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Abstract

We present PROTOTEX, a novel white-box
NLP classification architecture based on pro-
totype networks (Li et al., 2018). PROTOTEX
faithfully explains model decisions based on
prototype tensors that encode latent clusters of
training examples. At inference time, classi-
fication decisions are based on the distances
between the input text and the prototype ten-
sors, explained via the training examples most
similar to the most influential prototypes. We
also describe a novel interleaved training algo-
rithm that effectively handles classes character-
ized by the absence of indicative features. On
a propaganda detection task, PROTOTEX accu-
racy matches BART-large and exceeds BERT-
large with the added benefit of providing faith-
ful explanations. A user study also shows that
prototype-based explanations help non-experts
to better recognize propaganda in online news.

1 Introduction

Neural models for NLP have yielded significant
gains in predictive accuracy across a wide range of
tasks. However, these state-of-the-art models are
typically less interpretable than simpler, traditional
models, such as decision trees or nearest-neighbor
approaches. In general, less interpretable models
can be more difficult for people to use, trust, and
adopt in practice. Consequently, there is growing
interest in going beyond simple “black-box” model
accuracy to instead design models that are both
highly accurate and human-interpretable.

While much research on white-box explainable
models focuses on attributing parts of the input
(e.g., word sequences) to a model’s prediction (Xu
et al., 2015; Lei et al., 2016; Bastings et al., 2019;
Jain et al., 2020; Glockner et al., 2020), there is
much debate around their faithfulness and reliabil-
ity (Serrano and Smith, 2019; Jain and Wallace,
2019; Wiegreffe and Pinter, 2019; Pruthi et al.,
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2020). Additionally, while such local explanations
(if faithful) can be extremely useful in more in-
tuitive tasks such as sentiment classification, that
may not be the case for difficult tasks where human
judgments may require a high degree of training
or domain expertise. In such cases, understanding
how models make their decisions for a particular
input based on its training data can be insightful
especially for engaging with users to develop an
intuition on the model’s decision making process.

In this paper, we propose Prototype Tensor
Explainability Network (PROTOTEX)! to faith-
fully explain classification decisions in the tradi-
tion of case-based reasoning (Kolodner, 1992). Our
novel white-box NLP architecture augments proto-
type classification networks (Li et al., 2018) with
large-scale pretrained transformer language mod-
els. Through a novel training regime, the network
learns a set of prototype tensors that encode latent
clusters of training examples. At inference time,
classification decisions are entirely based on simi-
larity to prototypes. This enables model predictions
to be faithfully explained based on these prototypes,
directly via similar training examples (i.e., those
most similar to top-matched prototypes). We build
upon the state-of-the-art NLP neural architectures
to augment their accuracy with faithful and human-
interpretable explanations. Figure 1 shows an ex-
ample of PROTOTEX on the task of propaganda
detection (Da San Martino et al., 2019).

Another contribution of PROTOTEX concerns
effective modeling of positive vs. negative classes
in the presence of asymmetry. In a typical binary
classification (e.g., sentiment detection), the pres-
ence of positive vs. negative language can be used
to distinguish classes. However, with a task such
as Web search, what most distinguishes relevant vs.
irrelevant search results is the presence vs. absence
of relevant content. Having this absence (rather
than presence) of certain features most clearly dis-
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input: “Mr. Obama often chastised
reporters, ...., for questions he
deemed overly aggressive or
grandstanding.”

example 1: “...The idea that Manafort or “Russians”
could have wandered into the embassy to meet
Assange ... is simply preposterous...”

Softmax

example 2: “And Trump is far from the only American
who sees the investigation as a witch hunt.”

example 3: ...

Figure 1: PROTOTEX architecture along with a use case demonstration. Pink/Green dots denote training examples,
which are clustered around positive prototypes (blue) and a single negative prototype (black). Dotted lines represent
distances. In this use case, the user gives PROTOTEX an input, which produces a prediction while retrieving a set of
highest ranked examples that directly influenced model decision. In this diagram, by using “overly aggressive or
grandstanding” the input creates propaganda via exaggeration (Da San Martino et al., 2019). PROTOTEX learns to
identify sentences that contain propaganda phrases. In example 1, using “Russian” to describe Manafort (Former
American political consultant) constitutes propaganda, so does using “witch hunt” in example 2. Exposure to
similar examples helps users build an intuition towards the language used in propaganda.

tinguish a class complicates both predicting it and
explaining these predictions to users. To address
this, we introduce a single negative prototype for
representing the negative class, learned via a novel
training regime. We show that including this nega-
tive prototype significantly improves results.
While our model is largely agnostic to the
prediction task, we evaluate PROTOTEX on a
sentence-level binary propaganda detection task
(Da San Martino et al., 2019). Recent work on ex-
plainable fact-checking (Kotonya and Toni, 2020a)
has provided explanations via attention (Popat
et al., 2018; Shu et al., 2019), rule discovery (Gad-
Elrab et al., 2019), and summarization (Atanasova
et al., 2020; Kotonya and Toni, 2020b,a), but not
prototypes. Better explanations could enable sup-
port for human fact-checkers (Nakov et al., 2021).
We show that PROTOTEX provides faithful ex-
planations without reducing classification accuracy,
which remains comparable to the underlying en-
coder, BART-large (Lewis et al., 2020), superior
to that of BERT-large (Devlin et al., 2019), and
with the added benefit of faithful explanations in
the spirit of case-based reasoning. Furthermore, to
the best of our knowledge, we are the first work
in NLP that examines the utility of global case-
based explanations for non-expert users in model
understanding and downstream task accuracy.

2 Related work

Explainable classification Unlike post-hoc anal-
ysis approaches for explainability (Ribeiro et al.,
2016; Sundararajan et al., 2017), prototype clas-

sification networks (Li et al., 2018; Chen et al.,
2019; Hase et al., 2019) are white-box models
with explainability built-in via case-based reason-
ing (Kolodner, 1992) rather than extractive ratio-
nales (Lei et al., 2016; Bastings et al., 2019; Jain
et al., 2020; Glockner et al., 2020). They are
the neural variant of prototype classifiers (Bien
and Tibshirani, 2011; Kim et al., 2014), predicting
based on similar known instances. Contemporary
work (Rajagopal et al., 2021) also stressed the im-
portance of “global” explainability through training
examples, yet in their approach, the similar training
examples are not directly integrated in the decision
itself; in contrast, we do so via learned prototypes
to provide more transparency.

Our work builds on Li et al. (2018), which we
lay out in Section 3.1. Later work (Chen et al.,
2019; Hase et al., 2019) enables prototype learn-
ing of partial images. In NLP, Guu et al. (2018)
retrieved prototype examples from the training data
for edit-based natural language generation. Hase
and Bansal (2020) used a variant of Chen et al.
(2019)’s work to examine among other approaches;
unlike our work, they used feature activation to
obtain explanations similar to post-hoc approaches,
and did not handle the absence of relevant content.

Evaluating explainability Explainability is a
multi-faceted problem. HCI concerns include: a)
For whom are we designing the explanations? b)
What goals are they trying to achieve? c¢) How
can we best convey information without imposing
excessive cognitive load? and d) Can explainable



systems foster more effective human+AlI partner-
ships (Amershi et al., 2019; Wickramasinghe et al.,
2020; Wang et al., 2019; Liao et al., 2020; Wang
etal., 2021; Bansal et al., 2021)? On the other hand,
algorithmic concerns include generating faithful
and trustworthy explanations (Jacovi and Goldberg,
2020), local vs. global explanations, and post-hoc
vs. self-explanations (Danilevsky et al., 2020).

Explainability evaluation methods (Doshi-Velez
and Kim, 2017) include measuring faithfulness (Ja-
covi and Goldberg, 2020), enabling model sim-
ulatability (Hase et al., 2019), behavioral testing
(Ribeiro et al., 2020), and evaluating intelligent
user interactions (Nguyen et al., 2018).

Human+AI fake news detection While explain-
able fact-checking (Kotonya and Toni, 2020a)
could better support human-in-the-loop fact-
checking (Nakov et al., 2021; Demartini et al.,
2020), studies rarely assess a human+Al team in
combination (Nguyen et al., 2018). In fact, hu-
man+Al teams often under-perform the human or
Al working alone (Bansal et al., 2021), emphasiz-
ing the need to carefully baseline performance.

Propaganda detection (Da San Martino et al.,
2019) constitutes a form of disinformation detec-
tion. Because propaganda detection is a hard task
for non-expert users and state-of-the-art models are
not accurate enough for practical use, explainabil-
ity may promote adoption of computational pro-
paganda detection systems (Da San Martino et al.,
2021).

3 Methodology

We adopt prototype classification networks (Li
et al., 2018) first proposed for vision tasks as the
foundation for our prototype modeling work (Sec-
tion 3.1). We design a novel interleaved training
procedure, as well as a new batching process, to (a)
incorporate large-scale pretrained language models,
and (b) address within classification tasks where
some classes can only be predicted by the absence
of characteristics indicative of other classes.

3.1 Base architecture

PROTOTEX is based on Li et al. (2018)’s Prototype
Classification Network, and we integrate pretrained
language model encoders under this framework.
Their architecture is based on learning prototype
tensors that serve to represent latent clusters of sim-
ilar training examples (as identified by the model).
Classification is performed via a linear model that

takes as an input the distances to the prototype ten-
sors. As such, the network is a white-box model
where global explanation is attained by directly
linking the model to learned clusters of the training
data.

Shown in Figure 1, the input is first encoded into
a latent representation. This representation is fed
through a prototype layer, where each unit of that
layer is a learned prototype tensor that represents a
cluster of training examples through loss terms £,
and L, (specified by equations 2 and 3 below).

For each prototype 7, the prototype layer calcu-
lates the L2 distance between its representation pj
and that of the input x;, i.e., ||x; — p;||3. The out-
put of the prototype layer, which is a matrix of L2
distances, is then fed into a linear layer; this learns
a weight matrix of dimension K x m for K classes
and m prototypes, where the K weights learned for
each prototype indicates that prototype’s relative
affinity to each of the K classes. Classification is
performed via softmax.

The total loss is a weighted sum of three terms:>

L=2Lc+ )\1[,]31 + )\2£p2 (1
with hyperparameter As, standard classification
cross-entropy loss L., and two prototype loss
terms, L£p1 and Lyo.

L,1 minimizes avg. squared distance between
each of the m prototypes and > 1 encoded input:
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encouraging each learned prototype representation
to be similar to at least one training example.

L2 encourages training examples to cluster
around prototypes in the latent space by minimiz-
ing the average squared distance between every
encoded input and at least one prototype:
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Li et al. (2018) used convolutional autoencoders
to represent input images. However, in the con-
text of NLP, convolutional neural networks do
not have sufficient representation power (Elbayad
et al., 2018) and transformer-based language mod-
els, which are pretrained on large amounts of data,
have consistently performed better in recent re-
search. Thus to encode inputs, we experiment with

’In Li et al. (2018), a fourth reconstruction loss is used

with their convolutional network. We found that incorporating
a reconstruction loss led to unstable training, so we omit it.



Algorithm 1 Training for SIMPLEPROTOTEX.
I: p={pi..om}
: x < Encoder(s1, s2, ...5n)
Init(p)
. LinearLayer<— Xavierlnit
for k iterations do
for batch x;, in Train do
d < distance(xp, p)
Lce + CE(LinearLayer(norm(d), ys))
1088 4 Lece + M Lp1(d) + A2Lp2(d)
Update(Encoder, Linear Layer,p ; loss)

> prototypes
> encode input sentences
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two such models: BERT (Devlin et al., 2019) (a
masked language model) and BART (Lewis et al.,
2020) (a sequence-to-sequence autoencoder).

Intuition & explainability based on case-based
reasoning. Because learned prototypes occupy
the same space as encoded inputs, we can directly
measure the distance between prototypes and en-
coded train or test instances. During inference time,
prototypes closer to the encoded test example be-
come more “activated”, with larger weights from
the prototype layer output. Consequently, model
prediction is thus the weighted affinity of each pro-
totype to the test example, where each prototype
has K weights over the possible class assignments.
In the context of classification in NLP, we oper-
ationalize case-based reasoning (Kolodner, 1992)
by providing similar training examples. Once the
model is trained, for each prototype we rank the
training examples by proximity in the latent space.
During inference, we rank the prototypes by prox-
imity to the test example. Thus, for a test exam-
ple, we can obtain the training examples closest to
the prototypes most influential to the classification
decision. Jacovi and Goldberg (2020) define faith-
fulness as “how accurately [explanations] reflects
the true reasoning process of the model.” Since
prototypes are directly linked to the model predic-
tions via a linear classification layer, explanations
derived by the prototypes are faithful by design.
We also provide a mathematical intuition of how
prototype layers relates to soft-clustering (which is
inherently interpretable) in the appendix A.1.

3.2 Handling asymmetry: negative prototype

Section 1 noted a challenge in effectively model-
ing positive vs. negative classes in the presence of
asymmetry. With detection tasks (e.g., finding rele-
vant documents (Kutlu et al., 2020) or propaganda
(Da San Martino et al., 2019)), the negative class
may be most distinguished by the lack of positive
features (rather than presence of negative ones). If

Algorithm 2 Decoupled training for prototypes and classi-
fication, which enables the learning of the negative prototype.

I: Ppos == {p1---Pm—1} > prototypes for & class
2: Pneg > single prototype for © class
3: x + Encoder(s1, s2,...sn) > encode input sentences
4: Init(Ppos, Preg)
5: LinearLayer<— Xavierlnit
6: for k iterations do
7: for i € 1:6 epochs do > Minimize £, loss
8: ¢+ imod2 b pick {®, S} class this iteration
9: Pc < prototype(s) for selected class ¢

10: for batch x; in Train do

11: d. + distance(Xpc, Pc), XpeCclass ¢

12: Update(pec; L1 (norm(d.)))

13: for j € 1:v epochs do > Minimize Lc. & Lp2 loss

14: ¢+ jmod2 > pick {®, O} class this iteration

15: P + prototype(s) for selected class ¢

16: for batch x; in Train do

17: d. « distance(Xpc, Pc), XpeCclass ¢

18: d < distance(Xs, Ppos, Preg)

19: Lce < CE(LinearLayer(norm(d), ys))

20: loss < Lece + ALp2(norm(de))

21: Update(Encoder, LinearLayer; loss)

a document is relevant only if it contains relevant
content, how can one show the lack of such con-
tent? This poses a challenge both in classifying
negative instances and in explaining such classifi-
cation decisions on the basis of missing features.
For propaganda, Da San Martino et al. (2019)
side-step the issue by only providing rationales
for positive instances. For relevance, Kutlu et al.
(2020) define a negative rationale as summarizing
the instance, to succinctly show it is not germane
to the positive class. However, if we conceptual-
ize the positive class as a specific foreground to
be distinguished from a more general background,
such “summary‘ negative rationales drawn from
the background distribution are likely to provide
only weak, noisy evidence for the negative class.
We investigate the potential value of including
or excluding a single negative prototype to model
this “background” negative class, and design an in-
terleaved training procedure to learn this prototype.

3.3 Training

We present two algorithms for training. The vanilla
one, which we call SIMPLEPROTOTEX, does not
interleave the training of positive and negative pro-
totypes. This is illustrated in Algorithm 1.

One of our contributions is the design of an itera-
tive, interleaved approach to training that balances
competing loss terms, encouraging each learned
prototype to be similar to at least one training ex-
ample (£,1) and encouraging training examples to
cluster around prototypes (Lp2). We perform each
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Figure 2: Macro-F1 score of PROTOTEX predicting
examples that belong to each propaganda subclass. The
black line corresponds to the number of examples in the
test set. Classes are reordered in terms of F1.

type of representation update separately to ensure
that we progressively push the prototypes and the
encoded training examples closer to one another.
We illustrate this process in Algorithm 2. We
initialize prototypes with Xavier, which allows the
prototype tensors to start blind (thus unbiased) with
respect to the training data and discover novel pat-
terns or clusters on their own. After initialization,
in each iteration, we first update the prototype ten-
sors to become closer to at least one training ex-
ample (henceforth § loop). Then, in a separate
training iteration, we update the representations of
the training examples to push them closer to the
nearest prototype tensor (henceforth + loop). Since
prototypes themselves do not have directly train-
able parameters, we train the classification layer
together with the encoder representations during
the -y loop. We further separate the training of the
positive and negative prototypes in order to push
the negative “background” examples to form its
own cluster. To this end, we perform class-level
masking by setting the distances between the ex-
amples and prototypes of different classes to inf.
Finally, we perform instance normaliza-
tion (Ulyanov et al., 2016) for all distances in order
to achieve segregation among different prototypes
(namely, the prototypes of the same class do not
rely solely on a handful of examples). We discuss
the effects of instance normalization in Section 4.2.

4 [Experiments

Task We evaluate a binary sentence-level clas-
sification task predicting whether or not each sen-
tence contains propaganda. We adopt Da San Mar-
tino et al. (2019)’s dataset of 21,230 sen-
tences from news articles, with a 70/10/20

| Neg©& Pos@ Macro
Random | 0.60 0.34 0.47
BERT-large 0.86 0.59 0.73
BART-large 0.86 0.65 0.75
KNN-BART(-large) 0.82 0.52 0.67
SIMPLEPROTOTEX 0.83 0.40 0.62
PROTOTEX (-norm) 0.82 0.56 0.69
PROTOTEX (+norm) 0.85 0.64 0.75

Table 1: F1 measures on the task of propaganda detec-
tion. PROTOTEX performs similar to BART.

train/development/test split. Only 35.2% of sen-
tences contain propaganda. The data is further
classified into 18 fine-grained categories of propa-
ganda; see analysis of prototypes in Section 4.2.

4.1 Models and Settings

Hyperparameters are tuned on the validation
data. Optimization for all neural models use
AdamW (Loshchilov and Hutter, 2019) algorithm
with a learning rate of 3e-5 and a batch size of 20.
We use early-stopping (Fomin et al., 2020) with
Macro F1 on validation data. We further perform
upsampling within each batch to balance the num-
ber of examples in the positive and the negative
classes.

Prototype Models PROTOTEX can be used
across different underlying encoders on which in-
terpretability components are added. Empirically,
we found BART performed better on classifica-
tion and so adopt it. We empirically determine the
optimal number of prototypes to be 20, with one
negative prototype. 6 = 1,A = 2,y; = 2 = 0.9.
To achieve the maximum transparency, we set the
bias term in the linear layer to O so that all infor-
mation goes through the prototypes.® Additionally,
we compare to SIMPLEPROTOTEX, which trains
without use of the negative prototype.

Baselines As a strong blackbox benchmark we
use pretrained LMs without prototypes.

BERT-large (Devlin et al., 2019): we use a sim-
ple linear layer over the output of the CLS token
from the BERT encoder for classification.

BART-large (Lewis et al., 2020): we use the
eos token’s representation from the BART en-
coder as input to the linear layer of the model.

We also include a random baseline and a
case-based reasoning K-Nearest-Neighbor (KINN-
BART) baseline with the BART-large encoder.

® Early experiments showed no difference between includ-
ing vs. excluding the bias term with instance normalization.
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Figure 3: For each subcategory of propaganda (and the
© class), the fraction of validation examples from that
subcategory that are associated with each prototype;
“association” defined as the closest prototype for that
example. We see that PROTOTEX learns prototypes that
“focusses” differently on the subcategories.

4.2 Classification Results

Table 1 shows F1 scores achieved by models.
Among the black-box baselines, the BART-large
encoder representation outperformed BERT-large
significantly (p < 0.05, bootstrap test (Berg-
Kirkpatrick et al., 2012)). PROTOTEX performed
on-par with its underlying encoder BART, showing
that PROTOTEX’s explainability came at no cost
of classification performance. It also substantially
outperforms the KNN-BART baseline.

Figure 2 shows F1 for the examples, pretaining
to each subclass labeled by Da San Martino et al.
(2019). We can see that the model performance
is relatively consistent across subclasses. The two
subclasses that are most difficult for the model are
“Reductio ad Hitleru” and “Appeal to Authority”.

In Figure 3, we visualize and show that different
prototypes “focus” on each subclass differently. We
also see that negative examples are associated only
with the negative prototype, and vice-versa.
Negative Prototype. Using a negative proto-
type slightly improves SIMPLEPROTOTEX results.
Lacking a negative prototype, the only way to clas-
sify a negative class would be via a negative cor-
relation on the distance between the test input and
the learned prototypes. The use of the negative
prototype simplifies the discriminatory process by
dissociating the classification process of the neg-
ative class from the classification process of the
positive class.

Instance Normalization. As shown in Table 1,
normalization boosts classification performance.

EaE Total Examples
74 Non-Repeated

E -] ]
(-] o (=]

Examples

N
(-]

Non-Normalized

Normalized
Configurations

Figure 4: Number of unique 5-nearest training exam-
ples to each prototype (blue+red), and the number of
examples associated with only 1 prototype (blue-only).
Without normalization, very few examples (out of 100)
are close to all prototypes; with normalization, we ob-
serve more diversity: different training examples are
near different prototypes.

We also observe its benefit for explainability.

Because PROTOTEX’s explainability comes
from retrieving the most informative training ex-
amples, it will not be helpful for people if all pro-
totypes are close to only a few training examples.
Instead, it would be more beneficial for the proto-
types to represent more subtle patterns within the
training examples belonging to the same class. We
refer to this phenomenon as prototype segregation.
While the classification layer ensures that positive
and negative examples (and their prototypes) are
separated, it does not take into account segregation
within the positive class. Similarly, the prototype
losses L£,1 and L2 only locally ensure the close-
ness of examples to prototypes and vice-versa. To
encourage segregation, we perform instance nor-
malization (Ulyanov et al., 2016) for all distances.

This effect is shown in Figure 4. Specifically, we
retrieve the 5 closest training examples for each of
our 20 prototypes; good segregation would mean
that a large portion of these examples are unique
examples (the highest value is 100 meaning that
all examples are unique), while bad segregation
means that a large portion of these examples are
the same (the lowest value is 5 meaning that all pro-
totypes are the closest to only 5 training examples).
Without normalization, we have only 17 unique
examples for all 20 prototypes, yet with normaliza-
tion this number is 88. Furthermore, almost all of
the 88 training examples are associated with only
one prototype.

5 Human Evaluation

PROTOTEX is designed to provide faithful case-



Input True Model Similar

Sentence Label Prediction Examples

"This scandal has set off a feeding frenzy as " PSRN .
Internet sleuths search for other incidents Propaganda Propaganda And Trump is far from the only American

in which Franken has acted inappropriately.”

who sees the investigation as a witch hunt. (Name Calling,Labeling)"

- "Do the FBI and law enforcement think people

won’t talk about it or speculate as to what happened? (Doubt)"

- "And the father of Muslim spy ring Imran Awan

transferred a USB drive to a Pakistani senator and

former head of a Pakistani intelligence agency." (Name Calling,Labeling)

Table 2: Examples of similar sentences identified by our model. The input sentence uses the phrase feeding frenzy
which is an example of propaganda phrasing. The model identifies training examples that also contain propaganda
phrases as highlighted. Note that the model does not obtain the highlights shown here. Highlights are also not part

of our human evaluation.

based explanations (as shown in Table 2) for its
classification decisions. Given the set of top pro-
totypes most influential in predicting the class for
a given example, we hypothesize that these top
prototypes will be representative of the example
and the label corresponding to the example. We
carry out two user studies to assess the utility of
these prototype-based explanations for non-expert
end users. Specifically, we examine whether model
explanations help non-expert users to: 1) better rec-
ognize propaganda in online news; and 2) better
understand model behavior.

We obtain 540 user-responses, based on 20 test-
set examples, balancing gold labels and model pre-
dictions to include 5 examples from each group:
true-positives, false-negatives, true-negatives, and
false-positives. To simplify propaganda definitions
for non-experts, we pick only four types of propa-
ganda and we provide participants with definitions
and examples for each type: Appeal to Authority,
Exaggeration or Minimisation, Loaded Language,
and Doubt. We select these categories because they
cover the majority of the examples in the test set.

For each example, we select the top-5 proto-
types that most influenced the model’s prediction.
We then represent each prototype by the closest
training example in the embedding space. As with
case-base reasoning, we explain model decisions
to participants by showing for each test example
the five training examples that best represent the
evidence (prototypes) consulted by the model in
making its prediction. Participants are primed that
the model is wrong in 50% of the cases (to prevent
over-trust).

5.1 Recognizing Propaganda

In this first likert-scale rating task, participants
are asked whether the test example contains pro-

Accuracy by model and explanations

Baseline .
80 --- Random Examples d’
B Explanations only /
77 Model + Explanations d/ /
60 }

201

50% 75%
Model Performance

100%

Figure 5: Accuracy of human annotations when pro-
vided with PROTOTEX explanations or PROTOTEX ex-
planations + prediction. Model Performance: the accu-
racy of the model generating the explanations. Baseline:
Annotation accuracy without explanations. Random:
Randomly selected examples for explanation.

paganda. Options included: definitely, probably,
probably not, definitely not, or “I have no idea
(completely unsure how to respond)”. We compare
the following four study conditions:

No Explanation (Baseline) We show only the
test example that needs to be classified.

Random Examples We show five randomly se-
lected training examples®.

Explanation Only (EO) We also show five train-
ing examples, each representing a top-5 prototype
influencing the model prediction, as the evidence
consulted by the model in arriving at its prediction.

Model Prediction + Explanations (ME) Both
the model prediction and explanations are shown.

*Random sampling of examples has been successfully used
in tasks such as Semantic Textual Similarity (STS) and Natu-
ral Language Inference (NLI) (Agirre et al., 2013; Gold et al.,
2019) to obtain a reasonable lower-bound. Comparison with
random baseline demonstrates that our system selects exam-
ples that can improve human performance.
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Figure 6: Model Simulatability. User assessment of the model prediction a) Comparing PROTOTEX selected
training examples vs. random examples; b) Comparing examples where the model prediction is accurate and

examples where the model prediction is wrong

Results As Figure 5 shows, in the first baseline
condition (without any additional information), par-
ticipants were able to correctly predict the presence
of propaganda in 59% of the cases. In the second
baseline condition, when we providing random ex-
amples as “explanation”, accuracy drops to 44%.

We also measure how varying model accuracy
impacts the effect of model explanations, compar-
ing four model accuracy conditions: 0% (always
incorrect), 50%, 75%, and 100% (always correct)’.
When the model is always wrong, explanations re-
duce the human performance below both baselines
(38% in the EO condition, 26% in ME). At 50%
model accuracy, human performance is higher than
the “random” condition, but lower than the baseline.
At 75% , the ME condition outperforms the base-
line (67%). Finally, at 100% model performance
both model conditions improve the accuracy of
the human annotation, with ME condition reaching
84%. Our sample size of 540 exceeds the necessary
70 to holds a statistical power for between-subject
studies (Bojko, 2013) .

Results from this experiment demonstrate that
case-based explanations can improve human perfor-
mance compared to a random baseline. However,
the utility of the explanations is a function of the
model accuracy.

5.2 Model Understanding

The second user task investigates model under-
standing by simulatability (Hase et al., 2019): can
the participant predict the model decision given the

SWe simulate desired model accuracy by post-hoc sub-
sampling annotation instances where the model is cor-
rect/incorrect with corresponding frequency.

most important evidence consulted by the model?
Specifically, we show five training examples to the
user, either Random Examples (RE) or PROTO-
TEX Examples (PE) (i.e., the same training ex-
amples used in the EO condition above). We ask
participants to predict the model’s decision using
the same 5-point likert-scale as earlier.

Results Per Figure 6a, PROTOTEX’s explana-
tions help the users predict the model behavior
better than random examples: 50% correct user as-
sessment for PE vs 43.3% for RE. In 23.3% of the
RE examples users are unable to make a prediction
vs. 8% for the PE. Random guessing would be 40%
accurate on a five-way rating task with 2 positive,
1 neutral, and 2 negative options (§5.1).

In Figure 6b we can see that the users are better
at assessing the model prediction when the model
is right (57%) vs when the model is wrong (43%).
Additionally, we see that less users report inabil-
ity to identify mode prediction when the model is
correct (3.33%) vs. when the model is not (13.3%).

6 Conclusion

PROTOTEX is a novel approach to faithfully ex-
plain classification decisions by directly connect-
ing model decisions with training examples via
learned prototypes. PROTOTEX builds upon the
state of the art in NLP. It integrates an underlying
transformer encoder with prototype classification
networks, and uses a novel, interleaving training al-
gorithm for prototype learning. On the challenging
propaganda detection task, PROTOTEX performed
on-par in classification as its underlying encoder
(BART-large), and exceeded BERT-large, with the



added benefit of providing faithful model explana-
tions via prototypes. Our pilot human evaluation
study shows that additional input provided by PRO-
TOTEX contains relevant information for the task
and can improve the annotation performance, pro-
vided sufficient model accuracy. We further demon-
strate that explanations help non-expert users better
understand and simulate model predictions.

Ethical Statement

For annotation, we source participants from Ama-
zon Mechanical Turk only within the United States,
paying $10/hour based on average task time. We
did not reject any work but exclude data from par-
ticipants who failed an attention check.
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A Appendix
A.1 Prototypes as Soft-Clustering

We provide more insights into prototypes by il-
lustrating how the prototype layer relates to soft-
clustering .

Let t1., denote n training examples, having bi-
nary labels yi.,. Let D(a,b) denote symmetric
distance of any two training examples a and b. As-
sume m additional prototypes (i.e., points) pi1.m,
are defined in the same space as the training exam-
ples. Then D(a, b) can also be computed between
any training example and prototype, or between
any two prototypes. Let d/ = D(pj;,t;) denote
the symmetric distance between p; and training
example ¢;. Then any two training examples, ¢,
and t,,, will have respective distances d% and d{, to
prototype p;.

Let P; = W{:n denote a probability distribu-
tion for prototype p; over the training examples
t1.,. Specifically, induce ﬂf for training example
t; as a function of its distance d{ from prototype
pj: ™ = z;/d’, where z; is a normalization con-
stant. Then the relative probabilities for two train-

. i o
ing examples t,, and t,, = 7}, /77, = % =d,/d).
3/ Qu

By total probability, 1 = >, 7/ = 3, 2;/d =
zj Y 1/dl, s0 zj = Zj/df' Based on this, we

can say that each prototype effectively denotes a
soft-clustering over the set of training examples.

Further, the ratio of distances (d?, / d’,) between
training examples ,, and ,, and prototype p;, is the
reciprocal of their probabilities: 771]; / rrﬁ. In other
words, if a training example t,, is twice as far away
from prototype p; as another training example ¢,
(i.e., dﬂ / d% = 2), then ¢, will be twice as probable
as t,, in probability distribution P; (i.e., ™/ =
2).

Inference. The inference calculation shown here
uses only the prototype layer. Pj(y = 1) = ¢); =
Yoim 7rg y; denote the relative frequency estimated
probability of prototype p; having true class la-
bel y = 1. Let = denote a test example (de-
fined in the same vector space as training exam-
ples and prototypes). Then D(z,p;) = d% defines

the symmetric distance between z and prototype
pj. Let ©, = 67, denote a probability distribu-
tion for test example = over the prototypes pi.n,.
As with training examples and prototypes above,
induce this probability distribution based on rel-
ative distances between x and each prototype p;.
Then similar to before, if dg; /d’; = 2, meaning
prototype p; is twice as far from x as prototype
Pk, then we have 0}/ 9;6 = 2 meaning p; will be
twice as probable as p; in probability distribution
©,. Class label y = 1 for test example x is pre-
dicted by probability ©,(y = 1) = >, ,,, 07¢; =

Zjel:m 9? > icim ™ Yi-



