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Consider a moving average process X of the form X(t) = ∫ t
−∞ ϕ(t − u)dZu, t ≥ 0, where Z is a (non Gaussian)

Hermite process of order q ≥ 2 and ϕ :R+ →R is sufficiently integrable. This paper investigates the fluctuations,
as T → ∞, of integral functionals of the form t �→ ∫ T t

0 P(X(s)) ds, in the case where P is any given polynomial
function. It extends a study initiated in (Stoch. Dyn. 18 (2018) 1850028, 18), where only the quadratic case P(x) =
x2 and the convergence in the sense of finite-dimensional distributions were considered.

Keywords: Hermite processes; chaotic decomposition; fractional Brownian motion (fBm); multiple Wiener–Itô
integrals

1. Introduction

Hermite processes occur naturally when we consider limits of partial sums associated with long-range
dependent stationary series. They have become increasingly popular in the recent literature, see for
example the book [15] by Pipiras and Taqqu, in particular Section 4.11, which contains bibliographical
notes on their history and recent developments. They form a family of stochastic processes, indexed
by an integer q ≥ 1 and a self-similarity index H ∈ ( 12 ,1), called the Hurst parameter, that contains the
fractional Brownian motion (q = 1) and the Rosenblatt process (q = 2) as particular cases. We refer
the reader to Section 2.2 and the references therein for a precise definition of the Hermite processes.
Of primary importance in the sequel is the parameter H0, given in terms of H and q by

H0 = 1− 1− H

q
∈
(
1− 1

2q
,1

)
. (1)

The goal of the present paper is to investigate the fluctuations, as T → ∞, of the family of stochastic
processes

t �→
∫ T t

0
P
(
X(s)

)
ds, t ∈ [0,1] (say), (2)

in the case where P(x) is a polynomial function and X is a moving average process of the form

X(t) =
∫ t

−∞
ϕ(t − u)dZu, t ≥ 0, (3)
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with Z a Hermite process and ϕ : R+ → R a sufficiently integrable function. We note that integral
functionals such as (2) are often encountered in the context of statistical estimation, see, for example,
[7] for a concrete example.
Let us first consider the case where q = 1, that is to say the case where Z is the fractional Brownian

motion. Note that this is the only case where Z is Gaussian, making the study a priori much simpler
and more affordable. By linearity and passage to the limit, the process X is also Gaussian. Moreover,
it is stationary, since the quantity E[X(t)X(s)] =: ρ(t − s) only depends on t − s. For simplicity and
without loss of generality, assume that ρ(0) = 1, that is, X(t) has variance 1 for any t . As is well
known since the eighties (see [4,8,18]), the fluctuations of (2) heavily depends on the centered Hermite
rank of P , defined as the integer d ≥ 1 such that P decomposes in the form

P = E
[
P
(
X(0)

)]+ ∞∑
k=d

akHk, (4)

with Hk the kth Hermite polynomials and ad �= 0. (Note that the sum (4) is actually finite, since P is a
polynomial, so that #{k : ak �= 0} < ∞.)
The first result of this paper concerns the fractional Brownian motion. Even if it does not follow

directly from the well-known results of Breuer–Major [4], Dobrushin–Major [8] and Taqqu [18], the
limits obtained are somehow expected. In particular, the threshold H = 1 − 1

2d is well known to spe-
cialists. However, the proof of this result is not straightforward, and requires several estimations which
are interesting in themselves.

Theorem 1. Let Z be a fractional Brownian motion of Hurst index H ∈ ( 12 ,1), and let ϕ ∈ L1(R+) ∩
L

1
H (R+). Consider the moving average process X defined by (3) and assume without loss of generality

that Var(X(0)) = 1 (if not, it suffices to multiply ϕ by a constant). Finally, let P(x) =∑N
n=0 anx

n be a
real-valued polynomial function, and let d ≥ 1 denotes its centered Hermite rank.

(1) If d ≥ 2 and H ∈ ( 12 ,1− 1
2d ), then

T − 1
2

{∫ T t

0

(
P
(
X(s)

)−E
[
P
(
X(s)

)])
ds

}
t∈[0,1]

(5)

converges in distribution in C([0,1]) to a standard Brownian motion W , up to some multiplica-
tive constant C1 which is explicit and depends only on ϕ, P and H .

(2) If H ∈ (1− 1
2d ,1) then

T d(1−H)−1
{∫ T t

0

(
P
(
X(s)

)−E
[
P
(
X(s)

)])
ds

}
t∈[0,1]

(6)

converges in distribution in C([0,1]) to a Hermite process of index d and Hurst parameter
1 − d(1 − H), up to some multiplicative constant C2 which is explicit and depends only on ϕ,
P and H .

Now, let us consider the non-Gaussian case, that is, the case where q ≥ 2. As we will see, the situ-
ation is completely different, both in the results obtained (rather unexpected) and in the methods used
(very different from the Gaussian case). Let L > 0. We define SL to be the set of bounded functions

l :R+ →R such that yLl(y) → 0 as y → ∞. We observe that SL ⊂ L1(R+)∩L
1
H (R+) for any L > 1.

We can now state the following result.
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Theorem 2. Let Z be a Hermite process of order q ≥ 2 and Hurst parameter H ∈ ( 12 ,1), and let
ϕ ∈ SL for some L > 1. Recall H0 from (1) and consider the moving average process X defined by (3).
Finally, let P(x) =∑N

n=0 anx
n be a real-valued polynomial function. Then, one and only one of the

following two situations takes place at T → ∞:

(i) If q is odd and if an �= 0 for at least one odd n ∈ {1, . . . ,N}, then

T −H0

{∫ T t

0

(
P
(
X(s)

)−E
[
P
(
X(s)

)])
ds

}
t∈[0,1]

converges in distribution in C([0,1]) to a fractional Brownian motion of parameter H1 := H0,
up to some multiplicative constant K1 which is explicit and depends only on ϕ, P , q and H , see
Remark 3.

(ii) If q is even, or if q is odd and an = 0 for all odd n ∈ {1, . . . ,N}, then

T 1−2H0

{∫ T t

0

(
P
(
X(s)

)−E
[
P
(
X(s)

)])
ds

}
t∈[0,1]

converges in distribution in C([0,1]) to a Rosenblatt process of Hurst parameter H2 := 2H0−1,
up to some multiplicative constant K2 which is explicit and depends only on ϕ, P , q and H , see
Remark 3.

Remark 3. Whether in Theorem 1 or Theorem 2, the multiplicative constants appearing in the limit
can be all given explicitly by following the respective proofs. For example, the constant K1 and K2 of
Theorem 2 are given by the following intricate expressions:

K1 =
N∑

n=3,n odd

anc
n
H,qKϕ,n,1

K2 =
N∑

n=2

anc
n
H,qKϕ,n,2 + a1I{q=2}

∫
R+

ϕ(ν) dν

with

Kϕ,n,i =
∑

α∈An,q ,nq−2|α|=i

CαKϕ,α,H0

cHi,i

, i = 1,2,

where the sets and constants in the previous formula are defined in Sections 2, 3 and 4.

Remark 4. Note that, unlike the case of a fractional Brownian motion X, where the limit depends
on the Hermite rank of the polynomial P , here the Hermite rank of P plays no role and the limit
depends on the parity of the non-vanishing coefficients of P . This is not really surprising in our non-
Gaussian context, since the Hermite rank of P is defined by means of its decomposition into Hermite
polynomials, and these latter polynomials only have good probabilistic properties when evaluated in
Gaussian random variables.

We note that our Theorem 2 contains as a very particular case the main result of [7], which corre-
sponds to the choice P(x) = x2 and thus situation (ii). Moreover, let us emphasize that our Theorem
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2 not only studies the convergence of finite-dimensional distributions as in [7], but also provides a
functional result.
Because the employed method is new, let us sketch the main steps of the proof of Theorem 2, by

using the classical notation of the Malliavin calculus (see Section 2 for any unexplained definition or
result); in particular we write IB

p (h) to indicate the pth multiple Wiener–Itô integral of kernel h with
respect to the standard (two-sided) Brownian motion B .

Step 1. In Section 3, we represent the moving average process X as a qth multiple Wiener–Itô integral
with respect to B:

X(t) = cH,qIB
q

(
g(t, ·)),

where cH,q is an explicit constant and the kernel g(t, ·) is given by

g(t, ξ1, . . . , ξq) =
∫ t

−∞
ϕ(t − v)

q∏
j=1

(v − ξj )
H0− 3

2+ dv, (7)

for ξ1, . . . , ξq ∈ R, t ≥ 0. Thanks to this representation, we compute in Lemma 5 the chaotic expansion
of the nth power of X(t) for any n ≥ 2 and t > 0, and obtain an expression of the form

Xn(t) = cn
H,q

∑
α∈An,q

CαIB
nq−2|α|

(⊗
α

(
g(t, ·), . . . , g(t, ·))),

where we have used the novel notation
⊗

α(g(t, ·), . . . , g(t, ·)) to indicate iterated contractions whose
precise definition is given in Section 2.1, and where Cα are combinatorial constants and the sum runs
over a family An,q of suitable multi-indices α = (αij ,1 ≤ i < j ≤ n). As an immediate consequence,
we deduce that our quantity of interest can be decomposed as follows:∫ T t

0

(
P
(
X(s)

)−E
[
P
(
X(s)

)])
ds

= a0

∫ T t

0
X(s)ds

+
N∑

n=2

anc
n
H,q

∑
α∈An,q ,nq−2|α|≥1

Cα

∫ T t

0
IB
nq−2|α|

(⊗
α

(
g(s, ·), . . . , g(s, ·)))ds. (8)

Step 2. In Proposition 6, we compute an explicit expression for the iterated contractions
⊗

α(g(t, ·),
. . . , g(t, ·)) appearing in the right-hand side of (8), by using that g is given by (7).
To ease the description of the remaining steps, let us now set

Fn,q,α,T (t) =
∫ T t

0
IB
nq−2|α|

(⊗
α

(
g(s, ·), . . . , g(s, ·)))ds. (9)

Step 3. As T → ∞, we show in Proposition 7 that, if nq − 2|α| < q
1−H

, then T −1+(1−H0)(nq−2|α|) ×
Fn,q,α,T (t) converges in distribution to a Hermite process (whose order and Hurst index are specified)
up to some multiplicative constant. Similarly, we prove in Proposition 9 that, if nq − 2|α| ≥ 3, then
T α0Fn,q,α,T (t) is tight and converges in L2(�) to zero, where α0 is given in (28).
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Step 4. By putting together the results obtained in the previous steps, the two convergences stated in
Theorem 2 follow immediately.
To illustrate a possible use of our results, we study in Section 6 an extension of the classical fractional

Ornstein–Uhlenbeck process (see, e.g., Cheridito et al. [6]) to the case where the driving process is
more generally a Hermite process. To the best of our knowledge, there is very little literature devoted
to this mathematical object, only [12,16].
The rest of the paper is organized as follows. Section 2 presents some basic results about multiple

Wiener–Itô integrals and Hermite processes, as well as some other facts that are used throughout the
paper. Section 3 contains preliminary results. The proof of Theorem 1 (resp. Theorem 2) is given in
Section 5 (resp. Section 4). In Section 6, we provide a complete asymptotic study of the Hermite–
Ornstein–Uhlenbeck process, by means of Theorems 1 and 2 and of an extension of Birkhoff’s ergodic
Theorem. Finally, Section 6 contains two technical results: a power counting theorem and a version of
the Hardy–Littelwood inequality, which both play an important role in the proof of our main theorems.

2. Preliminaries on multiple Wiener–Itô integrals and Hermite
processes

2.1. Multiple Wiener–Itô integrals and a product formula

A function f : Rp → R is said to be symmetric if the following relation holds for all permutation
σ ∈S(p):

f (t1, . . . , tp) = f (tσ(1), . . . , tσ (p)), t1, . . . , tp ∈ R.

The subset of L2(Rp) composed of symmetric functions is denoted by L2
s (R

p).
Let B = {B(t)}t∈R be a two-sided Brownian motion. For any given f ∈ L2

s (R
p), we consider the

multiple Wiener–Itô integral of f with respect to B , denoted by

IB
p (f ) =

∫
Rp

f (t1, . . . , tp) dB(t1) · · · dB(tp).

This stochastic integral satisfies E[IB
p (f )] = 0 and

E
[
IB
p (f )IB

q (g)
]= 1{p=q}p!〈f,g〉L2(Rp)

for f ∈ L2
s (R

p) and g ∈ L2
s (R

q), see [11] and [13] for precise definitions and further details.
It will be convenient in this paper to deal with multiple Wiener–Itô integrals of possibly nonsym-

metric functions. If f ∈ L2(Rp), we put IB
p (f ) = IB

p (f̃ ), where f̃ denotes the symmetrization of f ,
that is,

f̃ (x1, . . . , xp) = 1

p!
∑

σ∈S(p)

f (xσ(1), . . . , xσ(p)).

We will need the expansion as a sum of multiple Wiener–Itô integrals for a product of the form

n∏
k=1

IB
q (hk),
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where q ≥ 2 is fixed and the functions hk belong to L2
s (R

q) for k = 1, . . . , n. In order to present this
extension of the product formula and to define the relevant contractions between the functions hi and
hj that will naturally appear, we introduce some further notation. Let An,q be the set of multi-indices
α = (αij ,1 ≤ i < j ≤ n) such that, for each k = 1, . . . , n,∑

1≤i<j≤n

αij1k∈{i,j} ≤ q.

Set |α| =∑1≤i<j≤n αij ,

β0
k = q −

∑
1≤i<j≤n

αij1k∈{i,j}, 1 ≤ k ≤ n

and

m := m(α) =
n∑

k=1

β0
k = nq − 2|α|. (10)

For each 1 ≤ i < j ≤ n, the integer αij will represent the number of variables in hi which are contracted
with hj whereas, for each k = 1, . . . , n, the integer β0

k is the number of variables in hk which are not

contracted. We will also write βk =∑k
j=1 β0

j for k = 1, . . . , n and β0 = 0. Finally, we set

Cα = q!n∏n
k=1 β0

k !∏1≤i<j≤n αij !
. (11)

With these preliminaries, for any element α ∈ An,q we can define the contraction
⊗

α(h1, . . . , hn) as
the function of nq − 2|α| variables obtained by contracting αij variables between hi and hj for each
couple of indices 1 ≤ i < j ≤ n. Define the collection (ui,j )1≤i,j≤n,i �=j in the following way:

ui,j = αmin(i,j),max(i,j).

We then have ⊗
α

(h1, . . . , hn)(ξ1, . . . , ξnq−2|α|)

=
∫
R|α|

n∏
k=1

hk

(
s
k,1
1 , . . . , s

k,1
uk,1 , . . . , s

k,n
1 , . . . , s

k,n

uk,n , ξ1+βk−1 , . . . , ξβk

)
×
∏

1≤i<j≤n

ds
i,j

1 . . . ds
i,j

ui,j (12)

When n = 2, α has only one component α1,2 and
⊗

α(h1, h2) = h1
⊗

α1,2
h2 is the usual contraction of

α1,2 indices between h1 and h2. Notice that the function
⊗

α(h1, . . . , hn) is not necessarily symmetric.
Then, we have the following result.

Lemma 5. Let n,q ≥ 2 be some integers and let hi ∈ L2
s (R

q) for i = 1, . . . , n.We have

n∏
k=1

IB
q (hk) =

∑
α∈An,q

CαIB
nq−2|α|

(⊗
α

(h1, . . . , hn)

)
. (13)
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Proof. The product formula for multiple stochastic integrals (see, for instance, [14], Theorem 6.1.1,
or formula (2.1) in [2] for n = 2) says that

n∏
k=1

IB
q (hk) =

∑
P,ψ

IB

β0
1+···+β0

n

((
n⊗

k=1

hk

)
P,ψ

)
, (14)

where P denotes the set of all partitions {1, . . . , q} = Ji ∪ (∪k=1,...,n,k �=iIik), where for any i, j =
1, . . . , n, Iij and Iji have the same cardinality αij , ψij is a bijection between Iij and Iji and β0

k = |Jk|.
Moreover, (

⊗n
k=1 hk)P,ψ denotes the contraction of the indexes � and ψij (�) for any � ∈ Iij and any

i, j = 1 . . . , n. Then, formula (13) follows form (14), by just counting the number of partitions, which
is

n∏
k=1

q!∏
i or j �=k αij !β0

k !
and multiplying by the number of bijections, which is

∏
1≤i<j≤n αij !. �

Notice that when n = 2, formula (13) reduces to the well-known formula for the product of two
multiple integrals. That is, for any two symmetric functions f ∈ L2

s (R
p) and g ∈ L2

s (R
q) we have

IB
p (f )IB

q (g) =
min(p,q)∑

r=0

r!
(

p

r

)(
q

r

)
IB
p+q−2r (f ⊗r g).

where, for 0 ≤ r ≤ min(p, q), f ⊗r g ∈ L2(Rp+q−2r ) denotes the contraction of r coordinates between
f and g.

2.2. Hermite processes

Fix q ≥ 1 and H ∈ ( 12 ,1). The Hermite process of index q and Hurst parameter H can be represented
by means of a multiple Wiener–Itô integral with respect to B as follows, see, for example, [9]:

ZH,q(t) = cH,q

∫
Rq

∫
[0,t]

q∏
j=1

(s − xj )
H0− 3

2+ ds dB(x1) · · · dB(xq), t ∈R. (15)

Here, x+ =max{x,0}, the constant cH,q is chosen to ensure that Var(ZH,q(1)) = 1, and

H0 = 1− 1− H

q
∈
(
1− 1

2q
,1

)
.

Note that ZH,q is self-similar of index H . When q = 1, the process ZH,1 is Gaussian and is nothing
but the fractional Brownian motion with Hurst parameter H . For q ≥ 2, the processes ZH,q are no
longer Gaussian: they belong to the qth Wiener chaos. The process ZH,2 is known as the Rosenblatt
process.
Let |H| be the following class of functions:

|H| =
{
f : R→R

∣∣∣∣ ∫
R

∫
R

∣∣f (u)
∣∣|f (v)||u − v|2H−2 dudv < ∞

}
.
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Maejima and Tudor [9] proved that the stochastic integral
∫
R

f (u)dZH,q(u) with respect to the Her-
mite process ZH,q is well defined when f belongs to |H|. Moreover, for any order q ≥ 1, index
H ∈ ( 12 ,1) and function f ∈ |H|,∫

R

f (u)dZH,q(u)

= cH,q

∫
Rq

(∫
R

f (u)

q∏
j=1

(u − ξj )
H0− 3

2+ du

)
dB(ξ1) · · · dB(ξq). (16)

As a consequence of the Hardy–Littlewood–Sobolev inequality featured in [1], we observe that

L1(R) ∩ L
1
H (R) ⊂ |H|.

3. Chaotic decomposition of
∫ T t
0 P(X(s)) ds

Assume ϕ ∈ |H| and q ≥ 1. Using (16) and bearing in mind the notation and results from Section 2, it
is immediate that X can be written as

X(t) = cH,qIB
q

(
g(t, ·)), (17)

where g(t, ·) is given by

g(t, ξ1, . . . , ξq) =
∫ t

−∞
ϕ(t − v)

q∏
j=1

(v − ξj )
H0−3/2
+ dv, (18)

and cH,q is defined as in (15).

3.1. Computing the chaotic expansion of X(t)n when n ≥ 2

Let us denote by A0
n,q the set of elements α ∈ An,q such that nq − 2|α| = 0 and A1

n,q will be the set of

elements α ∈ An,q such that nq − 2|α| ≥ 1. Notice that when nq is odd, A0
n,q is empty. Using (13), we

obtain the following formula for the expectation of the nth power (n ≥ 2) of X given by (3):

E
[
X(t)n

]= (cH,q)n
∑

α∈A0
n,q

CαIB
nq−2|α|

(⊗
α

(
g(t, ·), . . . , g(t, ·))). (19)

We observe in particular that E[X(t)n] = 0 whenever nq is odd. From (13) and (19), we deduce for
n ≥ 2 that

X(t)n −E
[
X(t)n

]= (cH,q)n
∑

α∈A1
n,q

CαIB
nq−2|α|

(⊗
α

(
g(t, ·), . . . , g(t, ·))). (20)

To clarify this formula, let us write down detailed a expression in the cases n = 2 and n = 3. When
n = 2, the right-hand side of (20) is

(cH,q)2
q−1∑
r=0

r!
(

q

r

)2
IB
2q−2r

(
g(t, ·) ⊗r g(t, ·)),
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because α has just one component α1,2 =: r and condition α ∈ A1
n,q means 0 ≤ r ≤ q − 1. For n = 3,

we have

A3,q = {(α1,2, α1,3, α2,3) : α1,2 + α1,3 ≤ q,α1,2 + α2,3 ≤ q,α1,3 + α2,3 ≤ q
}

and the right-hand side of (20) is

(cH,q)3
∑

α∈A3,q :3q−2|α|≥1

CαI3q−2|α|
(⊗

α

(
g(t, ·), g(t, ·), g(t, ·))),

where

Cα = (q!)3
α1,2!α1,3!α2,2!(q − α1,2 − α1,3)!(q − α1,2 − α2,3)!(q − α1,3 − α1,3)! .

In this case, the contraction
⊗

α(g(t, ·), g(t, ·), g(t, ·)) is the function of 3q − 2|α| variables defined
by ∫

R|α|
g(•, s, u)g(�, s, v))g(◦, u, v) ds dudv,

with s = (s1, . . . , sα1,2), u = (u1, . . . , uα1,3) and v = (v1, . . . , vα2,3).
From (20), we obtain∫ T t

0

(
P
(
X(s)

)−E
[
P
(
X(s)

)])
ds

= a1

∫ T t

0
X(s)ds +

N∑
n=2

an(cH,q)n
∑

α∈A1
n,q

Cα

∫ T t

0
IB
nq−2|α|

(⊗
α

(
g(s, ·), . . . , g(s, ·)))ds. (21)

3.2. Expressing the iterated contractions of g

We now compute an explicit expression for the iterated contractions appearing in (21).

Proposition 6. Fix n ≥ 2, q ≥ 1 and α ∈ An,q .We have

⊗
α

(
g(t, ·), . . . , g(t, ·))(ξ) = β

(
H0 − 1

2
,2− 2H0

)|α|

×
∫

(−∞,t]n
dv1 . . . dvn

n∏
k=1

ϕ(t − vk)
∏

1≤i<j≤n

|vi − vj |(2H0−2)αij

×
n∏

k=1

βk∏
�=1+βk−1

(vk − ξ�)
H0− 3

2+ ,

with the convention β0 = 0.
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Proof. The proof is a straightforward consequence of the following identity∫
R

(v − ξ)
H0−3/2
+ (w − ξ)

H0−3/2
+ dξ = β

(
H0 − 1

2
,2− 2H0

)
|v − w|(2H0−2), (22)

whose proof is elementary, see, for example, [3]. �

4. Proof of Theorem 2

We are now ready to prove Theorem 2. To do so, we will mostly rely on the forthcoming Proposition
7, which might be a result of independent interest by itself, and which studies the asymptotic behavior
of FB

n,q,α,T given by (9). We will denote by f.d.d. the convergence in law of the finite-dimensional
distributions of a given process. Notice that the hypothesis on ϕ is a bit weaker than the one in the
main theorem, the fact that ϕ ∈ SL being required in the forthcoming Proposition 9.

Proposition 7. Fix n ≥ 2, q ≥ 1 and α ∈ An,q . Assume the function ϕ belongs to L1(R+) ∩ L
1
H (R+),

recall H0 from (1) and let m be defined as in (10). Finally, assume that 2m <
q

1−H
(which is automati-

cally satisfied when m = 1 or m = 2). Then, as T → ∞,

(
T −1+(1−H0)mFn,q,α,T (t)

)
t∈[0,1]

f.d.d.−→
(

CαKϕ,α,H0

cH(m),m

ZH(m),m(t)

)
t∈[0,1]

, (23)

where ZH(m),m denotes the mth Hermite process of Hurst index H(m) = 1− m
q
(1− H) and the con-

stants Cα and Kϕ,α,H0 are defined in (11) and (24), respectively. Furthermore,{
T −1+(1−H0)m

(
Fn,q,α,T (t)

)
t∈[0,1], T > 0

}
is tight in C([0,1]).

Remark 8. Note that for m1 < m2 the chaos of order m1 dominates the chaos of order m2.

Proof of Proposition 7. Let n ≥ 2, q ≥ 1 and α ∈ An,q .
Step 1: We will first show the convergence (23). We will make several change of variables in order to

transform the expression of Fn,q,α,T (t). By means of an application of stochastic’s Fubini’s theorem,
we can write

Fn,q,α,T (t) = Cα

∫
Rm


T (ξ1, . . . , ξm)dB(ξ1) · · · dB(ξm),

where


T (ξ1, . . . , ξm) := T −1+m(1−H0)

∫ T t

0
ds

∫
(−∞,s]n

dv1 · · · dvn

n∏
k=1

ϕ(s − vk)

×
∏

1≤i<j≤n

|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
�=1+βk−1

(vk − ξ�)
H0− 3

2+ .
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Using the change of variables s → T s and vk → T s − vk , 1 ≤ k ≤ n, we obtain


T (ξ1, . . . , ξm) := T m(1−H0)

∫ t

0
ds

∫
(−∞,T s]n

dv1 · · · dvn

n∏
k=1

ϕ(T s − vk)

×
∏

1≤i<j≤n

|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
�=1+βk−1

(vk − ξ�)
H0− 3

2+

= T − m
2

∫ t

0
ds

∫
[0,∞)n

dv1 · · · dvn

n∏
k=1

ϕ(vk)

×
∏

1≤i<j≤n

|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
�=1+βk−1

(
s − vk

T
− ξ�

T

)H0− 3
2

+
.

By the scaling property of the Brownian motion, the processes(
Fn,q,α,T (t)

)
α∈An,q ,2≤n≤N,t∈[0,1]

and (
F̂n,q,α,T (t)

)
α∈An,q ,2≤n≤N,t∈[0,1]

have the same probability distribution, where

F̂n,q,α,T (t) = Cα

∫
Rm


̂T (ξ1, . . . , ξm)dB(ξ1) · · · dB(ξm)


̂T (ξ1, . . . , ξm) :=
∫ t

0
ds

∫
(−∞,0]n

dv1 · · · dvn

n∏
k=1

ϕ(vk)

×
∏

1≤i<j≤n

|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
�=1+βk−1

(
s − vk

T
− ξ�

)H0− 3
2

+
.

Set


̂(ξ1, . . . , ξm) := Kϕ,α,H0

∫ t

0
ds

m∏
�=1

(s − ξ�)
H0− 3

2+ ,

where

Kϕ,α,H0 =
∫
R

n+
dv1 · · · dvn

n∏
k=1

ϕ(vk)
∏

1≤i<j≤n

|vi − vj |(2H0−2)αij . (24)

Notice that, by Lemma 15, Kϕ,α,H0 is well defined. We claim that

lim
T →∞ 
̂T = 
̂, (25)
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where the convergence holds in L2(Rm). This will imply the convergence in L2(�) of F̂n,q,α,T (t), as
T → ∞ to a Hermite process of order m, multiplied by the constant CαKϕ,α,H0 .
Proof of (25): It suffices to show that the inner products 〈
̂T , 
̂T 〉L2(Rm) and 〈
̂T , 
̂〉L2(Rm) con-

verge, as T → ∞, to

‖
̂‖2
L2(Rm)

= K2
ϕ,α,H0

β

(
H0 − 1

2
,2− 2H0

)m ∫
[0,t]2

ds ds′∣∣s − s′∣∣(2H0−2)m
,

which is finite because m < 1
2(1−H0)

= q
2(1−H)

. We will show the convergence of 〈
̂T , 
̂T 〉L2(Rm) and
the second term can be handled by the same arguments. We have

‖
̂T ‖2
L2(Rm)

=
∫

[0,t]2
ds ds′

∫
R
2n+

dv1 · · · dvn dv′
1 · · · dv′

n

×
n∏

k=1

ϕ(vk)ϕ
(
v′
k

) ∏
1≤i<j≤n

|vi − vj |(2H0−2)αij
∣∣v′

i − v′
j

∣∣(2H0−2)αij

×
n∏

k=1

β

(
H0 − 1

2
,2− 2H0

)βk
∣∣∣∣s − s′ − vk − v′

k

T

∣∣∣∣(2H0−2)βk

.

Let us first show that given wk ∈R, 1 ≤ k ≤ n,

lim
T →∞

∫
[0,t]2

ds ds′
n∏

k=1

∣∣∣∣s − s′ − wk

T

∣∣∣∣(2H0−2)βk

=
∫

[0,t]2
ds ds′∣∣s − s′∣∣(2H0−2)m (26)

and, moreover,

sup
wk∈R,1≤k≤n

∫
[0,t]2

ds ds′
n∏

k=1

∣∣s − s′ − wk

∣∣(2H0−2)βk < ∞. (27)

By the dominated convergence theorem and using Lemma 15, (26) and (27) imply (25).
To show (26), choose ε such that |wk|/T < ε, 1≤ k ≤ n, for T large enough (depending on the fixed

wk’s). Then, we can write

∫
[0,t]2

ds ds′
∣∣∣∣∣

n∏
k=1

∣∣∣∣s − s′ − wk

T

∣∣∣∣(2H0−2)βk

− ∣∣s − s′∣∣(2H0−2)m

∣∣∣∣∣
≤ t

∫
|ξ |>2ε

dξ

∣∣∣∣∣
n∏

k=1

∣∣∣∣ξ − wk

T

∣∣∣∣(2H0−2)βk

− |ξ |(2H0−2)m

∣∣∣∣∣
+ 2t sup

|wk |<ε

∫
|ξ |≤2ε

dξ

n∏
k=1

|ξ − wk|(2H0−2)βk

:= B1 + B2.
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The term B1 tends to zero a T → ∞, for each ε > 0. On the other hand, the term B2 tends to zero as
ε → 0. Indeed,

B2 = 2tε(2H0−2)m+1 sup
|wk |<1

∫
|ξ |≤2

dξ

n∏
k=1

|ξ − wk|(2H0−2)βk .

Note that the above supremum is finite because the function (w1, . . . ,wk) → ∫
|ξ |≤2 dξ

∏n
k=1 |ξ −

wk|(2H0−2)βk is continuous.
Property (27) follows immediately from the fact that the function

(w1, . . . ,wk) →
∫

[0,t]2
ds ds′

n∏
k=1

∣∣s − s′ − wk

∣∣(2H0−2)βk

is continuous and vanishes as |(w1, . . . ,wk)| tends to infinity.
We have H0 = 1− 1−H

q
= 1− 1−H(m)

m
with H(m) as above. As a result, we obtain the convergence

of the finite-dimensional distributions of T −1+(1−H0)mFn,q,α,T (t) to those the mth Hermite process

ZH(m),m multiplied by the constant
CαKϕ,α,H0
cH(m),m

.
Step 2: Tightness. Fix 0 ≤ s < t ≤ 1. To check that tightness holds in C([0,1]), let us compute the

squared L2(�)-norm

�T := T −1+(1−H0)mE
(∣∣Fn,q,α,T (t) − Fn,q,α,T (s)

∣∣2).
Proceeding as in the first step of the proof, we obtain


T = E

(∣∣∣∣∣
∫
Rm

dB(ξ1) · · · dB(ξm)

∫ t

s

du

∫
R

n+
dv1 · · · dvn

n∏
k=1

ϕ(vk)

×
∏

1≤i<j≤n

|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
�=1+βk−1

(
u − vk

T
− ξ�

)H0− 3
2

+

∣∣∣∣∣
2)

≤ m!
∫
Rm

dξ1 · · · dξm

∣∣∣∣∣
∫ t

s

du

∫
R

n+
dv1 · · · dvn

n∏
k=1

ϕ(vk)

×
∏

1≤i<j≤n

|vi − vj |(2H0−2)αij

n∏
k=1

βk∏
�=1+βk−1

(
u − vk

T
− ξ�

)H0− 3
2

+

∣∣∣∣∣
2

.

Using (22) yields


T ≤ m!
∫

[s,t]2
dudu′

∫
R
2n+

dv1 · · · dvn dv′
1 · · · dv′

n

×
n∏

k=1

ϕ(vk)ϕ
(
v′
k

) ∏
1≤i<j≤n

|vi − vj |(2H0−2)αij
∣∣v′

i − v′
j

∣∣(2H0−2)αij

×
n∏

k=1

β

(
H0 − 1

2
,2− 2H0

)βk
∣∣∣∣u − u′ − vk − v′

k

T

∣∣∣∣(2H0−2)βk
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≤ m!(t − s)

∫ 1

−1
dξ

∫
R
2n+

dv1 · · · dvn dv′
1 · · · dv′

n

×
n∏

k=1

ϕ(vk)ϕ
(
v′
k

) ∏
1≤i<j≤n

|vi − vj |(2H0−2)αij
∣∣v′

i − v′
j

∣∣(2H0−2)αij

×
n∏

k=1

β

(
H0 − 1

2
,2− 2H0

)βk
∣∣∣∣ξ − vk − v′

k

T

∣∣∣∣(2H0−2)βk

≤ C(t − s).

Then the equivalence of all Lp(�)-norms, p ≥ 2, on a fixed Wiener chaos, also known as the hyper-
contractivity property, allows us to conclude the proof of the tightness. �

We will make use of the notation

α0 = (1− 2H0)1{nq is even} − H01{nq is odd}. (28)

Proposition 9. Fix n,q ≥ 2 and α ∈ An,q , assume that the function ϕ belongs to SL for some L >

1 and that m ≥ 3. Then for any t ∈ [0,1], T α0Fn,q,α,T (t) converge in L2(�) to zero as T → ∞;
furthermore, the family {(Fn,q,α,T (t))t∈[0,1], T > 0} is tight in C([0,1]).

Proof. If (2H0 − 2)m > −1, by Proposition 7, we know that T −1+m(1−H0)Fn,q,α,T (t) converges
to zero in L2(�) as T → ∞. This implies the convergence to zero in L2(�) as T → ∞ of
T −α0Fn,q,α,T (t) because −1+m(1−H0) > α0. We should then concentrate on the case (2H0−2)m ≤
−1. Once again, we shall divide the proof in two steps:
Step 1: Let us first prove the convergence in L2(�). Fix α ∈ An,q . We are going to show that

lim
T →∞T 2α0E

(∣∣Fn,q,α,T (t)
∣∣2)= 0.

We know that

T 2α0E
(∣∣Fn,q,α,T (t)

∣∣2)= T 2α0m! ×
∥∥∥∥∫[0,T t]

ds
⊗

α

(
g(s, ·), . . . , g(s, ·))∥∥∥∥2

L2(Rm)

.

In view of the expression for the contractions obtained in Proposition 7, it suffices to show that

lim
T →∞T 2α0

∫
[0,T t]2

ds ds′
∫
Rm

∫
(−∞,s]n

∫
(−∞,s′]n

dv1 · · · dvn dv′
1 · · · dv′

n dξ1 · · · dξm

×
n∏

k=1

ϕ(s − vk)ϕ
(
s′ − v′

k

) ∏
1≤i<j≤n

|vi − vj |(2H0−2)αij
∣∣v′

i − v′
j

∣∣(2H0−2)αij

×
n∏

k=1

βj∏
�=1+βj−1

(vk − ξ�)
H0− 3

2+
βj∏

�=1+βj−1

(
v′
k − ξ�

)H0− 3
2+ = 0.
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Integrating in the variables ξ ’s and using (22), it remains to show that

lim
T →∞T 2α0

∫
[0,T t]2

ds ds′
∫

(−∞,s]n

∫
(−∞,s′]n

dv1 · · · dvn dv′
1 · · · dv′

n

×
n∏

k=1

ϕ(s − vk)ϕ
(
s′ − v′

k

) ∏
1≤i<j≤n

|vi − vj |(2H0−2)αij
∣∣v′

i − v′
j

∣∣(2H0−2)αij

×
n∏

k=1

∣∣vk − v′
k

∣∣(2H0−2)βk = 0.

Set

�T := T 2α0

∫
[0,T t]2

ds ds′
∫

(−∞,s]n

∫
(−∞,s′]n

dv1 · · · dvn dv′
1 · · · dv′

n

×
n∏

k=1

ϕ(s − vk)ϕ
(
s′ − v′

k

) ∏
1≤i<j≤n

|vi − vj |(2H0−2)αij
∣∣v′

i − v′
j

∣∣(2H0−2)αij

×
n∏

k=1

∣∣vk − v′
k

∣∣(2H0−2)βk .

Making the change of variables wk = s − vk , w′
k = s′ − v′

k for k = 1, . . . , n, yields

�T = T 2α0

∫
[0,T t]2

ds ds′
∫
R

n+

∫
[0,∞)n

dw1 · · · dwn dw′
1 · · · dw′

n

×
n∏

k=1

ϕ(wk)ϕ
(
w′

k

) ∏
1≤i<j≤n

|wi − wj |(2H0−2)αij
∣∣w′

i − w′
j

∣∣(2H0−2)αij

×
n∏

k=1

∣∣s − s′ − wk + w′
k

∣∣(2H0−2)βk .

Now we use Fubini’s theorem and make the change of variables s − s′ = ξ to obtain

�T = tT 2α0+1
∫
R
2n+

dw1 · · · dwn dw′
1 · · · dw′

n

×
n∏

k=1

∣∣ϕ(wk)ϕ
(
w′

k

)∣∣ ∏
1≤i<j≤n

|wi − wj |(2H0−2)αij
∣∣w′

i − w′
j

∣∣(2H0−2)αij

×
∫ tT

−tT

dξ

n∏
k=1

∣∣ξ − wk + w′
k

∣∣(2H0−2)βk .

We shall distinguish again two subcases:
Case (2H0 − 2)m < −1: Notice that the exponent 2α0 + 1 is negative:
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(i) If nq is even, then α0 = 1− 2H0 and

2α0 + 1= 3− 4H0 < 0

because H0 > 3
4 .

(ii) If nq is odd, then α0 = −H0 and

2α0 + 1= 1− 2H0 < 0.

Therefore, in order to show that limT →∞ �T = 0, it suffices to check that

J :=
∫
R2n

dw1 · · · dwn dw′
1 · · · dw′

n

n∏
k=1

∣∣ϕ(wk)ϕ
(
w′

k

)∣∣
×
∏

1≤i<j≤n

|wi − wj |(2H0−2)αij
∣∣w′

i − w′
j

∣∣(2H0−2)αij

×
∫
R

dξ

n∏
k=1

∣∣ξ − wk + w′
k

∣∣(2H0−2)βk < ∞, (29)

where, by convention ϕ(w) = 0 if w < 0. We will apply the Power Counting Theorem 14 to prove that
this integral is finite. We consider functions on R

2n+1 with variables {(wk)k≤n, (w
′
k)k≤n, ξ}. The set of

linear functions is

T = {ωk,ω
′
k,1≤ k ≤ n

}∪ {wi − wj ,w
′
i − w′

j ,1≤ i < j ≤ n
}

∪ {ξ − wk + w′
k,1≤ k ≤ n

}
.

The corresponding exponents (μM,νM) for each M ∈ T are (0,−L) for the linear functions wk and
w′

k (taking into account that ϕ ∈ SL), (2H0 − 2)αij for each function of the form wi − wj or w′
i − w′

j

and (2H0 − 2)βk for each function of the form ξ − wk + w′
k .

Then J < ∞, provided conditions (a) and (b) are satisfied.
• Verification of (b): Let W ⊂ T be a linearly independent proper subset of T , and

d∞ = 2n + 1− dim
(
Span(W)

)+ ∑
M∈T \(Span(W)∩T )

νM.

Let S be the following subset of T : S = {wk,w
′
k,1 ≤ k ≤ n}. Let e = Card(S ∩ Span(W)). Consider

the following two cases:

(i) There exists k ≤ n such that ξ − wk + w′
k ∈ Span(W) ∩ T . Then dim(Span(W)) ≥ e + 1. As a

consequence,

d∞ ≤ 2n + 1− (e + 1) − (2n − e)L < 0,

because L > 1 and in this case, we should have e < 2n because W is a proper subset of T .
(ii) Otherwise,

d∞ ≤ 2n + 1− e − (2n − e)L + (2H0 − 2)m < 0,

because L > 1 and (2H0 − 2)m < −1.



1780 Garino, Nourdin, Nualart and Salamat

• Verification of (a): A direct verification would require to solve a seemingly difficult combinatorial
problem. We can simply remark that∫

[−1,1]2n
dw1 · · · dwn dw′

1 · · · dw′
n

×
∏

1≤i<j≤n

|wi − wj |(2H0−2)αij
∣∣w′

i − w′
j

∣∣(2H0−2)αij

×
∫ 1

−1
dξ

n∏
k=1

∣∣ξ − wk + w′
k

∣∣(2H0−2)βk

=m! 1

β(H0 − 1
2 ,2− 2H0)|α|E

[(∫ 1

0
IB
nq−2|α|

(
f (s, ·), . . . , f (s, ·)))2]< ∞

where f (s, ξ1, . . . ξq) = ∫ +∞
−∞ I[−1,1](s − v)

∏q

j=1(v − ξj )
H0−3/2
+ dv. Since ϕ ∈ SL, ϕ is bounded on

[−1,1]. This implies that (a) is verified by the converse side of the Power Counting theorem.
Case (2H0 − 2)m = −1: In this case, we can apply Hölder and Jensen inequalities to �T in order to

get

�T ≤ T 2α0+1A
ε

1+ε B
1

1+ε ,

with 2α0 + 1< 0, A = (
∫
R

|ϕ(w)|dw)2n and

B =
∫
R2n

dw1 · · · dwn dw′
1 · · · dw′

n

n∏
k=1

∣∣ϕ(wk)ϕ
(
w′

k

)∣∣
×
∏

1≤i<j≤n

|wi − wj |(2H ′
0−2)αij

∣∣w′
i − w′

j

∣∣(2H ′
0−2)αij

×
∫
R

dξ

n∏
k=1

∣∣ξ − wk + w′
k

∣∣(2H ′
0−2)βk ,

where H ′
0 = H0(1 + ε) − ε. If ε is small enough, H ′

0 can still be expressed as 1 − 1−H ′
q

for some
1
2 < H ′ < H . Moreover, in this case (2H ′

0−2)m < −1 so we are exactly in the situation of the previous
case, and the integral B is finite.
Step 2: Using the same arguments as previously and the hypercontractivity property, we deduce that

there exists a constant K > 0 such that for all 0 ≤ s < t ≤ 1,

E
(∣∣Fn,q,α,T (t) − Fn,q,α,T (s)

∣∣4)≤ K|t − s|2,

which proves the tightness in C([0,1]). �

It remains to study what happens when n = 1. The proof of Proposition 10 is very similar to that of
Proposition 7 (although much simpler) and details are left to the reader.
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Proposition 10. Fix q ≥ 1 and assume the function ϕ belongs to L1(R+) ∩ L
1
H (R+). Then the finite-

dimensional distributions of the process

GT (t) := T q(1−H0)−1
∫ T t

0
dsIB

q

(
g(s, ·)), t ∈ [0,1], (30)

where g(s, ·) is defined in (18), converge in law to those of a qth Hermite process of Hurst parameter
1− q(1− H0) multiplied by the constant c

−1
H0,q

∫∞
0 ϕ(w)dw, and the family {(GT (t))t∈[0,1], T > 0} is

tight in C([0,1]).

We are now ready to make the proof of Theorem 2.
Proof of Theorem 2. It suffices to consider the decomposition (21) and to apply the results shown in

Propositions 7 and 9. �

5. Proof of Theorem 1

Let Z be a fractional Brownian motion of Hurst index H ∈ ( 12 ,1), and let ϕ ∈ L1(R+) ∩ L
1
H (R+).

Consider the moving average process X defined by

X(t) =
∫ t

−∞
ϕ(t − u)dZu, t ≥ 0,

which is easily checked to be a stationary centered Gaussian process. Denote by ρ : R → R the cor-
relation function of X, that is, ρ(t − s) = E[X(t)X(s)], s, t ≥ 0. By multiplying the function ϕ by a
constant if necessary, we can assume without loss of generality that ρ(0) = 1 (= Var(X(t)) for all t ).
Let P(x) =∑N

n=0 anx
n be a real-valued polynomial function, and let d denotes its centered Hermite

rank.

5.1. Proof of (6)

In this section, we assume that d ≥ 1 and that H ∈ (1− 1
2d ,1), and our goal is to show that

T d(1−H)−1
{∫ T t

0

(
P
(
X(s)

)−E
[
P
(
X(s)

)])
ds

}
t∈[0,1]

converges in distribution in C([0,1]) to a Hermite process of index d and Hurst parameter 1 − d(1−
H), up to some multiplicative constant C2. Since P has centered Hermite rank d , it can be rewritten as

P(x) = E
[
P(X(s)

]+ N∑
l=d

blHl(x),

for some bd, . . . , bN ∈ R, with bd �= 0 and Hl the lth Hermite polynomial. As a result, we have∫ T t

0

(
P
(
X(s)

)−E
[
P
(
X(s)

)])
ds =

N∑
l=d

bl(cH,1)
l

∫ T t

0
IB
l

(
g(s, ·)⊗l

)
ds,

and the desired conclusion follows thanks to Propositions 7 and 10.
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5.2. Proof of (5)

In this section, we assume that d ≥ 2 and that H ∈ ( 12 ,1− 1
2d ), and our goal is to show that

T − 1
2

{∫ T t

0

(
P
(
X(s)

)−E
[
P
(
X(s)

)])
ds

}
t∈[0,1]

converges in distribution in C([0,1]) to a standard Brownian motion W , up to some multiplicative con-
stant C1. To do so, we will rely on the Breuer–Major theorem, which asserts that the desired conclusion
holds as soon as ∫

R

∣∣ρ(s)
∣∣d ds < ∞, (31)

where ρ(s) = E[X(s)X(0)] (see, e.g., [5] for a continuous version of the Breuer–Major theorem).
The rest of this section is devoted to checking that (31) holds true. Let us first compute ρ:

ρ(t − s) = E
[
X(t)X(s)

]
= H(2H − 1)

∫∫
R2

ϕ(t − v)1(−∞,t](v)ϕ(s − u)1(−∞,s](u)|v − u|2H−2 dudv

= H(2H − 1)
∫∫

R2
ϕ(u)ϕ(v)|t − s − v + u|2H−2 dudv,

with the convention that ϕ(u) = 0 if u < 0. This allows us to write

ρ(s) = cH

[
ϕ̃ ∗ (I 2H−1ϕ

)]
(s),

where ϕ̃(u) = ϕ(−u), I 2H−1 is the fractional integral operator of order 2H − 1 and cH is a constant
depending on H . As a consequence, applying Young’s inequality and Hardy-Littlewood’s inequality
(see [17], Theorem 1) yields

‖ρ‖Ld(R) ≤ cH ‖ϕ‖Lp(R)

∥∥I 2H−1ϕ
∥∥

Lq(R)
≤ cH,p‖ϕ‖2Lp(R),

where 1
d

= 1
p

+ 1
q

− 1 and 1
q

= 1
p

− (2H − 1). This implies p = (H + 1
2d )−1 and we have ‖ϕ‖Lp(R) <

∞, because p ∈ (1, 1
H

) and ϕ ∈ L1(R) ∩ L
1
H (R). The proof of (5) is complete.

6. The stationary Hermite–Ornstein–Uhlenbeck process

We dedicate this section to the study of the extension of the Ornstein–Uhlenbeck process to the case
where the driving process is a Hermite process. To our knowledge, there is not much literature about
this object. Among the few existing references, we mention [16] and [12]. The special case in which the
driving process is a fractional Brownian motion has been, in contrast, well studied, see, for instance,
[6]. In what follows, we will prove a first-order ergodic theorem for the stationary Hermite–Ornstein–
Uhlenbeck process. Then, we will use Theorem 2 to study its second order fluctuations.
Let α > 0. Consider the function ϕ(s) = e−αs

Is>0 and let ZH,q be a Hermite process of order q ≥ 1
and Hurst indexH > 1

2 . Then ϕ ∈ SL for allL > 0, and we can define the stationary Hermite–Ornstein–
Uhlenbeck process as:

(Ut )t≥0 =
∫ t

−∞
ϕ(t − s) dZ

H,q
s . (32)



Limit theorems for Hermite-driven processes 1783

As its name suggests, this process is strongly stationary, that is, for any h > 0 the processes (Ut )t≥0
and (Ut+h)t≥0 have the same finite-dimensional distributions. We then state the following general
ergodic type result.

Proposition 11. Let (ut )t≥0 be a real valued process of the form ut = IB
q (ft ), where ft ∈ L2

s (R
q) for

each t ≥ 0. Assume that u is strongly stationary, has integrable sample paths and satisfies, for each
1≤ r ≤ q ,

‖f0 ⊗r fs‖L2(R2q−2r ) −→
s→∞ 0.

Then, for all measurable function such that E[|f (u0)|] < +∞,

1

T

∫ T

0
f (us) ds

a.s−→
T →∞ E

[
f (u0)

]
.

Proof. According to Theorem 1.3 in [10], the process u is strongly mixing if for all t > 0 and 1 ≤ r ≤
q , the following convergence holds

‖ft ⊗r ft+s‖L2(R2q−2r ) −→
s→∞ 0.

Taking into account that u is strongly stationary, we can write

‖ft ⊗r ft+s‖L2(R2q−2r ) = ‖f0 ⊗r fs‖L2(R2q−2r ),

and the conclusion follows immediately from Birkhoff’s continuous ergodic theorem. �

We can now particularize to the Hermite–Ornstein–Uhlenbeck process.

Theorem 12. Let U be the Hermite–Ornstein–Uhlenbeck process defined by (32). Let f be a measur-
able function such that |f (x)| ≤ exp(|x|γ ) for some γ < 2

q
. Then,

lim
T →∞

1

T

∫ T

0
f (Us) ds = E

[
f (U0)

]
a.s.

Proof. We shall prove that the process U verifies the conditions of Proposition 11. We have Ut =
IB
q (ft ) with

ft (x1, . . . , xq) = cH,qI[−∞,t]q (x1, . . . , xq)

∫ t

x1∨···∨xq

e−α(t−u)

q∏
i=1

(u − xi)
H0− 3

2 du.

Step 1. Let us first show the mixing condition, that is

lim
s→∞‖f0 ⊗r fs‖L2(R2q−2r ) = 0

for all r ∈ {1, . . . , q}. We can write

f0 ⊗r fs(y1, . . . , y2q−2r )

= c2H,q

∫
(−∞,0]r

(∫ 0

x1∨···∨xr∨y1···∨yq−r

eαu
r∏

i=1

q−r∏
j=1

(u − xi)
H0− 3

2 (u − yj )
H0− 3

2 du

)
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×
(∫ s

x1∨···∨xr∨yq−r+1···∨y2q−2r

e−α(s−u)

×
r∏

i=1

2q−2r∏
j= −r+1

(u − xi)
H0− 3

2 (u − yj )
H0− 3

2 du

)
dx1 · · · dxr

= c2H,q

∫ 0

y1∨···∨yq−r

eαu

∫ s

yq−r+1∨···∨y2q−2r

e−α(s−v)

×
(∫

(−∞,u∧v]
(u − x)H0− 3

2 (v − x)H0− 3
2 dx

)r

×
q−r∏
j=1

2q−2r∏
l=q−r+1

(u − yj )
H0− 3

2 (v − yl)
H0− 3

2 dv du

= c2H,qβ

(
H0 − 1

2
,2− 2H0

)r ∫ 0

y1∨···∨yq−r

eαu

∫ s

yq−r+1∨···∨y2q−2r

e−α(s−v)|u − v|r(2H0−2)

×
q−r∏
j=1

2q−2r∏
l=q−r+1

(u − yj )
H0− 3

2 (v − yl)
H0− 3

2 dv du,

where we used again the identity (22). We then have

‖f0 ⊗r fs‖2L2(R2q−2r )

= c4H,qβ

(
H0 − 1

2
,2− 2H0

)2q
×
∫

(−∞,0]2

∫
(−∞,s]2

eα(u+u1)e−α(2s−(v+v1))|u − u1|(q−r)(2H0−2)

× |v − v1|(q−r)(2H0−2)|u − v|r(2H0−2)|u1 − v1|r(2H0−2) dv1 dv du1 du

≤ c4H,qβ

(
H0 − 1

2
,2− 2H0

)2q
A0AsR

2
s ,

with

Ax =
(∫

(−∞,x]2
e−qα(2x−(u+u1))|u − u1|q(2H0−2) dudu1

) 1
a

and

Rs =
(∫ 0

−∞

∫ s

−∞
e−qα(s−(u+v))|u − v|q(2H0−2) dv du

) 1
b

,
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where we used the Hölder inequality with a = q
q−r

, b = q
r
. Making the change of variable x − u = v,

x − u1 = v1, we obtain ∫
(−∞,x]2

e−qα(2x−(u+u1))|u − u1|q(2H0−2) dudu1

=
∫

[0,∞)2
e−qα(v+v1)|v − v1|q(2H0−2) dudu1 < ∞.

On the other hand, we have q(2H0 − 2) = 2H − 2, so

Rb
s = Cov

(
UH
0 ,UH

s

)
where UH is a stationary Ornstein Uhlenbeck process driven by a fractional Brownian motion of index
H (and with αH = qα). According to [6], Lemma 2.2, one has Rb

s = Os→∞(s−H ), implying in turn
that lims→∞ Rs = 0 and concluding the proof of the mixing condition.
Step 2. We now show the integrability condition E[|f (U0)|] < ∞. From the results of [6], we have

E[U2
0 ] = 1

α2H �(2H). A power series development yields

E
[∣∣f (U0)

∣∣]≤ ∞∑
k=0

1

k!E
[|U0|γ k

]
,

where U0 is an element of the qth Wiener chaos. By the hypercontractivity property, for all k ≥ 2
γ
,

E
[|U0|γ k

]≤ g(k) := (k − 1)
γ qk
2

(
1

α2H
�(2H)

) γ k
2

.

Stirling formula allows us to write

g(k)

k! ∼k→∞
(k − 1)

γ qk
2

kk

( 1
α2H �(2H))

γk
2 ek

√
2πk

, (33)

and the associated series converges if γ q < 2. �

The next result analyzes the fluctuations in the ergodic theorem proved in Theorem 12.

Theorem 13. (A) [Case q = 1] Let f be in L2(R, γ ) for γ = N (0, �(2H)

α2H ). We denote by (ai)i≥0 the
coefficients of f in its Hermite expansion, and we let d be the centered Hermite rank of f . Then,

• if 1
2 < H < 1− 1

2d ,

1√
T

∫ T t

0

(
f (Us) −E

[
f (U0)

])
ds

f.d.d−→
T →∞ cf,H Wt ,

• if H = 1− 1
2d ,

1√
T logT

∫ T t

0

(
f (Us) −E

[
f (U0)

])
ds

f.d.d−→
T →∞ cf,H Wt ,
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• if H > 1− 1
2d ,

T q(1−H)−1
∫ T t

0

(
f (Us) −E

[
f (U0)

])
ds

f.d.d−→
T →∞ cf,H Z

d,H
t ,

where Zd,H is a Hermite process of order d and index d(H − 1) + 1, W is a Brownian motion and

cf,H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√∑
k≥d

k!a2k
∫
R+

∣∣ρ(s)
∣∣k if H < 1− 1

2d

ad

√
d! 3

16α2
if H = 1− 1

2d

ad

√
d!H

d�(2H)d

α2Hd
if H > 1− 1

2d

(34)

with

ρ(s) = E[UsU0] =
∫ 0

−∞

∫ s

−∞
e−α(s−(u+v))|u − v|2H−2 dudv.

Moreover, if f ∈ Lp(R, γ ) for some p > 2, the previous convergences holds true in the Banach space
C([0,1]).
(B) [Case q > 1] Let P be a real valued polynomial. Then, the conclusions of Theorem 2 apply to U .

Proof. Except for H = 1 − 1
2d in Part A, this is a direct consequence of Theorems 1 and 2. The

convergence in the critical case can be checked through easy but tedious computations, by reducing to
the case where f is the d th Hermite polynomial. Details are left to the reader. �

Appendix

In this section, we present two technical lemmas that play an important role along the paper. First, we
shall reproduce a very useful result from [19].

Theorem 14 (Power Counting t Theorem). Let T = {M1, . . . ,MK } a set of linear functionals
on R

n, {f1, . . . , fK} a set of real measurable functions on R
n such that there exist real numbers

(ai, bi,μi, νi)1≤i≤K , satisfying for each i = 1, . . . ,K ,

0< ai ≤ bi,∣∣fi(x)
∣∣≤ |x|μi if |x| ≤ ai,∣∣fi(x)
∣∣≤ |x|νi if |x| ≥ bi,

fi is bounded over [ai, bi].
For a linearly independent subset of W of T , we write ST (W) = Span(M) ∩ T .We also define

d0(W) = dim
(
Span(W)

)+ ∑
i:Mi∈ST (W)

μi,

d∞(W) = n − dim
(
Span(W)

)+ ∑
i:Mi∈T \ST (W)

νi .
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Assume dim(Span(T )) = n. Then, the two conditions (a) : d0(W) > 0 for all linearly independent
subsets W ⊂ T , (b) : d∞(W ′) < 0 for all linearly independent proper subsets W ′ ⊂ T , imply

∫
Rn

K∏
i=1

∣∣fi

(
Mi(x)

)∣∣dx < ∞ (35)

Moreover, assume that |fi(x)| = |x|μi if |x| ≤ ai , Then∫
[−1,1]n

∏K
i=1 |fi(Mi(x))|dx < ∞, if an only if for any linearly independent subset W ⊂ T condition

(a) holds.

The next lemma is an application of the Hardy–Littlewood–Sobolev inequality,

Lemma 15. Fix n,q ≥ 2 and α ∈ An,q . Recall H and H0 from (1). Assume ϕ ∈ L1(R) ∩ L
1
H (R) Then

∫
Rn

n∏
k=1

∣∣ϕ(ηk)
∣∣ ∏
1≤i<j≤n

|ηi − ηj |(2H0−2)αij dη1 . . . dηn < ∞.

Proof. We are going to use the multilinear Hardy–Littlewood–Sobolev inequality, that we recall here
for the convenience of the reader (see [1], Theorem 6): if f : R → R is a measurable function, if
p ∈ (1, n) and if the γij ∈ (0,1) are such that

∑
1≤i<j≤n γij = 1 − 1

p
, then there exists cp,γ > 0 such

that ∫
Rn

n∏
k=1

∣∣f (uk)
∣∣ ∏
1≤i<j≤n

|ui − uj |−γij du1 . . . dun ≤ cp,γ

(∫
R

∣∣f (u)
∣∣p du

) n
p

. (36)

Set p = 1/(1− (1−H)
2|α|
nq

). Since 2|α| ≤ nq , we have that p > 1. On the other hand, since H > 1
2 ,

one has nH > n
2 ≥ 1; this implies that (1− H)

2|α|
q

< (1− H)n < n − 1, that is, p < n. Moreover, set

γij = (2−2H0)αij = (1−H)
2αij

q
∈ (0,1); we have

∑
1≤i<j≤n γij = 2(1−H)

|α|
q

≤ (1−H)n < n−1.
We deduce from (36) that∫

Rn

n∏
k=1

∣∣ϕ(ηk)
∣∣ ∏
1≤i<j≤n

|ηi − ηj |(2H0−2)αij dη1 . . . dηn ≤ cp,γ

(∫ ∞

−∞
∣∣x(u)

∣∣p du

) n
p

.

But p ∈ (1, 1
H

) and x ∈ L1(R) ∩ L
1
H (R), so the claim follows. �
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