifH=1-4,

Tt

1 f.d.d
TTosT Jy (fwy - [f(UO)])dS 7 CfHWz,
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o ifH>1— 3,
q(1—H)—1 T' fdd d.H
T (fWUs) —E[fW0)])ds == cruZ{",
0 T—o00
where Z%H s a Hermite process of order d and index d(H — 1) + 1, W is a Brownian motion and
1,2 k. 1
Zk.ak |p(s)| lfH<l—g
k>d Ry
= 3 1 34
CfH Jdi—— fH=1— — (34
“V 1602 4 2d
'HdF(ZH)d ) 1

with
0 K
p(s) =E[Us Uyl = / / e b= @r) ) 2H=2 gy gy,
—00 —00

Moreover, if f € LP(R,y) for some p > 2, the previous convergences holds true in the Banach space
([0, 1].
(B) [Case g > 1] Let P be a real valued polynomial. Then, the conclusions of Theorem 2 apply to U .

Proof. Except for H =1 — % in Part A, this is a direct consequence of Theorems 1 and 2. The
convergence in the critical case can be checked through easy but tedious computations, by reducing to
the case where f is the dth Hermite polynomial. Details are left to the reader. (]

Appendix

In this section, we present two technical lemmas that play an important role along the paper. First, we
shall reproduce a very useful result from [19].

Theorem 14 (Power Counting t Theorem). Let T = {My,..., Mg} a set of linear functionals
on R", {f1,..., fx} a set of real measurable functions on R" such that there exist real numbers
(a;, bi, 1, vi)1<i<k, satisfying foreachi =1, ..., K,

0<a; <b;,
|fio] < 1xif x| < a,
[fi@] <l if x| = by,
fi is bounded over [a;, b;].
For a linearly independent subset of W of T, we write ST (W) = Span(M) N T. We also define
do(W) = dim(Span(W)) + > pui,
i:M; ST (W)

doo(W) =n —dim(Span(W)) + Y v
i:M;eT\ST (W)
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Assume dim(Span(T)) = n. Then, the two conditions (a) : do(W) > 0 for all linearly independent
subsets W C T, (b) : doo(W’') < O for all linearly independent proper subsets W' C T, imply

K
/Rnl_[|ﬁ(M,'(x))|dx<oo (35)
i=1

Moreover, assume that | fi (x)| = |x|* if |x| < a;, Then
f[—l 1 ]_LKZ1 | fi(M;(x))|dx < oo, if an only if for any linearly independent subset W C T condition
(a) holds.

The next lemma is an application of the Hardy-Littlewood—Sobolev inequality,

Lemma 15. Fixn,q > 2 and o € Ay, 4. Recall H and Hy from (1). Assume ¢ € LY(R)N L% (R) Then

n
./RnHW(nk)! [T 1ni—njlCHo=2%5ay, ... dy, < oco.
k=1

1<i<j<n

Proof. We are going to use the multilinear Hardy—Littlewood—Sobolev inequality, that we recall here
for the convenience of the reader (see [1], Theorem 6): if f : R — R is a measurable function, if
p € (1,n) and if the y;; € (0, 1) are such that Z]§i<j§n vij=1-— %, then there exists ¢, > 0 such
that

[T i —ujl™dus ... du, < c,,,y<f |f(u)|pdu) " (36)
R

1<i<j<n

; | f (o)
. Hiran

Setp=1/(1—(1— H)%). Since 2|a| < ng, we have that p > 1. On the other hand, since H > %,
one has nH > % > 1; this implies that (1 — H)% < (1 —H)n <n— 1, thatis, p < n. Moreover, set

20
vij = (2—2Ho)aij = (1- H)Z% € (0, 1); wehave 3, _; _;, vij = 2(1 —H)";‘—' <(—-H)yn<n—1.
We deduce from (36) that

f [ Tl
R =1

00 »
[1 Im—nj|(2H°_2)°"fdn1-..dnn§cp,y<f |x(u)|”du> :
—00

I<i<j<n

But p € (1, %) andx € L'(R) N L% (R), so the claim follows. O
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