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Abstract. This paper provides estimates for the convergence rate of the total variation distance in the framework of the Breuer—Major
theorem, assuming some smoothness properties of the underlying function. The results are proved by applying new bounds for the total
variation distance between a random variable expressed as a divergence and a standard Gaussian random variable, which are derived by
a combination of techniques of Malliavin calculus and Stein’s method. The representation of a functional of a Gaussian sequence as a
divergence is established by introducing a shift operator on the expansion in Hermite polynomials. Some applications to the asymptotic
behavior of power variations of the fractional Brownian motions and to the estimation of the Hurst parameter using power variations
are presented.

Résumé. Cet article fournit des estimations pour la vitesse de convergence de la variation totale dans le cadre du théoréme de Breuer—
Major, en supposant quelques propriétés de régularité de la fonction sous-jacente. Les résultats se démontrent en appliquant des
nouvelles bornes pour la distance en variation totale entre une variable aléatoire qui s’exprime comme une divergence et une variable
aléatoire gaussienne, qu’on obtient en combinant des techniques du calcul de Malliavin et la méthode de Stein. On établit la représenta-
tion d’une fonctionnelle d’une suite gaussienne comme une divergence en introduisant un opérateur de décalage sur le développement
en polyndmes d’Hermite. Quelques applications au comportement asymptotique des variations puissance pour le mouvement Brownien
fractionnaire et a I’estimation du parametre de Hurst sont aussi présentées.
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1. Introduction

Consider a centered stationary Gaussian family of random variables X = {X,,, n € Z} with unit variance. For all k € Z, set
p(k) =E(X0Xz), so p(0) = 1 and p(k) = p(—k). We say that a function g € L2(R, y), where y is the standard Gaussian
measure, has Hermite rank d > 1 if

gx) = cwHn(x), (1.1)
m=d

where ¢4 # 0 and H,, is the mth Hermite polynomial. We will make use of the following condition that relates the
covariance function p to the Hermite rank of a function g:

S leh| < oo (1.2)

JEZ

Let us recall the celebrated Breuer—Major theorem for functionals of the stationary Gaussian sequence X (see [7]).
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Theorem 1.1 (Breuer-Major theorem). Consider a centered stationary Gaussian family of random variables X =
{X,,, n € Z} with unit variance and covariance function p. Let g € L*>(R, y) be a function with Hermite rank d > 1 and
expansion (1.1). Suppose that (1.2) holds true. Set

o’=Y mlcy > p(k)". (1.3)

m=d keZ

Then the sequence
1 n
Yy ;:E;g(xj) (1.4)

converges in law to the normal distribution N (0, o%).

The purpose of this paper is to show that, under suitable regularity assumptions on the function g, the sequence Y, /oy,
where ovnz = E(Ynz), converges in the total variation distance to the standard normal law N (0, 1), and we can estimate
the rate of convergence in terms of the covariance function p. To show these results we will apply a combination of
Stein’s method for normal approximations and techniques of Malliavin calculus. The combination of Stein’s method with
Malliavin calculus to study normal approximations was first developed by Nourdin and Peccati (see the pioneering work
[12] and the monograph [13]). For random variables on a fixed Wiener chaos, these techniques provide a quantitative
version of the Fourth Moment Theorem proved by Nualart and Peccati in [19]. A basic result in this direction is the
following proposition. Along the paper Z will denote a N (0, 1) random variable.

Proposition 1.2. Let F be a random variable in the qth (q > 2) Wiener chaos with unit variance. Then

drv(F, Z) < 2\/Var<$ ||DF||%> < 2\/%(153@4) -3), (1.5)

where D denotes the derivative in the sense of Malliavin calculus and drv is the total variation distance.

In the context of the Breuer—Major theorem, this result can be applied to obtain a rate of convergence for the total
variation distance dtv (Y, /oy, Z), provided g = H; and condition (1.2) holds (see [12]). Later on, the rate of convergence
was improved in [4] using an approach based on the spectral density.

In the reference [14], with an intensive application of Stein’s method combined with Malliavin calculus, Nourdin and
Peccati improved the estimate (1.5), obtaining the following matching upper and lower bounds for the total variation
distance.

Proposition 1.3. Let F be a random variable in the qth (g > 2) Wiener chaos with unit variance. Then, there exist
constants C1, Cy > 0, depending on q, such that

C1 max{|E(F°)

JE(F*) =3} <drv(F, 2) < C;max{[E(F?)

LE(F*) -3}

In the paper [5], it is proved that that |[E(F?)| < C/E(F#4) — 3, which trivially indicates that the bound in Proposi-
tion 1.3 is better than (1.5). Furthermore, using an analytic characterization of cumulants and Edgeworth-type expansions,
the authors of [5] proved that, for a normalized sequence F;,, which belongs to the gth Wiener chaos and converges to Z
in distribution as n — o0, the rate of convergence of the total variation distance is characterized by the third and fourth
cumulants.

The literature on the rate of convergence for normal approximations is focused on random variables on a fixed Wiener
chaos. The goal of this paper is to provide an answer to the following question:

Question. To what extent Propositions 1.2 and 1.3 can be generalized to random variables that are not in a fixed chaos
and how this approach is applied in the context of the Breuer Major theorem?

We cannot expect that, in this more general framework, the convergence to a normal distribution is characterized by the
third and fourth cumulants, and new functionals will appear. In the first part of the paper, we consider random variables
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that can be written as divergences, that is F = §(u), where § is the adjoint of the derivative operator in the Malliavin
calculus. We will use Stein’s method and Malliavin calculus to provide three different bounds (see Propositions 3.1,
3.2 and 3.3) for drv(F, Z). If F is in some fixed chaos, the bound in Proposition 3.1 should be the same as that of
Proposition 1.2 and the bound in Proposition 3.2 should coincide with that of Proposition 1.3. Actually, the proof of
Proposition 3.2 has been inspired by the approach used to derive the upper bound in Proposition 1.3.

The second part of the paper is devoted to derive upper bounds for the total variation distance in the context of the
Breuer—Major theorem, applying the estimates provided by Propositions 3.1, 3.2 and 3.3. To do this, we need to represent
g(X ) as a divergence §(u). A basic ingredient for this representation is the shift operator 77 (see formula (2.6) below)
defined using the expansion of g into a series of Hermite polynomials. It turns out that the representation obtained
through T; coincides with the classical representation F = §(—DL~!F), introduced in [18], that plays a fundamental
role in normal approximations by Stein’s method and Malliavin calculus. The representation of g(X ;) as a divergence (or
an iterated divergence) allows us to apply the integration by parts in the context of Malliavin calculus (or duality between
the derivative and divergence operators), which leads to estimates of the expectation of products of random variables of
the form g® (x ;). For this approach to work, we are going to assume that the function g belongs to the Sobolev space
%P (R, ), for some k and p, of functions that have k weak derivatives with moments of order p with respect to y .

In this way we have been able to obtain the following results in the framework of Theorem 1.1, for functions of Hermite
rank one or two.

(i) For functions g of Hermite rank d = 1, assuming g € D2'4(R, y), we have (see Theorem 4.2 below)

1

drv(Yy/on, Z) <Cn™ 2.

(ii) For functions g of Hermite rank d = 2, assuming g € DO8(R, y), we have (see Theorem 4.3 below)

2
dTv<Yn/an,Z)SCni(Z |p(k>|3) : (1.6)

|k|<n

It is worth noticing that the upper bound (1.6) coincides with the optimal rate for the Hermite polynomial g(x) = x> —
1 obtained in [5]. Furthermore, in Theorem 4.3, rates worse than (1.6) are established under less smoothness on the
function g.

For functions g of Hermite rank d > 3 and assuming g € D3~24(R, y), we have established in Theorem 4.7 an upper
bound for the total variation distance drv (Y, /oy, Z) based on Proposition 3.1, which is a slight modification of the rate
derived for the Hermite polynomial H;. Due to the complexity of the computations, the application of Proposition 3.2 in
the case d > 3 has not been considered in this paper.

A difficult open problem is the derivation of lower bounds for the total variation distance in the case of a general
function g. The lower bound given in Proposition 1.3 works for random variables in a fixed Wiener chaos and the approach
used to derive this bound does apply to general random variables. For Hermite polynomials, a lower bound is derived in
[5, page 491] by applying Stein’s equation and Edgeworth-type expansions. The extension of this methodology to the
case of general functions is a challenging problem not considered here.

The paper is organized as follows. Section 2 contains some preliminaries on Malliavin calculus and Stein’s method,
including the definition and properties of the shift operator 77. In Section 3, we derive the three basic estimates for the
total variation distance between a divergence §(«#) and a N (0, 1) random variable. Section 4 contains the main results of
the paper. First we thoroughly analyze the cases d = 1 and d = 2 and establish bounds for the total variation distance in
the framework of the Breuer—Major theorem and later we consider the case d > 3, applying Proposition 3.1.

As an application, in Section 5 we give the convergence rates for the fractional Gaussian case. We also discuss some
applications to the asymptotic behavior of power variations of the fractional Brownian motions and to the consistency of
the estimator of the Hurst parameter using power variations. The Appendix contains some technical lemmas used in the
proof of the main results and some inequalities, obtained as an application of the rank-one Brascamp—Lieb inequality and
Holder’s inequality, which play an important role in the proofs.

2. Preliminaries

In this section, we briefly recall some notions of Malliavin calculus, Stein’s method and the Brascamp-Lieb inequality.
The shift operator 77 mentioned above is also introduced here.
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2.1. Gaussian analysis

Let $ be a real separable Hilbert space. For any integer m > 1, we use 99" and $H©™ to denote the mth tensor product
and the mth symmetric tensor product of ), respectively. Let X = {X(¢) : ¢ € H} denote an isonormal Gaussian process
over the Hilbert space §). That means, X is a centered Gaussian family of random variables, defined on some probability
space (2, F, P), with covariance

E(X@XW)) = (#, V), ¢, ¥ €.

We assume that F is generated by X.
We denote by H,, the closed linear subspace of L?(£2) generated by the random variables {H,, (X(¢)) : ¢ € 9, ||¢|| §=
1}, where H,, is the mth Hermite polynomial defined by

m X2
e 2, m>1,

H () = (—1)me’s &

dx™

and Hy(x) = 1. The space H,, is called the Wiener chaos of order m. The mth multiple integral of ¢&" € HO™ is defined
by the identity 1,,(¢p®™) = H,,(X(¢)) for any ¢ € §. The map I,, provides a linear isometry between H©" (equipped
with the norm ~/m!| - || son) and H,, (equipped with L*(£2) norm). By convention, Ho =R and Ip(x) = x.

The space L?(R2) can be decomposed into the infinite orthogonal sum of the spaces H,,. Namely, for any square
integrable random variable F € L?(£2), we have the following expansion,

F=Y"In(fu),

m=0
where fo =E(F), and f,, € H®™ are uniquely determined by F. This is known as the Wiener chaos expansion. If we use
Jm to denote the orthogonal projection of F' onto the mth Wiener chaos H,,, we obtain I, ( f;,) = J,,, (F) for every m > 0.

2.2. Malliavin calculus

In this subsection we present some background of Malliavin calculus with respect to an isonormal Gaussian process X.
We refer the reader to [13,16] for a detailed account on this topic. For a smooth and cylindrical random variable F =
FX(p1), ..., X(¢n)), with g; € H and f € C,g’o (R™) (f and its partial derivatives are bounded), we define its Malliavin
derivative as the $)-valued random variable given by

n a
DF = 21: a'—)Z(X(sol), o X)) i

By iteration, we can also define the kth derivative D¥ F which is an element in the space LZ(Q; HBk ). The Sobolev space

D*-? is defined as the closure of the space of smooth and cylindrical random variables with respect to the norm || - [|x
defined by

k

IFI;, =E(FI”)+ Y E(|D'F|oe),
i=1

for any natural number k and any real number p > 1. We define the divergence operator § as the adjoint of the derivative
operator D. Namely, an element u € LZ(Q; $) belongs to the domain of §, denoted by Dom 8, if there is a constant ¢, > 0
depending on u and satisfying

|[E((DF,u)5)| < cul Fll 20
for any F € D2, If u € Dom§, the random variable & () is defined by the duality relationship
E(Fs(u)) =E((DF,u)g), 2.1

which is valid for all F € D2, In a similar way, for each integer k > 2, we define the iterated divergence operator 8
through the duality relationship

E(F8" () =B((D*F, u)ger), 2.2)

valid for any F € D%2, where u € Dom ¥ C L?(Q2; H%K).
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The Ornstein—Uhlenbeck semigroup (P;);>0 is the semigroup of operators on L%(Q) defined by
o0
PF=Y e Lu(fu).
m=0

if F admits the Wiener chaos expansion F = Z:f:o Ly (f). Denote by L = %| +=0P; the infinitesimal generator of
(Py)t>0 in LZ(SZ). Then we have LF = — anozl mJy (F) forany F € Dom L = D22, We define the pseudo-inverse of L

as L7'F=— ) %Jm F. We recall the following formula for any centered and square integrable random variable F,
o
L_1F=—/ P, Fadt. (2.3)
0

The basic operators D, § and L satisfy the relation L F = —8 D F, for any random variable F € D>2. As a consequence,
any centered random variable F € L?(2) can be expressed as a divergence:

F=8(-DL™'F). (2.4)

This representation has intensively been used in normal approximations (see [18,19]).
We denote by y the standard Gaussian measure on R. The Hermite polynomials {H,,(x), m > 0} form a complete
orthonormal system in L>(R, y) and any function g € L?(R, ) admits an orthogonal expansion of the form

oo
g(x) =" cnHy(x). 2.5)
m=0
If g € L?(R, y) has the expansion (2.5), we define the operator T} by
o0
T1(Q)(X) = Y cmHy—1(x). 2.6)
m=1

To simplify the notation we will write 71(g) = g1.

Suppose that F is a random variable in the first Wiener chaos of X of the form F = I (¢), where ¢ € $ has norm one.
In view of the relation between Hermite polynomials and multiple stochastic integrals, it follows that for any g € L*(R, )
of the form (2.5), the random variable g(F) admits the Wiener chaos expansion

g(F) =" cnln(p®"). 2.7)

m=0

. k
For any k > 2, we can define the iterated operator Ty = T1o - -- oT7 by

o0

To()(¥) =Y cmHpx(x). 2.8)

m=k

We will write Ty (g) = gk-

In the next lemma we establish the connection between the shift operator 7 defined in (2.6) and the representation
of a centered and square integrable random variable as divergence given in (2.4). When the functional g has a general
Hermite rank k£ > 1, we also provide the representation for the random variable g(F) as an iterated divergence.

Lemma 2.1. Let F be a random variable in the first Wiener chaos of X of the form F = I1(¢), where || ¢|| s = 1. Suppose
that g € L*(R, y) is centered. Then

g1(F)p=—DL™'g(F).

As a consequence, g(F) = 8(g1(F)). More generally, if g € L*>(R, y) has Hermite rank k > 1, we have the representa-
tion

g(F) = 8" (ge (F)p®F). (2.9
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Proof. Using the Wiener chaos expansion (2.7), we can write

oo

-1 _ C_m
L7lg(F) ==} 2 Hpu(F),

m=1

which implies, taking into account that H,, = mH,,_1, that

—DL™'g(F)= ) cwHn_1(F)g = g1(F)gp.

m=1

Property g(F) = 8(g1(F)¢) is a consequence of (2.4). The proof in the general case k > 2 follows immediately by an
iteration procedure. This completes the proof. ]

Lemma 2.2. Let F be a random variable in the first Wiener chaos of X of the form F = I1(¢), with ||¢|l g = 1. Suppose
that g € L>(R, y) is centered. Then for any p > 1,

Hgl(F)”LP(Q) SCP“g(F)”LP(SZ)’ (2.10)

where ¢, > 0 is a constant depending only on p.

Proof. Observe that, using Lemma 2.1, we can write

Hg1(F) ”LP(Q) = ”_DL_lg(F)HLP(Q;ﬁ)'

Then, using (2.3), Minkowski’s inequality and the last inequality in the proof of Proposition 3.2.5 of [17], we can write

|-DL™e(F)| ooy = H/O DPg(F)dt

LP(2:9)

o
< [ 10Pa)] s

o0 eft
<6 [ Ol 1
bid
= C;JE lg(F) ”LP(SZ)'
This concludes the proof. (]

By iteration, we obtain

| ex(F) ”LP(Q) = CI; lg(F) ”LP(Q)’ (2.11)

for any k > 2, provided g has Hermite rank k and F = [1(¢), with ||¢|lg = 1. If g has Hermite rank strictly less than &,
we can write

Trg(x) = Trg(x),
where g(x) = >0, ¢y Hy (x). Then,

k—1

Z Cm Hy (F)

m=0

| Ticg (F) ”LP(Q) = C]; ls(F) ”LP(Q) + Cl/;
LP(Q)

k—1 2
=< CI;, Hg(F) ||LP(Q) + cf, . C(Z c,znm!)
m=0
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for some constant C > 0, where in the second inequality we have used the equivalence of the L”(£2) norms on a finite
sum of Wiener chaos, due to the hyprecontractivity property of the Ornstein—Uhlenbeck semigroup (see, for example,
Corollary 2.8.14 in [13]).

Consider $) = R, the probability space (2, F, P) = (R, B(R), y) and the isonormal Gaussian process X(%) = h. For
any k > 0 and p > 1, denote by DX (R, ) the corresponding Sobolev spaces of functions. Notice that if g € DF7 (R, y),
and F' = I{(¢) is an element in the first Wiener chaos of a general isonormal Gaussian process X, then g(F) € Dk-P,

The next lemma provides a regularizing property of the operator 7.

Lemma 2.3. Suppose that g € D/'P (R, y) for some j >0 and p > 1. Then Tyg € DIT5P(R, y) forall k > 1.

Proof. We can assume that g has Hermite rank k, otherwise, we just subtract the first k£ terms in its expansion. Then, the
result is an immediate consequence of the fact that 7 = (=DL~H% and the equivalence in L? (R, y) of the operators D
and (—L)'/2, which follows from Meyer’s inequalities (see, for instance, [16]). O

Notice that T} and the derivative operator do not commute. We will write (g1)' = gi, which is different from T;(g’).
Indeed, for any g € L*(R, y), we have

g1 =Ti(g) - g.

because if g has the expansion (2.5), we obtain

g (x) =" cn(m — 1) Hy 2 (),

m=2
Ti(g')(x) = i Cmm Hy—2(x)
m=2
and
&) = i Cm Hin—2(x).
m=2

More generally we can show that for any &,/ > 1,

I
l .
g;il) = Z <z) i Teti (g(l l)),

i=0
where o ; = (=Dik(k+1)---(k+i — 1), with the convention ag; =11fi =0.
2.3. Brascamp-Lieb inequality

In this subsection we recall a version of the rank-one Brascamp-Lieb inequality that will be intensively used through this
paper (see [1,3,6] and the references therein). This inequality constitutes a generalization of both Holder’s and Young’s
convolution inequalities.

Proposition 2.4. Let2 < M < N be fixed integers. Consider nonnegative measurable functions fj :R — Ry, 1< j <N,
and fix nonzero vectors vV € RM  Fix positive numbers pj. 1 < j < N, verifying the following conditions:

. N
(i1) For any subset I C {1, ..., M}, we have

ij <dim(Span{v;, j € I}).
jel

Then, there exists a finite constant C, depending on N, M and the p;’s such that

N N pj
> l_[fj(k-vﬂscl_[(ij(k)”"f) : (2.12)

keZM j=1 Jj=1keZ
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2.4. Stein’s method
Let i : R — R be a Borel function such that # € L' (R, y). The ordinary differential equation

J'0) = xf(x) = h(x) —E(h(2)) (2.13)

is called Stein’s equation associated with 4. The function

)= / " () —B(h(2))e R dy

—00

is the unique solution to the Stein’s equation satisfying limjy| 00 €™ /2 f(x) = 0. Moreover, if & is bounded, f; satisfies

il = |3 1~ B2) | @1

and

| il <27 —E(r(2)] (2.15)

(see [13] and the references therein).
We recall that the total variation distance between the laws of two random variables F, G is defined by

drv(F,G)= sup |P(FeB)—P(GeB)
BeB(R)

)

where the supremum runs over all Borel sets B C R. Substituting x by F' in Stein’s equation (2.13) and using the inequal-
ities (2.14) and (2.15) lead to the fundamental estimate

drv(F,Z) = sup [E(f'(F) — Ff(F))]. (2.16)
FECIR). N flloo</T/2, 11 oo <2

We also recall here the Poincaré inequality that will be used later to estimate bounds for the total variation distance.
Namely, for any F € D2, we have

Var(F) <E(|DF|5). (2.17)

3. Basic estimates for the total variation distance

In the framework of an isonormal Gaussian process X, we can use Stein’s equation to estimate the total variation distance
between a random variable F = §(u) and Z. First let us recall the following basic result (see [13,15]), which is an easy
consequence of (2.16) and the duality relationship (2.1).

Proposition 3.1. Assume that u € Dom$, F = 8(u) € D2 and E(F?) = 1. Then,
drv(F,Z) <2E(|1 — (DF,u)g]|).
Notice that, applying the duality relationship (2.1), we can write
E((DF,u)s) =E(Fsu)) =E(F?) =1.

As a consequence, if F € D>2, we apply Cauchy—Schwarz and Poincaré inequalities (2.17) to derive the following
estimate

drv(F, Z) < 2\/IE(1 —(DF, u),)” =2/Var(D, F) < 2,/E(| D(D, F) ||f~j), 3.1)

where we have used the notation D, F = (u, DF)g. We will also write D,’;'HF = (u, D(D;F))ﬁ for i > 1, and, by
convention, D; F=D,F.

Furthermore, if the random variable F admits higher order derivatives, iterating the integration by parts argument we
can improve the bound (3.1) as follows.
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Proposition 3.2. Assume that u € Dom$, F = 8(u) € D>? and E(F?) = 1. Then
dv(F. Z) < 8+ V3mE(| DD, F)|[3) + V27 |E(F?)]
+327E(|D2F|?) + 4xE(| DI F)).

Proof. Fix a continuous function 4 : R — [0, 1]. Using Stein’s equation (2.13) and the estimates (2.14) and (2.15), there
exists a function f, € C1(R) such that || fj, leo < \/g and ||f}:||OO <2, satisfying

1:=|E(h(F)) —E(h(2))| = |E(f;(F) — Ffi(F))|.
Applying the duality relationship (2.1), yields

I =|E(f4(F)(1—(DF,u)g))|.
Taking into account that E((D F, u) ) = E(F?) = 1, we have

1= [E(((F) ~ E(f{)) (1 = (DF.)5))].

Let f, be the solution to Stein’s equation (2.13) associated with the function ¢ = f;. Then, we have
1= E((f;(F) = Ffy(F))(1 = (DF.u)g))

where | fylloo < 4+/7/2 and || f;llcc < 8. Substituting F' by §(u) and applying again the duality relationship (2.1), yields

s

I = E(fy(F)(1 = DyF) = (u, D(f,(F)(1 = Dy F))) )|
= |E(f,(F)(1 — D,F)*) + E(f,(F)D;F)|
< 8E((1 = DuF)?) + [E((fo (F) — E(fo(2))) DiF)|
+ [E(fo(2))E(DF)]
=L +DbL+1 (3.2)
For the term I, we apply Poincaré inequality to get

Iy < SE(| D(D,F)|3,).

For the term I3, taking into account that
E(DEF) = E((, DF)b(0) = (1w, DF?),) = SE(F),

we obtain

I <27 /2[E(F?)].

Applying Stein’s equation (2.13) to the function ¥ = f, yields fl/p (F) = Ffy(F)=v(F)—E(Z)). Therefore, for the
term [, we can write

I = [E((f(F) = Ffy (F)) D}F)|
< [E(£} (F)(DZF — DyFDEF))| +|E(fy (F)DIF)|.

where fy satisfies || fy |co < 4m and ||f1/p||oo < 164/ /2. Finally,

E(|D2F — D,FD2F|) < = (E(|D2F|*) + E(|1 — D, F?))

1
=2
< L ©(02FP) + E(IDDLFIR)).

This concludes the proof of the proposition. ([
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If we bound (3.2) in a different way, we would get the following estimate.

Proposition 3.3. Assume that u € Dom$, F = §(u) € D*? and E(F%) = 1. Then

drv(F, Z) < 8E((1 — D, F)?) + ~/8xE(| D2F|).

4. Main results

Consider a centered stationary Gaussian family of random variables X = {X,,, n € Z} with unit variance and covariance
p(k) = E(XoXy) for k € Z. Define the Hilbert space $) as the closure of the linear span of Z under the inner product
(j,k)sy = p(j — k). The mapping kK — X can be extended to a linear isometry from $) to the closed linear subspace
L*(2) spanned by X. Then {Xy, ¢ € H} is an isonormal Gaussian process.

Consider the sequence Y;, := \/Lﬁ Z;': 1 &(X ;) introduced in (1.4), where g € L*(R, y) has Hermite rank d > 1 and let

nz — o2, where o2 has been defined in (1.3).

Along the paper, we will denote by C a generic constant, whose value can be different from one formula to another
one.

Our aim is to establish estimates on the total variation distance between Y, /o, and Z. We will make use of the
representation Y,, = §(u, ), where

onz = ]E(Ynz). Under condition (1.2), it is well known that as n — 00, o

1 n
un=—=Y_g1(X))j, (4.1)
=t

given by Lemma 2.1. Then, if g € D*?(R, ), by inequality (3.1) and taking into account that o, — o > 0, we have the
estimate

1
v (T /0w, 2) = —\JE(|(DYo, i) — 52]")
n

< CVE(|D(DY,, un)s) [}) = CV/AL, “2)
where A| =E(|DDy, Y, ||%). Furthermore, using Proposition 3.3, we can write
8 N
dry(Ya/on, Z) < —E(IDDy, Yal%) + o/E(|D2, ¥ |*)
o, oy,
< C(A1+/4y), (4.3)

where Ay = E(|D5n Yn|2) and where we recall that D, Y, = (u,, DY) and D,in Y, = (un, DDL;IYn>§J for i > 2. The
assumption g € D*? implies that the terms A and A, are well defined.
If g e D>2(R, y), using Proposition 3.2, we obtain

8+ /327 32
4
Gn

6
On

dry (Y /0u, Z) < E(| DDy, Yall%) + E(|D2 Y.|*)

21 4
+ )+ 2 (02, )
n

n

<C(A1+ Ar+ A3z + Ay), 4.4

where A3 = |IE(Yn3)| and A4 = /E(|D3n Y,,|?). The assumption g € D32 implies that the term D,fn Y, is well defined.

In the sequel we will derive estimates on the terms A;, i = 1,...,4 in terms of the covariance function p(k). We
use the notation A; < A; if A;’s bound has a better convergence rate to zero than that of A; orif A; < CA; for some
constant C > 0. To get the best possible rate, we use the following strategy. If g is just twice differentiable, we can use
the estimates (4.2) and (4.3). Then we will compare the rates of the terms A; and A,. If A < Az, we just use the bound
(4.2). Otherwise, (4.3) would be used. If g has higher order derivatives, we would use the bound (4.4) if Ay < /A and
the rates of Az and A4 are better than those of /A, and 4/A7. Otherwise, if the rate of either A3 or A4 is worse than that
of /A7 or \/A;, we consider the bound (4.3) or (4.2) depending on the comparison between A, and Aj.
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Before presenting the main results, we will derive some expressions and estimates for the terms A;, i = 1,2,4. To
simplify the notation, we will write p;; = p(l; —[;) forany 1 <i, j <n.

Lemma 4.1. Suppose that g € D>*(R, y). Then,

2 & o
_22 Z [E() o —)p(ls —

i=1 11113 14=1
where
I =g"(X1,)g" (Xi)g1(X1)g1(X15), 4.5)
and
=g (X1))g'(X15)81(X1,) g} (X1,). (4.6)

Proof. First, we have
E(| D(DYn, un)0)[[5) = 2E(| D*Ya @1t ) + 2E([{Ds Yo, Dutn )5 [15).

where D?Y,, ®, u, denotes the contraction of one variable between D?Y, and u, and

e @]

(DsYn, Dup () =Y (DY, i) D((ttn, €i)3),

i=1
with {e;, i > 1} being a complete orthonormal system in $). This implies, taking into account (4.1), that
1 n
Dy @1 =— 3 " Xe)gi(X)p(j — )k
Jj.k=1

and

(DY, Dun (o) Z g (X8 (X0)p(j — kk.

j k=1

As a consequence,

n

1
|D*Y, @1 uy ||f;J =3 Yo hpi—kp(z—lpla—1y),

11,0p,13,14=1
and
2 1 .
(Do, Dun))g g == D holi =)ol ol — 1),
11,0p,13,14=1
which implies the desired result. |

Next we derive a simple estimate for the term A,, assuming again that g € D>(R, y). Notice that

n

1
Dy Yo== > g1(X1)g (Xp)p(li —b).
l1,h=1

Denote

filli, b, 13) = g1(X1) g (X1,)81(X13) 4.7



Total variation estimates in the Breuer—Major theorem 751
and

b)) =g1(X1)g" (X1,) g1 (X1,). (4.8)

Correspondingly, using the notation p;; = p(I; — [;), we can write

1
D; Y, = 7 Z (fith, b, 3)prap1s + falr, b2, 13) pr12p23).
11,0p,13=1

Thus,

+E(f2(l1.12.13) 214,15, 16)) p12023 45056 ) - 4.9)
Finally, let us compute the term A4, assuming g € D>8(R, y). We have
1 L
D} Y, = — Z Z(fl(l)(ll,lz, 13)g1(X1,)p12p130i4
11,00,03,14=1i=1

f(l)(ll 2, 13)81(X1,) p12023pis),

where f) @ _ ;}1{‘1 , namely,

0, 1, 13) = g (X)) g (X g1 (X1y),
2, b, 1) = g (Xi)g" (Xi)g1 (X1y),
2, b, 1) = g, (X1)g (X1, g} (X1y)

and f, @ % namely,

IO b, 1) = 8] (Xi)g" (Xi) g1 (Xiy),
2,1, 1) = g1(X1)g" (X1) g1 (Xi),
20,1, 13) = g1(X1) 8" (X1,) g} (X1y).

Therefore,

3 n
6 ) )
<> STE(A b 3)g1(Xi) £ s s, 1) g1 (X))
i=1j=1,..,81;=1

X P12P13Pi4 P56 P57 P(i+4)8
42 Z ZE (£ b, g (Xi) £ s, B, 181 (X))

X 012023 0i4 056 P67 Li+4)8- (4.10)

We are now ready to state and prove the main results of this paper. The notation is that of Theorem 1.1.
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4.1. Cased =1

Theorem 4.2. Letd =1 and g € D*>*(R, y). Suppose that (1.2) holds true. Then

drv(Yy/on, Z) < Cn~ 2.

Proof. We use the inequality (4.2) and we need to estimate the term A;. By Lemma 2.3, Holder’s inequality and the fact
that g € D2*4(]R, y), the quantities /1 and I, have finite expectation. Then

n

c

Ars— D el =k)pls —lplz —1a)].
n
l1,12,13,14=1

Making the change of variables k; =11 — I, ko =13 — l4, k3 = > — I4 and using condition (1.2) with d = 1, we obtain
C C
Ars= Y |ptknpt)pts)| < =,
n ) n
|ki|<n,1<i<3

which provides the desired estimate. O
4.2. Case ofd =2

Theorem 4.3. Let d =2 and suppose that (1.2) holds true.
() If g e D>*(R, y), we have

3

drv(Yn /0w, Z) < Cn™ ( 3 |p(k>|) §

|k|<n

(i) If g e D>*(R, y), we have

dry(Yn/on, Z) < Cn~2 Z lo@)|.

[k]<n

(iii) If g € D**(R, y), we have

1

L 3
drv(Ya /oy Z) < Cn™? ( > |p<k>|)2 +Cn73 ( > \p(k)lé) g

k| <n [k|<n

(iv) If g € D>O(R, y), we have

1
drv(Ya /oy Z) < Cn™? ( > |p(k)|)2 +Cn3 ( > |p<k>|3)

k| <n [k|<n

2

(v) If g e DO3(R, y), we have

3 2
Z|p(k>|i) ~

drv(Yy /oy, Z) < Cn™2 (
lk|<n

Remark 4.4. The bounds in Theorem 4.3 involve series of the form §,, := ZI kl<n lp(k)|* for « € [1, 2). Under condition
(1.2), by Holder’s inequality, S, < (14 2n)1_% and the bounds exhibited in Theorem 4.3 could be divergent. However, we
are interested in the cases when the bounds converge to 0 and provide convergence rates in the context of Breuer—Major
theorem. See Corollary 4.9 for an example.
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Remark 4.5. For g € DO3(R, y) the rate established in point (v) coincides with the rate for the Hermite polynomial
glx)= x2 — 1, obtained by Biermé, Bonami, Nourdin and Peccati in [5] using the optimal bound for the total variation
distance in the case of random variables in a fixed Wiener chaos derived by Nourdin and Peccati in [14] (see Proposi-
tion 1.3). For g € D4R, y), i =2, 3, 4, the estimates in points (i), (ii) and (iii) will be established using Proposition 3.1,
whereas, for g € D>®(R, ) we will use Proposition 3.3 to derive the estimate in point (iv) and for g € DO8(R, ) we
apply Proposition 3.2.

Remark 4.6. The bound (iii) is better than (ii) based on the inequality (A.19) with M = 3 and the fact that
(Zlklfn |,0(k)|)1/2 < Z|k\5n |p(k)|. The bound (iv) is better than (iii) because of the inequality (A.25). Finally, it is
straightforward to see (v) is better than (iv).

Proof of Theorem 4.3. The proof will be done in several steps.
Case g € D**(R, y). We apply Lemma 4.1 to derive the rate of convergence of A;. Using arguments similar to those
in the case d = 1 yields

C C
A== ) |p(k1>p(kz>p(k3)|=—(2|p(k)|)

3
, 4.11)
lkil<n.1<i<3 " Nii=n
which gives the desired estimate in view of (4.2).

We claim that, even if we impose more integrability conditions on the function g, that is, g € ]D)2’6(R, y), the estimate
(4.3) does not give a rate better than (4.11). In fact, let us estimate the term A,, which is bounded by the inequality (4.9),
where f] and f> are defined in (4.7) and (4.8). The term E( f>(/1, [2,13) f2(l4, 15, ls)) cannot be integrated by parts because
it involves g” and g is only twice weakly differentiable. Therefore, if ¢ € D*°(R, y), using Lemma 2.3 together with
Holder’s inequality, we obtain

C n n
Ay < n—3< Y lpwpizpaspasl + D 1e12pa3easpss| |-
li,..., le=1 I1,....le=1

Making change of variables, 1 —l» = k1,11 — I3 =kp, 4 — Is = k3, l4 — I = k4 for the first summand, and [} — I = kq,
Ih — I3 =ko, 1y — I5s = k3, Is — lg = k4 for the second summand, we obtain

c ! c 4
A== 3 ]‘[!p<ki>!=;(2|p(k>\).

|kil<n,1<i<4i=1 [kl<n

Thus, A1 < As, so we use (4.2) and (4.11) gives the best rate.
Case g € D¥*(R, y). Let us first estimate the term A;. Because g has three derivatives, using Lemma 4.1 and
Lemma A.1, we obtain

n

C
= D lpti—bpt—1pt—1)| Y |pti ~1))].

I, 13,14=1 J#1

Ay <

Making the change of variables /| — I, = k1, [, — 4 =kp and I3 — I4 = k3, yields

C
Ars— 3 (|02 k0pta)pka)] + ok p (k) p(ks)p ki + ko)

|ki|<n
+|pk)p ko) p (k) p ki + k2 —k3)] ).
Taking into account condition (1.2) and applying (A.20) with M = 3, yields

C
A< ;(Z |p(k>|>

|k|<n

2
, (4.12)
which gives the desired estimate in view of (4.2).

Again, we claim that imposing more integrability conditions and using either (4.3) or the more refined estimate (4.4)
does not improve the above rate. Indeed, let us first estimate the term A», assuming g € ID)3’6(R, y). Because g is three
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times weakly differentiable, we can integrate by parts once in the expectations appearing in (4.9). The two summands
in (4.9) are similar, thus it suffices to consider the first one. Recall that f1(l1,l2,13) = g/1 (X1,)8'(X1,)81(X;;) has been
defined in (4.7). Using the representation g'(X;,) = 8(T1(g")(X1,)l2), applying the duality relationship (2.1), and making
a change of variables, we obtain

6
C n
Ay = — E (;0122|,013P45,046|+|P12P13,045,046,023|+|,012,013,045P46|E Ipzil)
i=4

IA

4 4 5
C
22 <p<k1>2]‘[|p<k,-)| + otk — k)| [ T|o k)| + ]"[|p<ki>|).

|k;|<n i=2 i=1 i=1

1<i<5

This implies, using (A.20) with M = 4 for the second summand, that

Ar < %(Z |p<k)|)3+ %(Z |p<k>|)5 < %(Z |p<k)|)

[k|<n k| <n |k|<n

3

where we have used the fact that Z‘ ki<n | p(k)| < C4/n in the second inequality. Clearly, A; < A>. So the estimate (4.2)
is better than (4.3).

On the other hand, the estimate (4.4) does not provide a rate better than (4.2), because +/A| < A3. Indeed, let us
estimate the term A3. We know that

£ (i)

11,0,13=1 i=1

Az =|E(Y2)|=n"2

Using the representation g(X;,) = 82(g2(X Wl ?2) and applying twice the duality relationship (2.1), we obtain

n
3

As<cnt Y (E(e2(Xn)g" (Xi)g (X)) o
11,0h,13=1

+2|E(g2(X1)8" (X1,)8' (X1,)) p12p13| + |E(g2(X1.)g(Xzz)g”(Xlg))|P%3)~

Because g is three times differentiable, we can still use the representations g(X;) = 8(g1(X1)i), &' (Xp,) =
8(T1(g")(X1,)) and g(X;,) = 8(g1(Xy,)l2), and apply the duality relationship (2.1) again to produce an additional factor
of the form |p3| + |p23| for the first term and | p12| + | p23| for the second and third terms. In this way, we obtain

n

Ay<Cn™3 Z (|oT2013] + lP120130231).

We make the change of variables p12 = p(k1), p13 = p(k2) and apply (A.18) with M = 2 to the second summand to
obtain

3\ 2
As<Cn™2 Y o] + Cn%(Z |p<k>|5) '

[kl<n |k|<n

Clearly, by (A.19), this bound is not better than the bound we have previously obtained for /A1, and (4.12) gives the
result in this case.

Case g € D4’4(R, y). As before, let us first estimate the term A;. Taking into account that g has four derivatives, by
the results of Lemma 4.1 and Lemma A.1 and using the notation p(l; — ;) = p;;, we have

C n
= > |p1zp34pz4|<(|012| +1p1al) Y lpj3l + Ipl3|>.

I1,02.13,14=1 J#3

Al <
n
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We further write

C
Ay < po) Z (0120341241 + P 1p38024013| + iyl 034 P24923 ]

1<li<n,1<i<4

+ |/012,034,024,014! + 1p12034 024014023 ] + | P12034 02414013 ] + | 12034024013

C
<= Y. (01203ale2al + 10120342 p13] + PTl 034024 023]

1<li<n,1<i<4

+ \,012,034p24p14| + |p12034p14023] + |P12034 0240131 + | 012034024013

C
<= Z P12034| P24l + PTo1 P30 024023 + | L1234 P24 13 (4.13)

In the second inequality, we have used the fact that |p;;| < 1. In the third inequality, we have used that in (4.13) the
third and fourth summands are equivalent, and the second, fifth, sixth, and seventh summands are also equivalent. By the
change of variables I1 — l» = ky, 13 — l4 = k2, I — 14 = k3, we obtain

C
Ars= Y (DK (k)| pk3)| + 0> kD) p (k) p(k3) p (k2 — k3) |

|ki|<n,1<i<3

+ ok p (ko) p(k3)p (ki — k2 +k3) ). (4.14)

The first summand is bounded by % ZI kj<n 1P ()] from condition (1.2) with d = 2. The second summand is bounded by
% ZI kj<n 1P ()] if we apply condition (1.2) and inequality (A.20) with M = 2. Finally, we use inequality (A.18) with
M =3 for the third summand. In this way, we obtain

A1<— Yot + = <Z|p<k>| ) (4.15)

\k\<n |k|<n

This gives the desired estimate in view of (4.2).

As in the previous cases, we will show that, even with stronger integrability assumptions, using either (4.3) or (4.4)
does not improve the above rate. For this, consider first the term A, assuming g € D*®(R, y). Because g has four
derivatives, we can apply twice the duality relationship (2.1). Recall that the term A, is bounded by (4.9) and it suffices
to consider the first summand in the right-hand side of this inequality. We write it here for convenience

n

2
A== 30 E(filh, b, 1) filla, s, 1)) propispaspse, (4.16)
I1,...,le=1

where f1(l1, 13, 13) has been defined in (4.7). Notice that the functions g’ and g have Hermite rank 1. We first write
g (X1,) = 8(T1(g")(X1,)l2) and apply duality with respect to this divergence producing factors of the form pa;, i # 2,
1 <i < 6. Next we choose another function that has Hermite rank 1 among the factors g1(Xy,), g'(X;5) and g1(Xy,).
write it as a divergence integral and apply duality again to obtain:

6

[E(fi(h. 12, 13) filla, 15, 1)) | < Z > Zmzlps, (4.17)
i=1s5€{3,5,6} j=1
75 3751 J#Es

Applying inequality (A.5) in Lemma A.3 yields

C 2
A2§2A21§;<Z|p(k)|) : (4.18)

[k|<n

By the inequality (A.19) with M =3, we get that A| < Aj.



756 D. Nualart and H. Zhou

Next we will compare this estimate with the bound we can obtain for the term A3 using the fact that g has four
derivatives. We can write

As= [B(Y])| = Cn?

n 3
> E(H g(Xl,.)>‘
11,00,[z3=1 i=1

n

<cn? Z (p> (10131 + |,023|)2
11,0,13=1

+ lpize13l (10231 + 112l (10131 + 10231)) + 75 (112] + |,023|)2)
n

<cn™3 Y (|pheks| +lonoi30l). (4.19)
11,lh,1z3=1

Note that n’% Zﬁ,lz,h:l |,0%2,0123| = Cn’%. We make the change of variables pj» — p(k1), p13 — p(kz) and apply
(A.18) to the second summand, to obtain

> lowf)

|k|<n

2
As < Cn—%< . (4.20)

By (A.23) with M =3 and (A.24), we obtain that A; < A3. By (A.25), we have A3 < /A|. However, we cannot use
the bound (4.4) since the relationship between /A and A, is not clear, because the sequences n’% (Zl ki<n | p(k)|)% and
”_1(Z|k|5n |p(k))? are not comparable. An example could be p(k) ~ k= for o € (%, %). So, we use the bound (4.2)
that is given by (4.15).

Case g € D5’6(R, y). For the terms A and A3z we still have the estimates (4.15) and (4.20). For the term A;, we
continue with the inequalities (4.16) and (4.17), and apply the duality for the third time to E(f1(l1, l2,3) f1(l4,1s,1s))
when there is a factor with Hermite rank 1, to obtain

|E(fi(1, 12, 13) fia, s, 1)) | < C Z |02 psj| + C Z |02i 05 Pens

i£s#] (i,s,j,t,h)eD3
i,s,j€{3,5,6}
where
Dy={G,s,j,t,h): jhe(l,....6)5,1€(3,5 6 i #2,5 ¢ (i, jl;t ¢ {i,s, j,h}}. (4.21)
By inequality (A.6) in Lemma A.3,
C C 3\*
A< — Z|p(k)|+;<2|p<k>|2) : (4.22)

k| <n [k|<n

From (4.15), (4.22) and (A.25) we deduce that A> < A1 and, therefore, A1 + +/ Az < 4/ Aj. Therefore, (4.3) gives a better
rate than (4.2), which is given by

1
A +VAr < Cn—%(z |p(k>|> +cn-%(

lk|<n

3\ 2
> |p(k)|5) . (4.23)

lkl<n

Clearly, A3 < Ay + +/A>. Whether we choose (4.3) or (4.4) depends on the computation of A4, where we need to
assume g € D*8(R, y). Consider the second summand in the expression (4.10) denoted by

27 I . .
(An)’ = E(£7 U, b, 13) g1 (Xi) £ s, B, 17) 81 (X))
Li=1, i=1

X 12023 0i4056 067 0(i+4)8- (4.24)
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Taking into account that g has five derivatives and the terms f2(2) and f2(6) involve g”’, we can apply duality twice using
the factors that have Hermite rank 1. In this way, we get the following item in the bound of Ay4;:

n

C
= Z /0122023 ,024,0526/067 068

which gives the rate %(Zl kl<n | (k)|)2. This rate cannot always be better than that of A+ /A5 bound since the sequences

%(Zlklsn |p(k)])? and n’%(zlklfn |,o(k)|%)2 are not comparable. An example could be p(k) ~ k=% for o € (%, %). This
suggests us using the bound (4.3) that is given by (4.23).

Case g € D®3(R, ). For the terms A;, A> and A3, we still have the estimates (4.15), (4.22) and (4.20). Let us now
study the term A4 given by (4.10). The terms 2(2) and f2(6) involve g’ and they can be integrated by parts three times.

Therefore, we are going to use only three integration by parts. On the other hand, the terms fz(z), 2(6), 1(1) and f 1(4) have
two factors with Hermite rank one that can be represented as divergences, but the other terms have only one. All these
terms are similar, with the only difference being the number of factors with Hermite rank one. We will handle only the
term fl(l) that has two factors with Hermite rank one and the term fl(z) that has only one. The other terms could be treated

in a similar way. In this way, for the term fl(l) , wWe obtain, after integrating by parts three times,

|]E(f1(1)(11,12, la)gl(Xu)fl(S)(ls, le,11)g1(Xpp))| < C Z | 021 Psj Pt
(i.s.j.1,h)eDy

where
Dy={(@,s,j,t,h):1<i, j,h<8s5,1€(3,4,6,7,8:i#2s¢{i,jht¢li,s, j.h}}. (4.25)

On the other hand, for the term f1(2)’ we obtain, after integrating by parts three times,

[E(fP U, b, 13)g1(X1,) £ Us, 1o, 17) g1 (Xiy) ) |

<C > paipgl+C Y |paipsipml,

iF£sF# ] (i,s,j,t,h)€Ds
i,s,je{4,7,8}
where
Ds={(G,s,j,t,h):1<i,j,h <8 s,1€{47,8i#3s¢li,jlit¢li,s j, hl}. (4.26)

By Lemma A.4 and Lemma A.5, we obtain
C LI 43
Ay < — — ).
4= (Z |p(k)\) + - (Z o)) )
|kl<n |k|<n

Then, from (A.23) with M = 3 and (A.24), we deduce A4 < A3. We already know that A> < A} < A3 < /A3. Also
using (A.25) it follows that A3 < +/A1. Thus, we use (4.4) for the bound of dtv (Y, /o, Z) which is given by the estimate
(4.20) of the term Aj. U

4.3. Cased >3

Theorem 4.7. Assume g € D3=2*(R, y) has Hermite rank d > 3 and suppose that (1.2) holds true. Then we have the
following estimate

drvVafon 2y < Cnd Y oo ( 3 |p(k>\2)2 Lon ( ) |p<k)|>

lkl<n lkl<n lkl<n

1
2

4.27)

Proof of Theorem 4.7. Inequality (4.27) will be established using Proposition 3.1 that is specifically expressed as (4.2).
The proof will be done in two steps.
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Step 1: First, we consider the case when g is the Hermite polynomial H;. By Lemma 4.1 and Lemma A.2, we have

n

C
Ars— o 3 et =P pls =170 — )"

l1,02,13,14=1

x p(lh —13)P oy — 1) p(lr — 13)Ps

’

where the ;s satisfy Y-0_, i =2d, po+ B3+ Bs =d, B1 + B3 + Bo =d, 1 + Pa+ Bs = d, o + Ba + o = d and
Bj = 1for j =1,2,3. Making the change of variables, [; —l4 — k;, i =1, 2, 3 yields

n

C
Ar=s— Y0 ot = k)P ptks)2p k) p ks — ka)™ p (k1) p (ka — k3) .
ki,k2,k3=1

Applying the Brascamp-Lieb inequality (2.12), we can write

6

;\ Pi
Al < %1‘[( > |p(k,.)|ﬁ—,-> :

i=1 “ki|<n

where the p;’s satisfy Y°0_; p; =3, pi <1, pi+p3+ps < 2. p2+p3+pe <2, pa+ pa+ps <2and p1 + pa+ pe < 2.
The restriction of 8; could be further simplified as

B1= B2, B3 = Ba, B5 = Be> Br+pB3+ps=d, and pBi,B3>1.

Then we choose p1 = p2, p3 = p4, p5 = pe to obtain

C £\ Pi\?
Als;< I1 (Z !p<k,-)!m) ) : (4.28)

i=1,3,5 “kil<n

We are going to choose p; = % +¢€; fori =1, 3,5, where the €;’s satisfy ¢; > 0 and % + Zi:1,3,5 € = % To choose

the values of the ¢;’s we consider two cases. Set § = % — d%l.

(i) Suppose that§ <1 — %. Then, we take €] = § and €3 = €5 = 0 and we obtain p; = dﬂTll + % — d—i], p3= % and

ps= 7.
(i1) Suppose that § > 1 — ﬁ—_‘ Then, we take €] =1 — ﬁ—_l and €3 =§ — €1 and €5 = 0 and we obtain p; =1, p3 =
d—1 d—1

1 1
P+ -5 Fyand ps=
It is easy to show that these p;’s satisfy the desired conditions and, furthermore, 8; > 2p; for i = 1, 3, 5. This allows us
to choose the pair (¢, ;) that satisfies the following equations

o Vi Bi
2’ d_’l=1, and ai—i—y,-:p—i_. (4.29)

Then Holder inequality implies

1

S low ] = (T lowF) (Zlewi)

|k|<n |k|<n |k|<n

Vi
d—1

We plug this inequality into (4.28) and solve «;, y; from (4.29). In this way, we obtain the inequality

C a-1\° 2
Als;<2|p(k)| ) Yo lel. (4.30)

|k|<n |k|<n
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Step 2: We consider the case g € D**~2(R, y). By Lemma 4.1 and Lemma A.2, we have

n

c

Ars— Y e =) pls —1)P2ply — 1)
n
I, 13, 14=1

x p(l1 — )P p(ly — 1)P5 p(ly — 13)Ps

, 4.31)
where the 8;’s satisfy g; <d, B; > 1for j =1,2,3, 21'6:1 Bi <3d — 1 and the lower bounds

Bo+ B3+ ps=d,
B+ B3+ Be=d,
Bi+Ba+Bs=d,
Bo+ Pa+ P =d.

When all the above S;’s inequalities attain the lower bound d, the right hand-side of (4.31) coincides with the case when g
is the Hermite polynomial H,. This case has been discussed in Step 1. On the other hand, if 81 A B2+ B3 ABa+B5ABs > d
and B3 A B4 > 1, taking into account that |p| < 1, the right-hand side of (4.31) is actually dominated by the case where
all the B;’s inequalities attain the lower bound d.

Now we need to consider all the other possible cases. In each case, we make the change of variables /1 — [ = ki,
Z—ly=ky, Ih —ls=k3.

(i) Case B4 = B5 = B6 =0. Then 1 = B =d, B3 = 1. For these values of the 8;’s we can write the right hand-side of
(4.31) as

n

1
=2 et =b)pds — 1) pda ~ 1y)]
I1,12,13,14=1

1
== 2 [0l ot o ks)|

|ki|<n,1=<i<3

C
== lp)].

lk|<n

(ii) Case Bs=PBs =0, Be > 0. Then 81 =d, B2 <d, B2 + B3 > d and B + B > d. Using (1.2), we can write

Al <

Sl Ne)

S ot |p k)| o ks — k)|
lki|<n,i=2,3

IA

S| O

ST et oka)| T o ks — k)|
|ki|<n,i=2,3

C i-p, _C
— 2 le®|TE == > o)

[k|<n [k|<n

IA

3

where in the third inequality we have used (2.12) with p; = %, p2=1and p3 = d_dﬂ Z,

(iii) Case B4 = B =0, Bs > 0. This case is similar to (ii).

(iv) Case Bs = P =0, B4 > 0.Then o+ B3> d, B1 + B3 >d, B1 + s >d, B2+ B4 > d. Itis easy to see 1 A B2+
B3 A Ba + Bs A Be > d and, furthermore, 83 A B4 > 1. This situation has been discussed before and A is dominated by

the bound in the case where g is the Hermite polynomial.
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(V) Ba=0, B5 >0, B > 0.Then By <d, B <d, B1 + Bs > d, B2 + Bs > d. As a consequence, we obtain

IA

C
A== 3 [t k)| o ke

[ki|<n,1<i<3

x |ptky +k3) [T p ks — k)|

=3 et

|k|<n

IA

’

where have used (2.12) for p; = % fori=1,2, p3=1and p;13 = % fori =1,2.

(vi) B5 =0, B4 >0, B > 0. Then B> + B3 > d, B1 + Ba > d. This case is similar to (v).

(vii) B =0, B4 > 0, Bs > 0. This case is similar to (v) and (vi).

(viii) B; > O forall 1 <i <6, and B1 A B2 + B3 A Ba + Bs A Be < d. Without loss of generality, we may assume that
B1 < B2. We take into account of §1 + B4 + Bs > d and B1 + B3 + Bs > d, so there are two cases: B3 < B4, Bs < B¢;
and B4 < B3, Be < Bs. These two cases are actually equivalent, because in the second case, we can make the change of
variable /3 — | — k3, instead of [, — [4 — k3 for the first case. Thus it sufficies to consider the first case, i.e.,

C
A= — 37 |otn | ptk) | o k)|

|ki|<n,
1<i<3

x |pllr — ko +k3)|* [ o k1 + k3) | o (ks — ko) |7,

where B1 + B3 + B5 < d, B> + Ba + Be > d since Z?:l Bi >2d.
Next we will apply Brascamp-Lieb inequality (2.12) according to several different subcases.

(1) Suppose B1 A B3 A Bs = B1. Then if Z?:z Bi > 2d, the right-hand side of the above inequality is bounded by the case
Z?:z Bi = 2d when we decrease §;’s, i = 2,4, 6 appropriately. We use (2.12) with p; =1, p; = % for i > 2, taking
into account that |p| < 1, to obtain

C C
Av=— Y | <= 3 o).

k| <n lk|<n

If 2?22 Bi < 2d, for which an example could be 81 =2, f3 =2, 85=d — 5, B2 =3, Ba =3, B =d — 4, we can
see that 81 > 2 because of Z?Zl Bi > 2d and 21‘6:2 Bi < 2d, and correspondingly d > Zi:1,3,5 Bi > 6. Furthermore,
B1 < % In order to apply (2.12), we choose with p; =1 and p; = Zgﬁ"ﬂ fori =2,...,6.0One can easily check that

i=2 Bi

pi <1, Z?:l pi =3, Zi=1,3,5 pi <?2and Zi=2’3,6 pi < 2.In this way, we obtain

c 6 Bot-+hg \ 2
Ar=—3 || (Z|p<k)| ? )

[k|<n [k|<n

g Z !,o(k)|ﬂ] (Z ’p(k)|d_ﬁ71)2
n

lkl<n lk|<n

IA

C a _a\?
< sup — 3 |o(h)] (Z|p<k)|" ) .

2=a<3 " |k|<n [k|<n

In view of Lemma A.10 the supremum in the above display is attained at @ = 2 and it coincides with the first term in
the estimate (4.27).

(2) B1 A B3 A Bs = Bs. We use the same approach as for the subcase (1).

(3) Bi A B3 A Bs = 3. We follow the same methodology. When ), 23 Bi < 2d, the arguments are the same. When
Zi £3 Bi > 2d, since d < B1 + Ba + Bs < 2d, we can decrease B>, ¢ appropriately such that Zi £3 Bi = 2d and at
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the same time this implies 8 4+ B¢ < d. Then we use (2.12) with p3 =1, p; = % for i # 3 to obtain
C g C
Al < — < — .
1=— Y [e®|" == > )]
lk|<n k| <n

This completes the proof of the theorem. ]

Remark 4.8. In the case of the Hermite polynomial g = Hy, d > 3, the proof of Theorem 4.7, based on Proposition 3.1,
yields

1
dry(Ya/on. Z) <Cn2 " [p(o|*! ( 3 |p(k>|2) B (4.32)

[k|<n [k|<n

In this case Proposition 3.2 reduces to the computation of the third and fourth cumulants and one can derive the following
bound (see [5]), which is better than (4.32):

drv(Yy/on, Z)
C a-1\* » C 3d\ 2
S_(2:|’0(k)| ) Z|p(k)| +7 Z|,0(k)|4 1{deven}~
" Meizn JkI=n " Nii=n
However, applying Proposition 3.2 to the case of a general function g is a much harder problem and it will not be dealt in

this paper.

Consider the particular case where p (k) ~ k~%, as k tends to infinity, for some « > 0. Then, condition (1.2) is satisfied
provided ad > 1. In this case, Theorems 4.2, 4.3 and 4.7 imply the following results.

Corollary 4.9. Suppose that p(k) ~ k™%, as k tends to infinity, where o > 0 is such that ad > 1. Then, the following
estimates hold true in the context of Theorem 1.1:

() If g € D*>*(R, y) has Hermite rank 1 and o > 1,

dTV(Yn/Un» Z) < Cn_%

.. 2.4 . 2
(i) If g € D>*(R, y) has Hermite rank 2 and o > 3,

Cn~2 ifa>1,
dry(Yn/on, Z) < Cn_%(logn)% ifa=1,
Cn'~3¢ ifae .

(iii) If g € D>*(R, y) has Hermite rank 2,

1

Cn™2 ifoa>1,
drv(Yn/on, Z) < Cn*%logn ifa=1,
Cn>= ifa e, ).

(iv) If g e D**(R, y) has Hermite rank 2,

Cn~2 ifa>1,
_1 1 .
drv(Yofon, 7)< { €7 doem® He=1,
Cn 2 l:fae(g,l),

_ . 1 2
Cn'—2 ifae(s, 5]
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(v) If g e D>S(R, y) has Hermite rank 2,

_1 1.
drv(Yn/on, Z) < Cn z(logn)z lfa_13’
Cn 2 l:fOl c (5’ 1),
Cn3—3 ifote(%,%].

(vi) If g € DO8(R, y) has Hermite rank 2,

1

Cn™2 ifa > %
drv(Yo/on, Z) < { Cn~2(logn)? ifa =2,
Cn3—3 ifae,d).
(vii) If g € D¥=24(R, y) has Hermite rank d > 3,
Cn_% lfO[ > l,
Cn~2(logn)? ifa=1,
4 . l
drv(Yafon, 7)< 1", Yae(z ),
Cn~ 2. /logn lfOlZi,
Cn3 ifoe (5T, 3),

1—ad : 1 2
Cn lf()[e(a,m].

(viil) When g = Hy, d > 3, the bound (4.2) combined with the estimate (4.30) yields

1

Cn™2 ifa > %
Cn~i(logn)? ifa=1,
drv(Ya/on, Z) < { Cn—® ifa e (7.5,
Cn~%logn ifoo = d]Tp
Cnl-od ifae (S, 5.

We remark that the bounds derived in point (viii) coincide with the estimates obtained by Biermé, Bonami and Le6n
in [4] using techniques of Fourier analysis. Corollary 4.9 can be applied to any function g with an expansion g(x) =
j;lii cm Hyy (x) for any k£ > 0.

5. Application to fractional Brownian motion

Recall that the fractional Brownian motion (fBm) B = {B;,t € R} with Hurst parameter H € (0, 1) is a zero mean
Gaussian process, defined on a complete probability space (2, F, P), with the covariance function

1
E(B,B;) = E(|s|”’ + 27— |s —12H).

The fractional noise defined by X; = B; 11 — B, j € Z is an example of a Gaussian stationary sequence with unit
variance. The covariance function is given by

N . .
PN =5(1j+ 1PH 41— 1125 —215127).

Notice that pg (j) behaves as H(2H — 1) j2#~2 as j — o0o. Thus, this covariance function has a power decay at infinity
with « =2 — 2H. Consider the sequence Y,, defined by

1 n
Y, = ﬁZg(Bjﬂ - Bj),

j=1
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where g € LZ(R, y) has Hermite rank d > 1. As a consequence, the estimates obtained in Corollary 4.9 hold with o =
2 —2H. Here are some examples where these results can be applied.

Example 1. Consider the function g(x) = e* — \/e. It is easy to check that this function has Hermite rank d = 1 and g €
D°? for any p > 1. Then g admits the expansion g(x) = Zmzl cm Hy (x). By Corollary 4.9(i), we have for H € (0, %),

dTV(Yn/Jn» Z) < Cn_%

Example 2. Consider the function g(x) = sin(x) — x[E(Zsin(Z)). We can check that this function has Hermite rank
d =3 and g € D°? for any p > 1. Suppose g admits the expansion g(x) = Zmz3 cm Hpy (x). By Corollary 4.9(vii), we
have

Cn—? if H e (0,1),
Cn~2(logn)? if H=1,
dry(Vujon. 2y < {70 ifH € (3.3
Ccnfi-1 logn ifH:%,
CnH-1 if He(3,2),
CnéH—=5 if Heli, ).

In the next subsections, we will review some applications to the power variations in which functionals with Hermite
rank 2 will be considered.

5.1. Application to the asymptotic behavior of power variations

For any p > 1, the power variation of the fBm on the time interval [0, 1] is given by

n—1
VI (B)=Y |Bii — B;|".
j=0

By the self-similarity property of fBm, the sequence {n* (B j+1 — B;), j > 0} has the same distribution as {Bjy1—Bj,j >
0}, which is stationary and ergodic. By the Ergodic Theorerﬁ, we hnave, as n — 0o,

nPH=1yP(B) — cp

almost surely and in L9(2) for any g > 1, where ¢, = IE(|Z]”). Moreover, when H € (0, %), using the fact that the
function g(x) = |x|?” — ¢, has Hermite rank 2, the Breuer—-Major theorem leads to the following central limit theorem

Sp:=/n(n?"VI(B) = c,) > N(0.07 ). (5.1)
where 0'121’1) =30 ,c2m!Y i cp o)™, with [x|P — ¢, =Y o, ¢y Hy(x). A functional version of this central limit
theorem can also be proved (see [9]).

We can apply the results obtained in Section 3 to derive the rate of convergence for the total variation distance in (5.1).
Indeed, the sequence S,, has the same distribution as

1 n
Y, Zﬁ(;ZIBHl — Bjl” —c,,),
j=1

and it suffices to consider the case of the fractional noise X; = B — B; and the function g(x) = |x|” — ¢, that
has Hermite rank 2. More precisely, if N < p < N + 1 where N > 2 is an integer, then the function g belongs to
DN .= qul DN4(R, y) and Corrollary 4.9 gives the convergence rate to zero of drv (S, /0,, Z) witha =2 —2H. Here
are some examples.
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Example 3. Let p =2.5 and 02 = E(S2) = E(Y?). Then g € D? and

1

Cn~z if He(0,1),
drv(Su/on, Z) < Cn3(logn)? it H =1,
Cn3t—2 if He (3.3).

Example 4. Let p =3 and 02 = E(S2) = E(Y?). Then g € D? and

1

Cn™2 if H e (0,1),
drv(Sp/on. Z) <\ Cn~2logn if H=1,

cn?f=1 ifHed,d).

Example 5. Let p =4 and 02 =E(S2) =E(Y?). Then g € D* and

Cn~2 if He(0,1),
_1 . 1
drv(Spfon, 7)< | €1 P Vlogn TH =5
Ccntl-1 if H e (5, 3],
Cn*H =3 if He (3, 2).

Example 6. Let p =6 and 0> = E(S2) = E(Y?). Then g € D% and

1

Cn™2 if H €(0,3),
drv(Sp/on. Z) < { Cn=2(logn)? if H =2,
Ccn®H—3 it He,3).

5.2. Application to the estimation of the Hurst parameter

As an application of the convergence rates of power variations, we establish the consistency of the estimatior of the Hurst
parameter H for the fBm, defined by means of p-power variations. This problem has been studied for H > % using
quadratic variations in the papers [2,10,11,20] and the references therein. In the paper [8], a consistent estimator based on

the p-power variation is adopted, defined as

H=

logC, — log(n~'V,/ (B))

plogn '
where the specific constant C;, depends on p. In the paper [8], the author also discusses other filters to define the power
variation and obtains a normalizing factor for the central limit theorem equal to 1/./nlogn. Here we construct another

estimator based on the p-power variation, which is motivated by the papers [2,11], where the quadratic variation is used.
Let A > 1, » € N be a scaling parameter. Fix p > 2, and consider the statistics 7}, , defined by

An—1
VL) _ Xi=o |Ba B
Vi (B) Zr;;gﬂB& —B;|?

An

Then we propose the following estimator for the Hurst parameter H:

) 1 log T
., = _(1 _ 0 “). (5.2)
' )4 log 1

In the next proposition we show the consistency of this estimator. Though the consistency could be clearly obtained
from the ergodic theorem, we will apply the main results obtained in this paper to prove the consistency as well as the
convergence rate.
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Proposition 5.1. When H € (0, 3), for p € {2} U[3, 00),

lim [ (Ayn— H) =0,
n—oo logn

in probability.
Proof. Denote o, =n~'TPH v/ (B). Then
logay, —logay, = (=14 pH)logh +log Ty p.

Thus

A _ log oy, —logoy,

H, ,— H= 5.3
An plog)» ( )

Let 0,2 = E[(y/n(ety — ¢))*]. By previous results, we know that /n(ety — ¢) — o, ,Z where 5.2 — a%l’p, and

n
dTv<—ﬁ(an — <) , Z) <n ¢
O,

n

for some a > 0. Then for any € > 0,

p(’@ >e\/@> < P(1Z| > ey/logn) +n~¢
n
Ce

2
nz \/logn

=<

—a
+n k)

e"‘2/

where we have used the estimate for the tail of a standard Gaussian random variable, i.e., P(Z > x) < . This implies

x2m
that %;;‘J — 0 in probability as n — oo. Back to equation (5.3), note that logar;, —logc), = é (aty — ¢p) for some o)

between o, and c,. These results are true for a,,, as well, so we conclude that (ﬁ;h n — H) — 0 in probability. [J

n
logn
Appendix

In this section we show some technical lemmas that play a crucial role in the proof of our main results.

Lemma A.1. Under the notation and assumptions of Theorem 1.1, let I and I, be the random variables defined in (4.5)
and (4.6), respectively. Suppose d = 2. Then we have the following estimates.

(1) Ifge D3’4(R, y), then fori = 1,2, we have

B <CY ot —1)].
i#l

2) Ifge ]D)4’4(R, y), then fori =1, 2, we have

)| < c'(pm — )+l 1) pl; —13) + plls — 13)|. (A.D)
J#3

(3) If g is the Hermite polynomial x* — 1, then
()] < Clpt —13).
Proof. We first consider the term ;. Observe that

g1(X1y) = 8(g2(X1)h).
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Applying the duality relationship (2.1), we obtain

E(h)= Y E(“™Xy)e"?(x1,) () (X)g(Xy))
a+b+c=1

® b & 1®
x (1,15 @157 ®15°) .
When g is the Hermite polynomial x> — 1, we just need to consider the case @ = 0, b =0 and ¢ = 1. In this way we get
[EUD| < Cloti = 13)].

When g € D**(R, ), we obtain

[E(D[<C Y |oth —1).
i#1

When g € D**(R, y), in the case of ¢ = 0, we apply duality again to obtain

E(n= Y > E“ P Xp)gt (X)) (X1)ey (X1))
a+b=1a'+b'+c'=1

x (1,19 ® l?b)j“j(l?” 5o l?d>5
+E(8"(X1)8" (X1,)81 (X1)82(X1) p (1 — 13)).

Then the inequality (A.1) for i = 1 is derived from expanding the above identities.
Similarly, for the term I, since g’(X) has the Hermite rank 1, we can write

g'(X1) =58((g"),(X1)l).
Using this representation, we have
E(L) =E(5((g'), Xi)h)8((g), (X)) (X1)g} (X1)).

We use the similar arguments as the term /; to obtain the inequality (A.1) for i = 2. g

Lemma A.2. Under the notation and assumptions of Theorem 1.1, let 11 and I, be the random variables defined in (4.5)
and (4.6), respectively. Suppose d > 3. Then fori =1, 2,

BN <C Y ot —)P pth — 1) p(ly — 1)
BeL,
x p(ls — 1) p(ly — 1) p(3 — 1),

where B = (B, ..., Bs), No =NU {0} and

Ti=1BeNS:d—1<Bi+po+p3.d— 1< B+ Ba+ o,

6

d—2<Pi+Pa+pBs.d—2=Ps+Ps+Ps. Y Pi<3d—4¢. (A.2)
i=1

Moreover, if g is the Hermite polynomial H;, we obtain

[E(I)| < C > ot —)P oy — 3P p(ly — 1)P
Bel;

x p(ls =) pa — 1)~ p(ls — 1), (A3)
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where
L={B=(B1 B2 ) €N’ : 1 + o+ B3 =d — 1}.

Proof. We can represent the factor g1 (X;,) appearing in /; as

g1(Xp,) =847 (ga (X I®™D).

Then applying the duality relationship (2.2) and Leibniz’s rule yields

Ey= Y B X" (X))8a(X1)8” (X))
a+b+c=d—1
x p(h — L) p(ly — 1) p(y — 13)°.
‘We write

11— y d—1—
217 (i) = 8717 (T (1)) (XI5 79).

Then, applying again the duality relationship (2.2) and Leibniz’s rule, we obtain

E()= Y. > BT X ()
at+bt+c=d—1a'+b'+c'=d—1—c

x g5 (Xi)Tu-1-e(g1”) (X))
x p(ly — ) ply — 1) o1 — 13T p(l3 — 1) p(l3 — 19)".
We can still represent the factors g@+'+2 (X)) and g®*'+2 (X,,) as divergences:

(a+a'+2) (Xlz) _ 5d—(a+a’+2)( (a+a/+2))(Xlz)lgz>(d—(a+a’+2)))

8 Td—(a+a’+2) (g

and

(b+b'+2) (X1,) = 5d—(h+b’+2) ( (b+b’+2)) (X14)lf<d7(b+b,+2))).

g Ta—p+b+2) (8

Then, we repeat the above process to obtain, using the fact that g € D342,

EUD| =Y |pti =)™ ply — 1) oty — 13)°+

! v / " " n
)(l +c _ 14)17 +c ol — l4)tl +a

xp(ls =1 p(l3 ; (A4)

where the sum runs over all nonnegative integers a, b, ¢, a’, b’, ¢/, a”, b”, ", a"”, b"”, ¢"" satisfying
a+b+c=d—-1,
a+b+c=d-1-c,
a"+b" +c"=(d—-d —a-2)Vv0,
a"+b" +¢"=(d—b—b —a"—2) V0.

Inequality (A.4) can be equivalently written as

B <C Y |pth — )P pth —13)Pp — 1)P
BeT;

x p(lz — )P p(ly — 1P p (I3 — 14)Ps

s

where 8 = (81, ..., Be) and Z is the set defined in (A.2). Notice that we have the lower bound 21'6:1 Bi >=2d —3.On the

other hand, the upper bound 21-6:1 Bi <3d —4is attained whena =d — 1,a’ =d — 1, @’ = d — 2 and the other numbers
vanish. Taking into account that in this case the function g” might be differentiated 3d — 4 times, we need g € D342,
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When g is the Hermite polynomial Hy, g4 = 1 and g = Hy_1, s0 we have Ty_1_c(¢\”)) = (d — 1)(d —2)---(d — ¢).
In this case, taking into account of the orthogonality of Hermite polynomials of different order, we obtain

B[ <Cc > |eti=h)pt — 1) o —13)°
a+b+c=d—1,
a'+b'=d—1—c,
a+a'=b+b'=¢
x p(l3 = b)Y p(lz — 1) p(la — 1) 7277

Again this can be written as

EUD| < C Y ot — )P ot — 137 ph — 1)
pelr

x p(l3 — )P p(ly — 1) p (s — 14)Ps ],

where 7, is the set of 8 eNg suchthat 81 + o+ P3=d— 1,1+ Pc+Po=d—land 1 +Ps=P3+Ps=d —2— Bs.
This implies 81 = B¢, B3 = B4, B5 = B2 — 1 and B + B2 + B3 =d — 1, and this completes the proof of (A.3).
Similar arguments could be applied to handle the term /5. (|

Lemma A.3. Assume condition (1.2) with d = 2. Define

Z Z Z lezms/mzpmmsp%l

le=11i=1 s€{3,5,6} j=1
i#2 SHEL jFES

and

Z ( D 1p2ipsiP12p13p45 P46l

11 ,,,,, le=1 iF#S# ]
i,s,j€{3,5,6}

+ |Pzipsjpthp1zpl3p4sp46|>,
(i,5.j,1.h)eDs

where the set D3 has been defined in (4.21) and we recall that p;; = p(l; — ;). Then,

C 2
B < ;(Z Ip(k)}) (A.5)

|k|<n

and

Jz<— Yo le®]+—= <Z|p<k>| ) (A.6)

Ik\<n [k|<n

Proof. Step 1: We show first the inequality (A.5). We make change of variables Iy — I, = k1, 1] — I3 =ka, l4 —Is = k3,
l4 — le = kq. We first consider the term pp; that has three possibilities: p(k1), p (k1 — k2), or a new factor p(k5) where
ks =l —1; is linearly independent of k;,t =1, ..., 4. If pp; is one of the first two cases, py; have three possibilities: o (k;)
fori =2,3,4; p(ky — k) or p(kz — k4); a new factor p(ks) where ks =1; — [, is independent of k;, 1 <t <4.1If py; is
in the third case, i.e. a new factor, then p;; have several possibilities: p(k;) for i =2,3,4; p(k-v) where kK - v is a linear
combination of two, three or four or five k;’s, 1 <t < 5. Through this analysis, by taking advantage of the symmetry, we
obtain

cd
_22 > il

1kjl<n,1<j<5
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where
Ji1 = pk1)*p (k) p (k3)p (ka),
Ji2 = pk1)*p ko) p ki — k2)p(k3)p (ks).
Ti3 = p(k1)?p (k) p(k3) p (k) p (ks — ks),
Jia = p(k1)*p (ko) p(k3) p (k) p (ks),
Jis = pk1)p (k) p(ky — k2) p(k3)p (ka) p (k3 — ka),
Ji6 = p (k1) p(k2) p (k1 — k2) p(k3) p (ka) o (ks),
Ji7=pk)p(k2) p(k3)p(ka) p(ks)p (k1 — ks — k2),
Tig = p(k)p(ka)p(k3) p(ka) p(ks)p (ki — ka + k3 — ks),
Ji9 = p(k1)p(ka)p(k3)p(ka) p(ks)p (ki — ka + k3 — ka + ks).

We claim that fori =1, ..., 9, the following estimate holds true
1 c 2
= 2 Mul=—( X lew]) (A7)
lkjl<n,1<j<5 |k|<n

The estimate (A.7) holds clearly for i = 1 and i = 4 due to condition (1.2) with d = 2. By the Cauchy—Schwartz inequality
we have

Y pk)|pl)plhy — k)| < o0
kil k2 |<n

and (A.7) is true for i = 2. For i = 3,5, 6, the estimate (A.7) follows from (A.18) and (A.19) with M = 2 and for
i =17,8,9 we use these inequalities with M =3, 4, 5, respectively.
Step 2: We proceed to prove the inequality (A.6). Note that for the first summand in J>, the product py; ps; can be only

one of the following terms: p23 056, 026035, OF P25036. In the first case, we obtain the term Jis5, for which we have, by
(A.18) with M =2,

X s (Tlewl)

lkjl<n,1<j<5 |k|<n

4
In the second and third case, we obtain the term J19, for which we have, by (A.18) with M =5,

1 C 6
Y sls n—z(Z |p(k)|§>

lkjl<n,1<j<5 |k|<n

5
: (A.8)

By Holder’s inequality,

6 5 3 4
(le(k)|5> 5n<Z|p(k)|2) : (A.9)

[k|<n lk|<n

and we obtain the desired bound.

Let us now consider the second summand in the expression of J>. This summand will consists of terms of the form
Jiipm fori=1,...,4,6,...,9, where p;; can be written as a linear combination of k,...,ks. Fori =6,...,8, we
estimate the factor | ;| by one and apply the estimate (A.18) with M =2, 3, 4 to obtain

1 C 3 3\?
= > |116|§’?(Z|p(k)|> <Z|p<k>|2), (A.10)

lkjl<n,1<j=<5 lk|=<n [k|<n

1 c 2 a\?
= 2 |Jl7|§r?(2|,0(k)|) <Z|p<k)|3), (A.11)

lkjl<n,1<j<5 |k|<n [k|<n
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and
1 C s\4
> |118|§—2(Z|p(k)|)<2|p(k)|4>. (A.12)
"k l<nmi<j<s " Nikj=n e

Then, from (A.10) and (A.24), we get

1 C 3\*
p > |116|s;<2|p<k>|3).

lkjl<n,1<j=<5 |k|<n

From (A.11), (A.23) with M = 3 and (A.24),

1 c 3\*
=D |Jl7|s;<2}p<k>!3).

|kjl<n,1<j<5 [k|<n

Finally, from (A.12), (A.23) with M = 4 and the above inequality of Ji7,

1 c 3\*
= 2 |J18|s;(2}p<k>|2).

|kjl<n,1<j<5 [k|<n

The term J19 can be handled applying (A.8) and (A.9).

For J11, J12, t can be just chosen from the set {5, 6} and the possible values of the factor o, (after a change of variable)
canbe p(k3), p(ka), p(kz —k4) or p(ks) where ks is linearly independent of k1, .. ., k4. Then we first sum up the variables
k1 and k; and this part produces a constant. The sum with respect to k3, k4, ks is as follows.

> ptks)?ptka)| <

lkjl<n |k|<n

3
> |ptka)pka)plks)| = (Z |p<k>|) <n
lkjl<n |k|<n |k|<n

and

Y lpk)pka)phs —ka)| <

|kjl<n k| <n

where we have used (A.18) and (A.19) with M = 2. Therefore,

5
1 C .
EZ Z |J1ipth|§;2|,0 i=1,2.
J=Lllkjl<n |k|<n
For Ji3, t = 3 and possible values of p;, can be p(k2), p (ko — k1) or p(ks) where ks is linearly independent of kq, ..., k4.

The first two cases have been considered above in the discussion of the terms Jij 0,4, and Ji2p0;,. For the third case,
observe that

5
1
— Z > otk pka)ok3)p(ka) p (ks — ka)p (ks)]

: k |<n

C C

—2(2 |p(k)|) == le®),
|k|<n |k|<n

where we have used (A.18) and (A.19) with M = 2. Thus,

5
%Z > Wispal= o 3 o).

=llkjl<n [k|<n
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Finally, for Ji4, the term p;, could be p(k;), i =2,...,4 or p(x) where % is a linear combination of k;’s which at least
involves two different terms kj, and kj, where hy, hy € {2,3,4,5}. The first case has been considered above in the
discussion of the terms Jy; o5, = 1,2, 3. For the second case, we apply inequalities (A.18) and (A.19) with M =2, 3,4
and we get

1 5
=2 2 et pt)pks)pka)pks) o ()]
j=Lllkjl<n

%(Z Ip(k>!> <3 o)

[k|<n |k|<n
Therefore, 2 Z] 1 Z‘k 1<n 114000 < 5 Zlk‘q |o(k)| and this finishes the proof. O

Lemma A.4. Assume condition (1.2) with d = 2. Define

Li=n"* " Y 1p12P13P14P56P57P5802i Ps) Prh
I1,eods=1 (i,5,j,1,h)EDs

where the set D4 has been defined in (4.25). Then

C 3
< n_z(z |p<k>|> : (A.13)

|k|<n
Proof. We make the change of variables 11 — lz = k], 11 — 13 = kz, 11 — 14 = k3, l5 — 16 = k4, 15 — 17 = k5, 15 — lg = k6.
The factors p;, psj and p;; can be one of the two forms:

(1) pap, wherear, B €{1,2,3,4}ore, B €1{5,6,7,8}.
(ii) pap, where  €{1,2,3,4}and B €{5,6,7,8}or B e{1,2,3,4}andx €{5,6,7,8}.

For factors of the form (i), we have p,s = p(k - v), where Kk is one of the vectors (ki, k2, k3) or (ks4, ks, ke) and v is a
vector in R3 whose components are 0, 1 or —1. For the first factor of the form (ii), we write psg = p(k7), where k7 is a
new variable independent of the k;’s, 1 <i < 6. If there are more than one factor of the form (ii), then these extra factor(s)
can be written as p (K - v), where k = (k1, kp, k3, k4, ks, ke, k7) and v is a vector in R7 whose components are 0, 1 or —1.
Then we decompose £ as the sum of several terms £ ;, according to the following cases:
Case 1: There are three factors that have power 2. We denote the corresponding term by L. For this term we have

1 C 3
Li=— ) p(k1>2p(kz>2p(k3>2|p(k4)p(ks)p<k6)|sn—2(2|p<k)|) :

Jkil<n lk|<n
Case 2: Two factors have power 2. Then we have the following possibilities by taking into account of the symmetry.

1
Loi=— > [p?6)0*ka)pks)pka)p(ks)p ko) p (k)|

and

1
Li3:=— |p?
n

i
=1 6

where k = (ky, k2, k3, ka, ks, k¢) and v is a vector in R® whose components are 0, 1 or —1. Clearly,

L < 5(2 |p<k)|> nC (Z |p(k>|>

[k|<n lkl<n
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For L13, k - v involves at least two factors k;, kj» but k - v cannot be a linear combination of only k; and k3. Applying
inequality (A.21) with M =5, yields

3
L3 =< n_2<2 |/0(k)}) .
|k|<n

Case 3: Only one factor has power 2. Then we have the following two possibilities, taking into account the symmetry.
The first one is

k]

1
Liu=— > [pPU)pk)pks)pka)p(ks)p(ke)p k7)o (K -v)

where kK = (k1, kp, k3, k4, ks, k¢, k7) and v is a vector in R whose components are 0, 1 or —1 and it has at least two
nonzero components. By (A.21) with M =7, we can write

tu= S(Tlowl) = S(Slow))

lk|<n lkl<n

3

The second possibility is

1
£15:=n—2 Z |02 (k1) p(k2) p(k3) p (ka) p (ks) p (ke) p (k- V) p (K - W)

[ki|<n
i=1,...,6

where k = (ky, k2, k3, k4, ks, kg) and v, w are vectors in R®in sucha way that k - v and k - w are linear combinations of ky,
ko, k3 or k4, ks, ke with exactly two nonzero components equal to 1 and —1 and satisfying some additional restrictions,
due to the definition of the set D4. There are several combinations:

(1) k- v and k - w are chosen differently from {k; — k2, ko — k3, k1 — k3 }. In this case, by Proposition 2.4 with p; =1,
pi = 1 for2 <i <5, we have

Z [P (k1) p k) pk3)p(k - v)p(k-w)| < C,

Iki|<n.1<i<3
and we obtain
C 3
Lis < ;(kz }p<k>!) : (A.14)
[kl<n

(i1) k- v and k - w are two different linear combinations chosen among {ks4 — ks, k4 — k¢, ks — k¢}. Then, the inequality
(A.22) with M = 3 yields

Yo |ptka)pks)ptke)p(k-v)pk-w)| < D |p(k)

|kil<n,i=4,5,6 lkl<n

’

which implies (A.14).
(iii) k-vischosenfrom {k; —kj, ko — k3, k1 —k3}, and k- w is chosen from {k4 — ks, kg — kg, ks — kg }. Take K- v =k —kp
for example, then (A.14) follows from

S |eRtknptkptk —k)| < C

[ky|<n,lkza|<n

and (A.20) with M = 3. Similar arguments apply if k- v=k; — k3. If K- v = ko — k3, we use (A.20) and (A.21) with
M =3.
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Case 4: All factors have power 1, i € {3,4}, and p;; = p(K - V), oy, = p(K- W) where k - v is a linear combination of
k1, k2, k3 and k - w is a linear combination of k4, k5, kg, or vice versa. We denote the corresponding term by L¢. Then
the estimate

cl6sn2<2|p(k>})3

|k|<n

follows from (A.22) with M = 3 and (A.20) with M = 3.

Case 5: All factors have power 1, and there is one of the differences I; — I, [; — I; or I, — I, linearly independent of
k1, ..., ke. We denote this difference by k7. The other two factors are of the form p(k - v) and p(k - w), where k - v and
k - w are linear combinations of ki, ..., kg, k7. In this case, the desired estimate follows from the inequality (A.22), with
M =71. In fact, if we denote the corresponding term by L7, we obtain

C S 3
Ly < n—3<2 |p<k>|> < n—2<2 |p<k>|> :
|k|<n [k|<n
This finishes the lemma. O

Lemma A.5. Define

n
Ly=n"* > 1p12p13024056570683i s |
I3

,,,,, lg=1 i#s#j
is.je(4,7.8)
and
n
Ly=n"* D 1p12013P24P56P57P68 3 s Prh

I1s.lg=1(i,s,j.1,h)€Ds
where the set Ds has been defined in (4.26). Then
C £\°
ﬁzSE(Z!p(k)|‘) , (A.15)
|k|<n
and
C 3
£3Sﬁ<2|p(k)|> : (A.16)
|k|<n

Proof. Let us first show (A.15). We make the change of variables Iy — I = k1, l1 — I3 = ko, Iy — 14 = k3, s — lg = ka4,
Is —17 = ks, lg — I3 = k¢. By symmetry, it suffices to analyze the cases i =4 andi = 7.If i =4, then p34 = p (k1 —k +k3)
and s =8, j =7 ors =7, j =38, which gives p;; = p(k4 — ks + k). In this case, we obtain a term of the form

Loy =n"" Z | (k) p(ka)p (k3)p (ki — ka + k3) p(ks) p (ks) p (ke) p (ka — ks + ke)|.

Jki|=<n,

i=l1,..,

Applying inequality (A.18) with M = 3 yields

c A\ 6
Lo1 < n—2(2|p(k)|§> :

[kl<n
In the case i =7, we set p37 = p(k7) and have two possibilities for sj: 48 and 84, which produce the following term

Lyz:=n"3 Y |p(ki)p(ka)p(ks)p(ka)p (ks)p (k) (k7)

x plka + k7 — k3 — ki — ks + ka + ke)|.
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Applying the inequality (A.18) with M =7 and Holder’s inequality, we obtain

£22<—(Z|p(k)| ) <—(Z|p<k>| )

|k|<n |k|<n

This finishes the proof of (A.15). The proof of (A.16) is analogous to that of (A.13). Namely, we can make the change
of variables I} —lp = k1,11 —l3 =ka, lp —la =k3,ls — lg = ka, 5 — 7 = k5, lg — I3 = kg, and follow the arguments of
(A.13). A subtle difference might be the verification of (A.14). That is, the estimation of

1
Lisi=— 3 |p)p’ (k2)pks)p(ka)p(ks)p(ks)o - v)pll- W),

|ki|<n
i=1,..,6
where k - v, k - w have the following two cases:

(i) They are linear combinations of k4, ks, ke.
(ii) k- v is a linear combination of ki, k2, k3 (k1 — kp with respect to i = 2 or ko — k1 — k3 with respect to i = 4), and
k - w is a linear combination of k4, ks, k¢.

In the case (i), we apply the inequality (A.22) with M = 3 to obtain

C 3
Li5 < — . .
1s_n2<2|p(k)|> (A.17)
[k|<n
In the case (ii), we apply (A.21) with M = 3 and (A.20) with M = 3 to obtain the desired the inequality (A.17). O

The next lemma contains several inequalities that are used along the paper.

Lemma A.6. Fix an integer M > 2. We have

> ok v)|1‘[|p<k>|<c(2| <k>|‘*M) , (A.18)

[kjl<n |k|<n
1<j<M
where k = (ky, ..., ky) and v e RM js a fixed vector whose components are 1 or —1. Furthermore, ikaeZ ,o(k)2 < 00,

then

]+L M M—1
<Z|p(k)} M) §C<Z|p(k)|> (A.19)

lkl<n [k|<n

and if v € RM s a nonzero vector whose components are 0, 1 or —1,

M—1
D ek v>|1_[|p(k)\<C<Z|p(k>|> : (A.20)

[kjl<n |k|<n
1<]<M

Proof. Applying the Brascamp-Lieb inequality (2.12), we have

M+1

S [Tl =c Il (Z|p<k>|m) §

lkjl<n j=1 [k|<n

1</ <M
where p; <1 and ZIMTI pi = M. Choosing pi = M/(M ~|—1 1) for i2= 1,..., M + 1, we get inequality (A.18). To show
(A.19), we make the decomposition | p () = |pk)|' 7 |p(k)| 7 and apply Holder’s inequality with exponents p =
% and ¢ = M. Finally, to show (A.20), we decompose the sum into the product of the sum with respect to the k;’s that
appear in k - v and the sum of the remaining terms. ([
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Lemma A.7. Fix an integer M >3 and assume Y ;.5 p(k)* < co. We have

M M-2
Y ek [pG-w[[Tlok)] sc(2|p(k)|) : (A21)
[kjl<n j=2 |k|<n
I<j<M
where K = (ky,...,kpy) and v € RM js a fixed vector whose components are 0, 1 or —1 and it has at least two nonzero
components.

Proof. It suffices to assume that all the components of v are nonzero. In this case, we apply the Brascamp-Lieb inequality

(2.12) with exponents py=1land po=--- = py+1 = MT_I and inequality (A.19) with M replaced by M — 1. (]

Lemma A.8. Fix an integer M > 3 and assume ) _; p (k)% < 0o. We have

M M-2
D lpavpt-w| [ loG))| SC<Z|p(k>\) : (A22)
[kjl<n Jj=1 |kl<n
1<j<M
where k= (k,...,ky) andv,w e RM gre linearly independent vectors, whose components are 0, 1 or —1 and they have

at least two nonzero components.

Proof. Suppose first that p(k - v)po(k - w) involves only three k;’s, for instance, ki, k2, k3. In this case, applying the
Brascamp-Lieb inequality (2.12) with exponents p; =3/5, 1 <i <35, yields,

s\ 3
> loGnpt)pla)ptk-vptk-w)| < (Z ;p(k)p> |

|ki|<n lkl<n
1<i<3

Notice that assumption (ii) in Proposition 2.4 is satisfied because three of the vectors (1,0, 0), (0, 1,0), (0,0, 1), v, w
may span a subspace of dimension 2, and we have 3 x 3/5 =9/5 < 2. Then, making the decomposition | ,o(k)|% =
lp (k)| 3 | p(k)l»% and using Holder’s inequality with exponents p =3 and g = %, yields

(Z |p(k)|§)3 =C 3 otk

|k|<n |k|<n

3

which gives the desired estimate.
If p(k - v)p(k - w) involves four k;’s, for instance, k1, k2, k3, k4, we apply the Brascamp-Lieb inequality (2.12) with
exponents p; =2/3, 1 <i <6, and we obtain

4
D [pkDp ) pk3)pka)p (k- v)p(k - w)| < (Z |p(k)|%> :
|ki|<n |k|<n

1<i<3

Then, using (A.19) with M = 2, yields

(Z \p(k)|%)4 < c(Z \p(k)\)

lkl<n lkl<n

2
)

which gives the desired estimate. Finally, if p(k - v)p(k - w) involves more than four k;’s, the result follows again from
the Brascamp-Lieb inequality (2.12), where we choose p; =2/3 for the factors p(k - v), p(k - w) and for the four factors
p (ki) such that k; appears in the linear combination with less factors, and we choose p; = 1 for all the remaining factors
p(k;) appearing in the linear combinations p(k - v) or p(k - w). (Il

The last lemma summarizes some inequalities derived from the application of Holder’s inequality.
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Lemma A.9. Forany M > 2, we have
L M u \ M-
<Z|p(k)} M) E(Z!p(kﬂ)(Z!p(k)]M‘])
[k]<n |k|<n [k|<n
and
3 3\ 2
(le(k>!) 5n<Z|p(k>|2> :
|k|<n [kl<n

Furthermore, if "4 <,, |0 (k)|* < 00, then

o] < c(Z |p<k>|§)%.

[k|<n [k|<n

(A.23)

(A.24)

(A.25)

Proof. To show (A.23) we make use of the decomposition | ,o(k)|1+% = |pk)|| ,o(k)lﬁ and apply Holder’s inequality

with exponents p = % and ¢ = M. For (A.25) we use the decomposition | p(k)lg = |pK)]| ,o(k)|% and apply Holder’s

inequality with exponents p = % and g = 4. Finally, for (A.24) we use again Holder’s inequality.

The following lemma has been used in the proof of Theorem 4.7.

Lemma A.10. The function

2
W(a) = (Z |p<k>|d‘7)

[kl<n

[k|<n

defined on the interval 2, %] is nonincreasing.

O

Proof. Without any loss of generality, we can assume that p (k) > O for all |k| < n. It suffices to check that the derivative

of W is nonpositive. We have

V@) =- Y |pt)|"” (Z!p(m! “log \pac)y)zyp(k)\

[kl<n lk|<n k| <n

2
+ (Z |p(k>|"2) > o) log(|p(k)])

|k|<n |k|<n

= (Z|P<k>|d‘%)

[k|<n

< > (letn|E o) [0 7E || log(|p (k) )

ki ez <
= (Z \p<k>!d_%)
[k|<n

d——

x> Jetn| ot |*[lp G| ~ |ptka)|?

Ik, k2| <n
By symmetry, we obtain

1 _a
\Iﬂ(a)=5(2|p(k)!d ) S et ot [|pthn|*

|kl<n k1], lka]<n
x (log(|p(k2)|) —log(|pkn)])) <0

The proof of the lemma is complete.

“#og(|p (k).



Total variation estimates in the Breuer—Major theorem 777

Acknowledgement

We would like to thank an anonymous referee for several valuable corrections and suggestions.

References

(1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(11]
[12]
[13]
[14]
[15]

[16]
(171

(18]
[19]

(20]

F. Barthe. On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134 (1998) 335-368. MR1650312 https://doi.org/10.1007/
5002220050267

A. Benassi, S. Cohen, J. Istas and S. Jaffard. Identification of filtered white noises. Stochastic Process. Appl. 75 (1) (1998) 31-49. MR1629014
https://doi.org/10.1016/S0304-4149(97)00123-3

J. Bennett, A. Carbery, M. Christ and T. Tao. The Brascamp-Lieb inequalities: Finiteness, structure and extremals. Geom. Funct. Anal. 17 (5)
(2008) 343-1415. MR2377493 https://doi.org/10.1007/s00039-007-0619-6

H. Biermé, A. Bonami and J. Léon. Central limit theorems and quadratic variations in terms of spectral density. Electron. J. Probab. 16 (2011)
Paper no. 13, 362-395. MR2774094 https://doi.org/10.1214/EJP.v16-862

H. Biermé, A. Bonami, I. Nourdin and G. Peccati. Optimal Berry—Esseen rates on the Wiener space: The barrier of third and fourth cumulants.
ALEA Lat. Am. J. Probab. Math. Stat. 9 (2) (2012) 473-500. MR3069374

H. J. Brascamp and E. H. Lieb. Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math.
20 (2) (1976) 151-173. MR0412366 https://doi.org/10.1016/0001-8708(76)90184-5

P. Breuer and P. Major. Central limit theorems for non-linear functionals of Gaussian fields. J. Multivariate Anal. 13 (1983) 425-441. MR0716933
https://doi.org/10.1016/0047-259X(83)90019-2

J. F. Coeurjolly. Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch.
Process. 4 (2) (2001) 199-227. MR1856174 https://doi.org/10.1023/A:1017507306245

J. M. Corcuera, D. Nualart and J. H. C. Woerner. Power variation of some integral fractional processes. Bernoulli 12 (4) (2006) 713-735.
MR2248234 https://doi.org/10.3150/bj/1155735933

J. Istas and G. Lang. Quadratic variations and estimation of the local Holder index of a Gaussian process. Ann. Inst. Henri Poincaré Probab. Stat.
33 (4) (1997) 407-436. MR 1465796 https://doi.org/10.1016/S0246-0203(97)80099-4

K. Kubilius and Y. Mishura. The rate of convergence of Hurst index estimate for the stochastic differential equation. Stochastic Process. Appl.
122 (11) (2012) 3718-3739. MR2965922 https://doi.org/10.1016/j.spa.2012.06.011

1. Nourdin and G. Peccati. Stein’s method on Wiener chaos. Probab. Theory Related Fields 145 (1) (2009) 75-118. MR2520122 https://doi.org/10.
1007/s00440-008-0162-x

I. Nourdin and G. Peccati. Normal Approximations with Malliavin Calculus. From Stein’s Method to Universality. Cambridge University Press,
Cambridge, 2012. MR2962301 https://doi.org/10.1017/CBO9781139084659

I. Nourdin and G. Peccati. The optimal fourth moment theorem. Proc. Amer. Math. Soc. 143 (7) (2015) 3123-3133. MR3336636 https://doi.org/10.
1090/S0002-9939-2015-12417-3

I. Nourdin, G. Peccati and G. Reinert. Second order Poincaré inequalities and CLTs on Wiener space. J. Funct. Anal. 257 (2) (2009) 593-609.
MR2527030 https://doi.org/10.1016/j.jfa.2008.12.017

D. Nualart. The Malliavin Calculus and Related Topics. Springer-Verlag, Berlin, 2006. MR2200233

D. Nualart. Malliavin Calculus and Its Applications. CBMS Regional Conference Series in Mathematics. American Mathematical Society, Provi-
dence, 2009. MR2498953 https://doi.org/10.1090/cbms/110

D. Nualart and S. Ortiz-Latorre. Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 (4)
(2008) 614-628. MR2394845 https://doi.org/10.1016/j.spa.2007.05.004

D. Nualart and G. Peccati. Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (1) (2005) 177-193. MR2118863
https://doi.org/10.1214/009117904000000621

C. Tudor and F. Viens. Variations and estimators for selfsimilarity parameter through Malliavin calculus. Ann. Probab. 37 (6) (2009) 2093-2134.
MR2573552 https://doi.org/10.1214/09- AOP459


http://www.ams.org/mathscinet-getitem?mr=1650312
https://doi.org/10.1007/s002220050267
http://www.ams.org/mathscinet-getitem?mr=1629014
https://doi.org/10.1016/S0304-4149(97)00123-3
http://www.ams.org/mathscinet-getitem?mr=2377493
https://doi.org/10.1007/s00039-007-0619-6
http://www.ams.org/mathscinet-getitem?mr=2774094
https://doi.org/10.1214/EJP.v16-862
http://www.ams.org/mathscinet-getitem?mr=3069374
http://www.ams.org/mathscinet-getitem?mr=0412366
https://doi.org/10.1016/0001-8708(76)90184-5
http://www.ams.org/mathscinet-getitem?mr=0716933
https://doi.org/10.1016/0047-259X(83)90019-2
http://www.ams.org/mathscinet-getitem?mr=1856174
https://doi.org/10.1023/A:1017507306245
http://www.ams.org/mathscinet-getitem?mr=2248234
https://doi.org/10.3150/bj/1155735933
http://www.ams.org/mathscinet-getitem?mr=1465796
https://doi.org/10.1016/S0246-0203(97)80099-4
http://www.ams.org/mathscinet-getitem?mr=2965922
https://doi.org/10.1016/j.spa.2012.06.011
http://www.ams.org/mathscinet-getitem?mr=2520122
https://doi.org/10.1007/s00440-008-0162-x
http://www.ams.org/mathscinet-getitem?mr=2962301
https://doi.org/10.1017/CBO9781139084659
http://www.ams.org/mathscinet-getitem?mr=3336636
https://doi.org/10.1090/S0002-9939-2015-12417-3
http://www.ams.org/mathscinet-getitem?mr=2527030
https://doi.org/10.1016/j.jfa.2008.12.017
http://www.ams.org/mathscinet-getitem?mr=2200233
http://www.ams.org/mathscinet-getitem?mr=2498953
https://doi.org/10.1090/cbms/110
http://www.ams.org/mathscinet-getitem?mr=2394845
https://doi.org/10.1016/j.spa.2007.05.004
http://www.ams.org/mathscinet-getitem?mr=2118863
https://doi.org/10.1214/009117904000000621
http://www.ams.org/mathscinet-getitem?mr=2573552
https://doi.org/10.1214/09-AOP459
https://doi.org/10.1007/s002220050267
https://doi.org/10.1007/s00440-008-0162-x
https://doi.org/10.1090/S0002-9939-2015-12417-3

	Introduction
	Preliminaries
	Gaussian analysis
	Malliavin calculus
	Brascamp-Lieb inequality
	Stein's method

	Basic estimates for the total variation distance
	Main results
	Case d=1
	Case of d=2
	Case d >=3

	Application to fractional Brownian motion
	Application to the asymptotic behavior of power variations
	Application to the estimation of the Hurst parameter

	Appendix
	Acknowledgement
	References

