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Abstract

We present PROTOTEX, a novel white-box

NLP classification architecture based on pro-

totype networks (Li et al., 2018). PROTOTEX

faithfully explains model decisions based on

prototype tensors that encode latent clusters of

training examples. At inference time, classi-

fication decisions are based on the distances

between the input text and the prototype ten-

sors, explained via the training examples most

similar to the most influential prototypes. We

also describe a novel interleaved training algo-

rithm that effectively handles classes character-

ized by the absence of indicative features. On

a propaganda detection task, PROTOTEX accu-

racy matches BART-large and exceeds BERT-

large with the added benefit of providing faith-

ful explanations. A user study also shows that

prototype-based explanations help non-experts

to better recognize propaganda in online news.

1 Introduction

Neural models for NLP have yielded significant

gains in predictive accuracy across a wide range of

tasks. However, these state-of-the-art models are

typically less interpretable than simpler, traditional

models, such as decision trees or nearest-neighbor

approaches. In general, less interpretable models

can be more difficult for people to use, trust, and

adopt in practice. Consequently, there is growing

interest in going beyond simple ªblack-boxº model

accuracy to instead design models that are both

highly accurate and human-interpretable.

While much research on white-box explainable

models focuses on attributing parts of the input

(e.g., word sequences) to a model’s prediction (Xu

et al., 2015; Lei et al., 2016; Bastings et al., 2019;

Jain et al., 2020; Glockner et al., 2020), there is

much debate around their faithfulness and reliabil-

ity (Serrano and Smith, 2019; Jain and Wallace,

2019; Wiegreffe and Pinter, 2019; Pruthi et al.,
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2020). Additionally, while such local explanations

(if faithful) can be extremely useful in more in-

tuitive tasks such as sentiment classification, that

may not be the case for difficult tasks where human

judgments may require a high degree of training

or domain expertise. In such cases, understanding

how models make their decisions for a particular

input based on its training data can be insightful

especially for engaging with users to develop an

intuition on the model’s decision making process.

In this paper, we propose Prototype Tensor

Explainability Network (PROTOTEX)1 to faith-

fully explain classification decisions in the tradi-

tion of case-based reasoning (Kolodner, 1992). Our

novel white-box NLP architecture augments proto-

type classification networks (Li et al., 2018) with

large-scale pretrained transformer language mod-

els. Through a novel training regime, the network

learns a set of prototype tensors that encode latent

clusters of training examples. At inference time,

classification decisions are entirely based on simi-

larity to prototypes. This enables model predictions

to be faithfully explained based on these prototypes,

directly via similar training examples (i.e., those

most similar to top-matched prototypes). We build

upon the state-of-the-art NLP neural architectures

to augment their accuracy with faithful and human-

interpretable explanations. Figure 1 shows an ex-

ample of PROTOTEX on the task of propaganda

detection (Da San Martino et al., 2019).

Another contribution of PROTOTEX concerns

effective modeling of positive vs. negative classes

in the presence of asymmetry. In a typical binary

classification (e.g., sentiment detection), the pres-

ence of positive vs. negative language can be used

to distinguish classes. However, with a task such

as Web search, what most distinguishes relevant vs.

irrelevant search results is the presence vs. absence

of relevant content. Having this absence (rather

than presence) of certain features most clearly dis-

1https://github.com/anubrata/ProtoTEx/





systems foster more effective human+AI partner-

ships (Amershi et al., 2019; Wickramasinghe et al.,

2020; Wang et al., 2019; Liao et al., 2020; Wang

et al., 2021; Bansal et al., 2021)? On the other hand,

algorithmic concerns include generating faithful

and trustworthy explanations (Jacovi and Goldberg,

2020), local vs. global explanations, and post-hoc

vs. self-explanations (Danilevsky et al., 2020).

Explainability evaluation methods (Doshi-Velez

and Kim, 2017) include measuring faithfulness (Ja-

covi and Goldberg, 2020), enabling model sim-

ulatability (Hase et al., 2019), behavioral testing

(Ribeiro et al., 2020), and evaluating intelligent

user interactions (Nguyen et al., 2018).

Human+AI fake news detection While explain-

able fact-checking (Kotonya and Toni, 2020a)

could better support human-in-the-loop fact-

checking (Nakov et al., 2021; Demartini et al.,

2020), studies rarely assess a human+AI team in

combination (Nguyen et al., 2018). In fact, hu-

man+AI teams often under-perform the human or

AI working alone (Bansal et al., 2021), emphasiz-

ing the need to carefully baseline performance.

Propaganda detection (Da San Martino et al.,

2019) constitutes a form of disinformation detec-

tion. Because propaganda detection is a hard task

for non-expert users and state-of-the-art models are

not accurate enough for practical use, explainabil-

ity may promote adoption of computational pro-

paganda detection systems (Da San Martino et al.,

2021).

3 Methodology

We adopt prototype classification networks (Li

et al., 2018) first proposed for vision tasks as the

foundation for our prototype modeling work (Sec-

tion 3.1). We design a novel interleaved training

procedure, as well as a new batching process, to (a)

incorporate large-scale pretrained language models,

and (b) address within classification tasks where

some classes can only be predicted by the absence

of characteristics indicative of other classes.

3.1 Base architecture

PROTOTEX is based on Li et al. (2018)’s Prototype

Classification Network, and we integrate pretrained

language model encoders under this framework.

Their architecture is based on learning prototype

tensors that serve to represent latent clusters of sim-

ilar training examples (as identified by the model).

Classification is performed via a linear model that

takes as an input the distances to the prototype ten-

sors. As such, the network is a white-box model

where global explanation is attained by directly

linking the model to learned clusters of the training

data.

Shown in Figure 1, the input is first encoded into

a latent representation. This representation is fed

through a prototype layer, where each unit of that

layer is a learned prototype tensor that represents a

cluster of training examples through loss terms Lp1

and Lp2 (specified by equations 2 and 3 below).

For each prototype j, the prototype layer calcu-

lates the L2 distance between its representation pj

and that of the input xi, i.e., ||xi − pj ||
2

2
. The out-

put of the prototype layer, which is a matrix of L2

distances, is then fed into a linear layer; this learns

a weight matrix of dimension K×m for K classes

andm prototypes, where theK weights learned for

each prototype indicates that prototype’s relative

affinity to each of the K classes. Classification is

performed via softmax.

The total loss is a weighted sum of three terms:2

L = Lce + λ1Lp1 + λ2Lp2 (1)

with hyperparameter λs, standard classification

cross-entropy loss Lce, and two prototype loss

terms, Lp1 and Lp2.

Lp1 minimizes avg. squared distance between

each of the m prototypes and ≥ 1 encoded input:

Lp1 =
1

m

m∑

j=1

min
i=1,n

||pj − xi||
2

2 (2)

encouraging each learned prototype representation

to be similar to at least one training example.

Lp2 encourages training examples to cluster

around prototypes in the latent space by minimiz-

ing the average squared distance between every

encoded input and at least one prototype:

Lp2 =
1

n

n∑

i=1

min
j=1,m

||xi − pj ||
2

2 (3)

Li et al. (2018) used convolutional autoencoders

to represent input images. However, in the con-

text of NLP, convolutional neural networks do

not have sufficient representation power (Elbayad

et al., 2018) and transformer-based language mod-

els, which are pretrained on large amounts of data,

have consistently performed better in recent re-

search. Thus to encode inputs, we experiment with

2In Li et al. (2018), a fourth reconstruction loss is used
with their convolutional network. We found that incorporating
a reconstruction loss led to unstable training, so we omit it.



Algorithm 1 Training for SIMPLEPROTOTEX.

1: p := {p1...pm} ▷ prototypes
2: x← Encoder(s1, s2, ...sn) ▷ encode input sentences
3: Init(p)
4: LinearLayer← XavierInit
5: for k iterations do
6: for batch xb in Train do
7: d← distance(xb,p)
8: Lce ← CE(LinearLayer(norm(d),yb))
9: loss← Lce + λ1Lp1(d) + λ2Lp2(d)

10: Update(Encoder, LinearLayer,p ; loss)

two such models: BERT (Devlin et al., 2019) (a

masked language model) and BART (Lewis et al.,

2020) (a sequence-to-sequence autoencoder).

Intuition & explainability based on case-based

reasoning. Because learned prototypes occupy

the same space as encoded inputs, we can directly

measure the distance between prototypes and en-

coded train or test instances. During inference time,

prototypes closer to the encoded test example be-

come more ªactivatedº, with larger weights from

the prototype layer output. Consequently, model

prediction is thus the weighted affinity of each pro-

totype to the test example, where each prototype

has K weights over the possible class assignments.

In the context of classification in NLP, we oper-

ationalize case-based reasoning (Kolodner, 1992)

by providing similar training examples. Once the

model is trained, for each prototype we rank the

training examples by proximity in the latent space.

During inference, we rank the prototypes by prox-

imity to the test example. Thus, for a test exam-

ple, we can obtain the training examples closest to

the prototypes most influential to the classification

decision. Jacovi and Goldberg (2020) define faith-

fulness as ªhow accurately [explanations] reflects

the true reasoning process of the model.º Since

prototypes are directly linked to the model predic-

tions via a linear classification layer, explanations

derived by the prototypes are faithful by design.

We also provide a mathematical intuition of how

prototype layers relates to soft-clustering (which is

inherently interpretable) in the appendix A.1.

3.2 Handling asymmetry: negative prototype

Section 1 noted a challenge in effectively model-

ing positive vs. negative classes in the presence of

asymmetry. With detection tasks (e.g., finding rele-

vant documents (Kutlu et al., 2020) or propaganda

(Da San Martino et al., 2019)), the negative class

may be most distinguished by the lack of positive

features (rather than presence of negative ones). If

Algorithm 2 Decoupled training for prototypes and classi-
fication, which enables the learning of the negative prototype.

1: ppos := {p1...pm−1} ▷ prototypes for ⊕ class
2: pneg ▷ single prototype for ⊖ class
3: x← Encoder(s1, s2, ...sn) ▷ encode input sentences
4: Init(ppos,pneg)
5: LinearLayer← XavierInit
6: for k iterations do
7: for i ∈ 1:δ epochs do ▷ Minimize Lp1 loss
8: c← imod 2 ▷ pick {⊕,⊖} class this iteration
9: pc ← prototype(s) for selected class c

10: for batch xb in Train do
11: dc ← distance(xbc,pc), xbc⊂class c
12: Update(pc;Lp1(norm(dc)))

13: for j ∈ 1:γ epochs do ▷ Minimize Lce & Lp2 loss
14: c← jmod 2 ▷ pick {⊕,⊖} class this iteration
15: pc ← prototype(s) for selected class c
16: for batch xb in Train do
17: dc ← distance(xbc,pc), xbc⊂class c
18: d← distance(xb,ppos,pneg)
19: Lce ← CE(LinearLayer(norm(d),yb))
20: loss← Lce + λLp2(norm(dc))
21: Update(Encoder, LinearLayer; loss)

a document is relevant only if it contains relevant

content, how can one show the lack of such con-

tent? This poses a challenge both in classifying

negative instances and in explaining such classifi-

cation decisions on the basis of missing features.

For propaganda, Da San Martino et al. (2019)

side-step the issue by only providing rationales

for positive instances. For relevance, Kutlu et al.

(2020) define a negative rationale as summarizing

the instance, to succinctly show it is not germane

to the positive class. However, if we conceptual-

ize the positive class as a specific foreground to

be distinguished from a more general background,

such ªsummaryª negative rationales drawn from

the background distribution are likely to provide

only weak, noisy evidence for the negative class.

We investigate the potential value of including

or excluding a single negative prototype to model

this ªbackgroundº negative class, and design an in-

terleaved training procedure to learn this prototype.

3.3 Training

We present two algorithms for training. The vanilla

one, which we call SIMPLEPROTOTEX, does not

interleave the training of positive and negative pro-

totypes. This is illustrated in Algorithm 1.

One of our contributions is the design of an itera-

tive, interleaved approach to training that balances

competing loss terms, encouraging each learned

prototype to be similar to at least one training ex-

ample (Lp1) and encouraging training examples to

cluster around prototypes (Lp2). We perform each











added benefit of providing faithful model explana-

tions via prototypes. Our pilot human evaluation

study shows that additional input provided by PRO-

TOTEX contains relevant information for the task

and can improve the annotation performance, pro-

vided sufficient model accuracy. We further demon-

strate that explanations help non-expert users better

understand and simulate model predictions.

Ethical Statement

For annotation, we source participants from Ama-

zon Mechanical Turk only within the United States,

paying $10/hour based on average task time. We

did not reject any work but exclude data from par-

ticipants who failed an attention check.
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A Appendix

A.1 Prototypes as Soft-Clustering

We provide more insights into prototypes by il-

lustrating how the prototype layer relates to soft-

clustering .

Let t1:n denote n training examples, having bi-

nary labels y1:n. Let D(a, b) denote symmetric

distance of any two training examples a and b. As-

sume m additional prototypes (i.e., points) p1:m
are defined in the same space as the training exam-

ples. Then D(a, b) can also be computed between

any training example and prototype, or between

any two prototypes. Let dji = D(pj , ti) denote

the symmetric distance between pj and training

example ti. Then any two training examples, tu
and tv, will have respective distances dju and djv to

prototype pj .

Let Pj = πj
1:n denote a probability distribu-

tion for prototype pj over the training examples

t1:n. Specifically, induce πji for training example

ti as a function of its distance dji from prototype

pj : π
j
i = zj/d

j
i , where zj is a normalization con-

stant. Then the relative probabilities for two train-

ing examples tv and tu = πjv/π
j
u =

zj/d
j
v

zj/d
j
u

= dju/d
j
v.

By total probability, 1 =
∑

i π
j
i =

∑
i zj/d

j
i =

zj
∑

i 1/d
j
i , so zj = 1

∑
i 1/d

j
i

. Based on this, we

can say that each prototype effectively denotes a

soft-clustering over the set of training examples.

Further, the ratio of distances (dju / djv) between

training examples tu and tv and prototype pj , is the

reciprocal of their probabilities: πjv/π
j
u. In other

words, if a training example tu is twice as far away

from prototype pj as another training example tv
(i.e., dju / djv = 2), then tv will be twice as probable

as tu in probability distribution Pj (i.e., πjv/π
j
u =

2).

Inference. The inference calculation shown here

uses only the prototype layer. Pj(y = 1) = ψj =∑
1:n π

j
i yi denote the relative frequency estimated

probability of prototype pj having true class la-

bel y = 1. Let x denote a test example (de-

fined in the same vector space as training exam-

ples and prototypes). Then D(x, pj) = djx defines

the symmetric distance between x and prototype

pj . Let Θx = θx
1:m denote a probability distribu-

tion for test example x over the prototypes p1:m.

As with training examples and prototypes above,

induce this probability distribution based on rel-

ative distances between x and each prototype pj .

Then similar to before, if djx/dkx = 2, meaning

prototype pj is twice as far from x as prototype

pk, then we have θxk/θ
x
j = 2 meaning pk will be

twice as probable as pj in probability distribution

Θx. Class label y = 1 for test example x is pre-

dicted by probability Θx(y = 1) =
∑

1:m θ
x
j ψj =∑

j∈1:m θ
x
j

∑
i∈1:n π

j
i yi.


