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Abstract. This paper provides estimates for the convergence rate of the total variation distance in the framework of the Breuer–Major
theorem, assuming some smoothness properties of the underlying function. The results are proved by applying new bounds for the total
variation distance between a random variable expressed as a divergence and a standard Gaussian random variable, which are derived by
a combination of techniques of Malliavin calculus and Stein’s method. The representation of a functional of a Gaussian sequence as a
divergence is established by introducing a shift operator on the expansion in Hermite polynomials. Some applications to the asymptotic
behavior of power variations of the fractional Brownian motions and to the estimation of the Hurst parameter using power variations
are presented.

Résumé. Cet article fournit des estimations pour la vitesse de convergence de la variation totale dans le cadre du théorème de Breuer–
Major, en supposant quelques propriétés de régularité de la fonction sous-jacente. Les résultats se démontrent en appliquant des
nouvelles bornes pour la distance en variation totale entre une variable aléatoire qui s’exprime comme une divergence et une variable
aléatoire gaussienne, qu’on obtient en combinant des techniques du calcul de Malliavin et la méthode de Stein. On établit la représenta-
tion d’une fonctionnelle d’une suite gaussienne comme une divergence en introduisant un opérateur de décalage sur le développement
en polynômes d’Hermite. Quelques applications au comportement asymptotique des variations puissance pour le mouvement Brownien
fractionnaire et à l’estimation du paramètre de Hurst sont aussi présentées.
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1. Introduction

Consider a centered stationary Gaussian family of random variables X = {Xn,n ∈ Z} with unit variance. For all k ∈ Z, set
ρ(k) = E(X0Xk), so ρ(0) = 1 and ρ(k) = ρ(−k). We say that a function g ∈ L2(R, γ ), where γ is the standard Gaussian
measure, has Hermite rank d ≥ 1 if

g(x) =
∞∑

m=d

cmHm(x), (1.1)

where cd �= 0 and Hm is the mth Hermite polynomial. We will make use of the following condition that relates the
covariance function ρ to the Hermite rank of a function g:∑

j∈Z

∣∣ρ(j)
∣∣d < ∞. (1.2)

Let us recall the celebrated Breuer–Major theorem for functionals of the stationary Gaussian sequence X (see [7]).
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Theorem 1.1 (Breuer–Major theorem). Consider a centered stationary Gaussian family of random variables X =
{Xn,n ∈ Z} with unit variance and covariance function ρ. Let g ∈ L2(R, γ ) be a function with Hermite rank d ≥ 1 and
expansion (1.1). Suppose that (1.2) holds true. Set

σ 2 =
∞∑

m=d

m!c2m
∑
k∈Z

ρ(k)m. (1.3)

Then the sequence

Yn := 1√
n

n∑
j=1

g(Xj ) (1.4)

converges in law to the normal distribution N(0, σ 2).

The purpose of this paper is to show that, under suitable regularity assumptions on the function g, the sequence Yn/σn,
where σ 2

n = E(Y 2
n ), converges in the total variation distance to the standard normal law N(0,1), and we can estimate

the rate of convergence in terms of the covariance function ρ. To show these results we will apply a combination of
Stein’s method for normal approximations and techniques of Malliavin calculus. The combination of Stein’s method with
Malliavin calculus to study normal approximations was first developed by Nourdin and Peccati (see the pioneering work
[12] and the monograph [13]). For random variables on a fixed Wiener chaos, these techniques provide a quantitative
version of the Fourth Moment Theorem proved by Nualart and Peccati in [19]. A basic result in this direction is the
following proposition. Along the paper Z will denote a N(0,1) random variable.

Proposition 1.2. Let F be a random variable in the qth (q ≥ 2) Wiener chaos with unit variance. Then

dTV(F,Z) ≤ 2

√
Var

(
1

q
‖DF‖2

H

)
≤ 2

√
q − 1

3q

(
E
(
F 4
)− 3

)
, (1.5)

where D denotes the derivative in the sense of Malliavin calculus and dTV is the total variation distance.

In the context of the Breuer–Major theorem, this result can be applied to obtain a rate of convergence for the total
variation distance dTV(Yn/σn,Z), provided g = Hd and condition (1.2) holds (see [12]). Later on, the rate of convergence
was improved in [4] using an approach based on the spectral density.

In the reference [14], with an intensive application of Stein’s method combined with Malliavin calculus, Nourdin and
Peccati improved the estimate (1.5), obtaining the following matching upper and lower bounds for the total variation
distance.

Proposition 1.3. Let F be a random variable in the qth (q ≥ 2) Wiener chaos with unit variance. Then, there exist
constants C1,C2 > 0, depending on q , such that

C1 max
{∣∣E(F 3)∣∣,E(F 4)− 3

}≤ dTV(F,Z) ≤ C2 max
{∣∣E(F 3)∣∣,E(F 4)− 3

}
.

In the paper [5], it is proved that that |E(F 3)| ≤ C
√
E(F 4) − 3, which trivially indicates that the bound in Proposi-

tion 1.3 is better than (1.5). Furthermore, using an analytic characterization of cumulants and Edgeworth-type expansions,
the authors of [5] proved that, for a normalized sequence Fn which belongs to the qth Wiener chaos and converges to Z

in distribution as n → ∞, the rate of convergence of the total variation distance is characterized by the third and fourth
cumulants.

The literature on the rate of convergence for normal approximations is focused on random variables on a fixed Wiener
chaos. The goal of this paper is to provide an answer to the following question:

Question. To what extent Propositions 1.2 and 1.3 can be generalized to random variables that are not in a fixed chaos
and how this approach is applied in the context of the Breuer Major theorem?

We cannot expect that, in this more general framework, the convergence to a normal distribution is characterized by the
third and fourth cumulants, and new functionals will appear. In the first part of the paper, we consider random variables
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that can be written as divergences, that is F = δ(u), where δ is the adjoint of the derivative operator in the Malliavin
calculus. We will use Stein’s method and Malliavin calculus to provide three different bounds (see Propositions 3.1,
3.2 and 3.3) for dTV(F,Z). If F is in some fixed chaos, the bound in Proposition 3.1 should be the same as that of
Proposition 1.2 and the bound in Proposition 3.2 should coincide with that of Proposition 1.3. Actually, the proof of
Proposition 3.2 has been inspired by the approach used to derive the upper bound in Proposition 1.3.

The second part of the paper is devoted to derive upper bounds for the total variation distance in the context of the
Breuer–Major theorem, applying the estimates provided by Propositions 3.1, 3.2 and 3.3. To do this, we need to represent
g(Xj ) as a divergence δ(u). A basic ingredient for this representation is the shift operator T1 (see formula (2.6) below)
defined using the expansion of g into a series of Hermite polynomials. It turns out that the representation obtained
through T1 coincides with the classical representation F = δ(−DL−1F), introduced in [18], that plays a fundamental
role in normal approximations by Stein’s method and Malliavin calculus. The representation of g(Xj ) as a divergence (or
an iterated divergence) allows us to apply the integration by parts in the context of Malliavin calculus (or duality between
the derivative and divergence operators), which leads to estimates of the expectation of products of random variables of
the form g(k)(Xj ). For this approach to work, we are going to assume that the function g belongs to the Sobolev space
D

k,p(R, γ ), for some k and p, of functions that have k weak derivatives with moments of order p with respect to γ .
In this way we have been able to obtain the following results in the framework of Theorem 1.1, for functions of Hermite

rank one or two.

(i) For functions g of Hermite rank d = 1, assuming g ∈ D
2,4(R, γ ), we have (see Theorem 4.2 below)

dTV(Yn/σn,Z) ≤ Cn− 1
2 .

(ii) For functions g of Hermite rank d = 2, assuming g ∈ D
6,8(R, γ ), we have (see Theorem 4.3 below)

dTV(Yn/σn,Z) ≤ Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)2

. (1.6)

It is worth noticing that the upper bound (1.6) coincides with the optimal rate for the Hermite polynomial g(x) = x2 −
1 obtained in [5]. Furthermore, in Theorem 4.3, rates worse than (1.6) are established under less smoothness on the
function g.

For functions g of Hermite rank d ≥ 3 and assuming g ∈D
3d−2,4(R, γ ), we have established in Theorem 4.7 an upper

bound for the total variation distance dTV(Yn/σn,Z) based on Proposition 3.1, which is a slight modification of the rate
derived for the Hermite polynomial Hd . Due to the complexity of the computations, the application of Proposition 3.2 in
the case d ≥ 3 has not been considered in this paper.

A difficult open problem is the derivation of lower bounds for the total variation distance in the case of a general
function g. The lower bound given in Proposition 1.3 works for random variables in a fixedWiener chaos and the approach
used to derive this bound does apply to general random variables. For Hermite polynomials, a lower bound is derived in
[5, page 491] by applying Stein’s equation and Edgeworth-type expansions. The extension of this methodology to the
case of general functions is a challenging problem not considered here.

The paper is organized as follows. Section 2 contains some preliminaries on Malliavin calculus and Stein’s method,
including the definition and properties of the shift operator T1. In Section 3, we derive the three basic estimates for the
total variation distance between a divergence δ(u) and a N(0,1) random variable. Section 4 contains the main results of
the paper. First we thoroughly analyze the cases d = 1 and d = 2 and establish bounds for the total variation distance in
the framework of the Breuer–Major theorem and later we consider the case d ≥ 3, applying Proposition 3.1.

As an application, in Section 5 we give the convergence rates for the fractional Gaussian case. We also discuss some
applications to the asymptotic behavior of power variations of the fractional Brownian motions and to the consistency of
the estimator of the Hurst parameter using power variations. The Appendix contains some technical lemmas used in the
proof of the main results and some inequalities, obtained as an application of the rank-one Brascamp–Lieb inequality and
Hölder’s inequality, which play an important role in the proofs.

2. Preliminaries

In this section, we briefly recall some notions of Malliavin calculus, Stein’s method and the Brascamp–Lieb inequality.
The shift operator T1 mentioned above is also introduced here.
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2.1. Gaussian analysis

Let H be a real separable Hilbert space. For any integer m ≥ 1, we use H⊗m and H�m to denote the mth tensor product
and the mth symmetric tensor product of H, respectively. Let X = {X(φ) : φ ∈ H} denote an isonormal Gaussian process
over the Hilbert space H. That means, X is a centered Gaussian family of random variables, defined on some probability
space (�,F,P ), with covariance

E
(
X(φ)X(ψ)

)= 〈φ,ψ〉H, φ,ψ ∈H.

We assume that F is generated by X.
We denote byHm the closed linear subspace of L2(�) generated by the random variables {Hm(X(ϕ)) : ϕ ∈ H,‖ϕ‖H =

1}, where Hm is the mth Hermite polynomial defined by

Hm(x) = (−1)me
x2
2

dm

dxm
e− x2

2 , m ≥ 1,

and H0(x) = 1. The spaceHm is called the Wiener chaos of order m. The mth multiple integral of φ⊗m ∈ H�m is defined
by the identity Im(φ⊗m) = Hm(X(φ)) for any φ ∈ H. The map Im provides a linear isometry between H�m (equipped
with the norm

√
m!‖ · ‖H⊗m ) and Hm (equipped with L2(�) norm). By convention, H0 =R and I0(x) = x.

The space L2(�) can be decomposed into the infinite orthogonal sum of the spaces Hm. Namely, for any square
integrable random variable F ∈ L2(�), we have the following expansion,

F =
∞∑

m=0

Im(fm),

where f0 = E(F ), and fm ∈H�m are uniquely determined by F . This is known as the Wiener chaos expansion. If we use
Jm to denote the orthogonal projection of F onto the mth Wiener chaosHm, we obtain Im(fm) = Jm(F ) for every m ≥ 0.

2.2. Malliavin calculus

In this subsection we present some background of Malliavin calculus with respect to an isonormal Gaussian process X.
We refer the reader to [13,16] for a detailed account on this topic. For a smooth and cylindrical random variable F =
f (X(ϕ1), . . . ,X(ϕn)), with ϕi ∈ H and f ∈ C∞

b (Rn) (f and its partial derivatives are bounded), we define its Malliavin
derivative as the H-valued random variable given by

DF =
n∑

i=1

∂f

∂xi

(
X(ϕ1), . . . ,X(ϕn)

)
ϕi.

By iteration, we can also define the kth derivative DkF which is an element in the space L2(�;H⊗k). The Sobolev space
D

k,p is defined as the closure of the space of smooth and cylindrical random variables with respect to the norm ‖ · ‖k,p

defined by

‖F‖p
k,p = E

(|F |p)+
k∑

i=1

E
(∥∥DiF

∥∥p

H⊗i

)
,

for any natural number k and any real number p ≥ 1. We define the divergence operator δ as the adjoint of the derivative
operator D. Namely, an element u ∈ L2(�;H) belongs to the domain of δ, denoted by Dom δ, if there is a constant cu > 0
depending on u and satisfying∣∣E(〈DF,u〉H

)∣∣≤ cu‖F‖L2(�)

for any F ∈ D
1,2. If u ∈ Dom δ, the random variable δ(u) is defined by the duality relationship

E
(
Fδ(u)

)= E
(〈DF,u〉H

)
, (2.1)

which is valid for all F ∈ D
1,2. In a similar way, for each integer k ≥ 2, we define the iterated divergence operator δk

through the duality relationship

E
(
Fδk(u)

)= E
(〈
DkF,u

〉
H⊗k

)
, (2.2)

valid for any F ∈D
k,2, where u ∈Dom δk ⊂ L2(�;H⊗k).



744 D. Nualart and H. Zhou

The Ornstein–Uhlenbeck semigroup (Pt )t≥0 is the semigroup of operators on L2(�) defined by

PtF =
∞∑

m=0

e−mtIm(fm),

if F admits the Wiener chaos expansion F = ∑∞
m=0 Im(fm). Denote by L = d

dt
|t=0Pt the infinitesimal generator of

(Pt )t≥0 in L2(�). Then we have LF = −∑∞
m=1 mJm(F) for any F ∈DomL =D

2,2. We define the pseudo-inverse of L

as L−1F = −∑∞
m=1

1
m

JmF . We recall the following formula for any centered and square integrable random variable F ,

L−1F = −
∫ ∞

0
PtF dt. (2.3)

The basic operators D, δ and L satisfy the relation LF = −δDF , for any random variable F ∈ D
2,2. As a consequence,

any centered random variable F ∈ L2(�) can be expressed as a divergence:

F = δ
(−DL−1F

)
. (2.4)

This representation has intensively been used in normal approximations (see [18,19]).
We denote by γ the standard Gaussian measure on R. The Hermite polynomials {Hm(x),m ≥ 0} form a complete

orthonormal system in L2(R, γ ) and any function g ∈ L2(R, γ ) admits an orthogonal expansion of the form

g(x) =
∞∑

m=0

cmHm(x). (2.5)

If g ∈ L2(R, γ ) has the expansion (2.5), we define the operator T1 by

T1(g)(x) =
∞∑

m=1

cmHm−1(x). (2.6)

To simplify the notation we will write T1(g) = g1.
Suppose that F is a random variable in the first Wiener chaos of X of the form F = I1(ϕ), where ϕ ∈H has norm one.

In view of the relation between Hermite polynomials and multiple stochastic integrals, it follows that for any g ∈ L2(R, γ )

of the form (2.5), the random variable g(F ) admits the Wiener chaos expansion

g(F ) =
∞∑

m=0

cmIm

(
ϕ⊗m

)
. (2.7)

For any k ≥ 2, we can define the iterated operator Tk = T1◦ k· · · ◦T1 by

Tk(g)(x) =
∞∑

m=k

cmHm−k(x). (2.8)

We will write Tk(g) = gk .
In the next lemma we establish the connection between the shift operator T1 defined in (2.6) and the representation

of a centered and square integrable random variable as divergence given in (2.4). When the functional g has a general
Hermite rank k ≥ 1, we also provide the representation for the random variable g(F ) as an iterated divergence.

Lemma 2.1. Let F be a random variable in the first Wiener chaos of X of the form F = I1(ϕ), where ‖ϕ‖H = 1. Suppose
that g ∈ L2(R, γ ) is centered. Then

g1(F )ϕ = −DL−1g(F ).

As a consequence, g(F ) = δ(g1(F )ϕ). More generally, if g ∈ L2(R, γ ) has Hermite rank k ≥ 1, we have the representa-
tion

g(F ) = δk
(
gk(F )ϕ⊗k

)
. (2.9)
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Proof. Using the Wiener chaos expansion (2.7), we can write

L−1g(F ) = −
∞∑

m=1

cm

m
Hm(F),

which implies, taking into account that H ′
m = mHm−1, that

−DL−1g(F ) =
∞∑

m=1

cmHm−1(F )ϕ = g1(F )ϕ.

Property g(F ) = δ(g1(F )ϕ) is a consequence of (2.4). The proof in the general case k ≥ 2 follows immediately by an
iteration procedure. This completes the proof. �

Lemma 2.2. Let F be a random variable in the first Wiener chaos of X of the form F = I1(ϕ), with ‖ϕ‖H = 1. Suppose
that g ∈ L2(R, γ ) is centered. Then for any p > 1,∥∥g1(F )

∥∥
Lp(�)

≤ cp

∥∥g(F )
∥∥

Lp(�)
, (2.10)

where cp > 0 is a constant depending only on p.

Proof. Observe that, using Lemma 2.1, we can write∥∥g1(F )
∥∥

Lp(�)
= ∥∥−DL−1g(F )

∥∥
Lp(�;H)

.

Then, using (2.3), Minkowski’s inequality and the last inequality in the proof of Proposition 3.2.5 of [17], we can write

∥∥−DL−1g(F )
∥∥

Lp(�;H)
≤
∥∥∥∥∫ ∞

0
DPtg(F )dt

∥∥∥∥
Lp(�;H)

≤
∫ ∞

0

∥∥DPtg(F )
∥∥

Lp(�;H)
dt

≤ c′
p

∫ ∞

0

e−t

√
1− e−2t

∥∥g(F )
∥∥

Lp(�)
dt,

= c′
p

π

2

∥∥g(F )
∥∥

Lp(�)
.

This concludes the proof. �

By iteration, we obtain∥∥gk(F )
∥∥

Lp(�)
≤ ck

p

∥∥g(F )
∥∥

Lp(�)
, (2.11)

for any k ≥ 2, provided g has Hermite rank k and F = I1(ϕ), with ‖ϕ‖H = 1. If g has Hermite rank strictly less than k,
we can write

Tkg(x) = Tkg̃(x),

where g̃(x) =∑∞
m=k cmHm(x). Then,

∥∥Tkg(F )
∥∥

Lp(�)
≤ ck

p

∥∥g(F )
∥∥

Lp(�)
+ ck

p

∥∥∥∥∥
k−1∑
m=0

cmHm(F)

∥∥∥∥∥
Lp(�)

≤ ck
p

∥∥g(F )
∥∥

Lp(�)
+ ck

p · C
(

k−1∑
m=0

c2mm!
) 1

2
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for some constant C > 0, where in the second inequality we have used the equivalence of the Lp(�) norms on a finite
sum of Wiener chaos, due to the hyprecontractivity property of the Ornstein–Uhlenbeck semigroup (see, for example,
Corollary 2.8.14 in [13]).

Consider H = R, the probability space (�,F,P ) = (R,B(R), γ ) and the isonormal Gaussian process X(h) = h. For
any k ≥ 0 and p ≥ 1, denote by Dk,p(R, γ ) the corresponding Sobolev spaces of functions. Notice that if g ∈ D

k,p(R, γ ),
and F = I1(ϕ) is an element in the first Wiener chaos of a general isonormal Gaussian process X, then g(F ) ∈D

k,p .
The next lemma provides a regularizing property of the operator Tk .

Lemma 2.3. Suppose that g ∈D
j,p(R, γ ) for some j ≥ 0 and p > 1. Then Tkg ∈ D

j+k,p(R, γ ) for all k ≥ 1.

Proof. We can assume that g has Hermite rank k, otherwise, we just subtract the first k terms in its expansion. Then, the
result is an immediate consequence of the fact that Tk = (−DL−1)k and the equivalence in Lp(R, γ ) of the operators D

and (−L)1/2, which follows from Meyer’s inequalities (see, for instance, [16]). �

Notice that T1 and the derivative operator do not commute. We will write (g1)
′ = g′

1, which is different from T1(g
′).

Indeed, for any g ∈ L2(R, γ ), we have

g′
1 = T1

(
g′)− g2,

because if g has the expansion (2.5), we obtain

g′
1(x) =

∞∑
m=2

cm(m − 1)Hm−2(x),

T1
(
g′)(x) =

∞∑
m=2

cmmHm−2(x)

and

g2(x) =
∞∑

m=2

cmHm−2(x).

More generally we can show that for any k, l ≥ 1,

g
(l)
k =

l∑
i=0

(
l

i

)
αk,iTk+i

(
g(l−i)

)
,

where αk,i = (−1)ik(k + 1) · · · (k + i − 1), with the convention αk,i = 1 if i = 0.

2.3. Brascamp–Lieb inequality

In this subsection we recall a version of the rank-one Brascamp–Lieb inequality that will be intensively used through this
paper (see [1,3,6] and the references therein). This inequality constitutes a generalization of both Hölder’s and Young’s
convolution inequalities.

Proposition 2.4. Let 2≤ M ≤ N be fixed integers. Consider nonnegative measurable functions fj :R→ R+, 1 ≤ j ≤ N ,
and fix nonzero vectors vj ∈R

M . Fix positive numbers pj , 1 ≤ j ≤ N , verifying the following conditions:

(i)
∑N

j=1 pj = M ,
(ii) For any subset I ⊂ {1, . . . ,M}, we have∑

j∈I

pj ≤ dim
(
Span{vj , j ∈ I }).

Then, there exists a finite constant C, depending on N , M and the pj ’s such that

∑
k∈ZM

N∏
j=1

fj (k · vj ) ≤ C

N∏
j=1

(∑
k∈Z

fj (k)1/pj

)pj

. (2.12)
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2.4. Stein’s method

Let h :R→ R be a Borel function such that h ∈ L1(R, γ ). The ordinary differential equation

f ′(x) − xf (x) = h(x) −E
(
h(Z)

)
(2.13)

is called Stein’s equation associated with h. The function

fh(x) := ex2/2
∫ x

−∞
(
h(y) −E

(
h(Z)

))
e−y2/2 dy

is the unique solution to the Stein’s equation satisfying lim|x|→∞ e−x2/2fh(x) = 0. Moreover, if h is bounded, fh satisfies

‖fh‖∞ ≤
√

π

2

∥∥h −E
(
h(Z)

)∥∥∞ (2.14)

and ∥∥f ′
h

∥∥∞ ≤ 2
∥∥h −E

(
h(Z)

)∥∥∞ (2.15)

(see [13] and the references therein).
We recall that the total variation distance between the laws of two random variables F , G is defined by

dTV(F,G) = sup
B∈B(R)

∣∣P(F ∈ B) − P(G ∈ B)
∣∣,

where the supremum runs over all Borel sets B ⊂R. Substituting x by F in Stein’s equation (2.13) and using the inequal-
ities (2.14) and (2.15) lead to the fundamental estimate

dTV(F,Z) = sup
f ∈C1(R),‖f ‖∞≤√

π/2,‖f ′‖∞≤2

∣∣E(f ′(F ) − Ff (F)
)∣∣. (2.16)

We also recall here the Poincaré inequality that will be used later to estimate bounds for the total variation distance.
Namely, for any F ∈ D

1,2, we have

Var(F ) ≤ E
(‖DF‖2H

)
. (2.17)

3. Basic estimates for the total variation distance

In the framework of an isonormal Gaussian process X, we can use Stein’s equation to estimate the total variation distance
between a random variable F = δ(u) and Z. First let us recall the following basic result (see [13,15]), which is an easy
consequence of (2.16) and the duality relationship (2.1).

Proposition 3.1. Assume that u ∈ Dom δ, F = δ(u) ∈ D
1,2 and E(F 2) = 1. Then,

dTV(F,Z) ≤ 2E
(∣∣1− 〈DF,u〉H

∣∣).
Notice that, applying the duality relationship (2.1), we can write

E
(〈DF,u〉H

)= E
(
Fδ(u)

)= E
(
F 2)= 1.

As a consequence, if F ∈ D
2,2, we apply Cauchy–Schwarz and Poincaré inequalities (2.17) to derive the following

estimate

dTV(F,Z) ≤ 2
√
E
(
1− 〈DF,u〉H

)2 = 2
√
Var(DuF) ≤ 2

√
E
(∥∥D(DuF)

∥∥2
H

)
, (3.1)

where we have used the notation DuF = 〈u,DF 〉H. We will also write Di+1
u F = 〈u,D(Di

uF )〉H for i ≥ 1, and, by
convention, D1

uF = DuF .
Furthermore, if the random variable F admits higher order derivatives, iterating the integration by parts argument we

can improve the bound (3.1) as follows.
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Proposition 3.2. Assume that u ∈Dom δ, F = δ(u) ∈D
3,2 and E(F 2) = 1. Then

dTV(F,Z) ≤ (8+ √
32π)E

(∥∥D(DuF)
∥∥2
H

)+ √
2π
∣∣E(F 3)∣∣

+ √
32πE

(∣∣D2
uF
∣∣2)+ 4πE

(∣∣D3
uF
∣∣).

Proof. Fix a continuous function h : R → [0,1]. Using Stein’s equation (2.13) and the estimates (2.14) and (2.15), there

exists a function fh ∈ C1(R) such that ‖fh‖∞ ≤
√

π
2 and ‖f ′

h‖∞ ≤ 2, satisfying

I := ∣∣E(h(F )
)−E

(
h(Z)

)∣∣= ∣∣E(f ′
h(F ) − Ffh(F )

)∣∣.
Applying the duality relationship (2.1), yields

I = ∣∣E(f ′
h(F )

(
1− 〈DF,u〉H

))∣∣.
Taking into account that E(〈DF,u〉H) = E(F 2) = 1, we have

I = ∣∣E((f ′
h(F ) −E

(
f ′

h(Z)
))(

1− 〈DF,u〉H
))∣∣.

Let fϕ be the solution to Stein’s equation (2.13) associated with the function ϕ = f ′
h. Then, we have

I = ∣∣E((f ′
ϕ(F ) − Ffϕ(F )

)(
1− 〈DF,u〉H

))∣∣,
where ‖fϕ‖∞ ≤ 4

√
π/2 and ‖f ′

ϕ‖∞ ≤ 8. Substituting F by δ(u) and applying again the duality relationship (2.1), yields

I = ∣∣E(f ′
ϕ(F )(1− DuF) − 〈

u,D
(
fϕ(F )(1− DuF)

)〉
H

)∣∣
= ∣∣E(f ′

ϕ(F )(1− DuF)2
)+E

(
fϕ(F )D2

uF
)∣∣

≤ 8E
(
(1− DuF)2

)+ ∣∣E((fϕ(F ) −E
(
fϕ(Z)

))
D2

uF
)∣∣

+ ∣∣E(fϕ(Z)
)
E
(
D2

uF
)∣∣

=: I1 + I2 + I3. (3.2)

For the term I1, we apply Poincaré inequality to get

I1 ≤ 8E
(∥∥D(DuF)

∥∥2
H

)
.

For the term I3, taking into account that

E
(
D2

uF
)= E

(〈u,DF 〉Hδ(u)
)= 1

2
E
(〈
u,DF 2〉

H

)= 1

2
E
(
F 3),

we obtain

I3 ≤ 2
√

π/2
∣∣E(F 3)∣∣.

Applying Stein’s equation (2.13) to the function ψ = fϕ yields f ′
ψ(F )−Ffψ(F ) = ψ(F)−E(ψ(Z)). Therefore, for the

term I2 we can write

I2 = ∣∣E((f ′
ψ(F ) − Ffψ(F )

)
D2

uF
)∣∣

≤ ∣∣E(f ′
ψ(F )

(
D2

uF − DuFD2
uF
))∣∣+ ∣∣E(fψ(F )D3

uF
)∣∣,

where fψ satisfies ‖fψ‖∞ ≤ 4π and ‖f ′
ψ‖∞ ≤ 16

√
π/2. Finally,

E
(∣∣D2

uF − DuFD2
uF
∣∣) ≤ 1

2

(
E
(∣∣D2

uF
∣∣2)+E

(|1− DuF |2))
≤ 1

2

(
E
(∣∣D2

uF
∣∣2)+E

(‖DDuF‖2H
))

.

This concludes the proof of the proposition. �
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If we bound (3.2) in a different way, we would get the following estimate.

Proposition 3.3. Assume that u ∈ Dom δ, F = δ(u) ∈ D
2,2 and E(F 2) = 1. Then

dTV(F,Z) ≤ 8E
(
(1− DuF)2

)+ √
8πE

(∣∣D2
uF
∣∣).

4. Main results

Consider a centered stationary Gaussian family of random variables X = {Xn,n ∈ Z} with unit variance and covariance
ρ(k) = E(X0Xk) for k ∈ Z. Define the Hilbert space H as the closure of the linear span of Z under the inner product
〈j, k〉H = ρ(j − k). The mapping k → Xk can be extended to a linear isometry from H to the closed linear subspace
L2(�) spanned by X. Then {Xϕ,ϕ ∈H} is an isonormal Gaussian process.

Consider the sequence Yn := 1√
n

∑n
j=1 g(Xj ) introduced in (1.4), where g ∈ L2(R, γ ) has Hermite rank d ≥ 1 and let

σ 2
n = E(Y 2

n ). Under condition (1.2), it is well known that as n → ∞, σ 2
n → σ 2, where σ 2 has been defined in (1.3).

Along the paper, we will denote by C a generic constant, whose value can be different from one formula to another
one.

Our aim is to establish estimates on the total variation distance between Yn/σn and Z. We will make use of the
representation Yn = δ(un), where

un = 1√
n

n∑
j=1

g1(Xj )j, (4.1)

given by Lemma 2.1. Then, if g ∈ D
2,2(R, γ ), by inequality (3.1) and taking into account that σn → σ > 0, we have the

estimate

dTV(Yn/σn,Z) ≤ 1

σ 2
n

√
E
(∣∣〈DYn,un〉H − σ 2

n

∣∣2)
≤ C

√
E
(∥∥D(〈DYn,un〉H

)∥∥2
H

)= C
√

A1, (4.2)

where A1 = E(‖DDunYn‖2H). Furthermore, using Proposition 3.3, we can write

dTV(Yn/σn,Z) ≤ 8

σ 4
n

E
(‖DDunYn‖2H

)+
√
8π

σ 3
n

√
E
(∣∣D2

un
Yn

∣∣2)
≤ C(A1 +√

A2), (4.3)

where A2 = E(|D2
un

Yn|2) and where we recall that DunYn = 〈un,DYn〉H and Di
un

Yn = 〈un,DDi−1
un

Yn〉H for i ≥ 2. The
assumption g ∈D

2,2 implies that the terms A1 and A2 are well defined.
If g ∈ D

3,2(R, γ ), using Proposition 3.2, we obtain

dTV(Yn/σn,Z) ≤ 8+ √
32π

σ 4
n

E
(‖DDunYn‖2H

)+
√
32π

σ 6
n

E
(∣∣D2

un
Yn

∣∣2)
+

√
2π

σ 3
n

∣∣E(Y 3
n

)∣∣+ 4π

σ 4
n

√
E
(∣∣D3

un
Yn

∣∣2)
≤ C(A1 + A2 + A3 + A4), (4.4)

where A3 = |E(Y 3
n )| and A4 =

√
E(|D3

un
Yn|2). The assumption g ∈D

3,2 implies that the term D3
un

Yn is well defined.

In the sequel we will derive estimates on the terms Ai , i = 1, . . . ,4 in terms of the covariance function ρ(k). We
use the notation Ai ≺ Aj if Ai ’s bound has a better convergence rate to zero than that of Aj or if Ai ≤ CAj for some
constant C > 0. To get the best possible rate, we use the following strategy. If g is just twice differentiable, we can use
the estimates (4.2) and (4.3). Then we will compare the rates of the terms A1 and A2. If A1 ≺ A2, we just use the bound
(4.2). Otherwise, (4.3) would be used. If g has higher order derivatives, we would use the bound (4.4) if A2 ≺ √

A1 and
the rates of A3 and A4 are better than those of

√
A2 and

√
A1. Otherwise, if the rate of either A3 or A4 is worse than that

of
√

A1 or
√

A2, we consider the bound (4.3) or (4.2) depending on the comparison between A2 and A1.
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Before presenting the main results, we will derive some expressions and estimates for the terms Ai , i = 1,2,4. To
simplify the notation, we will write ρij = ρ(li − lj ) for any 1≤ i, j ≤ n.

Lemma 4.1. Suppose that g ∈D
2,4(R, γ ). Then,

A1 ≤ 2

n2

2∑
i=1

n∑
l1,l2,l3,l4=1

∣∣E(Ii)ρ(l1 − l2)ρ(l3 − l4)ρ(l2 − l4)
∣∣,

where

I1 = g′′(Xl2)g
′′(Xl4)g1(Xl1)g1(Xl3), (4.5)

and

I2 = g′(Xl1)g
′(Xl3)g

′
1(Xl2)g

′
1(Xl4). (4.6)

Proof. First, we have

E
(∥∥D(〈DYn,un〉H

)∥∥2
H

)≤ 2E
(∥∥D2Yn ⊗1 un

∥∥2
H

)+ 2E
(∥∥〈D∗Yn,Dun(∗)

〉
H

∥∥2
H

)
,

where D2Yn ⊗1 un denotes the contraction of one variable between D2Yn and un and

〈
D∗Yn,Dun(∗)

〉
H

=
∞∑
i=1

〈DYn, ei〉HD
(〈un, ei〉H

)
,

with {ei, i ≥ 1} being a complete orthonormal system in H. This implies, taking into account (4.1), that

D2Yn ⊗1 un = 1

n

n∑
j,k=1

g′′(Xk)g1(Xj )ρ(j − k)k

and

〈
D∗Yn,Dun(∗)

〉
H

= 1

n

n∑
j,k=1

g′(Xj )g
′
1(Xk)ρ(j − k)k.

As a consequence,

∥∥D2Yn ⊗1 un

∥∥2
H

= 1

n2

n∑
l1,l2,l3,l4=1

I1ρ(l1 − l2)ρ(l3 − l4)ρ(l2 − l4),

and

∥∥〈D∗Yn,Dun(∗)
〉
H

∥∥2
H

= 1

n2

n∑
l1,l2,l3,l4=1

I2ρ(l1 − l2)ρ(l3 − l4)ρ(l2 − l4),

which implies the desired result. �

Next we derive a simple estimate for the term A2, assuming again that g ∈ D
2,6(R, γ ). Notice that

DunYn = 1

n

n∑
l1,l2=1

g1(Xl1)g
′(Xl2)ρ(l1 − l2).

Denote

f1(l1, l2, l3) = g′
1(Xl1)g

′(Xl2)g1(Xl3) (4.7)
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and

f2(l1, l2, l3) = g1(Xl1)g
′′(Xl2)g1(Xl3). (4.8)

Correspondingly, using the notation ρij = ρ(li − lj ), we can write

D2
un

Yn = 1√
n3

n∑
l1,l2,l3=1

(
f1(l1, l2, l3)ρ12ρ13 + f2(l1, l2, l3)ρ12ρ23

)
.

Thus,

A2 = E
((

D2
un

Yn

)2)
≤ 2

n3

n∑
l1,...,l6=1

(
E
(
f1(l1, l2, l3)f1(l4, l5, l6)

)
ρ12ρ13ρ45ρ46

+E
(
f2(l1, l2, l3)f2(l4, l5, l6)

)
ρ12ρ23ρ45ρ56

)
. (4.9)

Finally, let us compute the term A4, assuming g ∈D
3,8(R, γ ). We have

D3
un

Yn = 1

n2

n∑
l1,l2,l3,l4=1

3∑
i=1

(
f

(i)
1 (l1, l2, l3)g1(Xl4)ρ12ρ13ρi4

+ f
(i)
2 (l1, l2, l3)g1(Xl4)ρ12ρ23ρi4

)
,

where f
(i)
1 = ∂f1

∂Xli
, namely,

f
(1)
1 (l1, l2, l3) = g′′

1 (Xl1)g
′(Xl2)g1(Xl3),

f
(2)
1 (l1, l2, l3) = g′

1(Xl1)g
′′(Xl2)g1(Xl3),

f
(3)
1 (l1, l2, l3) = g′

1(Xl1)g
′(Xl2)g

′
1(Xl3)

and f
(i)
2 = ∂f2

∂Xli
, namely,

f
(1)
2 (l1, l2, l3) = g′

1(Xl1)g
′′(Xl2)g1(Xl3),

f
(2)
2 (l1, l2, l3) = g1(Xl1)g

′′′(Xl2)g1(Xl3),

f
(3)
2 (l1, l2, l3) = g1(Xl1)g

′′(Xl2)g
′
1(Xl3).

Therefore,

A2
4 = E

((
D3

un
Yn

)2)
≤ 6

n4

3∑
i=1

∑
j=1,...,8

n∑
lj =1

E
(
f

(i)
1 (l1, l2, l3)g1(Xl4)f

(i+4)
1 (l5, l6, l7)g1(Xl8)

)
× ρ12ρ13ρi4ρ56ρ57ρ(i+4)8

+ 6

n4

3∑
i=1

∑
j=1,...,8

n∑
lj =1

E
(
f

(i)
2 (l1, l2, l3)g1(Xl4)f

(i+4)
2 (l5, l6, l7)g1(Xl8)

)
× ρ12ρ23ρi4ρ56ρ67ρ(i+4)8. (4.10)

We are now ready to state and prove the main results of this paper. The notation is that of Theorem 1.1.
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4.1. Case d = 1

Theorem 4.2. Let d = 1 and g ∈ D
2,4(R, γ ). Suppose that (1.2) holds true. Then

dTV(Yn/σn,Z) ≤ Cn− 1
2 .

Proof. We use the inequality (4.2) and we need to estimate the term A1. By Lemma 2.3, Hölder’s inequality and the fact
that g ∈ D

2,4(R, γ ), the quantities I1 and I2 have finite expectation. Then

A1 ≤ C

n2

n∑
l1,l2,l3,l4=1

∣∣ρ(l1 − l2)ρ(l3 − l4)ρ(l2 − l4)
∣∣.

Making the change of variables k1 = l1 − l2, k2 = l3 − l4, k3 = l2 − l4 and using condition (1.2) with d = 1, we obtain

A1 ≤ C

n

∑
|ki |≤n,1≤i≤3

∣∣ρ(k1)ρ(k2)ρ(k3)
∣∣≤ C

n
,

which provides the desired estimate. �

4.2. Case of d = 2

Theorem 4.3. Let d = 2 and suppose that (1.2) holds true.

(i) If g ∈ D
2,4(R, γ ), we have

dTV(Yn/σn,Z) ≤ Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣) 3

2

.

(ii) If g ∈ D
3,4(R, γ ), we have

dTV(Yn/σn,Z) ≤ Cn− 1
2
∑
|k|≤n

∣∣ρ(k)
∣∣.

(iii) If g ∈ D
4,4(R, γ ), we have

dTV(Yn/σn,Z) ≤ Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣) 1

2 + Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 43) 3

2

.

(iv) If g ∈ D
5,6(R, γ ), we have

dTV(Yn/σn,Z) ≤ Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣) 1

2 + Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)2

.

(v) If g ∈ D
6,8(R, γ ), we have

dTV(Yn/σn,Z) ≤ Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)2

.

Remark 4.4. The bounds in Theorem 4.3 involve series of the form Sn :=∑
|k|≤n |ρ(k)|α for α ∈ [1,2). Under condition

(1.2), by Hölder’s inequality, Sn ≤ (1+2n)1− α
2 and the bounds exhibited in Theorem 4.3 could be divergent. However, we

are interested in the cases when the bounds converge to 0 and provide convergence rates in the context of Breuer–Major
theorem. See Corollary 4.9 for an example.
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Remark 4.5. For g ∈ D
6,8(R, γ ) the rate established in point (v) coincides with the rate for the Hermite polynomial

g(x) = x2 − 1, obtained by Biermé, Bonami, Nourdin and Peccati in [5] using the optimal bound for the total variation
distance in the case of random variables in a fixed Wiener chaos derived by Nourdin and Peccati in [14] (see Proposi-
tion 1.3). For g ∈ D

i,4(R, γ ), i = 2,3,4, the estimates in points (i), (ii) and (iii) will be established using Proposition 3.1,
whereas, for g ∈ D

5,6(R, γ ) we will use Proposition 3.3 to derive the estimate in point (iv) and for g ∈ D
6,8(R, γ ) we

apply Proposition 3.2.

Remark 4.6. The bound (iii) is better than (ii) based on the inequality (A.19) with M = 3 and the fact that
(
∑

|k|≤n |ρ(k)|)1/2 ≤ ∑
|k|≤n |ρ(k)|. The bound (iv) is better than (iii) because of the inequality (A.25). Finally, it is

straightforward to see (v) is better than (iv).

Proof of Theorem 4.3. The proof will be done in several steps.
Case g ∈ D

2,4(R, γ ). We apply Lemma 4.1 to derive the rate of convergence of A1. Using arguments similar to those
in the case d = 1 yields

A1 ≤ C

n

∑
|ki |≤n,1≤i≤3

∣∣ρ(k1)ρ(k2)ρ(k3)
∣∣= C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

, (4.11)

which gives the desired estimate in view of (4.2).
We claim that, even if we impose more integrability conditions on the function g, that is, g ∈D

2,6(R, γ ), the estimate
(4.3) does not give a rate better than (4.11). In fact, let us estimate the term A2, which is bounded by the inequality (4.9),
where f1 and f2 are defined in (4.7) and (4.8). The term E(f2(l1, l2, l3)f2(l4, l5, l6)) cannot be integrated by parts because
it involves g′′ and g is only twice weakly differentiable. Therefore, if g ∈ D

2,6(R, γ ), using Lemma 2.3 together with
Hölder’s inequality, we obtain

A2 ≤ C

n3

(
n∑

l1,...,l6=1

|ρ12ρ13ρ45ρ46| +
n∑

l1,...,l6=1

|ρ12ρ23ρ45ρ56|
)

.

Making change of variables, l1 − l2 = k1, l1 − l3 = k2, l4 − l5 = k3, l4 − l6 = k4 for the first summand, and l1 − l2 = k1,
l2 − l3 = k2, l4 − l5 = k3, l5 − l6 = k4 for the second summand, we obtain

A2 ≤ C

n

∑
|ki |≤n,1≤i≤4

4∏
i=1

∣∣ρ(ki)
∣∣= C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣)4

.

Thus, A1 ≺ A2, so we use (4.2) and (4.11) gives the best rate.
Case g ∈ D

3,4(R, γ ). Let us first estimate the term A1. Because g has three derivatives, using Lemma 4.1 and
Lemma A.1, we obtain

A1 ≤ C

n2

n∑
l1,l2,l3,l4=1

∣∣ρ(l1 − l2)ρ(l3 − l4)ρ(l2 − l4)
∣∣∑
j �=1

∣∣ρ(l1 − lj )
∣∣.

Making the change of variables l1 − l2 = k1, l2 − l4 = k2 and l3 − l4 = k3, yields

A1 ≤ C

n

∑
|ki |≤n

(∣∣ρ2(k1)ρ(k2)ρ(k3)
∣∣+ ∣∣ρ(k1)ρ(k2)ρ(k3)ρ(k1 + k2)

∣∣
+ ∣∣ρ(k1)ρ(k2)ρ(k3)ρ(k1 + k2 − k3)

∣∣).
Taking into account condition (1.2) and applying (A.20) with M = 3, yields

A1 ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣)2

, (4.12)

which gives the desired estimate in view of (4.2).
Again, we claim that imposing more integrability conditions and using either (4.3) or the more refined estimate (4.4)

does not improve the above rate. Indeed, let us first estimate the term A2, assuming g ∈ D
3,6(R, γ ). Because g is three
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times weakly differentiable, we can integrate by parts once in the expectations appearing in (4.9). The two summands
in (4.9) are similar, thus it suffices to consider the first one. Recall that f1(l1, l2, l3) = g′

1(Xl1)g
′(Xl2)g1(Xl3) has been

defined in (4.7). Using the representation g′(Xl2) = δ(T1(g
′)(Xl2)l2), applying the duality relationship (2.1), and making

a change of variables, we obtain

A2 ≤ C

n3

n∑
l1,...,l6=1

(
ρ2
12|ρ13ρ45ρ46| + |ρ12ρ13ρ45ρ46ρ23| + |ρ12ρ13ρ45ρ46|

6∑
i=4

|ρ2i |
)

≤ C

n2

∑
|ki |≤n
1≤i≤5

(
ρ(k1)

2
4∏

i=2

∣∣ρ(ki)
∣∣+ ∣∣ρ(k1 − k2)

∣∣ 4∏
i=1

∣∣ρ(ki)
∣∣+ 5∏

i=1

∣∣ρ(ki)
∣∣).

This implies, using (A.20) with M = 4 for the second summand, that

A2 ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

+ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)5

≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

,

where we have used the fact that
∑

|k|≤n |ρ(k)| ≤ C
√

n in the second inequality. Clearly, A1 ≺ A2. So the estimate (4.2)
is better than (4.3).

On the other hand, the estimate (4.4) does not provide a rate better than (4.2), because
√

A1 ≺ A3. Indeed, let us
estimate the term A3. We know that

A3 = ∣∣E(Y 3
n

)∣∣= n− 3
2

∣∣∣∣∣
n∑

l1,l2,l3=1

E

(
3∏

i=1

g(Xli )

)∣∣∣∣∣.
Using the representation g(Xl1) = δ2(g2(Xl1)l

⊗2
1 ) and applying twice the duality relationship (2.1), we obtain

A3 ≤ Cn− 3
2

n∑
l1,l2,l3=1

(∣∣E(g2(Xl1)g
′′(Xl2)g(Xl3)

)∣∣ρ2
12

+ 2
∣∣E(g2(Xl1)g

′(Xl2)g
′(Xl3)

)
ρ12ρ13

∣∣+ ∣∣E(g2(Xl1)g(Xl2)g
′′(Xl3)

)∣∣ρ2
13

)
.

Because g is three times differentiable, we can still use the representations g(Xl3) = δ(g1(Xl3)l3), g′(Xl2) =
δ(T1(g

′)(Xl2)l2) and g(Xl2) = δ(g1(Xl2)l2), and apply the duality relationship (2.1) again to produce an additional factor
of the form |ρ13| + |ρ23| for the first term and |ρ12| + |ρ23| for the second and third terms. In this way, we obtain

A3 ≤ Cn− 3
2

n∑
l1,l2,l3=1

(∣∣ρ2
12ρ13

∣∣+ |ρ12ρ13ρ23|
)
.

We make the change of variables ρ12 = ρ(k1), ρ13 = ρ(k2) and apply (A.18) with M = 2 to the second summand to
obtain

A3 ≤ Cn− 1
2
∑
|k|≤n

∣∣ρ(k)
∣∣+ Cn− 1

2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)2

.

Clearly, by (A.19), this bound is not better than the bound we have previously obtained for
√

A1, and (4.12) gives the
result in this case.

Case g ∈ D
4,4(R, γ ). As before, let us first estimate the term A1. Taking into account that g has four derivatives, by

the results of Lemma 4.1 and Lemma A.1 and using the notation ρ(li − lj ) = ρij , we have

A1 ≤ C

n2

n∑
l1,l2,l3,l4=1

|ρ12ρ34ρ24|
((|ρ12| + |ρ14|

)∑
j �=3

|ρj3| + |ρ13|
)

.
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We further write

A1 ≤ C

n2

∑
1≤li≤n,1≤i≤4

(
ρ2
12ρ

2
34|ρ24| + ρ2

12|ρ34ρ24ρ13| + ρ2
12|ρ34ρ24ρ23|

+ ∣∣ρ12ρ2
34ρ24ρ14

∣∣+ |ρ12ρ34ρ24ρ14ρ23| + |ρ12ρ34ρ24ρ14ρ13| + |ρ12ρ34ρ24ρ13|
)

≤ C

n2

∑
1≤li≤n,1≤i≤4

(
ρ2
12ρ

2
34|ρ24| + |ρ12ρ34ρ24ρ13| + ρ2

12|ρ34ρ24ρ23|

+ ∣∣ρ12ρ2
34ρ24ρ14

∣∣+ |ρ12ρ34ρ14ρ23| + |ρ12ρ34ρ24ρ13| + |ρ12ρ34ρ24ρ13|
)

≤ C

n2

∑
1≤li≤n,1≤i≤4

ρ2
12ρ

2
34|ρ24| + ρ2

12|ρ34ρ24ρ23| + |ρ12ρ34ρ24ρ13|. (4.13)

In the second inequality, we have used the fact that |ρij | ≤ 1. In the third inequality, we have used that in (4.13) the
third and fourth summands are equivalent, and the second, fifth, sixth, and seventh summands are also equivalent. By the
change of variables l1 − l2 = k1, l3 − l4 = k2, l2 − l4 = k3, we obtain

A1 ≤ C

n

∑
|ki |≤n,1≤i≤3

(
ρ2(k1)ρ

2(k2)
∣∣ρ(k3)

∣∣+ ρ2(k1)
∣∣ρ(k2)ρ(k3)ρ(k2 − k3)

∣∣
+ ∣∣ρ(k1)ρ(k2)ρ(k3)ρ(k1 − k2 + k3)

∣∣). (4.14)

The first summand is bounded by C
n

∑
|k|≤n |ρ(k)| from condition (1.2) with d = 2. The second summand is bounded by

C
n

∑
|k|≤n |ρ(k)| if we apply condition (1.2) and inequality (A.20) with M = 2. Finally, we use inequality (A.18) with

M = 3 for the third summand. In this way, we obtain

A1 ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣+ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 43)3

. (4.15)

This gives the desired estimate in view of (4.2).
As in the previous cases, we will show that, even with stronger integrability assumptions, using either (4.3) or (4.4)

does not improve the above rate. For this, consider first the term A2, assuming g ∈ D
4,6(R, γ ). Because g has four

derivatives, we can apply twice the duality relationship (2.1). Recall that the term A2 is bounded by (4.9) and it suffices
to consider the first summand in the right-hand side of this inequality. We write it here for convenience

A21 := 2

n3

n∑
l1,...,l6=1

E
(
f1(l1, l2, l3)f1(l4, l5, l6)

)
ρ12ρ13ρ45ρ46, (4.16)

where f1(l1, l2, l3) has been defined in (4.7). Notice that the functions g′ and g1 have Hermite rank 1. We first write
g′(Xl2) = δ(T1(g

′)(Xl2)l2) and apply duality with respect to this divergence producing factors of the form ρ2i , i �= 2,
1 ≤ i ≤ 6. Next we choose another function that has Hermite rank 1 among the factors g1(Xl3), g′(Xl5) and g1(Xl6),
write it as a divergence integral and apply duality again to obtain:

∣∣E(f1(l1, l2, l3)f1(l4, l5, l6))∣∣≤ C

6∑
i=1
i �=2

∑
s∈{3,5,6}

s �=i

6∑
j=1
j �=s

|ρ2iρsj |. (4.17)

Applying inequality (A.5) in Lemma A.3 yields

A2 ≤ 2A21 ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣)2

. (4.18)

By the inequality (A.19) with M = 3, we get that A1 ≺ A2.
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Next we will compare this estimate with the bound we can obtain for the term A3 using the fact that g has four
derivatives. We can write

A3 = ∣∣E(Y 3
n

)∣∣= Cn− 3
2

∣∣∣∣∣
n∑

l1,l2,l3=1

E

(
3∏

i=1

g(Xli )

)∣∣∣∣∣
≤ Cn− 3

2

n∑
l1,l2,l3=1

(
ρ2
12

(|ρ13| + |ρ23|
)2

+ |ρ12ρ13|
(|ρ23| + |ρ12|

(|ρ13| + |ρ23|
))+ ρ2

13

(|ρ12| + |ρ23|
)2)

≤ Cn− 3
2

n∑
l1,l2,l3=1

(∣∣ρ2
12ρ

2
13

∣∣+ |ρ12ρ13ρ23|
)
. (4.19)

Note that n− 3
2
∑n

l1,l2,l3=1 |ρ2
12ρ

2
13| = Cn− 1

2 . We make the change of variables ρ12 → ρ(k1), ρ13 → ρ(k2) and apply
(A.18) to the second summand, to obtain

A3 ≤ Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)2

. (4.20)

By (A.23) with M = 3 and (A.24), we obtain that A1 ≺ A3. By (A.25), we have A3 ≺ √
A1. However, we cannot use

the bound (4.4) since the relationship between
√

A1 and A2 is not clear, because the sequences n− 1
2 (
∑

|k|≤n |ρ(k)|) 1
2 and

n−1(
∑

|k|≤n |ρ(k)|)2 are not comparable. An example could be ρ(k) ∼ k−α for α ∈ ( 12 ,
2
3 ). So, we use the bound (4.2)

that is given by (4.15).
Case g ∈ D

5,6(R, γ ). For the terms A1 and A3 we still have the estimates (4.15) and (4.20). For the term A2, we
continue with the inequalities (4.16) and (4.17), and apply the duality for the third time to E(f1(l1, l2, l3)f1(l4, l5, l6))

when there is a factor with Hermite rank 1, to obtain∣∣E(f1(l1, l2, l3)f1(l4, l5, l6))∣∣≤ C
∑

i �=s �=j
i,s,j∈{3,5,6}

|ρ2iρsj | + C
∑

(i,s,j,t,h)∈D3

|ρ2iρsj ρth|,

where

D3 = {
(i, s, j, t, h) : j,h ∈ {1, . . . ,6}; s, t ∈ {3,5,6}; i �= 2, s /∈ {i, j }; t /∈ {i, s, j, h}}. (4.21)

By inequality (A.6) in Lemma A.3,

A2 ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣+ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)4

. (4.22)

From (4.15), (4.22) and (A.25) we deduce that A2 ≺ A1 and, therefore, A1 +√
A2 ≺ √

A1. Therefore, (4.3) gives a better
rate than (4.2), which is given by

A1 +√
A2 ≤ Cn− 1

2

(∑
|k|≤n

∣∣ρ(k)
∣∣) 1

2 + Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)2

. (4.23)

Clearly, A3 ≺ A1 + √
A2. Whether we choose (4.3) or (4.4) depends on the computation of A4, where we need to

assume g ∈D
5,8(R, γ ). Consider the second summand in the expression (4.10) denoted by

(A42)
2 := 2

n4

n∑
lj =1,

j=1,...,8

3∑
i=1

E
(
f

(i)
2 (l1, l2, l3)g1(Xl4)f

(i+4)
2 (l5, l6, l7)g1(Xl8)

)
× ρ12ρ23ρi4ρ56ρ67ρ(i+4)8. (4.24)
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Taking into account that g has five derivatives and the terms f
(2)
2 and f

(6)
2 involve g′′′, we can apply duality twice using

the factors that have Hermite rank 1. In this way, we get the following item in the bound of A42:√√√√ C

n4

n∑
|lj |=1,j=1,...,8

ρ2
12ρ23ρ24ρ

2
56ρ67ρ68,

which gives the rate 1
n
(
∑

|k|≤n |ρ(k)|)2. This rate cannot always be better than that of A1+√
A2 bound since the sequences

1
n
(
∑

|k|≤n |ρ(k)|)2 and n− 1
2 (
∑

|k|≤n |ρ(k)| 32 )2 are not comparable. An example could be ρ(k) ∼ k−α for α ∈ ( 12 ,
2
3 ). This

suggests us using the bound (4.3) that is given by (4.23).
Case g ∈ D

6,8(R, γ ). For the terms A1, A2 and A3, we still have the estimates (4.15), (4.22) and (4.20). Let us now
study the term A4 given by (4.10). The terms f

(2)
2 and f

(6)
2 involve g′′′ and they can be integrated by parts three times.

Therefore, we are going to use only three integration by parts. On the other hand, the terms f
(2)
2 , f (6)

2 , f (1)
1 and f

(4)
1 have

two factors with Hermite rank one that can be represented as divergences, but the other terms have only one. All these
terms are similar, with the only difference being the number of factors with Hermite rank one. We will handle only the
term f

(1)
1 that has two factors with Hermite rank one and the term f

(2)
1 that has only one. The other terms could be treated

in a similar way. In this way, for the term f
(1)
1 , we obtain, after integrating by parts three times,∣∣E(f (1)

1 (l1, l2, l3)g1(Xl4)f
(5)
1 (l5, l6, l7)g1(Xl8)

)∣∣≤ C
∑

(i,s,j,t,h)∈D4

|ρ2iρsj ρth|,

where

D4 = {
(i, s, j, t, h) : 1≤ i, j, h ≤ 8; s, t ∈ {3,4,6,7,8}; i �= 2; s /∈ {i, j }; t /∈ {i, s, j, h}}. (4.25)

On the other hand, for the term f
(2)
1 , we obtain, after integrating by parts three times,∣∣E(f (2)

1 (l1, l2, l3)g1(Xl4)f
(6)
1 (l5, l6, l7)g1(Xl8)

)∣∣
≤ C

∑
i �=s �=j

i,s,j∈{4,7,8}

|ρ3iρsj | + C
∑

(i,s,j,t,h)∈D5

|ρ3iρsj ρth|,

where

D5 = {
(i, s, j, t, h) : 1≤ i, j, h ≤ 8; s, t ∈ {4,7,8}; i �= 3; s /∈ {i, j }; t /∈ {i, s, j, h}}. (4.26)

By Lemma A.4 and Lemma A.5, we obtain

A4 ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣) 3

2 + C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 43)3

.

Then, from (A.23) with M = 3 and (A.24), we deduce A4 ≺ A3. We already know that A2 ≺ A1 ≺ A3 ≺ √
A2. Also

using (A.25) it follows that A3 ≺ √
A1. Thus, we use (4.4) for the bound of dTV(Yn/σn,Z) which is given by the estimate

(4.20) of the term A3. �

4.3. Case d ≥ 3

Theorem 4.7. Assume g ∈ D
3d−2,4(R, γ ) has Hermite rank d ≥ 3 and suppose that (1.2) holds true. Then we have the

following estimate

dTV(Yn/σn,Z) ≤ Cn− 1
2
∑
|k|≤n

∣∣ρ(k)
∣∣d−1

(∑
|k|≤n

∣∣ρ(k)
∣∣2) 1

2 + Cn− 1
2

(∑
|k|≤n

∣∣ρ(k)
∣∣) 1

2

. (4.27)

Proof of Theorem 4.7. Inequality (4.27) will be established using Proposition 3.1 that is specifically expressed as (4.2).
The proof will be done in two steps.
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Step 1: First, we consider the case when g is the Hermite polynomial Hd . By Lemma 4.1 and Lemma A.2, we have

A1 ≤ C

n2

n∑
l1,l2,l3,l4=1

∣∣ρ(l1 − l2)
β1ρ(l3 − l4)

β2ρ(l2 − l4)
β3

× ρ(l1 − l3)
β4ρ(l1 − l4)

β5ρ(l2 − l3)
β6
∣∣,

where the βi ’s satisfy
∑6

i=1 βi = 2d , β2 + β3 + β5 = d , β1 + β3 + β6 = d , β1 + β4 + β5 = d , β2 + β4 + β6 = d and
βj ≥ 1 for j = 1,2,3. Making the change of variables, li − l4 → ki , i = 1,2,3 yields

A1 ≤ C

n

n∑
k1,k2,k3=1

∣∣ρ(k1 − k2)
β1ρ(k3)

β2ρ(k2)
β3ρ(k1 − k3)

β4ρ(k1)
β5ρ(k2 − k3)

β6
∣∣.

Applying the Brascamp–Lieb inequality (2.12), we can write

A1 ≤ C

n

6∏
i=1

( ∑
|ki |≤n

∣∣ρ(ki)
∣∣ βi

pi

)pi

,

where the pi ’s satisfy
∑6

i=1 pi = 3, pi ≤ 1, p1 +p3 +p5 ≤ 2, p2 +p3 +p6 ≤ 2, p2 +p4 +p5 ≤ 2 and p1 +p4 +p6 ≤ 2.
The restriction of βi could be further simplified as

β1 = β2, β3 = β4, β5 = β6, β1 + β3 + β5 = d, and β1, β3 ≥ 1.

Then we choose p1 = p2, p3 = p4, p5 = p6 to obtain

A1 ≤ C

n

( ∏
i=1,3,5

( ∑
|ki |≤n

∣∣ρ(ki)
∣∣ βi

pi

)pi
)2

. (4.28)

We are going to choose pi = βi

d−1 + εi for i = 1,3,5, where the εi ’s satisfy εi ≥ 0 and d
d−1 +∑

i=1,3,5 εi = 3
2 . To choose

the values of the εi ’s we consider two cases. Set δ = 1
2 − 1

d−1 .

(i) Suppose that δ ≤ 1− β1
d−1 . Then, we take ε1 = δ and ε3 = ε5 = 0 and we obtain p1 = β1

d−1 + 1
2 − 1

d−1 , p3 = β3
d−1 and

p5 = β5
d−1 .

(ii) Suppose that δ ≥ 1 − β1
d−1 . Then, we take ε1 = 1 − β1

d−1 and ε3 = δ − ε1 and ε5 = 0 and we obtain p1 = 1, p3 =
β3

d−1 + β1
d−1 − 1

2 − 1
d−1 and p5 = β5

d−1 .

It is easy to show that these pi ’s satisfy the desired conditions and, furthermore, βi ≥ 2pi for i = 1,3,5. This allows us
to choose the pair (αi, γi) that satisfies the following equations

αi

2
+ γi

d − 1
= 1, and αi + γi = βi

pi

. (4.29)

Then Hölder inequality implies

∑
|k|≤n

∣∣ρ(k)
∣∣ βi

pi ≤
(∑

|k|≤n

∣∣ρ(k)
∣∣2) αi

2
(∑

|k|≤n

∣∣ρ(k)
∣∣d−1

) γi
d−1

.

We plug this inequality into (4.28) and solve αi , γi from (4.29). In this way, we obtain the inequality

A1 ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣d−1

)2 ∑
|k|≤n

∣∣ρ(k)
∣∣2. (4.30)



Total variation estimates in the Breuer–Major theorem 759

Step 2: We consider the case g ∈ D
3d−2(R, γ ). By Lemma 4.1 and Lemma A.2, we have

A1 ≤ C

n2

n∑
l1,l2,l3,l4=1

∣∣ρ(l1 − l2)
β1ρ(l3 − l4)

β2ρ(l2 − l4)
β3

× ρ(l1 − l3)
β4ρ(l1 − l4)

β5ρ(l2 − l3)
β6
∣∣, (4.31)

where the βi ’s satisfy βi ≤ d , βj ≥ 1 for j = 1,2,3,
∑6

i=1 βi ≤ 3d − 1 and the lower bounds

β2 + β3 + β5 ≥ d,

β1 + β3 + β6 ≥ d,

β1 + β4 + β5 ≥ d,

β2 + β4 + β6 ≥ d.

When all the above βi ’s inequalities attain the lower bound d , the right hand-side of (4.31) coincides with the case when g

is the Hermite polynomialHd . This case has been discussed in Step 1. On the other hand, if β1∧β2+β3∧β4+β5∧β6 ≥ d

and β3 ∧ β4 ≥ 1, taking into account that |ρ| ≤ 1, the right-hand side of (4.31) is actually dominated by the case where
all the βi ’s inequalities attain the lower bound d .

Now we need to consider all the other possible cases. In each case, we make the change of variables l1 − l2 = k1,
l3 − l4 = k2, l2 − l4 = k3.

(i) Case β4 = β5 = β6 = 0. Then β1 = β2 = d , β3 = 1. For these values of the βi ’s we can write the right hand-side of
(4.31) as

1

n2

n∑
l1,l2,l3,l4=1

∣∣ρ(l1 − l2)
dρ(l3 − l4)

dρ(l2 − l4)
∣∣

= 1

n

∑
|ki |≤n,1≤i≤3

∣∣ρ(k1)
∣∣d ∣∣ρ(k2)

∣∣d ∣∣ρ(k3)
∣∣

≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣.

(ii) Case β4 = β5 = 0, β6 > 0. Then β1 = d , β2 < d , β2 + β3 ≥ d and β2 + β6 ≥ d . Using (1.2), we can write

A1 ≤ C

n

∑
|ki |≤n,i=2,3

∣∣ρ(k2)
∣∣β2 ∣∣ρ(k3)

∣∣β3 ∣∣ρ(k3 − k2)
∣∣β6

≤ C

n

∑
|ki |≤n,i=2,3

∣∣ρ(k2)
∣∣β2 ∣∣ρ(k3)

∣∣d−β2
∣∣ρ(k3 − k2)

∣∣d−β2

≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣d−β2 ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣,

where in the third inequality we have used (2.12) with p1 = β2
d
, p2 = 1 and p3 = d−β2

d
.

(iii) Case β4 = β6 = 0, β5 > 0. This case is similar to (ii).
(iv) Case β5 = β6 = 0, β4 > 0. Then β2 + β3 ≥ d , β1 + β3 ≥ d , β1 + β4 ≥ d , β2 + β4 ≥ d . It is easy to see β1 ∧ β2 +

β3 ∧ β4 + β5 ∧ β6 ≥ d and, furthermore, β3 ∧ β4 ≥ 1. This situation has been discussed before and A1 is dominated by
the bound in the case where g is the Hermite polynomial.
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(v) β4 = 0, β5 > 0, β6 > 0. Then β1 < d , β2 < d , β1 + β5 ≥ d , β2 + β6 ≥ d . As a consequence, we obtain

A1 ≤ C

n

∑
|ki |≤n,1≤i≤3

∣∣ρ(k1)
∣∣β1 ∣∣ρ(k2)

∣∣β2 ∣∣ρ(k3)
∣∣β3

× ∣∣ρ(k1 + k3)
∣∣d−β1

∣∣ρ(k3 − k2)
∣∣d−β2

≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣,

where have used (2.12) for pi = βi

d
for i = 1,2, p3 = 1 and pi+3 = d−βi

d
for i = 1,2.

(vi) β5 = 0, β4 > 0, β6 > 0. Then β2 + β3 ≥ d , β1 + β4 ≥ d . This case is similar to (v).
(vii) β6 = 0, β4 > 0, β5 > 0. This case is similar to (v) and (vi).
(viii) βi > 0 for all 1 ≤ i ≤ 6, and β1 ∧ β2 + β3 ∧ β4 + β5 ∧ β6 < d . Without loss of generality, we may assume that

β1 ≤ β2. We take into account of β1 + β4 + β5 ≥ d and β1 + β3 + β6 ≥ d , so there are two cases: β3 ≤ β4, β5 ≤ β6;
and β4 ≤ β3, β6 ≤ β5. These two cases are actually equivalent, because in the second case, we can make the change of
variable l3 − l1 → k3, instead of l2 − l4 → k3 for the first case. Thus it sufficies to consider the first case, i.e.,

A1 ≤ C

n

∑
|ki |≤n,
1≤i≤3

∣∣ρ(k1)
∣∣β1 ∣∣ρ(k2)

∣∣β2 ∣∣ρ(k3)
∣∣β3

× ∣∣ρ(k1 − k2 + k3)
∣∣β4 ∣∣ρ(k1 + k3)

∣∣β5 ∣∣ρ(k3 − k2)
∣∣β6,

where β1 + β3 + β5 < d , β2 + β4 + β6 > d since
∑6

i=1 βi > 2d .
Next we will apply Brascamp–Lieb inequality (2.12) according to several different subcases.

(1) Suppose β1 ∧β3 ∧β5 = β1. Then if
∑6

i=2 βi ≥ 2d , the right-hand side of the above inequality is bounded by the case∑6
i=2 βi = 2d when we decrease βi ’s, i = 2,4,6 appropriately. We use (2.12) with p1 = 1, pi = βi

d
for i ≥ 2, taking

into account that |ρ| ≤ 1, to obtain

A1 ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣β1 ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣.

If
∑6

i=2 βi < 2d , for which an example could be β1 = 2, β3 = 2, β5 = d − 5, β2 = 3, β4 = 3, β6 = d − 4, we can
see that β1 ≥ 2 because of

∑d
i=1 βi > 2d and

∑6
i=2 βi < 2d , and correspondingly d >

∑
i=1,3,5 βi ≥ 6. Furthermore,

β1 < d
3 . In order to apply (2.12), we choose with p1 = 1 and pi = 2βi∑6

i=2 βi

for i = 2, . . . ,6. One can easily check that

pi ≤ 1,
∑6

i=1 pi = 3,
∑

i=1,3,5 pi < 2 and
∑

i=2,3,6 pi < 2. In this way, we obtain

A1 ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣β1(∑

|k|≤n

∣∣ρ(k)
∣∣ β2+···+β6

2

)2

≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣β1(∑

|k|≤n

∣∣ρ(k)
∣∣d− β1

2

)2

≤ sup
2≤a< d

3

C

n

∑
|k|≤n

∣∣ρ(k)
∣∣a(∑

|k|≤n

∣∣ρ(k)
∣∣d− a

2

)2

.

In view of Lemma A.10 the supremum in the above display is attained at a = 2 and it coincides with the first term in
the estimate (4.27).

(2) β1 ∧ β3 ∧ β5 = β5. We use the same approach as for the subcase (1).
(3) β1 ∧ β3 ∧ β5 = β3. We follow the same methodology. When

∑
i �=3 βi < 2d , the arguments are the same. When∑

i �=3 βi ≥ 2d , since d ≤ β1 + β4 + β5 < 2d , we can decrease β2, β6 appropriately such that
∑

i �=3 βi = 2d and at
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the same time this implies β2 + β6 ≤ d . Then we use (2.12) with p3 = 1, pi = βi

d
for i �= 3 to obtain

A1 ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣β3 ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣.

This completes the proof of the theorem. �

Remark 4.8. In the case of the Hermite polynomial g = Hd , d ≥ 3, the proof of Theorem 4.7, based on Proposition 3.1,
yields

dTV(Yn/σn,Z) ≤ Cn− 1
2
∑
|k|≤n

∣∣ρ(k)
∣∣d−1

(∑
|k|≤n

∣∣ρ(k)
∣∣2) 1

2

. (4.32)

In this case Proposition 3.2 reduces to the computation of the third and fourth cumulants and one can derive the following
bound (see [5]), which is better than (4.32):

dTV(Yn/σn,Z)

≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣d−1

)2 ∑
|k|≤n

∣∣ρ(k)
∣∣2 + C√

n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 3d4 )2

1{d even}.

However, applying Proposition 3.2 to the case of a general function g is a much harder problem and it will not be dealt in
this paper.

Consider the particular case where ρ(k) ∼ k−α , as k tends to infinity, for some α > 0. Then, condition (1.2) is satisfied
provided αd > 1. In this case, Theorems 4.2, 4.3 and 4.7 imply the following results.

Corollary 4.9. Suppose that ρ(k) ∼ k−α , as k tends to infinity, where α > 0 is such that αd > 1. Then, the following
estimates hold true in the context of Theorem 1.1:

(i) If g ∈ D
2,4(R, γ ) has Hermite rank 1 and α > 1,

dTV(Yn/σn,Z) ≤ Cn− 1
2 .

(ii) If g ∈ D
2,4(R, γ ) has Hermite rank 2 and α > 2

3 ,

dTV(Yn/σn,Z) ≤

⎧⎪⎨⎪⎩
Cn− 1

2 if α > 1,

Cn− 1
2 (logn)

3
2 if α = 1,

Cn1− 3
2α if α ∈ ( 23 ,1).

(iii) If g ∈ D
3,4(R, γ ) has Hermite rank 2,

dTV(Yn/σn,Z) ≤

⎧⎪⎨⎪⎩
Cn− 1

2 if α > 1,

Cn− 1
2 logn if α = 1,

Cn
1
2−α if α ∈ ( 12 ,1).

(iv) If g ∈ D
4,4(R, γ ) has Hermite rank 2,

dTV(Yn/σn,Z) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cn− 1

2 if α > 1,

Cn− 1
2 (logn)

1
2 if α = 1,

Cn− α
2 if α ∈ ( 23 ,1),

Cn1−2α if α ∈ ( 12 ,
2
3 ].
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(v) If g ∈D
5,6(R, γ ) has Hermite rank 2,

dTV(Yn/σn,Z) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cn− 1

2 if α > 1,

Cn− 1
2 (logn)

1
2 if α = 1,

Cn− α
2 if α ∈ ( 35 ,1),

Cn
3
2−3α if α ∈ ( 12 ,

3
5 ].

(vi) If g ∈D
6,8(R, γ ) has Hermite rank 2,

dTV(Yn/σn,Z) ≤

⎧⎪⎨⎪⎩
Cn− 1

2 if α > 2
3 ,

Cn− 1
2 (logn)2 if α = 2

3 ,

Cn
3
2−3α if α ∈ ( 12 ,

2
3 ).

(vii) If g ∈D
3d−2,4(R, γ ) has Hermite rank d ≥ 3,

dTV(Yn/σn,Z) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn− 1
2 if α > 1,

Cn− 1
2 (logn)

1
2 if α = 1,

Cn− α
2 if α ∈ ( 12 ,1),

Cn− α
2
√
logn if α = 1

2 ,

Cn− α
2 if α ∈ ( 2

2d−1 ,
1
2 ),

Cn1−αd if α ∈ ( 1
d
, 2
2d−1 ].

(viii) When g = Hd , d ≥ 3, the bound (4.2) combined with the estimate (4.30) yields

dTV(Yn/σn,Z) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Cn− 1
2 if α > 1

2 ,

Cn− 1
2 (logn)

1
2 if α = 1

2 ,

Cn−α if α ∈ ( 1
d−1 ,

1
2 ),

Cn−α logn if α = 1
d−1 ,

Cn1−αd if α ∈ ( 1
d
, 1

d−1 ).

We remark that the bounds derived in point (viii) coincide with the estimates obtained by Biermé, Bonami and León
in [4] using techniques of Fourier analysis. Corollary 4.9 can be applied to any function g with an expansion g(x) =∑d+k

m=d cmHm(x) for any k ≥ 0.

5. Application to fractional Brownian motion

Recall that the fractional Brownian motion (fBm) B = {Bt , t ∈ R} with Hurst parameter H ∈ (0,1) is a zero mean
Gaussian process, defined on a complete probability space (�,F,P ), with the covariance function

E(BsBt ) = 1

2

(|s|2H + |t |2H − |s − t |2H ).
The fractional noise defined by Xj = Bj+1 − Bj , j ∈ Z is an example of a Gaussian stationary sequence with unit
variance. The covariance function is given by

ρH (j) = 1

2

(|j + 1|2H + |j − 1|2H − 2|j |2H ).
Notice that ρH (j) behaves as H(2H − 1)j2H−2 as j → ∞. Thus, this covariance function has a power decay at infinity
with α = 2− 2H . Consider the sequence Yn defined by

Yn = 1√
n

n∑
j=1

g(Bj+1 − Bj ),
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where g ∈ L2(R, γ ) has Hermite rank d ≥ 1. As a consequence, the estimates obtained in Corollary 4.9 hold with α =
2− 2H . Here are some examples where these results can be applied.

Example 1. Consider the function g(x) = ex − √
e. It is easy to check that this function has Hermite rank d = 1 and g ∈

D
∞,p for any p ≥ 1. Then g admits the expansion g(x) =∑

m≥1 cmHm(x). By Corollary 4.9(i), we have for H ∈ (0, 1
2 ),

dTV(Yn/σn,Z) ≤ Cn− 1
2 .

Example 2. Consider the function g(x) = sin(x) − xE(Z sin(Z)). We can check that this function has Hermite rank
d = 3 and g ∈ D

∞,p for any p > 1. Suppose g admits the expansion g(x) =∑
m≥3 cmHm(x). By Corollary 4.9(vii), we

have

dTV(Yn/σn,Z) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn− 1
2 if H ∈ (0, 1

2 ),

Cn− 1
2 (logn)

1
2 if H = 1

2 ,

CnH−1 if H ∈ ( 12 ,
3
4 ),

CnH−1√logn if H = 3
4 ,

CnH−1 if H ∈ ( 34 ,
4
5 ),

Cn6H−5 if H ∈ [ 45 , 5
6 ).

In the next subsections, we will review some applications to the power variations in which functionals with Hermite
rank 2 will be considered.

5.1. Application to the asymptotic behavior of power variations

For any p ≥ 1, the power variation of the fBm on the time interval [0,1] is given by

V
p
n (B) =

n−1∑
j=0

|Bj+1
n

− Bj
n
|p.

By the self-similarity property of fBm, the sequence {nH (Bj+1
n

−Bj
n
), j ≥ 0} has the same distribution as {Bj+1−Bj , j ≥

0}, which is stationary and ergodic. By the Ergodic Theorem, we have, as n → ∞,

npH−1V
p
n (B) → cp

almost surely and in Lq(�) for any q ≥ 1, where cp = E(|Z|p). Moreover, when H ∈ (0, 3
4 ), using the fact that the

function g(x) = |x|p − cp has Hermite rank 2, the Breuer–Major theorem leads to the following central limit theorem

Sn := √
n
(
npH−1V

p
n (B) − cp

)→ N
(
0, σ 2

H,p

)
, (5.1)

where σ 2
H,p =∑∞

m=2 c2mm!∑k∈Z ρH (k)m, with |x|p − cp =∑∞
m=2 cmHm(x). A functional version of this central limit

theorem can also be proved (see [9]).
We can apply the results obtained in Section 3 to derive the rate of convergence for the total variation distance in (5.1).

Indeed, the sequence Sn has the same distribution as

Yn = √
n

(
1

n

n∑
j=1

|Bj+1 − Bj |p − cp

)
,

and it suffices to consider the case of the fractional noise Xj = Bj+1 − Bj and the function g(x) = |x|p − cp that
has Hermite rank 2. More precisely, if N ≤ p < N + 1 where N ≥ 2 is an integer, then the function g belongs to
DN :=⋂

q≥1D
N,q(R, γ ) and Corrollary 4.9 gives the convergence rate to zero of dTV(Sn/σn,Z) with α = 2− 2H . Here

are some examples.
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Example 3. Let p = 2.5 and σ 2
n = E(S2

n) = E(Y 2
n ). Then g ∈D2 and

dTV(Sn/σn,Z) ≤

⎧⎪⎨⎪⎩
Cn− 1

2 if H ∈ (0, 1
2 ),

Cn− 1
2 (logn)

3
2 if H = 1

2 ,

Cn3H−2 if H ∈ ( 12 ,
2
3 ).

Example 4. Let p = 3 and σ 2
n = E(S2

n) = E(Y 2
n ). Then g ∈D3 and

dTV(Sn/σn,Z) ≤

⎧⎪⎨⎪⎩
Cn− 1

2 if H ∈ (0, 1
2 ),

Cn− 1
2 logn if H = 1

2 ,

Cn2H− 3
2 if H ∈ ( 12 ,

3
4 ).

Example 5. Let p = 4 and σ 2
n = E(S2

n) = E(Y 2
n ). Then g ∈D4 and

dTV(Sn/σn,Z) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Cn− 1

2 if H ∈ (0, 1
2 ),

Cn− 1
2
√
logn if H = 1

2 ,

CnH−1 if H ∈ ( 12 ,
2
3 ],

Cn4H−3 if H ∈ ( 23 ,
3
4 ).

Example 6. Let p = 6 and σ 2
n = E(S2

n) = E(Y 2
n ). Then g ∈D6 and

dTV(Sn/σn,Z) ≤

⎧⎪⎨⎪⎩
Cn− 1

2 if H ∈ (0, 2
3 ),

Cn− 1
2 (logn)2 if H = 2

3 ,

Cn6H− 9
2 if H ∈ ( 23 ,

3
4 ).

5.2. Application to the estimation of the Hurst parameter

As an application of the convergence rates of power variations, we establish the consistency of the estimatior of the Hurst
parameter H for the fBm, defined by means of p-power variations. This problem has been studied for H > 1

2 using
quadratic variations in the papers [2,10,11,20] and the references therein. In the paper [8], a consistent estimator based on
the p-power variation is adopted, defined as

H̃ = logCp − log(n−1V
p
n (B))

p logn
,

where the specific constant Cp depends on p. In the paper [8], the author also discusses other filters to define the power
variation and obtains a normalizing factor for the central limit theorem equal to 1/

√
n logn. Here we construct another

estimator based on the p-power variation, which is motivated by the papers [2,11], where the quadratic variation is used.
Let λ > 1, λ ∈N be a scaling parameter. Fix p ≥ 2, and consider the statistics Tλ,n defined by

Tλ,n := V
p
λn(B)

V
p
n (B)

=
∑λn−1

j=0 |Bj+1
λn

− B j
λn

|p∑n−1
j=0 |Bj+1

n

− Bj
n
|p .

Then we propose the following estimator for the Hurst parameter H :

Ĥλ,n = 1

p

(
1− logTλ,n

logλ

)
. (5.2)

In the next proposition we show the consistency of this estimator. Though the consistency could be clearly obtained
from the ergodic theorem, we will apply the main results obtained in this paper to prove the consistency as well as the
convergence rate.
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Proposition 5.1. When H ∈ (0, 3
4 ), for p ∈ {2} ∪ [3,∞),

lim
n→∞

√
n

logn
(Ĥλ,n − H) = 0,

in probability.

Proof. Denote αn = n−1+pH V
p
n (B). Then

logαλn − logαn = (−1+ pH) logλ + logTλ,n.

Thus

Ĥλ,n − H = − logαλn − logαn

p logλ
. (5.3)

Let σ 2
n = E[(√n(αn − cp))2]. By previous results, we know that

√
n(αn − cp) → σH,pZ where σ 2

n → σ 2
H,p , and

dTV

(√
n(αn − cp)

σn

,Z

)
< n−a

for some a > 0. Then for any ε > 0,

P

(∣∣∣∣√n(αn − cp)

σn

∣∣∣∣> ε
√
logn

)
≤ P

(|Z| > ε
√
logn

)+ n−a

≤ Cε

n
ε2
2
√
logn

+ n−a,

where we have used the estimate for the tail of a standard Gaussian random variable, i.e., P(Z > x) ≤ e−x2/2

x
√
2π

. This implies

that
√

n(αn−cp)√
logn

→ 0 in probability as n → ∞. Back to equation (5.3), note that logαn − log cp = 1
α∗

n
(αn − cp) for some α∗

n

between αn and cp . These results are true for αλn as well, so we conclude that
√

n
logn

(Ĥλ,n − H) → 0 in probability. �

Appendix

In this section we show some technical lemmas that play a crucial role in the proof of our main results.

Lemma A.1. Under the notation and assumptions of Theorem 1.1, let I1 and I2 be the random variables defined in (4.5)
and (4.6), respectively. Suppose d = 2. Then we have the following estimates.

(1) If g ∈D
3,4(R, γ ), then for i = 1,2, we have∣∣E(Ii)
∣∣≤ C

∑
i �=1

∣∣ρ(l1 − li )
∣∣.

(2) If g ∈D
4,4(R, γ ), then for i = 1,2, we have

∣∣E(Ii)
∣∣≤ C

∣∣∣∣(ρ(l1 − l2) + ρ(l1 − l4)
)∑

j �=3

ρ(lj − l3) + ρ(l1 − l3)

∣∣∣∣. (A.1)

(3) If g is the Hermite polynomial x2 − 1, then∣∣E(Ii)
∣∣≤ C

∣∣ρ(l1 − l3)
∣∣.

Proof. We first consider the term I1. Observe that

g1(Xl1) = δ
(
g2(Xl1)l1

)
.
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Applying the duality relationship (2.1), we obtain

E(I1) =
∑

a+b+c=1

E
(
g(a+2)(Xl2)g

(b+2)(Xl4)(g1)
(c)(Xl3)g2(Xl1)

)
× 〈

l1, l
⊗a
2 ⊗ l⊗b

4 ⊗ l⊗c
3

〉
H

.

When g is the Hermite polynomial x2 − 1, we just need to consider the case a = 0, b = 0 and c = 1. In this way we get∣∣E(I1)
∣∣≤ C

∣∣ρ(l1 − l3)
∣∣.

When g ∈D
3,4(R, γ ), we obtain∣∣E(I1)
∣∣≤ C

∑
i �=1

∣∣ρ(l1 − li )
∣∣.

When g ∈D
4,4(R, γ ), in the case of c = 0, we apply duality again to obtain

E(I1) =
∑

a+b=1

∑
a′+b′+c′=1

E
(
g(a+a′+2)(Xl2)g

(b+b′+2)(Xl4)g2(Xl3)g
(c′)
2 (Xl1)

)
× 〈

l1, l
⊗a
2 ⊗ l⊗b

4

〉
H

〈
l3, l

⊗a′
2 ⊗ l⊗b′

4 ⊗ l⊗c′
1

〉
H

+E
(
g′′(Xl2)g

′′(Xl4)g
′
1(Xl3)g2(Xl1)ρ(l1 − l3)

)
.

Then the inequality (A.1) for i = 1 is derived from expanding the above identities.
Similarly, for the term I2, since g′(X) has the Hermite rank 1, we can write

g′(Xli ) = δ
((

g′)
1(Xli )li

)
.

Using this representation, we have

E(I2) = E
(
δ
((

g′)
1(Xl1)l1

)
δ
((

g′)
1(Xl3)l3

)
g′
1(Xl2)g

′
1(Xl4)

)
.

We use the similar arguments as the term I1 to obtain the inequality (A.1) for i = 2. �

Lemma A.2. Under the notation and assumptions of Theorem 1.1, let I1 and I2 be the random variables defined in (4.5)
and (4.6), respectively. Suppose d ≥ 3. Then for i = 1,2,∣∣E(Ii)

∣∣ ≤ C
∑
β∈I1

∣∣ρ(l1 − l2)
β1ρ(l1 − l3)

β2ρ(l1 − l4)
β3

× ρ(l3 − l2)
β4ρ(l2 − l4)

β5ρ(l3 − l4)
β6
∣∣,

where β = (β1, . . . , β6), N0 =N∪ {0} and

I1 =
{

β ∈ N
6
0 : d − 1≤ β1 + β2 + β3, d − 1≤ β2 + β4 + β6,

d − 2≤ β1 + β4 + β5, d − 2≤ β3 + β5 + β6,

6∑
i=1

βi ≤ 3d − 4

}
. (A.2)

Moreover, if g is the Hermite polynomial Hd , we obtain∣∣E(Ii)
∣∣ ≤ C

∑
β∈I3

∣∣ρ(l1 − l2)
β1ρ(l1 − l3)

β2ρ(l1 − l4)
β3

× ρ(l3 − l2)
β3ρ(l2 − l4)

β2−1ρ(l3 − l4)
β1
∣∣, (A.3)
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where

I3 = {
β = (β1, β2, β3) ∈N

3 : β1 + β2 + β3 = d − 1
}
.

Proof. We can represent the factor g1(Xl1) appearing in I1 as

g1(Xl1) = δd−1(gd(Xl1)l
⊗(d−1)
1

)
.

Then applying the duality relationship (2.2) and Leibniz’s rule yields

E(I1) =
∑

a+b+c=d−1

E
(
g(a+2)(Xl2)g

(b+2)(Xl4)gd(Xl1)g
(c)
1 (Xl3)

)
× ρ(l1 − l2)

aρ(l1 − l4)
bρ(l1 − l3)

c.

We write

g
(c)
1 (Xl3) = δd−1−c

(
Td−1−c

(
g

(c)
1

)
(Xl3)l

⊗(d−1−c)
3

)
.

Then, applying again the duality relationship (2.2) and Leibniz’s rule, we obtain

E(I1) =
∑

a+b+c=d−1

∑
a′+b′+c′=d−1−c

E
(
g(a+a′+2)(Xl2)g

(b+b′+2)(Xl4)

× g
(c′)
d (Xl1)Td−1−c

(
g

(c)
1

)
(Xl3)

)
× ρ(l1 − l2)

aρ(l1 − l4)
bρ(l1 − l3)

c+c′
ρ(l3 − l2)

a′
ρ(l3 − l4)

b′
.

We can still represent the factors g(a+a′+2)(Xl2) and g(b+b′+2)(Xl4) as divergences:

g(a+a′+2)(Xl2) = δd−(a+a′+2)(Td−(a+a′+2)
(
g(a+a′+2))(Xl2)l

⊗(d−(a+a′+2))
2

)
and

g(b+b′+2)(Xl4) = δd−(b+b′+2)(Td−(b+b′+2)
(
g(b+b′+2))(Xl4)l

⊗(d−(b+b′+2))
4

)
.

Then, we repeat the above process to obtain, using the fact that g ∈D3d−2,∣∣E(I1)
∣∣ ≤ C

∑∣∣ρ(l1 − l2)
a+b′′

ρ(l1 − l4)
b+b′′′

ρ(l1 − l3)
c+c′

× ρ(l3 − l2)
a′+c′′

ρ(l3 − l4)
b′+c′′′

ρ(l2 − l4)
a′′+a′′′ ∣∣, (A.4)

where the sum runs over all nonnegative integers a, b, c, a′, b′, c′, a′′, b′′, c′′, a′′′, b′′′, c′′′ satisfying

a + b + c = d − 1,

a′ + b′ + c′ = d − 1− c,

a′′ + b′′ + c′′ = (
d − a′ − a − 2

)∨ 0,

a′′′ + b′′′ + c′′′ = (
d − b − b′ − a′′ − 2

)∨ 0.

Inequality (A.4) can be equivalently written as∣∣E(I1)
∣∣ ≤ C

∑
β∈I1

∣∣ρ(l1 − l2)
β1ρ(l1 − l3)

β2ρ(l1 − l4)
β3

× ρ(l3 − l2)
β4ρ(l2 − l4)

β5ρ(l3 − l4)
β6
∣∣,

where β = (β1, . . . , β6) and I1 is the set defined in (A.2). Notice that we have the lower bound
∑6

i=1 βi ≥ 2d − 3. On the
other hand, the upper bound

∑6
i=1 βi ≤ 3d − 4 is attained when a = d − 1, a′ = d − 1, a′′′ = d − 2 and the other numbers

vanish. Taking into account that in this case the function g′′ might be differentiated 3d − 4 times, we need g ∈ D3d−2.
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When g is the Hermite polynomial Hd , gd = 1 and g1 = Hd−1, so we have Td−1−c(g
(c)
1 ) = (d − 1)(d − 2) · · · (d − c).

In this case, taking into account of the orthogonality of Hermite polynomials of different order, we obtain∣∣E(I1)
∣∣ ≤ C

∑
a+b+c=d−1,
a′+b′=d−1−c,
a+a′=b+b′=c̃

∣∣ρ(l1 − l2)
aρ(l1 − l4)

bρ(l1 − l3)
c

× ρ(l3 − l2)
a′

ρ(l3 − l4)
b′
ρ(l2 − l4)

d−2−c̃
∣∣.

Again this can be written as∣∣E(I1)
∣∣ ≤ C

∑
β∈I2

∣∣ρ(l1 − l2)
β1ρ(l1 − l3)

β2ρ(l1 − l4)
β3

× ρ(l3 − l2)
β4ρ(l2 − l4)

β5ρ(l3 − l4)
β6
∣∣,

where I2 is the set of β ∈N
6
0 such that β1 +β2 +β3 = d − 1, β4 +β6 +β2 = d − 1 and β1 +β4 = β3 +β6 = d − 2−β5.

This implies β1 = β6, β3 = β4, β5 = β2 − 1 and β1 + β2 + β3 = d − 1, and this completes the proof of (A.3).
Similar arguments could be applied to handle the term I2. �

Lemma A.3. Assume condition (1.2) with d = 2. Define

J1 = 1

n3

n∑
l1,...,l6=1

6∑
i=1
i �=2

∑
s∈{3,5,6}

s �=i

6∑
j=1
j �=s

|ρ2iρsj ρ12ρ13ρ45ρ46|

and

J2 := 1

n3

n∑
l1,...,l6=1

( ∑
i �=s �=j

i,s,j∈{3,5,6}

|ρ2iρsj ρ12ρ13ρ45ρ46|

+
∑

(i,s,j,t,h)∈D3

|ρ2iρsj ρthρ12ρ13ρ45ρ46|
)

,

where the set D3 has been defined in (4.21) and we recall that ρij = ρ(li − lj ). Then,

J1 ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣)2

(A.5)

and

J2 ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣+ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)4

. (A.6)

Proof. Step 1: We show first the inequality (A.5). We make change of variables l1 − l2 = k1, l1 − l3 = k2, l4 − l5 = k3,
l4 − l6 = k4. We first consider the term ρ2i that has three possibilities: ρ(k1), ρ(k1 − k2), or a new factor ρ(k5) where
k5 = l2 − li is linearly independent of kt , t = 1, . . . ,4. If ρ2i is one of the first two cases, ρsj have three possibilities: ρ(ki)

for i = 2,3,4; ρ(k1 − k2) or ρ(k3 − k4); a new factor ρ(k5) where k5 = lj − ls is independent of kt , 1 ≤ t ≤ 4. If ρ2i is
in the third case, i.e. a new factor, then ρsj have several possibilities: ρ(ki) for i = 2,3,4; ρ(k · v) where k · v is a linear
combination of two, three or four or five kt ’s, 1 ≤ t ≤ 5. Through this analysis, by taking advantage of the symmetry, we
obtain

J1 ≤ C

n2

9∑
i=1

∑
|kj |≤n,1≤j≤5

|J1i |,
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where

J11 = ρ(k1)
2ρ(k2)

2ρ(k3)ρ(k4),

J12 = ρ(k1)
2ρ(k2)ρ(k1 − k2)ρ(k3)ρ(k4),

J13 = ρ(k1)
2ρ(k2)ρ(k3)ρ(k4)ρ(k3 − k4),

J14 = ρ(k1)
2ρ(k2)ρ(k3)ρ(k4)ρ(k5),

J15 = ρ(k1)ρ(k2)ρ(k1 − k2)ρ(k3)ρ(k4)ρ(k3 − k4),

J16 = ρ(k1)ρ(k2)ρ(k1 − k2)ρ(k3)ρ(k4)ρ(k5),

J17 = ρ(k1)ρ(k2)ρ(k3)ρ(k4)ρ(k5)ρ(k1 − k5 − k2),

J18 = ρ(k1)ρ(k2)ρ(k3)ρ(k4)ρ(k5)ρ(k1 − k2 + k3 − k4),

J19 = ρ(k1)ρ(k2)ρ(k3)ρ(k4)ρ(k5)ρ(k1 − k2 + k3 − k4 + k5).

We claim that for i = 1, . . . ,9, the following estimate holds true

1

n2

∑
|kj |≤n,1≤j≤5

|J1i | ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣)2

. (A.7)

The estimate (A.7) holds clearly for i = 1 and i = 4 due to condition (1.2) with d = 2. By the Cauchy–Schwartz inequality
we have∑

|k1|,|k2|≤n

ρ(k1)
2
∣∣ρ(k2)ρ(k1 − k2)

∣∣< ∞

and (A.7) is true for i = 2. For i = 3,5,6, the estimate (A.7) follows from (A.18) and (A.19) with M = 2 and for
i = 7,8,9 we use these inequalities with M = 3,4,5, respectively.

Step 2: We proceed to prove the inequality (A.6). Note that for the first summand in J2, the product ρ2iρsj can be only
one of the following terms: ρ23ρ56, ρ26ρ35, or ρ25ρ36. In the first case, we obtain the term J15, for which we have, by
(A.18) with M = 2,

1

n2

∑
|kj |≤n,1≤j≤5

|J15| ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)4

.

In the second and third case, we obtain the term J19, for which we have, by (A.18) with M = 5,

1

n2

∑
|kj |≤n,1≤j≤5

|J19| ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 65)5

. (A.8)

By Hölder’s inequality,(∑
|k|≤n

∣∣ρ(k)
∣∣ 65)5

≤ n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)4

, (A.9)

and we obtain the desired bound.
Let us now consider the second summand in the expression of J2. This summand will consists of terms of the form

J1iρth for i = 1, . . . ,4,6, . . . ,9, where ρth can be written as a linear combination of k1, . . . , k5. For i = 6, . . . ,8, we
estimate the factor |ρth| by one and apply the estimate (A.18) with M = 2,3,4 to obtain

1

n2

∑
|kj |≤n,1≤j≤5

|J16| ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3(∑

|k|≤n

∣∣ρ(k)
∣∣ 32)2

, (A.10)

1

n2

∑
|kj |≤n,1≤j≤5

|J17| ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)2(∑

|k|≤n

∣∣ρ(k)
∣∣ 43)3

, (A.11)
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and

1

n2

∑
|kj |≤n,1≤j≤5

|J18| ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)(∑

|k|≤n

∣∣ρ(k)
∣∣ 54)4

. (A.12)

Then, from (A.10) and (A.24), we get

1

n2

∑
|kj |≤n,1≤j≤5

|J16| ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)4

.

From (A.11), (A.23) with M = 3 and (A.24),

1

n2

∑
|kj |≤n,1≤j≤5

|J17| ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)4

.

Finally, from (A.12), (A.23) with M = 4 and the above inequality of J17,

1

n2

∑
|kj |≤n,1≤j≤5

|J18| ≤ C

n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)4

.

The term J19 can be handled applying (A.8) and (A.9).
For J11, J12, t can be just chosen from the set {5,6} and the possible values of the factor ρth (after a change of variable)

can be ρ(k3), ρ(k4), ρ(k3−k4) or ρ(k5) where k5 is linearly independent of k1, . . . , k4. Then we first sum up the variables
k1 and k2 and this part produces a constant. The sum with respect to k3, k4, k5 is as follows.∑

|kj |≤n

∣∣ρ(k3)
2ρ(k4)

∣∣≤ C
∑
|k|≤n

∣∣ρ(k)
∣∣,

∑
|kj |≤n

∣∣ρ(k3)ρ(k4)ρ(k5)
∣∣= (∑

|k|≤n

∣∣ρ(k)
∣∣)3

≤ n
∑
|k|≤n

∣∣ρ(k)
∣∣,

and ∑
|kj |≤n

∣∣ρ(k3)ρ(k4)ρ(k3 − k4)
∣∣≤ C

∑
|k|≤n

∣∣ρ(k)
∣∣,

where we have used (A.18) and (A.19) with M = 2. Therefore,

1

n2

5∑
j=1

∑
|kj |≤n

|J1iρth| ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣, i = 1,2.

For J13, t = 3 and possible values of ρth can be ρ(k2), ρ(k2 − k1) or ρ(k5) where k5 is linearly independent of k1, . . . , k4.
The first two cases have been considered above in the discussion of the terms J11ρth and J12ρth. For the third case,
observe that

1

n2

5∑
j=1

∑
|kj |≤n

∣∣ρ(k1)
2ρ(k2)ρ(k3)ρ(k4)ρ(k3 − k4)ρ(k5)

∣∣
≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣,

where we have used (A.18) and (A.19) with M = 2. Thus,

1

n2

5∑
j=1

∑
|kj |≤n

|J13ρth| ≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣.
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Finally, for J14, the term ρth could be ρ(ki), i = 2, . . . ,4 or ρ(�) where � is a linear combination of ki ’s which at least
involves two different terms kh1 and kh2 where h1, h2 ∈ {2,3,4,5}. The first case has been considered above in the
discussion of the terms J1iρth, i = 1,2,3. For the second case, we apply inequalities (A.18) and (A.19) with M = 2,3,4
and we get

1

n2

5∑
j=1

∑
|kj |≤n

∣∣ρ(k1)
2ρ(k2)ρ(k3)ρ(k4)ρ(k5)ρ(�)

∣∣
≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

≤ C

n

∑
|k|≤n

∣∣ρ(k)
∣∣.

Therefore, 1
n2

∑5
j=1

∑
|kj |≤n |J14ρth| ≤ C

n

∑
|k|≤n |ρ(k)| and this finishes the proof. �

Lemma A.4. Assume condition (1.2) with d = 2. Define

L1 := n−4
n∑

l1,...,l8=1

∑
(i,s,j,t,h)∈D4

|ρ12ρ13ρ14ρ56ρ57ρ58ρ2iρsj ρth|,

where the set D4 has been defined in (4.25). Then

L1 ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

. (A.13)

Proof. We make the change of variables l1 − l2 = k1, l1 − l3 = k2, l1 − l4 = k3, l5 − l6 = k4, l5 − l7 = k5, l5 − l8 = k6.
The factors ρ2i , ρsj and ρth can be one of the two forms:

(i) ραβ , where α,β ∈ {1,2,3,4} or α,β ∈ {5,6,7,8}.
(ii) ραβ , where α ∈ {1,2,3,4} and β ∈ {5,6,7,8} or β ∈ {1,2,3,4} and α ∈ {5,6,7,8}.
For factors of the form (i), we have ραβ = ρ(k · v), where k is one of the vectors (k1, k2, k3) or (k4, k5, k6) and v is a
vector in R

3 whose components are 0, 1 or −1. For the first factor of the form (ii), we write ραβ = ρ(k7), where k7 is a
new variable independent of the ki ’s, 1 ≤ i ≤ 6. If there are more than one factor of the form (ii), then these extra factor(s)
can be written as ρ(k · v), where k= (k1, k2, k3, k4, k5, k6, k7) and v is a vector in R

7 whose components are 0, 1 or −1.
Then we decompose L1 as the sum of several terms L1j , according to the following cases:
Case 1: There are three factors that have power 2. We denote the corresponding term by L11. For this term we have

L11 = 1

n2

∑
|ki |≤n

i=1,...,6

ρ(k1)
2ρ(k2)

2ρ(k3)
2
∣∣ρ(k4)ρ(k5)ρ(k6)

∣∣≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

.

Case 2: Two factors have power 2. Then we have the following possibilities by taking into account of the symmetry.

L12 := 1

n3

∑
|ki |≤n

i=1,...,7

∣∣ρ2(k1)ρ
2(k2)ρ(k3)ρ(k4)ρ(k5)ρ(k6)ρ(k7)

∣∣
and

L13 := 1

n2

∑
|ki |≤n

i=1,...,6

∣∣ρ2(k1)ρ
2(k2)ρ(k3)ρ(k4)ρ(k5)ρ(k6)ρ(k · v)∣∣,

where k= (k1, k2, k3, k4, k5, k6) and v is a vector in R
6 whose components are 0, 1 or −1. Clearly,

L12 ≤ C

n3

(∑
|k|≤n

∣∣ρ(k)
∣∣)5

≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

.
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For L13, k · v involves at least two factors kj , kj ′ but k · v cannot be a linear combination of only k1 and k2. Applying
inequality (A.21) with M = 5, yields

L13 ≤ n−2
(∑

|k|≤n

∣∣ρ(k)
∣∣)3

.

Case 3: Only one factor has power 2. Then we have the following two possibilities, taking into account the symmetry.
The first one is

L14 = 1

n3

∑
|ki |≤n

i=1,...,7

∣∣ρ2(k1)ρ(k2)ρ(k3)ρ(k4)ρ(k5)ρ(k6)ρ(k7)ρ(k · v)∣∣,
where k = (k1, k2, k3, k4, k5, k6, k7) and v is a vector in R

7 whose components are 0, 1 or −1 and it has at least two
nonzero components. By (A.21) with M = 7, we can write

L14 ≤ C

n3

(∑
|k|≤n

∣∣ρ(k)
∣∣)5

≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

.

The second possibility is

L15 := 1

n2

∑
|ki |≤n

i=1,...,6

∣∣ρ2(k1)ρ(k2)ρ(k3)ρ(k4)ρ(k5)ρ(k6)ρ(k · v)ρ(k ·w)
∣∣,

where k= (k1, k2, k3, k4, k5, k6) and v, w are vectors in R6 in such a way that k ·v and k ·w are linear combinations of k1,
k2, k3 or k4, k5, k6 with exactly two nonzero components equal to 1 and −1 and satisfying some additional restrictions,
due to the definition of the set D4. There are several combinations:

(i) k · v and k ·w are chosen differently from {k1 − k2, k2 − k3, k1 − k3}. In this case, by Proposition 2.4 with p1 = 1,
pi = 1

2 for 2≤ i ≤ 5, we have∑
|ki |≤n,1≤i≤3

∣∣ρ2(k1)ρ(k2)ρ(k3)ρ(k · v)ρ(k ·w)
∣∣≤ C,

and we obtain

L15 ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

. (A.14)

(ii) k · v and k ·w are two different linear combinations chosen among {k4 − k5, k4 − k6, k5 − k6}. Then, the inequality
(A.22) with M = 3 yields∑
|ki |≤n,i=4,5,6

∣∣ρ(k4)ρ(k5)ρ(k6)ρ(k · v)ρ(k ·w)
∣∣≤ ∑

|k|≤n

∣∣ρ(k)
∣∣,

which implies (A.14).
(iii) k ·v is chosen from {k1−k2, k2−k3, k1−k3}, and k ·w is chosen from {k4−k5, k4−k6, k5−k6}. Take k ·v= k1−k2

for example, then (A.14) follows from∑
|k1|≤n,|k2|≤n

∣∣ρ2(k1)ρ(k2)ρ(k1 − k2)
∣∣≤ C

and (A.20) with M = 3. Similar arguments apply if k · v= k1 − k3. If k · v= k2 − k3, we use (A.20) and (A.21) with
M = 3.
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Case 4: All factors have power 1, i ∈ {3,4}, and ρsj = ρ(k · v), ρth = ρ(k ·w) where k · v is a linear combination of
k1, k2, k3 and k · w is a linear combination of k4, k5, k6, or vice versa. We denote the corresponding term by L16. Then
the estimate

L16 ≤ n−2
(∑

|k|≤n

∣∣ρ(k)
∣∣)3

follows from (A.22) with M = 3 and (A.20) with M = 3.
Case 5: All factors have power 1, and there is one of the differences li − l2, lj − ls or lh − lt linearly independent of

k1, . . . , k6. We denote this difference by k7. The other two factors are of the form ρ(k · v) and ρ(k ·w), where k · v and
k ·w are linear combinations of k1, . . . , k6, k7. In this case, the desired estimate follows from the inequality (A.22), with
M = 7. In fact, if we denote the corresponding term by L17, we obtain

L17 ≤ C

n3

(∑
|k|≤n

∣∣ρ(k)
∣∣)5

≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

.

This finishes the lemma. �

Lemma A.5. Define

L2 := n−4
n∑

l1,...,l8=1

∑
i �=s �=j

i,s,j∈{4,7,8}

|ρ12ρ13ρ24ρ56ρ57ρ68ρ3iρsj |

and

L3 := n−4
n∑

l1,...,l8=1

∑
(i,s,j,t,h)∈D5

|ρ12ρ13ρ24ρ56ρ57ρ68ρ3iρsj ρth|,

where the set D5 has been defined in (4.26). Then

L2 ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 43)6

, (A.15)

and

L3 ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

. (A.16)

Proof. Let us first show (A.15). We make the change of variables l1 − l2 = k1, l1 − l3 = k2, l2 − l4 = k3, l5 − l6 = k4,
l5− l7 = k5, l6− l8 = k6. By symmetry, it suffices to analyze the cases i = 4 and i = 7. If i = 4, then ρ34 = ρ(k1−k2+k3)

and s = 8, j = 7 or s = 7, j = 8, which gives ρsj = ρ(k4 − k5 + k6). In this case, we obtain a term of the form

L21 := n−2
∑

|ki |≤n,
i=1,...,6

∣∣ρ(k1)ρ(k2)ρ(k3)ρ(k1 − k2 + k3)ρ(k4)ρ(k5)ρ(k6)ρ(k4 − k5 + k6)
∣∣.

Applying inequality (A.18) with M = 3 yields

L21 ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 43)6

.

In the case i = 7, we set ρ37 = ρ(k7) and have two possibilities for sj : 48 and 84, which produce the following term

L23 := n−3
∑

|ki |≤n
i=1,...,7

∣∣ρ(k1)ρ(k2)ρ(k3)ρ(k4)ρ(k5)ρ(k6)ρ(k7)

× ρ(k2 + k7 − k3 − k1 − k5 + k4 + k6)
∣∣.
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Applying the inequality (A.18) with M = 7 and Hölder’s inequality, we obtain

L23 ≤ C

n3

(∑
|k|≤n

∣∣ρ(k)
∣∣ 87)7

≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣ 43)6

.

This finishes the proof of (A.15). The proof of (A.16) is analogous to that of (A.13). Namely, we can make the change
of variables l1 − l2 = k1, l1 − l3 = k2, l2 − l4 = k3, l5 − l6 = k4, l5 − l7 = k5, l6 − l8 = k6, and follow the arguments of
(A.13). A subtle difference might be the verification of (A.14). That is, the estimation of

L15 := 1

n2

∑
|ki |≤n

i=1,...,6

∣∣ρ(k1)ρ
2(k2)ρ(k3)ρ(k4)ρ(k5)ρ(k6)ρ(k · v)ρ(k ·w)

∣∣,
where k · v, k ·w have the following two cases:

(i) They are linear combinations of k4, k5, k6.
(ii) k · v is a linear combination of k1, k2, k3 (k1 − k2 with respect to i = 2 or k2 − k1 − k3 with respect to i = 4), and

k ·w is a linear combination of k4, k5, k6.

In the case (i), we apply the inequality (A.22) with M = 3 to obtain

L15 ≤ C

n2

(∑
|k|≤n

∣∣ρ(k)
∣∣)3

. (A.17)

In the case (ii), we apply (A.21) with M = 3 and (A.20) with M = 3 to obtain the desired the inequality (A.17). �

The next lemma contains several inequalities that are used along the paper.

Lemma A.6. Fix an integer M ≥ 2. We have

∑
|kj |≤n

1≤j≤M

∣∣ρ(k · v)∣∣ M∏
j=1

∣∣ρ(kj )
∣∣≤ C

(∑
|k|≤n

∣∣ρ(k)
∣∣1+ 1

M

)M

, (A.18)

where k= (k1, . . . , kM) and v ∈R
M is a fixed vector whose components are 1 or −1. Furthermore, if

∑
k∈Z ρ(k)2 < ∞,

then (∑
|k|≤n

∣∣ρ(k)
∣∣1+ 1

M

)M

≤ C

(∑
|k|≤n

∣∣ρ(k)
∣∣)M−1

(A.19)

and if v ∈ R
M is a nonzero vector whose components are 0, 1 or −1,

∑
|kj |≤n

1≤j≤M

∣∣ρ(k · v)∣∣ M∏
j=1

∣∣ρ(kj )
∣∣≤ C

(∑
|k|≤n

∣∣ρ(k)
∣∣)M−1

. (A.20)

Proof. Applying the Brascamp–Lieb inequality (2.12), we have

∑
|kj |≤n

1≤j≤M

M∏
j=1

∣∣ρ(kj )
∣∣∣∣ρ(k · v)∣∣≤ C

M+1∏
i=1

(∑
|k|≤n

∣∣ρ(k)
∣∣ 1

pi

)pi

,

where pi ≤ 1 and
∑M+1

i=1 pi = M . Choosing pi = M/(M + 1) for i = 1, . . . ,M + 1, we get inequality (A.18). To show
(A.19), we make the decomposition |ρ(k)|1+ 1

M = |ρ(k)|1− 1
M |ρ(k)| 2

M and apply Hölder’s inequality with exponents p =
M

M−1 and q = M . Finally, to show (A.20), we decompose the sum into the product of the sum with respect to the ki ’s that
appear in k · v and the sum of the remaining terms. �
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Lemma A.7. Fix an integer M ≥ 3 and assume
∑

k∈Z ρ(k)2 < ∞. We have

∑
|kj |≤n

1≤j≤M

ρ(k1)
2
∣∣ρ(k · v)∣∣ M∏

j=2

∣∣ρ(kj )
∣∣≤ C

(∑
|k|≤n

∣∣ρ(k)
∣∣)M−2

, (A.21)

where k = (k1, . . . , kM) and v ∈ R
M is a fixed vector whose components are 0, 1 or −1 and it has at least two nonzero

components.

Proof. It suffices to assume that all the components of v are nonzero. In this case, we apply the Brascamp–Lieb inequality
(2.12) with exponents p1 = 1 and p2 = · · · = pM+1 = M−1

M
and inequality (A.19) with M replaced by M − 1. �

Lemma A.8. Fix an integer M ≥ 3 and assume
∑

k∈Z ρ(k)2 < ∞. We have

∑
|kj |≤n

1≤j≤M

∣∣ρ(k · v)ρ(k ·w)
∣∣ M∏
j=1

∣∣ρ(kj )
∣∣≤ C

(∑
|k|≤n

∣∣ρ(k)
∣∣)M−2

, (A.22)

where k= (k1, . . . , kM) and v,w ∈ R
M are linearly independent vectors, whose components are 0, 1 or −1 and they have

at least two nonzero components.

Proof. Suppose first that ρ(k · v)ρ(k · w) involves only three ki ’s, for instance, k1, k2, k3. In this case, applying the
Brascamp–Lieb inequality (2.12) with exponents pi = 3/5, 1 ≤ i ≤ 5, yields,

∑
|ki |≤n
1≤i≤3

∣∣ρ(k1)ρ(k2)ρ(k3)ρ(k · v)ρ(k ·w)
∣∣≤ (∑

|k|≤n

∣∣ρ(k)
∣∣ 53)3

.

Notice that assumption (ii) in Proposition 2.4 is satisfied because three of the vectors (1,0,0), (0,1,0), (0,0,1), v, w
may span a subspace of dimension 2, and we have 3 × 3/5 = 9/5 ≤ 2. Then, making the decomposition |ρ(k)| 53 =
|ρ(k)| 13 |ρ(k)| 43 and using Hölder’s inequality with exponents p = 3 and q = 3

2 , yields(∑
|k|≤n

∣∣ρ(k)
∣∣ 53)3

≤ C
∑
|k|≤n

∣∣ρ(k)
∣∣,

which gives the desired estimate.
If ρ(k · v)ρ(k ·w) involves four ki ’s, for instance, k1, k2, k3, k4, we apply the Brascamp–Lieb inequality (2.12) with

exponents pi = 2/3, 1 ≤ i ≤ 6, and we obtain

∑
|ki |≤n
1≤i≤3

∣∣ρ(k1)ρ(k2)ρ(k3)ρ(k4)ρ(k · v)ρ(k ·w)
∣∣≤ (∑

|k|≤n

∣∣ρ(k)
∣∣ 32)4

.

Then, using (A.19) with M = 2, yields(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)4

≤ C

(∑
|k|≤n

∣∣ρ(k)
∣∣)2

,

which gives the desired estimate. Finally, if ρ(k · v)ρ(k · w) involves more than four ki ’s, the result follows again from
the Brascamp–Lieb inequality (2.12), where we choose pi = 2/3 for the factors ρ(k · v), ρ(k ·w) and for the four factors
ρ(ki) such that ki appears in the linear combination with less factors, and we choose pi = 1 for all the remaining factors
ρ(ki) appearing in the linear combinations ρ(k · v) or ρ(k ·w). �

The last lemma summarizes some inequalities derived from the application of Hölder’s inequality.
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Lemma A.9. For any M ≥ 2, we have(∑
|k|≤n

∣∣ρ(k)
∣∣1+ 1

M

)M

≤
(∑

|k|≤n

∣∣ρ(k)
∣∣)(∑

|k|≤n

∣∣ρ(k)
∣∣ M

M−1

)M−1

(A.23)

and (∑
|k|≤n

∣∣ρ(k)
∣∣)3

≤ n

(∑
|k|≤n

∣∣ρ(k)
∣∣ 32)2

. (A.24)

Furthermore, if
∑

|k|≤n |ρ(k)|2 < ∞, then

∑
|k|≤n

∣∣ρ(k)
∣∣ 32 ≤ C

(∑
|k|≤n

∣∣ρ(k)
∣∣ 43) 3

4

. (A.25)

Proof. To show (A.23) we make use of the decomposition |ρ(k)|1+ 1
M = |ρ(k)||ρ(k)| 1

M and apply Hölder’s inequality

with exponents p = M
M−1 and q = M . For (A.25) we use the decomposition |ρ(k)| 32 = |ρ(k)||ρ(k)| 12 and apply Hölder’s

inequality with exponents p = 4
3 and q = 4. Finally, for (A.24) we use again Hölder’s inequality. �

The following lemma has been used in the proof of Theorem 4.7.

Lemma A.10. The function

�(a) :=
(∑

|k|≤n

∣∣ρ(k)
∣∣d− a

2

)2 ∑
|k|≤n

∣∣ρ(k)
∣∣a,

defined on the interval [2, 2d
3 ] is nonincreasing.

Proof. Without any loss of generality, we can assume that ρ(k) > 0 for all |k| ≤ n. It suffices to check that the derivative
of � is nonpositive. We have

� ′(a) = −
∑
|k|≤n

∣∣ρ(k)
∣∣d− a

2

(∑
|k|≤n

∣∣ρ(k)
∣∣d− a

2 log
(∣∣ρ(k)

∣∣)) ∑
|k|≤n

∣∣ρ(k)
∣∣a

+
(∑

|k|≤n

∣∣ρ(k)
∣∣d− a

2

)2 ∑
|k|≤n

∣∣ρ(k)
∣∣a log(∣∣ρ(k)

∣∣)
=
(∑

|k|≤n

∣∣ρ(k)
∣∣d− a

2

)

×
∑

|k1|,|k2|≤n

(∣∣ρ(k1)
∣∣d− a

2
∣∣ρ(k2)

∣∣a − ∣∣ρ(k2)
∣∣d− a

2
∣∣ρ(k1)

∣∣a) log(∣∣ρ(k2)
∣∣)

=
(∑

|k|≤n

∣∣ρ(k)
∣∣d− a

2

)

×
∑

|k1|,|k2|≤n

∣∣ρ(k1)
∣∣a∣∣ρ(k2)

∣∣a[∣∣ρ(k1)
∣∣d− 3a

2 − ∣∣ρ(k2)
∣∣d− 3a

2
]
log
(∣∣ρ(k2)

∣∣).
By symmetry, we obtain

� ′(a) = 1

2

(∑
|k|≤n

∣∣ρ(k)
∣∣d− a

2

) ∑
|k1|,|k2|≤n

∣∣ρ(k1)
∣∣a∣∣ρ(k2)

∣∣a[∣∣ρ(k1)
∣∣d− 3a

2 − ∣∣ρ(k2)
∣∣d− 3a

2
]

× (
log
(∣∣ρ(k2)

∣∣)− log
(∣∣ρ(k1)

∣∣))≤ 0.

The proof of the lemma is complete. �
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