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ABSTRACT 

Existing automated code checking (ACC) systems require the extraction of 
requirements from regulatory textual documents into computer-processable rule 
representations. The information extraction processes in those ACC systems are based 
on either human interpretation, manual annotation, or predefined automated 
information extraction rules. Despite the high performance they showed, rule-based 
information extraction approaches, by nature, lack sufficient scalability – the rules 
typically need some level of adaptation if the characteristics of the text change. 
Machine learning-based methods, instead of relying on hand-crafted rules, 
automatically capture the underlying patterns of the existing training text and have a 
great capability of generalizing to a variety of texts. A more scalable, machine learning-
based approach is thus needed to achieve a more robust performance across different 
types of codes/documents for automatically generating semantically-enriched building-
code sentences for the purpose of ACC. To address this need, this paper proposes a 
machine learning-based approach for generating semantically-enriched building-code 
sentences, which are annotated syntactically and semantically, for supporting IE. For 
improved robustness and scalability, the proposed approach uses transfer learning 
strategies to train deep neural network models on both general-domain and domain-
specific data. The proposed approach consists of four steps: (1) data preparation and 
preprocessing; (2) development of a base deep neural network model for generating 
semantically-enriched building-code sentences; (3) model training using transfer 
learning strategies; and (4) model evaluation. The proposed approach was evaluated on 
a corpus of sentences from the 2009 International Building Code (IBC) and the 
Champaign 2015 IBC Amendments. The preliminary results show that the proposed 
approach achieved an optimal precision of 88%, recall of 86%, and F1-measure of 87%, 
indicating good performance. 
   
INTRODUCTION 

Existing automated code checking (ACC) systems require the extraction of 
requirements from regulatory textual documents into computer-processable rule 
representations. The information extraction (IE) processes in those ACC systems rely 
on either human interpretation, manual annotation, or predefined automated 
information extraction rules. For example, the state-of-the-art methods for extracting 
ACC-related information are rule-based (e.g., Zhang and El-Gohary 2013, Zhou and 
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El-Gohary 2017), which require human effort to develop rules for automatically 
extracting the information from the building codes. Despite the high performance they 
showed, rule-based approaches, by nature, lack sufficient scalability – the rules 
typically need some level of adaptation if the characteristics of the text change. 
Machine learning-based methods, instead of relying on hand-crafted rules, 
automatically capture the underlying patterns of the existing training text and have a 
great capability of generalizing to a variety of texts. A more scalable, machine learning-
based approach is thus needed to achieve a more robust performance – without 
requiring manual rule adaptation effort – across different types of codes/documents for 
automatically generating semantically-enriched building-code sentences for the 
purpose of ACC.  

To address this need, this paper proposes a machine learning-based approach 
for generating such semantically-enriched building-code sentences that are annotated 
with semantic information elements (Zhang and El-Gohary 2013) and syntactic fillers, 
and thus are ready for computer processing and reasoning. The proposed approach uses 
transfer learning strategies to train deep neural network models on both general-domain 
and domain-specific data. On one hand, general-domain data are large-scale and 
pattern-rich, which helps train the model to deal with different text patterns across 
multiple codes/documents for increased robustness and scalability; but general-domain 
data are relatively different from the domain-specific data in terms of vocabularies, 
syntactics, and semantics. On the other hand, domain-specific data (i.e., annotated 
building code sentences) are the target data from the 
architecture/engineering/construction (AEC) domain, but they are much smaller in size 
and are lower in syntactic and semantic richness, which would limit the robustness and 
scalability of the deep neural network model if they are solely used for training. The 
proposed approach, thus, takes the best of both worlds.  

The proposed approach consists of four main steps: (1) prepare and preprocess 
training and testing data from both outside of the AEC domain (i.e., the general-domain 
data) and within the AEC domain (i.e., the domain-specific data); (2) development of 
a base deep neural network model for generating semantically-enriched building-code 
sentences; (3) model training using different transfer learning strategies; and (4) model 
evaluation using precision, recall, and F1-measure.  

 
BACKGROUND 
 
Semantic Text Enrichment 

Semantic text enrichment aims to attach computer-processible semantic 
information to the natural language text (Abel et al. 2011). Compared to the original 
natural language text, the semantically-enriched text contains highly-structured, and 
often domain-specific semantic information that can be used directly by computers for 
semantic analysis tasks. There are many applications, tools, and platforms for creating 
and managing semantically-enriched texts (e.g., semantic wiki). And many research 
efforts have been focused on automating the process of generating semantically-
enriched text and/or text semantic annotation (e.g., Abel et al. 2011, Dugas et al. 2016). 
To solve the needs for automated compliance checking of building designs, different 
types of building-code requirement representations have been proposed and can be 
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potentially used as the semantic annotations in the semantically-enriched building-code 
sentences, such as the semantic information elements (Zhang and El-Gohary 2013),  
shown in Table 1. 

 
Table 1. Essential Semantic Information Elements for Representing 

Requirements for Compliance Checking Purposes (Zhang and El-Gohary 2013) 
 

Semantic information 
element 

Definition 

Subject An ontology concept representing a thing (e.g., building 
element) that is subject to a particular requirement 

Compliance checking 
attribute 

An ontology concept representing a specific characteristic 
of a “subject” that is checked for compliance  

Deontic operator indicator A term/phrase that indicates the deontic type of the 
requirement (i.e., obligation, permission, or prohibition) 

Quantitative relation A term/phrase that defines the type of relation for the 
quantity (e.g., extend) 

Comparative relation A term/phrase for comparing quantitative values, 
including “greater than or equal to,” “greater than,” “less 
than or equal to,” “less than,” and “equal to” 

Quantity value A numerical value that defines the quantity 
Quantity unit The unit of measure for a “quantity value” 

 
Deep Learning 

Deep learning methods use computational models such as deep neural networks 
to learn multiple levels of information representations from large-scale data (LeCun et 
al. 2015). Deep learning methods have drastically improved the state-of-the-art 
performance in many domains such as natural language processing and computer 
vision, and meanwhile reduced or eliminated the manual effort in feature engineering 
compared to traditional machine learning methods. Deep learning methods have been 
used in the AEC domain for solving computer vision problems such as construction 
equipment detection (Kim et al. 2017), activity recognition (Luo et al. 2018), and crack 
detection (Park et al. 2019), and text analysis problems such as building-code 
requirement extraction (Zhang and El-Gohary 2019). The most commonly used deep 
neural networks include convolutional neural networks (Kim et al. 2017; Luo et al. 
2018; Gulgec et al. 2019) and recurrent neural networks (Zhang and El-Gohary 2019).   
 
Transfer Learning 

Transfer learning aims to use machine-learning models that are trained for one 
task and/or on the data from one domain for another task and/or on the data from 
another domain (Shin et al. 2016). By enabling the training of the machine learning 
models on large-scale, pattern-rich, and annotated training data that are outside the 
target domain (e.g., the AEC domain) for solving domain-specific tasks, transfer 
learning techniques can be used to improve the robustness and scalability of the 
machine learning-based methods (e.g. Teh et al. 2017) and to reduce the cost of 
preparing domain-specific training data. Commonly adopted transfer learning 
strategies adopted in the deep learning-based methods include: (1) a deep neural 
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network model is first trained on one training dataset, and then the trained model is 
fine-tuned using the other training dataset (Shin et al. 2016); (2) a deep neural network 
model is first trained on one training dataset, and then the first several layers of the 
trained model are used for extracting features for the other dataset (Lopes and Valiati 
2017); (3) a deep neural network model is trained on two training datasets alternatingly 
(Yang et al. 2017); and (4) pretrained word embeddings are used in the input word-
embedding layer of a deep neural network model. 

 
PROPOSED MACHINE LEARNING-BASED APPROACH FOR 
SEMANTICALLY-ENRICHED BUILDING-CODE SENTENCE 
GENERATION 
The proposed machine learning-based approach for generating semantically-enriched 
building-code sentences consists of four main steps, as shown in Figure 1. 
 

 
Figure 1. Proposed machine learning-based method for generating semantically-

enriched building-code sentences 
 

Step 1: Data Preparation and Preprocessing 
Two types of data were collected from outside of and within the AEC domain: 

the general-domain data and the domain-specific data. For general-domain data, a total 
of 20,000 sentences from the Penn Treebank (Marcus et al. 1993) were used, which 
consist of sentences collected from the Wall Street Journal that are annotated with part-
of-speech (POS) tags. The Penn Treebank data are large in scale, rich in syntactic and 
semantic patterns, and already annotated, and thus are suitable for training the deep 
neural networks. A POS tag indicates the syntactic role that a word plays in the sentence 
and can be used for semantic analysis of text data [e.g., regulatory information 
extraction from building code (Zhang and El-Gohary 2013)]. For domain-specific data, 
a total of 300 building-code sentence fragments were selected from multiple chapters 
of the IBC 2009 and the Champaign 2015 IBC Amendments, and were converted into 
semantically-enriched forms by annotating the sentences with semantic information 
elements (Zhang and El-Gohary 2013) (with an added semantic information element – 
subject relation – to describe the semantic relations between subjects) and syntactic 
fillers. Figure 2 shows the semantically-enriched form of an example building-code 
sentence. The entire general-domain dataset was used for training the deep neural 
network models in Step 3; and the domain-specific dataset was split into a 90:10 ratio 
for training and testing the deep neural network models in Steps 3 and 4, respectively. 
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Figure 2. Example semantically-enriched building-code sentence 

 
Step 2: Base Deep Neural Network Model Development 
The deep neural network model – bidirectional long short term memory (LSTM) with 
conditional random fields (CRF) (Huang et al. 2015) – was adopted as the base model 
for generating semantically-enriched building-code sentences given natural language 
building-code sentences. The base deep neural network model consists of three main 
layers: the input word-embedding layer, the bidirectional LSTM layer, and the output 
CRF layer, as depicted in Figure 3. The input word-embedding layer aimed to represent 
the semantics of each word in a vector of real numbers for deep neural network 
computation purposes. The LSTM layer aimed to learn the feature representations of 
each word using the input word embeddings of the current word and the context words. 
To improve the ability of the LSTM layer to deal with long-term syntactic 
dependencies in the sentences, the bidirectional architecture was used – both the 
forward and backward context words were considered when learning the feature 
representations. Finally, for each word, the output CRF layer aimed to compute the 
conditional probabilities of different types of semantic annotations (i.e., the semantic 
information elements and the syntactic fillers), based on which the final type of 
semantic annotation can be predicted, given the feature representations of this word 
learned by the LSTM layer. To compute the model parameters, the cross entropy loss 
was minimized. The model was implemented using Keras in Python 3, and run on top 
of TensorFlow. 
 

  
Figure 3. Base deep neural network model for generating semantically-enriched 

building-code sentences 
 
Step 3: Model Training Using Transfer Learning Strategies 

To enable the training of the deep neural network model on both the general-
domain training data and the domain-specific data, the base model was modified and 
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trained based on two transfer learning strategies: the two-stage training strategy and the 
alternating training strategy. 
 
Two-stage Training Strategy 

In the two-stage training strategy (as illustrated in Figure 4a), the deep neural 
network model was trained in two related stages. In the first stage, the model was 
trained on the general-domain data. In the second stage, the output CRF layer of the 
trained model (i.e., CRF 1) was replaced by a new output CRF layer (i.e., CRF 2), and 
the model was trained on the domain-specific data. During the training in the second 
stage, only the output CRF layer (CRF 2) was trainable, and the input word-embedding 
layer and the bidirectional LSTM layer were not trainable – the parameters of these 
two layers remained unchanged. For each stage, the training was stopped if the 
difference between the training losses of two consecutive training epochs is smaller 
than 0.01, or the training reaches 50 epochs.  
 
Alternating Training Strategy 

In the alternating training strategy (as illustrated in Figure 4b), the deep neural 
network model was trained on the general-domain and the domain-specific training 
data in an alternating manner. The model had two separate output CRF layers – one 
layer is used when the model is trained on the general-domain training data (i.e., CRF 
1), and the other layer is used when the model is trained on the domain-specific training 
data (i.e., CRF 2). In each training iteration, there is an alternating probability p that 
the model was trained on a selected batch of the general-domain data, and a probability 
of (1-p) that the model was trained on a selected batch of the domain-specific training 
data. Typically, the alternating probability p is a number close to 1, meaning the model 
is more frequently trained on the general-domain data rather than the domain-specific 
data, to prevent overfitting on the relatively small-scale domain-specific data. The 
training was stopped if the difference between the training losses of two consecutive 
epochs when the model is trained on the domain-specific data is smaller than 0.01, or 
the training on the domain-specific data reaches 50 epochs.  

 
 

 
(a)                                                                (b) 

Figure 4. Deep neural network model training using two transfer learning 
strategies 

 
Step 4: Model Evaluation 

Given a natural language building-code sentence and a trained deep neural 
network model, the corresponding semantically-enriched building-code sentence was 
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generated by searching the optimal sequence of semantic annotations (i.e., semantic 
information elements and syntactic fillers) that maximizes the sum of the conditional 
log-likelihoods computed by the output CRF layer. The searching was conducted using 
dynamic programming on the matrix of conditional probabilities, allowing the optimal 
sequence of semantic enrichments to be generated in polynomial time instead of 
exponential time.  

Three metrics were used to evaluate the performance of the deep neural network 
models for generating the semantically-enriched building-code sentences: precision, 
recall, and F1 measure, where for a specific type of semantic enrichment SE, TP is the 
number of true positives (i.e., number of words correctly labeled as SE), FP is the 
number of false positives (i.e., number of words incorrectly labeled as SE), and FN is 
the number of false negatives (i.e., number of words not labeled as SE but should have 
been) (Zhai and Massung 2016). 

Precision =  
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
PRELIMINARY EXPERIMENTAL RESULTS 

 
Performance of the Proposed Approach with Different Transfer Learning 
Strategies 

The two different transfer learning strategies – the two-stage training strategy 
and the alternating training strategy – were tested. The deep neural network model for 
generating semantically-enriched building-code sentences achieved better performance 
when the alternating training strategy was used, outperforming the model using the 
two-stage training strategy by 15% in precision, 11% in recall, and 14% in F1 measure, 
as shown in Table 2. The deep neural network model using the two-stage training 
strategy achieved relatively low performance. This is possibly because the input word-
embedding layer and the bidirectional LSTM layer of the deep neural network model 
were trained on the general-domain data only, and therefore might not have been able 
to learn the representations that capture the syntactic and semantic patterns in the 
domain-specific data well. 
 

Table 2. Performance of the Proposed Approach with Different Transfer 
Learning Strategies (and Using an Alternating Probability of 92% for 

Alternating Training Strategy) 
 

Transfer learning strategy Precision1 Recall1 F1 measure1 
Two-stage training 73% 75% 73% 

Alternating training 88% 86% 87% 
1Bolded font indicates the highest performance. 
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Performance of the Proposed Approach Using the Alternating Training Strategy 
with Different Alternating Probabilities 

When the alternating training strategy was used for training the deep neural 
network model, different alternating probabilities were tested, including 90%, 92%, 
95%, and 99%. The optimal performance for semantically-enriched building-code 
sentence generation was achieved when the alternating probability was 92%, as shown 
in Table 3. However, the differences were small. Further testing is needed in the future 
to study the statistical and practical significances of these performance differences. 
Comparing to a medium alternating probability (i.e., 92%), when the alternating 
probability was very high (i.e., 99%), the performance decreased by 13% in precision, 
6% in recall, and 10% in F1 measure, possibly because the input word-embedding layer 
and the bidirectional LSTM layer of the deep neural network model was mainly trained 
on the general-domain data and might not be able to learn the representations that 
capture the syntactic and semantic patterns in the domain-specific data well. 
Comparing to a medium alternating probability (i.e., 92%), when the alternating 
probability was lower (i.e., 90%), the performance started to decrease slightly. This is 
possibly because the deep neural network model was overly trained on the domain-
specific training data, and thus was overfitted to these data. 
 
Table 3. Performance of the Proposed Approach Using the Alternating Training 

Strategy with Different Alternating Probabilities 
 

Alternating probability Precision1 Recall1 F1 measure1 
90% 87% 85% 86% 
92% 88% 86% 87% 
95% 83% 82% 82% 
99% 75% 80% 77% 

1Bolded font indicates the highest performance. 
 
Error Analysis 

Two main types of errors were identified based on the experimental results. 
First, the proposed approach had errors when generating semantically-enriched forms 
of multiword expressions, which consist of multiple words and function as individual 
syntactic and semantic units, especially those including prepositions. For example, the 
words in the multiword expression “means of egress” should have been annotated with 
a single semantic information element – a subject, but the proposed model annotated 
the expression with a subject, a syntactic filler, and another subject. In future work, a 
multiword expression list could be integrated into the proposed approach for generating 
semantically-enriched building-code sentences. Second, the proposed approach had 
errors when dealing with some compliance checking attributes. For example, “Group 
R-1”, which means the first residential group in terms of use and occupancy 
classification in the IBC, were usually mistakenly annotated as part of a subject instead 
of a compliance checking attribute. In the future, additional levels of input embedding 
layers could be used (e.g., character embeddings) to capture useful patterns beyond the 
syntactic and semantic ones.  
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CONCLUSION 
This paper proposed a machine learning-based method for generating 

semantically-enriched building-code sentences for semantic analysis of the code for 
supporting automated compliance checking. First, a bidirectional LSTM-CRF model 
was adopted for the semantically-enriched building-code sentence generation task. 
Second, two transfer learning strategies were used for training the deep neural network 
models on both the general-domain data and the domain-specific data. Third, the 
proposed approach was tested on the domain-specific data. The proposed method 
achieved a precision of 88%, a recall of 86%, and an F1 measure of 87% when the 
second transfer learning strategy – the alternating training strategy – was used, 
indicating good semantically-enriched building-code sentence generation 
performance. 

This paper contributes to the body of knowledge in three primary ways. First, 
the paper proposed a new, machine learning-based approach to generate semantically-
enriched building-code sentences for facilitating the semantic analysis of the code for 
supporting automated compliance checking. Second, the paper leveraged large-scale, 
pattern-rich annotated training data from outside the AEC domain by using transfer 
learning strategies to increase the robustness and scalability of the proposed approach. 
Third, the experimental results show that the transfer learning strategies and some of 
the hyperparameters (e.g., the alternating probability for the alternating training 
strategy) of the deep neural network models could contribute to the performance 
variations of the models.  

In their future work, the authors first plan to improve the proposed approach for 
generating semantically-enriched building-code sentences by including more types of 
semantic information elements, such as restrictions and references, as semantic 
annotations. Second, the authors will explore further ways to improve the performance 
of the proposed approach, including testing different general-domain training data, 
using more domain-specific training data, exploring different transfer learning 
strategies (e.g., initiating the parameters of the input word-embedding layer using 
pretrained word embeddings), and integrating a domain ontology into the proposed 
approach. Third, and most importantly, the authors plan to integrate the proposed 
approach for semantically-enriched building-code sentence generation with machine 
learning-based information extraction and semantic information matching, with an aim 
to find a scalable method for fully automated compliance checking. 
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