
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics

Volume 1: Long Papers, pages 4936 - 4960

May 22-27, 2022 c©2022 Association for Computational Linguistics

Impact of Evaluation Methodologies on Code Summarization

Pengyu Nie, Jiyang Zhang, Junyi Jessy Li, Raymond J. Mooney, Milos Gligoric

The University of Texas at Austin
{pynie@, jiyang.zhang@, jessy@austin.,

mooney@cs., gligoric@}utexas.edu

Abstract

There has been a growing interest in developing

machine learning (ML) models for code sum-

marization tasks, e.g., comment generation and

method naming. Despite substantial increase

in the effectiveness of ML models, the evalua-

tion methodologies, i.e., the way people split

datasets into training, validation, and test sets,

were not well studied. Specifically, no prior

work on code summarization considered the

timestamps of code and comments during eval-

uation. This may lead to evaluations that are

inconsistent with the intended use cases. In this

paper, we introduce the time-segmented evalu-

ation methodology, which is novel to the code

summarization research community, and com-

pare it with the mixed-project and cross-project

methodologies that have been commonly used.

Each methodology can be mapped to some use

cases, and the time-segmented methodology

should be adopted in the evaluation of ML mod-

els for code summarization. To assess the im-

pact of methodologies, we collect a dataset of

(code, comment) pairs with timestamps to train

and evaluate several recent ML models for code

summarization. Our experiments show that dif-

ferent methodologies lead to conflicting evalua-

tion results. We invite the community to expand

the set of methodologies used in evaluations.

1 Introduction

Over the last several years, there has been a grow-

ing interest in applying machine learning (ML)

models to code summarization tasks, such as com-

ment generation (Iyer et al., 2016; Hu et al., 2018a;

Wan et al., 2018; Liang and Zhu, 2018; Hu et al.,

2018b; LeClair et al., 2019; Fernandes et al., 2019;

Xu et al., 2019; LeClair and McMillan, 2019;

LeClair et al., 2020; Hu et al., 2020; Ahmad et al.,

2020; Cai et al., 2020; Gros et al., 2020) and

method naming (Allamanis et al., 2016; Alon et al.,

2019a,b; Fernandes et al., 2019; Nguyen et al.,

2020). Substantial progress has been reported over

years, usually measured in terms of automatic met-

rics (Roy et al., 2021).

Despite a solid progress in generating more ac-

curate summaries, the evaluation methodology, i.e.,

the way we obtain training, validation, and test sets,

is solely based on conventional ML practices in

natural language summarization, without taking

into account the domain knowledge of software

engineering and software evolution. For example,

temporal relations among samples in the dataset

are important because the style of newer code sum-

maries can be affected by older code summaries;

however, they are not explicitly modeled in the eval-

uation of code summarization in prior work, which

assumed the samples in the dataset are independent

and identically distributed. This gap could lead

to inflated values for automatic metrics reported

in papers and misunderstanding if a model might

actually be useful once adopted.

The key missing piece in prior work is the de-

scription of the targeted use cases for their ML

models. Prior work has implicitly targeted only

the batch-mode use case: applying the model to

existing code regardless of when the code is writ-

ten. However, a more realistic scenario could be

the continuous-mode use case: training the model

with code available at a timestamp, and using the

model on new code after that timestamp (as illus-

trated in Figure 1). Considering that programming

languages evolve and coding styles are constantly

revised, results obtained in batch-mode could be

very different from those obtained in continuous-

mode. Thus, it is insufficient to only report the

task being targeted in a paper, and it is necessary

to explain intended use cases for the ML models.

Once the task and use cases are clearly defined, an

appropriate evaluation methodology (or potentially

several methodologies) should be used.

In this paper, we study recent literature on ML

models for code summarization. By reasoning

about their evaluation methodologies (which we

4936

Training Validation Test

project 1 project 2 project 3 project n-1 project n

. . .

time

τ−2

τ−1

τ

Figure 1: Continuous-mode use case that can be evalu-

ated with the proposed time-segmented methodology.

call mixed-project and cross-project), we define

two use cases that could be evaluated by these

methodologies. Next, we define a more practical

use case when a developer uses a fixed model con-

tinuously over some period of time. We describe

an appropriate evaluation methodology for this use

case: time-segmented. Finally, we evaluate several

existing ML models using the three methodologies.

We highlight two key findings. First, depend-

ing on the employed methodology we end up with

conflicting conclusions, i.e., using one methodol-

ogy, model A is better than model B, and using

another methodology, model B is better than model

A. Second, our results show that the absolute val-

ues for automatic metrics vary widely across the

three methodologies, which indicates that models

might be useful only for some use cases but not

others. Thus, it is imperative that future work de-

scribes what use case is being targeted and use the

appropriate evaluation methodology.

In summary, this paper argues that we need

to more diligently choose evaluation methodology

and report results of ML models. Regardless of

whether or not the conclusions of prior work hold

across methodologies, we should always choose

the methodology appropriate for the targeted task

and use case. We hope the community will join us

in the effort to define the most realistic use cases

and the evaluation methodology for each use case.

We hope that our work will inspire others to de-

sign and formalize use cases and methodologies for

other tasks. Only a few research studies on defect

prediction (D’Ambros et al., 2012; Tan et al., 2015;

Wang et al., 2016; Kamei et al., 2016), program

repair (Lutellier et al., 2020), and bug localiza-

tion (Pradel et al., 2020) took into consideration

software evolution when evaluating ML models.

Taking software evolution into account in those

tasks appears more natural, but is not more impor-

tant than in code summarization. Moreover, for the

first time, we present an extensive list of potential

use cases and evaluation methodologies side-by-

Training Validation Test

project 1 project 2 project 3 project n-1 project n

. . .

Figure 2: Mixed-project methodology.

Training Validation Test

project 1 project 2 project 3 project m project n

.

Figure 3: Cross-project methodology.

side, as well as the impact of choosing various

methodologies on the performance of ML models.

Our code and data are available at https:

//github.com/EngineeringSoftware/

time-segmented-evaluation.

2 Methodologies

We first summarize two commonly used method-

ologies: mixed-project (§2.1) and cross-project

(§2.2). Then, we introduce a novel time-segmented

methodology (§2.3). We will use τ−2 < τ−1 < τ

to denote specific points in time (i.e., timestamps).

Table 1 lists prior work on developing new

ML models for code summarization. The last

three columns show which methodology/method-

ologies were used in the evaluation in each work

(MP: mixed-project, CP: cross-project, T: time-

segmented). Out of 18 papers we found, 15 used

the mixed-project methodology and 4 used the

cross-project methodology. No prior work used

the time-segmented methodology.

2.1 Mixed-Project

The mixed-project methodology, which is the most

commonly used methodology in prior work, ex-

tracts samples (code and comments) at a single

timestamp (τ) from various projects, then randomly

shuffles the samples and splits them into training,

validation, and test sets.

Figure 2 illustrates this methodology, where each

box represents a project and each circle represents

a sample. This methodology is time-unaware, i.e.,

it does not consider if samples in the test sets are

committed into a project before or after samples in

the training or validation sets.

4937

Methodology
Task Reference Published at Language Automatic Metrics

MP CP T

Iyer et al. (2016) ACL’16 C#, SQL BLEU, METEOR

Wan et al. (2018) ASE’18 Python BLEU, METEOR, ROUGE-L, CIDER

Xu et al. (2018) EMNLP’18 SQL BLEU

Fernandes et al. (2019) ICLR’19 C# BLEU, ROUGE-L, ROUGE-2, F1

LeClair et al. (2019) ICSE’19 Java BLEU

Hu et al. (2018a, 2020) ICPC’18, ESE’20 Java BLEU, METEOR, Precision, Recall, F1

LeClair et al. (2020) ICPC’20 Java BLEU, ROUGE-L

Cai et al. (2020) ACL’20 SQL, Python BLEU, ROUGE-L, ROUGE-2

Ahmad et al. (2020) ACL’20 Java, Python BLEU, METEOR, ROUGE-L

Feng et al. (2020) EMNLP’20 Java, Python, etc. BLEU

C
o

m
m

en
t

G
en

er
at

io
n

Ahmad et al. (2021) NAACL’21 Java, Python, etc. BLEU

Allamanis et al. (2016) ICML’16 Java Precision, Recall, F1, EM

Fernandes et al. (2019) ICLR’19 Java, C# ROUGE-L, ROUGE-2, F1

Xu et al. (2019) PEPM’19 Java Precision, Recall, F1, EM

Alon et al. (2019b) POPL’19 Java Precision, Recall, F1

Alon et al. (2019a) ICLR’19 Java Precision, Recall, F1

Yonai et al. (2019) APSEC’19 Java Top-10 Accuracy

M
et

h
o

d
N

am
in

g

Nguyen et al. (2020) ICSE’20 Java Precision, Recall, F1

Sum n/a n/a n/a n/a 15 4 0

Table 1: Methodologies used in prior work on code summarization; we use the highlighted lines in our experiments.

2.2 Cross-Project

The cross-project methodology, also commonly

used in prior work, extracts samples at a single

timestamp (τ) from various projects as well. Unlike

the mixed-project methodology, the cross-project

methodology splits the set of projects into three

disjoint sets for training, validation, and test. Thus,

the samples from one project are contained in only

one of the training, validation, and test sets.

Figure 3 illustrates this methodology. The cross-

project methodology is explicitly evaluating the

ability to generalize a model to new projects. How-

ever, cross-project is also time-unaware, i.e., it does

not consider if the samples from a project in the

test set come before or after the samples from the

projects in the training set.

2.3 Time-Segmented

We introduce a novel methodology: time-

segmented. Unlike the methodologies explained

earlier, the time-segmented methodology is time-

aware, i.e., the samples in the training set were

available in the projects before the samples in the

validation set, which were in turn available before

the samples in the test set.

Figure 1 illustrates this methodology. The sam-

ples available before τ−2 (i.e., their timestamps are

earlier than τ−2) are assigned to the training set.

The samples available after τ−2 and before τ−1

are assigned to the validation set. And finally, the

samples available after τ−1 and before τ (which

is the time when the dataset is collected) are as-

signed to the test set. This assignment may not be

the only approach to satisfy the definition of the

time-segmented methodology, but is one approach

that utilizes all samples collected at τ . Alternative

assignments, e.g., excluding samples available be-

fore τ−3 (a timestamp earlier than τ−2) from the

training set, may have other benefits, which we

leave for future work to study.

3 Use Cases

Methodologies are used to set up experiments and

obtain an appropriate dataset split for the evalu-

ation. However, they do not describe the envi-

sioned usage of an ML model. Prior work picked

a methodology in order to set up experiments, but

we argue that ML models should be described with

respect to use cases, i.e., how will the developers

use the models eventually. Once a use case is cho-

sen, an appropriate methodology can be selected to

evaluate the model.

In this section, we define three use cases via

examples of the comment generation task. The

first two use cases are ªextractedº from prior work.

Namely, we reason about the mixed-project and

the cross-project methodologies used in prior work

and try to link each to a (somewhat) realistic use

case. The third use case is inspired by our own

development and can be evaluated using the time-

4938

segmented methodology. Note that we do not try to

provide an exhaustive list of use cases, but rather to

start off this important discussion on the distinction

between a use case and an evaluation methodology.

For the simplicity of our discussion, we only focus

on the training and test sets (since the validation set

can be regarded as the ªopenº test set for tuning).

3.1 In-Project Batch-Mode Use Case

Consider Alice, a developer at a large software

company. Alice has been developing several soft-

ware features in her project over an extended period

of time (since τ−1), but she only wrote comments

for a part of her code. At one point (τ), she decides

it is time to add documentations for the methods

without comments, with the help of an ML model.

Alice decides to train a model using already ex-

isting samples (i.e., (code, comment) pairs for the

methods with comments) in her code, and since

this may provide only a small number of training

samples, she also uses the samples (available at

time τ) from other projects. We call this in-project

batch-mode use case, because Alice trains a new

model every time she wants to use the model, and

she applies it to a large amount of methods that

may be added before or after the methods in the

training set. This use case can be evaluated using

the mixed-project methodology (§2.1).

Because prior work using the mixed-project

methodology did not set any limit on the times-

tamps for samples in training and test sets, the time

difference between samples in the two sets can be

arbitrarily large. Moreover, the model is applied

on all projects that it has been trained on. These

two facts make the in-project batch-mode use case

less realistic, for example, a sample from project A

available at time τ may be used to predict a sample

from project B available at time τ−1, and a sample

from project B available at time τ may be used to

predict a sample from project A available at time

τ−1, simultaneously.

3.2 Cross-Project Batch-Mode Use Case

In this case, we assume that Alice works on a

project (since τ−1) without writing any documenta-

tion for her code. At some point (τ), Alice decides

to document all her methods, again with the help of

an ML model. Since Alice does not have any com-

ments in her code, she decides to only train on the

samples (i.e., (code, comment) pairs) from other

projects (at time τ). Once the model is trained, she

uses it to generate comments for all the methods in

her project. We call this cross-project batch-mode

use case, because Alice trains a new model at a

specific timestamp and applies it to all the methods

on a new project. (Note that once she integrates the

comments that she likes, she can use them in the

future for training a new ML model, which matches

in-project batch-mode use case, or potentially she

could decide to ignore those comments and always

generates new comments, but this is unlikely.) This

use case can be evaluated using the cross-project

methodology (§2.2).

While the cross-project methodology is reason-

able for evaluating model generalizability, the

cross-project batch-mode use case does make

strong assumptions (e.g., no documentation exists

for any method in the targeted projects).

3.3 Continuous-Mode Use Case

In this case, Alice writes comments for each

method around the same time as the method itself.

For example, Alice might integrate a model for

comment generation into her IDE that would sug-

gest comments once Alice indicates that a method

is complete. (Updating and maintaining comments

as code evolves (Panthaplackel et al., 2020; Liu

et al., 2020; Lin et al., 2021) is an important topic,

but orthogonal to our work.) Suppose at τ−1, Al-

ice downloads the latest model trained on the data

available in her project and other projects before

τ−1; such model could be trained by her company

and retrained every once in a while (finding an ap-

propriate frequency at which to retrain the model is

a topic worth exploring in the future). She can keep

using the same model until τ when she decides to

use a new model. We call this continuous-mode,

because the only samples that can be used to train

the model are the samples from the past. This use

case can be evaluated using the time-segmented

methodology (§2.3).

4 Application of Methodologies

We describe the steps to apply the methodologies

following their definitions (§2) with a given dataset,

as illustrated in Figure 4. The input dataset contains

samples with timestamps, and the outputs include:

a training and validation set for each methodology

to train models; a standard test set for each method-

ology to evaluate the models for this methodology

only; and a common test set for each pair of method-

ologies to compare the same models on the two

methodologies. Appendix A presents the formulas

4939

τ−2

τ−1

τ

1. time-segment samples in each project

Eτ−2,p

Eτ−1\τ−2,p

Eτ\τ−1,p

τ−2

τ−1

τ

2. perform in-project split

training (rx) validation (ry) test (rz)

Eτ−2,p
train Eτ−2,p

val Eτ−2,p
test

E
τ−1\τ−2,p

train E
τ−1\τ−2,p

val E
τ−1\τ−2,p
test

E
τ\τ−1,p

train E
τ\τ−1,p

val E
τ\τ−1,p
test

· · · · · ·

p1 p2 pm pn

τ−2

τ−1

τ

rx ry rz

Ptrain (rx) Pval (ry) Ptest (rz)

3. perform cross-project split

MP · · · · · ·

CP · · · · · ·

T · · · · · ·

4. group into Train, Val, and TestS sets

MP ∩ CP · · · · · ·

MP ∩ T · · · · · ·

CP ∩ T · · · · · ·

5. intersect TestS sets to get TestC sets

Train Val TestS TestC

6. perform post-processing: downsample Train set; clean Val, TestS, and TestC sets

Figure 4: Steps of processing a dataset into training, validation, standard test, and common test sets.

of each step.

Step 1: time-segment. See Figure 4 top left part.

A project is horizontally segmented into three parts

by timestamps τ−2 and τ−1.

Step 2: in-project split. See Figure 4 top right

part. A project is further vertically segmented into

three parts randomly, which is orthogonal to the

time segments in step 1.

Step 3: cross-project split. See Figure 4 middle

part. Projects are assigned to training, validation,

and test sets randomly, which is orthogonal to the

time segments and in-project splits in step 1 and 2.

Step 4: grouping. Now that the dataset is bro-

ken down to small segments across three dimen-

sions (time, in-project, and cross-project), this

step groups the appropriate segments to obtain the

training (Train), validation (Val), and standard test

(TestS) sets for each methodology. This is visual-

ized in Figure 4 bottom left part.

Step 5: intersection. The common test (TestC) set

of two methodologies is the intersection of their

TestS sets. This is visualized in Figure 4 bottom

right part.

In theory, we could compare all three method-

ologies on the intersection of the three TestS sets,

but in practice, this set is too small (far less than

4% of all samples when we assign 20% projects

and 20% samples in each project into test set).

Step 6: postprocessing. To avoid being impacted

by the differences in the number of training sam-

ples for different methodologies, we (randomly)

downsample their Train sets to the same size (i.e.,

the size of the smallest Train set).1

The evaluation (Val, TestS, TestC) sets may

contain samples that are duplicates of some sam-

ples in the Train set, due to code clones (Sajnani

et al., 2016; Roy et al., 2009) and software evolu-

tion (Fluri et al., 2007; Zaidman et al., 2011). We

remove those samples as they induce noise to the

evaluation of ML models (Allamanis, 2019). We

present the results of removing exact-duplicates in

the main paper, but we also perform experiments

of removing near-duplicates to further reduce this

noise and report their results in Appendix B (which

do not affect our main findings).

1This is not required if training ML models under a specific
methodology without comparing to other methodologies.

4940

5 Experiments

We run several existing ML models using different

methodologies to understand their impact on auto-

matic metrics, which are commonly used to judge

the performance of models.

5.1 Tasks

We focus on two most studied code summariza-

tion tasks: comment generation and method nam-

ing. We gave our best to select well-studied, repre-

sentative, publicly-available models for each task;

adding more models may reveal other interesting

observations but is computationally costly, which

we leave for future work.

Comment generation. Developers frequently

write comments in natural language together with

their code to describe APIs, deliver messages to

users, and to communicate among themselves (Pa-

dioleau et al., 2009; Nie et al., 2018; Pascarella

et al., 2019). Maintaining comments is tedious and

error-prone, and incorrect or outdated comments

could lead to bugs (Tan et al., 2007, 2012; Ratol and

Robillard, 2017; Panthaplackel et al., 2021). Com-

ment generation tries to automatically generate

comments from code. Prior work mostly focused

on generating an API comment (e.g., JavaDoc sum-

mary) given a method.

We used three models: DeepComHybrid model

from Hu et al. (2018a, 2020), Transformer model

and Seq2Seq baseline from Ahmad et al. (2020).

We used four automatic metrics that are fre-

quently reported in prior work: BLEU (Pap-

ineni et al., 2002) (average sentence-level BLEU-

4 with smoothing (Lin and Och, 2004b)), ME-

TEOR (Banerjee and Lavie, 2005), ROUGE-L (Lin

and Och, 2004a), and EM (exact match accuracy).

Method naming. Descriptive names for code el-

ements (variables, methods, classes, etc.) are a

vital part of readable and maintainable code (Hùst

and Østvold, 2009; Allamanis et al., 2015). Nam-

ing methods is particularly important and chal-

lenging, because the names need to be both

conciseÐusually containing only a few tokensÐ

and comprehensibleÐsuch that they describe the

key functionality of the code (Lawrie et al., 2006).

We used two models: Code2Vec from Alon et al.

(2019b) and Code2Seq from Alon et al. (2019a).

We used four automatic metrics that are frequently

reported in prior work: Precision, Recall, F1, and

EM (exact match accuracy).

Task Train Val TestS TestC

MP 50,879 7,569 14,956 MP ∩ CP 3,362

CP 50,879 8,938 15,661 MP ∩ T 2,013

C
o

m
m

en
t

G
en

er
at

io
n

T 50,879 11,312 9,870 CP ∩ T 2,220

MP 50,879 7,523 14,796 MP ∩ CP 3,344

CP 50,879 8,811 15,332 MP ∩ T 2,011

M
et

h
o

d

N
am

in
g

T 50,879 11,223 9,807 CP ∩ T 2,211

Table 2: Number of samples in our datasets.

5.2 Data

We could not easily reuse existing datasets from

prior work because the timestamps of samples are

not available. We extracted samples with times-

tamps from popular and active open-source Java

projects using English for summaries (comments

and names) from GitHub. We collected samples be-

fore τ = 2021 Jan 1st, and we time-segmented sam-

ples by τ−2 = 2019 Jan 1st and τ−1 = 2020 Jan 1st.
The splitting ratios for in-project and cross-project

splits are 70%, 10%, 20%.

Table 2 presents the number of samples in each

set for each methodology. We present more details

and metrics of data collection in Appendix C.

5.3 Results

We use the hyper-parameters provided in the orig-

inal papers. Validation sets are used for early-

stopping if needed by the model. We run each

model three times with different random seeds. Ap-

pendix D presents more details of our experiments

to support their reproducibility.

Tables 3 and 4 present the results for comment

generation and method naming, respectively. Each

table has four parts and each part contains the re-

sults for one metric. Each number is the metric of a

model (name at column 1) trained on the Train set

of a methodology (name at row 1) and evaluated

on a TestC set involving that methodology (name

at row 2). The best results are in bold text. The

results marked with the same Greek letter are not

statistically significantly different.2 Appendix E

presents the results on Val and TestS sets, and bar

plots visualizing the results.

5.4 Findings

Depending on the methodology, one model can

perform better or worse than another. On

2We conducted statistical significance tests using bootstrap
tests (Berg-Kirkpatrick et al., 2012) with confidence level
95%.

4941

Train MP CP MP T CP T

Test MP ∩ CP MP ∩ T CP ∩ T

▼ BLEU [%]

DeepComHybrid 45.0 11.4 β52.6 43.2 11.0 45.6

Seq2Seq 53.8 α13.7 61.7 β53.2 13.4 53.3
Transformer 58.1 α14.1 65.6 56.3 14.3 56.1

▼ METEOR [%]

DeepComHybrid 52.9 18.3 δ59.3 50.0 18.2 52.0

Seq2Seq 62.0 γ21.2 68.0 δ59.8 ϵ21.2 59.6
Transformer 66.0 γ21.4 71.5 62.7 ϵ21.6 62.1

▼ ROUGE-L [%]

DeepComHybrid 57.0 23.9 ζ62.8 53.9 22.8 55.9

Seq2Seq 66.7 29.4 72.0 ζ64.1 28.7 64.3
Transformer 70.1 30.4 74.9 66.6 30.0 66.4

▼ EM [%]

DeepComHybrid 30.2 ηθ1.4 κ39.5 31.0 λµ1.3 35.4

Seq2Seq 37.3 ηι1.2 48.7 κ41.0 λ1.1 42.7

Transformer 41.1 θι1.7 52.3 44.2 µ1.7 45.8

Table 3: Comment generation models’ results on TestC

sets. The six results in each block are comparable be-

cause they use the same set and metric, where results

marked with the same Greek letter are not statistically

significantly different. Depending on the methodology,

we may or may not observe statistically significant dif-

ferences results between models.

method naming task, we found that Code2Seq out-

performs Code2Vec only in cross-project method-

ology but not the other methodologies, consistently

on all metrics. Our observation aligns with the

finding in the original paper (Alon et al., 2019a)

that Code2Seq outperforms Code2Vec when using

the cross-project methodology. The reason is that

in contrary to Code2Seq which generates a name

as a sequence of subtokens, Code2Vec generates a

name by retrieving a name in the Train set, and thus

has better chances to generate correct names under

the mixed-project and time-segmented methodolo-

gies where the names in the Test set are similar to

the names in the Train set.

This finding suggests that a model may work

better for one use case but not anotherÐin this

case, Code2Seq performs better in the cross-project

batch-mode use case, but Code2Vec performs bet-

ter in the in-project batch-mode and the continu-

ous-mode use case.

Depending on the methodology, the differences

between models may or may not be observ-

able. For example, for comment generation, on

the TestC set of cross-project and time-segmented

methodologies when using the METEOR metric

Train MP CP MP T CP T

Test MP ∩ CP MP ∩ T CP ∩ T

▼ Precision [%]

Code2Vec 59.3 18.9 65.1 57.8 14.4 55.3
Code2Seq 52.6 39.8 52.7 49.2 35.5 46.2

▼ Recall [%]

Code2Vec 57.7 16.4 63.5 55.8 12.9 53.8
Code2Seq 44.0 30.3 44.5 40.3 26.5 38.4

▼ F1 [%]

Code2Vec 57.9 16.7 63.7 56.2 13.0 53.9
Code2Seq 46.5 33.0 46.9 42.9 28.8 40.6

▼ EM [%]

Code2Vec 42.7 α6.5 50.5 46.9 β5.4 43.9

Code2Seq 17.6 α7.6 18.9 16.0 β5.9 13.3

Table 4: Method naming models’ results on and TestC

sets. The four results in each block are comparable be-

cause they use the same set and metric, where results

marked with the same Greek letter are not statistically

significantly different. Surprisingly, Code2Seq outper-

forms Code2Vec in the Cross-Project methodology but

the opposite holds in the other two methodologies.

(Table 3, columns 6±7), Transformer significantly

outperforms Seq2Seq when trained on the time-

segmented Train set, but does not when trained

on the cross-project Train set. Similar observa-

tions can be made on the BLEU and EM metrics

for comment generation, and the EM metric for

method naming.

Two models’ results being not statistically sig-

nificantly different indicates that their difference

is not reliable. We could not find reference points

for this finding in prior work (unfortunately, Ah-

mad et al. (2020) did not compare Seq2Seq with

Transformer though both were provided in their

replication package).

Results under the mixed-project methodology

are inflated. We found that the results under the

mixed-project methodology are always higher than

the other two methodologies. This is not surprising

as ML models have difficulty in generalizing to

samples that are different from the Train set.

Considering that the mixed-project methodology

represents a less realistic use case than the other

two methodologies, the mixed-project methodol-

ogy always over-estimates the models’ usefulness.

As such, we suggest that the mixed-project method-

ology should never be used unless the model is

targeted specially for the in-project batch-mode

use case (§3).

Results under the cross-project methodology

4942

may be an under-estimation of the more real-

istic continuous-mode use case. We found that

the results under the cross-project methodology

are always lower than the results under the time-

segmented methodology, consistently on all met-

rics in both tasks. We have discussed that the con-

tinuous-mode use case is more realistic than others

(§3). This suggests that the usefulness of the mod-

els in prior work using the cross-project methodol-

ogy may have been under-estimated.

Findings in prior work may not hold when using

a different methodology or a different dataset.

We found that the findings reported by prior work

may not hold in our experiment: for example, the

finding ªDeepComHybrid outperforms Seq2Seqº

from Hu et al. (2020) does not hold on our dataset

(one reason could be the Seq2Seq code we used is

more recent than the version that DeepComHybrid

based on). This indicates that researchers should

specify the targeted use case, the employed method-

ology, and the used dataset when reporting findings,

and expect that the findings may not generalize to

a different use case or dataset.

6 Future Work

6.1 Methodologies for Other SE Areas Using

ML Models

We studied the impact of different evaluation

methodologies in the context of code summariza-

tion, and future work can study their impacts on

other software engineering (SE) areas using ML

models. We briefly discuss the potential ways

and challenges of transferring our methodologies

from code summarization to ML models for other

SE tasks, including generation tasks (e.g., commit

message generation and code synthesis) and non-

generation tasks (e.g., defect prediction and bug

localization). The key is to modify the application

steps of the methodologies based on the format of

samples (inputs and outputs) in the targeted task.

For most tasks where inputs and outputs are

software-related artifacts with timestamps, the

methodologies, use cases, and application steps

defined by us should still apply. For example, trans-

ferring our methodologies from the code summa-

rization task to the commit message generation task

only requires replacing ª(code, comment) pairsº to

ª(code change, commit message) pairsº.

For some tasks, the input or output of one sample

may change when observed at different timestamps.

For example, in defect prediction (pointed out by

Tan et al. (2015)), suppose a commit at τ−2 was

discovered to be buggy at τ , then when training the

model at τ−1, that commit should be labeled as not

buggy. The correct version of the sample should be

used according to its timestamp.

6.2 Other Use Cases and Methodologies

Out of many other use cases and methodologies,

we discuss two that are closely related to the con-

tinuous-mode use case and the time-segmented

methodology. Future work can expand our study

and perform experiments on them.

Cross-project continuous-mode use case. Com-

pared to the continuous-mode use case, when train-

ing the model at τ , instead of using all projects’

samples before τ , we only use other projects’ sam-

ples. The corresponding methodology is a com-

bination of the cross-project and time-segmented

methodologies. From the ML model users’ perspec-

tive, this use case is less realistic than the contin-

uous-mode use case, because using samples from

the targeted projects can improve the model’s per-

formance. However, from ML model researchers’

perspective, this methodology may be used to bet-

ter evaluate the model’s effectiveness on unseen

samples (while considering software evolution).

Online continuous-mode use case. Compared to

the continuous-mode use case, when we train a

new model at τ , instead of discarding the previ-

ous model trained at τ−1 and training from scratch,

we continue training the previous model using the

samples between τ−1 and τ , e.g., using online

learning algorithms (Shalev-Shwartz, 2012). The

corresponding methodology is similar to the time-

segmented methodology, but with multiple train-

ing and evaluation steps. Compared to the time-

segmented methodology, the model trained using

this methodology may have better performance as

it is continuously tuned on the latest samples (e.g.,

with the latest language features).

6.3 Applications of Our Study in Industry

We provide generic definitions to several repre-

sentative use cases (in-project batch-mode, cross-

project batch-mode, and continuous-mode). We

believe these three use cases, plus some variants of

the continuous-mode use case (§6.2), should cover

most use cases of ML models in the SE industry. In

practice, it may not always be possible to determine

the target use cases in advance of deploying ML

models, in which case performing a set of experi-

ments (similar to the one in our study) to compare

4943

between different methodologies and use cases can

guide the switching of use cases. We leave study-

ing the usages of ML models in the SE industry and

deploying the findings of our study as techniques

to benefit the SE industry as future work.

7 Related Work

7.1 Evaluation Methodologies

To our best knowledge, ours is the first work to

study the evaluation methodologies of code sum-

marization ML models and use the time-segmented

methodology in this area. Outside of the code sum-

marization area, a couple of work on defect pre-

diction (D’Ambros et al., 2012; Tan et al., 2015;

Wang et al., 2016; Kamei et al., 2016), one work

on program repair (Lutellier et al., 2020), and one

work on bug localization (Pradel et al., 2020) have

taken into account the timestamps during evalua-

tion, specifically for their task. The methodologies

we proposed in this paper may also be extended to

those areas. Moreover, our work is the first to study

the impact of the mixed-project, cross-project, and

time-segmented methodologies side-by-side.

Tu et al. (2018) revealed the data leakage prob-

lem when using issue tracking data caused by the

unawareness of the evolution of issue attributes.

We revealed that a similar problem (unawareness

of the timestamps of samples in the dataset) exists

in the evaluation of code summarization tasks, and

we propose a time-segmented methodology that

can be used in future research.

Bender et al. (2021) pointed out a similar issue

in NLP, that the ML models evaluated in standard

cross-validation methodology may incur significant

bias in realistic use cases, as the models cannot

adapt to the new norms, language, and ways of

communicating produced by social movements.

7.2 Code Summarization

Code summarization studies the problem of sum-

marizing a code snippet into a natural language

sentence or phrase. The two most studied tasks in

code summarization are comment generation and

method naming (§5.1). Table 1 already listed the

prior work on these two tasks. Here, we briefly

discuss their history.

The first work for comment generation (Iyer

et al., 2016) and method naming (Allamanis et al.,

2016) were developed based on encoder-decoder

neural networks and attention mechanism. Other

prior work extended this basic framework in many

directions: by incorporating tree-like code context

such as AST (Wan et al., 2018; Xu et al., 2019;

LeClair et al., 2019; Hu et al., 2018a, 2020); by

incorporating graph-like code context such as call

graphs and data flow graphs (Xu et al., 2018; Fer-

nandes et al., 2019; Yonai et al., 2019; LeClair et al.,

2020); by incorporating path-like code context such

as paths in AST (Alon et al., 2019b,a); by incorpo-

rating environment context, e.g., class name when

generating method names (Nguyen et al., 2020); by

incorporating type information (Cai et al., 2020);

or by using more advanced neural architecture such

as transformers (Ahmad et al., 2020).

Recently, pre-trained models for code learn-

ing (Feng et al., 2020; Guo et al., 2021; Ahmad

et al., 2021; Wang et al., 2021; Chen et al., 2021)

were built on large datasets using general tasks

(e.g., masked language modeling), and these mod-

els can be fine-tuned on specific code learning tasks,

including comment generation and method nam-

ing. Evaluating pre-trained models involves a pre-

training set, in addition to the regular training, val-

idation, and test sets. Our methodologies can be

extended for pre-trained models; for example, in

the time-segmented methodology, the pre-training

set contains samples that are available before the

samples in all other sets. No prior work on pre-

trained models has considered the timestamps of

samples during evaluation.

8 Conclusion

We highlighted the importance of specifying tar-

geted use cases and adopting the correct evalu-

ation methodologies during the development of

ML models for code summarization tasks (and for

other software engineering tasks). We revealed the

importance of the realistic continuous-mode use

case, and introduced the time-segmented method-

ology which is novel to code summarization. Our

experiments of comparing ML models using the

time-segmented methodology and using the mixed-

project and cross-project methodologies (which are

prevalent in the literature) showed that the choice

of methodology impacts the results and findings of

the evaluation. We found that mixed-project tends

to over-estimate the effectiveness of ML models,

while the cross-project may under-estimate it. We

hope that future work on ML models for software

engineering will dedicate extra space to document

intended use cases and report findings using vari-

ous methodologies.

4944

Acknowledgments

We thank Nader Al Awar, Kush Jain, Yu Liu,

Darko Marinov, Sheena Panthaplackel, August Shi,

Zhiqiang Zang, and the anonymous reviewers for

their comments and feedback. This work is par-

tially supported by a Google Faculty Research

Award, the US National Science Foundation un-

der Grant Nos. CCF-1652517, IIS-1850153, and

IIS-2107524, and the University of Texas at Austin

Continuing Fellowship.

Ethics Statement

Our dataset has been collected in a manner that

is consistent with the licenses provided from the

sources (i.e., GitHub repositories).

The evaluation methodologies described in our

study is expected to assist researchers in evaluat-

ing and reporting ML models for code summariza-

tion, and assist software developers (i.e., users of

those models) in understanding the reported met-

rics and choosing the correct model that fits their

use case. Our work can be directly deployed in

code summarization research, and can potentially

generalize to other software engineering areas us-

ing ML models (§6.1). We expect our work to help

researchers build ML models for code summariza-

tion (and other SE areas) that are more applicable

to their intended use cases.

We do not claim that the methodologies and use

cases described in our study are the most realistic

ones, nor do we try to provide an exhaustive list of

them. In particular, the continuous-mode use case

(§3.3) is inspired by our own observations during

using and developing ML models for code summa-

rization. We try our best to design this use case

to reflect the most common and realistic scenarios,

but other use cases may be more valid in certain

scenarios (§6.2).

We conducted experiments involving computa-

tion time/power, but we have carefully chosen the

number of times to repeat the experiments to both

ensure reproducibility of our research and avoid

consuming excessive energy. We provided details

of our computing platform and running time in

Appendix D.

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Annual

Meeting of the Association for Computational Lin-
guistics, pages 4998±5007.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2655±2668.

Miltiadis Allamanis. 2019. The adverse effects of
code duplication in machine learning models of code.
In International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and
Software, pages 143±153.

Miltiadis Allamanis, Earl T. Barr, Christian Bird, and
Charles Sutton. 2015. Suggesting accurate method
and class names. In Joint European Software Engi-
neering Conference and Symposium on the Founda-
tions of Software Engineering, pages 38±49.

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for extreme
summarization of source code. In International Con-
ference on Machine Learning, pages 2091±2100.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2019a. code2seq: Generating sequences from
structured representations of code. In International
Conference on Learning Representations.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-
hav. 2019b. code2vec: Learning distributed repre-
sentations of code. Proceedings of the ACM on Pro-
gramming Languages, 3(POPL):1±29.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Work-
shop on Intrinsic and Extrinsic Evaluation Mea-
sures for Machine Translation and/or Summarization,
pages 65±72.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Conference on Fairness, Accountabil-
ity, and Transparency, pages 610±623.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical sig-
nificance in NLP. In Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning, pages
995±1005.

Ruichu Cai, Zhihao Liang, Boyan Xu, Zijian Li, Yuex-
ing Hao, and Yao Chen. 2020. TAG : Type auxiliary
guiding for code comment generation. In Annual
Meeting of the Association for Computational Lin-
guistics, pages 291±301.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,

4945

Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Marco D’Ambros, Michele Lanza, and Romain Robbes.
2012. Evaluating defect prediction approaches: A
benchmark and an extensive comparison. Empirical
Software Engineering, 17(4-5):531±577.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP, pages 1536±
1547.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Structured neural summariza-
tion. In International Conference on Learning Rep-
resentations.

Beat Fluri, Michael Würsch, and Harald C. Gall. 2007.
Do code and comments co-evolve? on the relation
between source code and comment changes. In Work-
ing Conference on Reverse Engineering, pages 70±
79.

David Gros, Hariharan Sezhiyan, Prem Devanbu, and
Zhou Yu. 2020. Code to comment ªtranslationº: data,
metrics, baselining & evaluation. In Automated Soft-
ware Engineering, pages 746±757.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan,
Jian Yin, Daxin Jiang, and Ming Zhou. 2021. Graph-
CodeBERT: Pre-training code representations with
data flow. In International Conference on Learning
Representations.

Einar W. Hùst and Bjarte M. Østvold. 2009. Debugging
method names. In European Conference on Object-
Oriented Programming, pages 294±317.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018a.
Deep code comment generation. In International
Conference on Program Comprehension, pages 200±
210.

Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020.
Deep code comment generation with hybrid lexical
and syntactical information. Empirical Software En-
gineering, 25(3):2179±2217.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018b. Summarizing source code with trans-
ferred API knowledge. In International Joint Confer-
ence on Artificial Intelligence, pages 2269±2275.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Annual Meeting of
the Association for Computational Linguistics, pages
2073±2083.

Yasutaka Kamei, Takafumi Fukushima, Shane McIn-
tosh, Kazuhiro Yamashita, Naoyasu Ubayashi, and
Ahmed E. Hassan. 2016. Studying just-in-time de-
fect prediction using cross-project models. Empirical
Software Engineering, 21(5).

Dawn Lawrie, Christopher Morrell, Henry Feild, and
David Binkley. 2006. What’s in a name? a study of
identifiers. In International Conference on Program
Comprehension, pages 3±12.

Alexander LeClair, Sakib Haque, Lingfei Wu, and
Collin McMillan. 2020. Improved code summariza-
tion via a graph neural network. In International Con-
ference on Program Comprehension, page 184±195.

Alexander LeClair, Siyuan Jiang, and Collin McMillan.
2019. A neural model for generating natural lan-
guage summaries of program subroutines. In Inter-
national Conference on Software Engineering, pages
795±806.

Alexander LeClair and Collin McMillan. 2019. Rec-
ommendations for datasets for source code summa-
rization. In Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3931±3937.

Yuding Liang and Kenny Qili Zhu. 2018. Automatic
generation of text descriptive comments for code
blocks. In AAAI Conference on Artificial Intelligence,
pages 5229±5236.

Bo Lin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and
Tegawendé F Bissyandé. 2021. Automated comment
update: How far are we? In International Conference
on Program Comprehension, pages 36±46.

Chin-Yew Lin and Franz Josef Och. 2004a. Auto-
matic evaluation of machine translation quality us-
ing longest common subsequence and skip-bigram
statistics. In Annual Meeting of the Association for
Computational Linguistics, pages 605±612.

Chin-Yew Lin and Franz Josef Och. 2004b. ORANGE:
A method for evaluating automatic evaluation metrics
for machine translation. In International Conference
on Computational Linguistics, pages 501±507.

Zhongxin Liu, Xin Xia, Meng Yan, and Shanping Li.
2020. Automating just-in-time comment updating.
In Automated Software Engineering, pages 585±597.

Thibaud Lutellier, Hung Viet Pham, Lawrence Pang,
Yitong Li, Moshi Wei, and Lin Tan. 2020. CoCoNuT:
Combining context-aware neural translation models
using ensemble for program repair. In International
Symposium on Software Testing and Analysis, pages
101±114.

Son Nguyen, Hung Phan, Trinh Le, and Tien N. Nguyen.
2020. Suggesting natural method names to check
name consistencies. In International Conference on
Software Engineering, page 1372±1384.

4946

Pengyu Nie, Junyi Jessy Li, Sarfraz Khurshid, Ray-
mond J. Mooney, and Milos Gligoric. 2018. Natural
language processing and program analysis for sup-
porting todo comments as software evolves. In Work-
shop on Natural Language Processing for Software
Engineering, pages 775±778.

Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009.
Listening to programmersÐtaxonomies and charac-
teristics of comments in operating system code. In
International Conference on Software Engineering,
pages 331±341.

Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric,
and Raymond J. Mooney. 2021. Deep just-in-time in-
consistency detection between comments and source
code. In AAAI Conference on Artificial Intelligence,
pages 427±435.

Sheena Panthaplackel, Pengyu Nie, Milos Gligoric,
Junyi Jessy Li, and Raymond J. Mooney. 2020.
Learning to update natural language comments based
on code changes. In Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1853±
1868.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Annual Meet-
ing of the Association for Computational Linguistics,
pages 311±318.

Luca Pascarella, Magiel Bruntink, and Alberto Bac-
chelli. 2019. Classifying code comments in java
software systems. Empirical Software Engineering,
24(3):1499±1537.

Michael Pradel, Vijayaraghavan Murali, Rebecca Qian,
Mateusz Machalica, Erik Meijer, and Satish Chandra.
2020. Scaffle: Bug localization on millions of files.
In International Symposium on Software Testing and
Analysis, pages 225±236.

Inderjot Kaur Ratol and Martin P Robillard. 2017. De-
tecting fragile comments. In Automated Software
Engineering, pages 112±122.

Chanchal K. Roy, James R. Cordy, and Rainer Koschke.
2009. Comparison and evaluation of code clone de-
tection techniques and tools: A qualitative approach.
Science of Computer Programming, 74(7):470±495.

Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova.
2021. Reassessing automatic evaluation metrics for
code summarization tasks. In Joint European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1105±
1116.

Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chan-
chal K Roy, and Cristina V Lopes. 2016. Sourcer-
erCC: Scaling code clone detection to big-code. In
International Conference on Software Engineering,
pages 1157±1168.

Shai Shalev-Shwartz. 2012. Online learning and online
convex optimization. Foundations and Trends in
Machine Learning, 4(2):107±194.

Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan
Zhou. 2007. /*icomment: Bugs or bad comments?*/.
In Symposium on Operating Systems Principles,
pages 145±158.

Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux.
2015. Online defect prediction for imbalanced data.
In International Conference on Software Engineer-
ing, volume 2, pages 99±108.

S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. 2012.
@tcomment: Testing javadoc comments to detect
comment-code inconsistencies. In International Sym-
posium on Software Testing and Analysis, pages 260±
269.

Feifei Tu, Jiaxin Zhu, Qimu Zheng, and Minghui Zhou.
2018. Be careful of when: An empirical study on
time-related misuse of issue tracking data. In Joint
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering,
pages 307±318.

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,
Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Im-
proving automatic source code summarization via
deep reinforcement learning. In Automated Software
Engineering, pages 397±407.

Song Wang, Taiyue Liu, and Lin Tan. 2016. Automati-
cally learning semantic features for defect prediction.
In International Conference on Software Engineer-
ing, pages 297±308.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Empirical Methods in Natural
Language Processing.

Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, and
Vadim Sheinin. 2018. SQL-to-text generation with
graph-to-sequence model. In Empirical Methods in
Natural Language Processing, pages 931±936.

Sihan Xu, Sen Zhang, Weijing Wang, Xinya Cao,
Chenkai Guo, and Jing Xu. 2019. Method name
suggestion with hierarchical attention networks. In
Workshop on Partial Evaluation and Program Manip-
ulation, pages 10±21.

Hiroshi Yonai, Yasuhiro Hayase, and Hiroyuki Kita-
gawa. 2019. Mercem: Method name recommenda-
tion based on call graph embedding. In Asia-Pacific
Software Engineering Conference, pages 134±141.

Andy Zaidman, Bart Van Rompaey, Arie Van Deursen,
and Serge Demeyer. 2011. Studying the co-evolution
of production and test code in open source and in-
dustrial developer test processes through repository
mining. Empirical Software Engineering, 16(3):325±
364.

4947

A Formulas of Application of

Methodologies

§4 described the steps to apply the methodologies

on a given dataset. In this section, we present the

formulas used in those steps.

Table 5 lists the symbols and functions that we

use. Recall that Figure 4 visualizes all the steps.

In the following discussion, we use these abbrevia-

tions: MP = mixed-project; CP = cross-project; T =

time-segmented; Train = training; Val = validation;

TestS = standard test; TestC = common test.

Step 1: time-segment. We first obtain the samples

in each project on three selected timestamps τ−2,

τ−1, τ : Eτ
−2,p, Eτ

−1,p, Eτ,p. Then, we compute the

difference of the sets to get: the samples after τ−2

and before τ−1, denoted as Eτ
−1\τ−2,p = Eτ

−1,p \
Eτ

−2,p; and the samples after τ−1 and before τ ,

denoted as Eτ\τ
−1,p = Eτ,p \ Eτ

−1,p.

Step 2: in-project split. We perform the split with

the following formula (rx, ry, rz are the splitting

ratios, and following ML practices, rx ≫ rz ⪆
ry):

Eτ
−2,p

train , Eτ
−2,p

val , Eτ
−2,p

test

= split(Eτ
−2,p

train , rx, ry, rz)

E
τ−1\τ−2,p

train , E
τ−1\τ−2,p

val , E
τ−1\τ−2,p
test

= split(E
τ−1\τ−2,p

train , rx, ry, rz)

E
τ\τ−1,p

train , E
τ\τ−1,p

val , E
τ\τ−1,p
test

= split(E
τ\τ−1,p

train , rx, ry, rz)

Step 3: cross-project split. Given the set of

projects P and the splitting ratios rx, ry, rz , we

perform the split with the following formula:

Ptrain,Pval,Ptest = split(shuffle(P), rx, ry, rz)

Step 4: grouping. Table 6 left part lists the formu-

las used in this step.

Step 5: intersection. Table 6 right part lists the

formulas used in this step.

Step 6: postprocessing. The formulas for down-

sampling the Train sets are:

size = min
m∈{MP,CP,T}

∣

∣ETrain(m)

∣

∣

for m ∈ {MP,CP,T}:

ETrain(m) ← shuffle(ETrain(m))[0 : size]

To formalize the filtering of exact-duplicates and

near-duplicates (which we will further discuss in

Symbol Definition

τ , τ−1, τ−2 Timestamps, i.e., specific points in time. τ−2

is earlier than τ−1, and τ−1 is earlier than τ

(τ−2 < τ−1 < τ).

P A set of projects, from which samples are
derived.

p A project.

E A set of samples.
Eτ,p The set of samples extracted from project p at

timestamp τ .

Eτ\τ−1,p = Eτ,p \Eτ−1,p (where \ is the set difference
operator), i.e., the samples extracted from
project p at timestamp τ that were not avail-
able at timestamp τ−1.

shuffle(l) Given a set (of samples or projects) s, returns
a set with the same items after random shuf-
fling.

split(E ,
rx, ry, rz)

Given a set of samples E , splits the set into
three sets Ex, Ey, Ez such that |Ex| : |Ey| :
|Ez| ≈ rx : ry : rz; requires that rx + ry +
rz = 1.

splitprj(P,

τ, rx, ry, rz)
Given a set of projects P , splits the set into
three sets Px,Py,Pz such that
∣

∣

∣

⋃

p∈Px
Eτ,p

∣

∣

∣
:

∣

∣

∣

⋃

p∈Py
Eτ,p

∣

∣

∣
:

∣

∣

∣

⋃

p∈Pz
Eτ,p

∣

∣

∣
≈ rx : ry : rz; requires

that rx + ry + rz = 1.

Table 5: Definitions of symbols and functions.

Appendix B), we define clean(Eeval, Etrain) which

is task-specific. It takes two inputs: the samples in

the evaluation set that needs to be cleaned, and the

samples used for training; and returns the cleaned

evaluation set. Note that when the evaluation set

is the TestS or TestC set, we also consider samples

in the Val set as used for training (because they are

used for hyper-parameter tuning or early-stopping).

The formulas for this step are:

for m ∈ {MP,CP,T}:

EVal(m) ← clean(EVal(m), ETrain(m))

ETestS(m) ← clean(ETestS(m), ETrain(m) ∪ EVal(m))

for m,m′ ∈ {(MP,CP), (MP,T), (CP,T)}:

ETestC(m,m′) ← clean(ETestC(m,m′),

ETrain(m) ∪ EVal(m) ∪ ETrain(m′) ∪ EVal(m′))

B Filtering Near-Duplicates

We experimented if filtering near-duplicates can

lead to any change to our findings. We used

the following three configurations to define near-

duplicates (there are many other ways to define

near-duplicates, which we leave for future work).

The numbers in parentheses are the percentages of

4948

Metho-

dology
Set Formula Pair Set Formula

Train
⋃

p∈P(Eτ−2,p

train
∪ E

τ−1\τ−2,p

train
∪ E

τ\τ−1,p

train
)

Val
⋃

p∈P(Eτ−2,p

val
∪ E

τ−1\τ−2,p

val
∪ E

τ\τ−1,p

val
)MP

TestS
⋃

p∈P(Eτ−2,p
test ∪ E

τ−1\τ−2,p

test ∪ E
τ\τ−1,p

test)

MP ∩ CP TestC
⋃

p∈Ptest
(Eτ−2,p

test ∪ E
τ−1\τ−2,p

test ∪ E
τ\τ−1,p

test)

Train
⋃

p∈Ptrain
(Eτ−2,p

∪ E
τ−1\τ−2,p

∪ E
τ\τ−1,p)

Val
⋃

p∈Pval
(Eτ−2,p

∪ E
τ−1\τ−2,p

∪ E
τ\τ−1,p)CP

TestS
⋃

p∈Ptest
(Eτ−2,p

∪ E
τ−1\τ−2,p

∪ E
τ\τ−1,p)

MP ∩ T TestC
⋃

p∈P E
τ\τ−1,p

test

Train
⋃

p∈P E
τ−2,p

Val
⋃

p∈P E
τ−1\τ−2,pT

TestS
⋃

p∈P E
τ\τ−1,p

CP ∩ T TestC
⋃

p∈Ptest
E
τ\τ−1,p

Table 6: The formulas (at steps 4 and 5) to get the training (Train), validation (Val), and standard test (TestS) sets for

each methodology, and the common test (TestC) set for each pair of methodologies.

samples considered as near-duplicates in TestC sets

of all pairs of methodologies for comment genera-

tion / method naming.

• same_code: a sample is near-duplicate if any

sample in the training set has identical code with

it. (16.5% / 19.0%)

• same_summary: a sample is near-duplicate if any

sample in the training set has identical summary

(comment for comment generation or name for

method naming) with it. (56.3% / 72.5%)

• high_similarity: a sample is near-duplicate

if any sample in the training set has more than

90% similarity with it in terms of both code and

summary; the similarity is measured by subtoken-

level accuracy which is fast to compute. (65.1%

/ 77.1%)

The experiment results are presented in the fol-

lowing tables and plots:

• Using same_code configuration:

± comment generation: Table 9, Figure 7.

± method naming: Table 10, Figure 8.

• Using same_summary configuration:

± comment generation: Table 11, Figure 9.

± method naming: Table 12, Figure 10.

• Using high_similarity configuration:

± comment generation: Table 13, Figure 11.

± method naming: Table 14, Figure 12.

We can draw several conclusions. First of all,

our findings in Section 5.4 still hold. The met-

rics of same_code are closest to the metrics of

not filtering near-duplicates, which indicates that

this filtering configuration has little impact on eval-

uation results. On the contrary, the metrics of

same_summary and high_similarity are lower

than the metrics of not filtering near-duplicates,

which means the models become less effective.

This indicates that current ML models for code

summarization are better at following the samples

in the training set than generating novel summaries.

C Data Collection Details

This section extends §5.2 and describes our data

collection process in details. Overall, our datasets

are collected and processed following the steps

in §4 and Appendix A. We started by collecting

samples of methods with comments from open-

source GitHub projects, and then performed task-

specific processing to get the dataset for each task.

Selecting projects. We initially chose 1,793 pop-

ular Java projects on GitHub: 1,000 Java projects

with the highest number of stars (indicating how

many GitHub users bookmarked a project) and an-

other 793 Java projects whose owner is one of the

famous open-source organizations on GitHub3. We

chose to use only Java projects because most prior

work focused on this language (see Table 1). Then,

we only kept the projects meeting the following

criteria: (1) the number of stars should be larger

than 20; (2) the lines of code of the project (as re-

ported by GitHub API4) should be in the range of

[106, 2× 106], to keep the number of samples bal-

anced across projects; (3) the project should have at

least one commit after Jan 1st 2018. 160 projects

3https://github.com/collections/

open-source-organizations
4https://docs.github.com/en/rest

4949

MP CP T MP ∩ CP MP ∩ T CP ∩ T
Statistic

Train Val TestS Train Val TestS Train Val TestS TestC

#Sample 50,879 7,569 14,956 50,879 8,938 15,661 50,879 11,312 9,870 3,362 2,013 2,220

avg 89.84 92.97 93.02 86.23 93.12 106.11 85.83 104.88 105.36 106.83 106.15 125.01
≤100[%] 74.97 73.62 74.28 76.36 73.42 69.82 76.55 70.66 68.38 70.32 68.16 59.82
≤150[%] 84.47 83.71 83.96 85.59 83.42 80.38 85.70 81.24 79.75 80.07 79.78 73.69

le
n

(c
o

d
e)

≤200[%] 89.86 89.42 89.30 90.67 89.24 86.69 90.74 87.05 86.80 85.81 86.74 82.52

avg 11.98 12.07 12.03 11.96 12.09 12.13 12.00 12.20 12.04 12.16 12.10 12.20
≤20[%] 88.91 88.73 89.05 88.74 88.70 89.53 88.83 88.56 88.99 90.10 88.72 88.29
≤30[%] 97.12 97.21 97.33 97.12 96.65 97.54 97.29 96.96 96.53 97.95 96.77 96.80

le
n

(c
o

m
)

≤50[%] 99.61 99.67 99.64 99.61 99.62 99.69 99.68 99.62 99.37 99.58 99.45 99.37

Table 7: Comment generation dataset metrics.

MP CP T MP ∩ CP MP ∩ T CP ∩ T
Statistic

Train Val TestS Train Val TestS Train Val TestS TestC

#Sample 50,879 7,523 14,796 50,879 8,811 15,332 50,879 11,223 9,807 3,344 2,011 2,211

avg 88.15 91.70 91.97 84.56 92.28 105.87 84.17 103.71 104.09 105.42 104.38 123.46
≤100[%] 75.45 74.00 74.64 76.81 73.57 69.91 77.04 71.00 68.79 70.93 68.72 60.33
≤150[%] 84.75 83.89 84.08 85.83 83.52 80.37 85.96 81.44 79.95 80.17 80.01 74.04

le
n

(c
o

d
e)

≤200[%] 90.03 89.47 89.36 90.80 89.32 86.63 90.87 87.16 86.96 85.94 86.92 82.81

avg 2.52 2.52 2.56 2.50 2.31 2.71 2.50 2.63 2.64 2.70 2.70 2.82
≤2[%] 57.27 56.40 55.52 57.82 64.60 50.39 57.45 55.67 53.99 49.55 50.92 46.54
≤3[%] 81.31 81.72 80.64 81.64 84.67 78.10 82.12 78.29 78.48 78.20 77.13 73.77

le
n

(n
a

m
e)

≤6[%] 98.54 98.67 98.53 98.47 98.91 98.62 98.84 97.61 98.00 98.92 98.01 98.24

Table 8: Method naming dataset metrics.

satisfied all the criteria.

Collecting the raw dataset. We set the timestamps

τ−2 to 2019 Jan 1st, τ−1 to 2020 Jan 1st, and τ to

2021 Jan 1st. For each project and for each year in

[2019, 2020, 2021], we identified the last commit

in the project before Jan 1st of that year, checked-

out to that commit, used JavaParser5 to parse all

Java files, and collected samples of Java methods in

the form of (code, comment, name, project, year)

tuples, where the comment is the first sentence in

the JavaDoc of the method. We discarded the sam-

ples where: (1) the code or the comment contains

non-English characters (157 and 5,139 cases re-

spectively); (2) the code is longer than 10,000 char-

acters (60 cases); (3) the method body is empty, i.e.,

abstract method (77,769 cases); (4) the comment is

empty after removing tags such as @inheritDoc
(21,779 cases). If two samples are identical except

for the ªyearº label, we would keep the one with

the earliest year (e.g., two samples from 2018 and

2019 years have identical code, comment, name,

and project, so we only keep the 2018 one). We

ended up with 77,475 samples in the raw dataset.

Then, we follow the steps described in §4 to

5https://javaparser.org/

split the raw dataset into Train, Val, TestS sets for

each methodology and TestC set for each pair of

methodologies. The splitting ratios (for in-project

and cross-project splits) are: rx = 70%, ry =
10%, rz = 20%.

Comment generation. Table 7 shows the statistics

of the comment generation dataset. The rows, from

top to bottom, are: the number of samples; the av-

erage number of subtokens in code; the percentage

of samples whose number of subtokens in the code

is less than 100, 150, 200; the average number of

subtokens in comments; the percentage of samples

whose number of subtokens in the comment is less

than 20, 30, 50. Figure 5 visualizes the distribu-

tions of the number of subtokens in code (x-axis)

and the number of subtokens in comments (y-axis).

Method naming. For each sample, we replaced

the appearances of its name from its code to the

special token ªMETHODNAMEMASKº such that

the models cannot cheat by looking for the name

in the signature line or in the method body of re-

cursive methods. Table 8 shows the statistics of

the method naming dataset. The rows, from top to

bottom, are: the number of samples; the average

number of subtokens in code; the percentage of

4950

samples whose number of subtokens in the code

is less than 100, 150, 200; the average number

of subtokens in names; the percentage of samples

whose number of subtokens in the name is less

than 2, 3, 6. Figure 6 visualizes the distributions of

the number of subtokens in code (x-axis) and the

number of subtokens in names (y-axis).

D Experiments Details

This section presents details of our experiments to

support their reproducibility.

Computing infrastructure. We run our experi-

ments on a machine with four NVIDIA 1080-TI

GPUs and two Intel Xeon E5-2620 v4 CPUs.

Estimated runtime of models. The approximate

model training time are: DeepComHybrid 7 days;

Seq2Seq 4 hours; Transformer 10 hours; Code2Seq

4 hours; Code2Vec 15 minutes. The evaluation

time is around 1±10 minutes per model per evalua-

tion set.

Number of parameters. The number of parame-

ters in each model are: DeepComHybrid 15.6M;

Seq2Seq 31.3M; Transformer 68.2M; Code2Seq

5.7M; Code2Vec 33.1M.

Random seeds. The random seed used for prepar-

ing the dataset (performing in-project and cross-

project splits) is: 7. The random seeds used for the

three times of training are: 4182, 99243, 3705.

Reproducibility of prior work. We used the repli-

cation packages provided in the original papers of

the models when possible. We made (small) up-

dates to all models to: (1) upgrade outdated data

processing code (because of our dataset contains

samples with new programming language features

that were not considered in the past); (2) export

evaluation results in the format compatible with

our scripts. We integrated these updates in our

replication package.

E Additional Experiment Results

We present the following additional tables and fig-

ures to help characterize our experiments results

and support our findings:

• Evaluation results on the Val and TestS sets.

± comment generation: Table 15.

± method naming: Table 16.

• Bar plots of the automatic metrics per sample.

± comment generation:

* on the TestC sets: Figure 13.

* on the Val and TestS sets: Figure 14.

± method naming:

* on the TestC sets: Figure 15.

* on the Val and TestS sets: Figure 16.

4951

