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Abstract

When a software bug is reported, developers
engage in a discussion to collaboratively re-
solve it. While the solution is likely formulated
within the discussion, it is often buried in a
large amount of text, making it difficult to com-
prehend and delaying its implementation. To
expedite bug resolution, we propose generating
a concise natural language description of the so-
lution by synthesizing relevant content within
the discussion, which encompasses both natural
language and source code. We build a corpus
for this task using a novel technique for obtain-
ing noisy supervision from repository changes
linked to bug reports, with which we establish
benchmarks. We also design two systems for
generating a description during an ongoing dis-
cussion by classifying when sufficient context
for performing the task emerges in real-time.
With automated and human evaluation, we find
this task to form an ideal testbed for complex
reasoning in long, bimodal dialogue context.

1 Introduction

Software bugs in open-source projects are reported

through issue tracking systems like GitHub Issues.

When a bug is reported, a discussion is initiated
among developers to collectively resolve it (Noyori
et al., 2019). The bug resolution process is often
strenuous and time-consuming, involving extended
deliberations (Liu et al., 2020b) among multiple
participants (Kavaler et al., 2017), spanning long
periods of time (Kikas et al., 2015). Although a
solution often emerges within the discussion (Arya
et al., 2019), this can easily get lost in a large
amount of text (Liu et al., 2020b). Wading through
a long discussion to determine whether a solution
has been suggested, comprehending it, and then
implementing it can be daunting, especially for
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Title: Black screen appears when we seek over an AdGroup.

Utterance #1:

When playing ads using AdsMediaSource and AdsLoader, if we seek over an adGroup black
screen appears until the ad is loaded. This does not happen when we seek within content before
adGroup, it will retain the previous frame until seek position data is available....

Utterance #2:

Thanks for your report! | can reproduce this behaviour with an mid roll ad tag like the sample tag
added below. In case a user seeks over ad marker from a position at which the ad has not yet
been loaded, the surface is immediately rendered black...

Utterance #3:
...is there any update on this issue. If this not in your priority list could you please guide me in
helping where to look in source code to fix this. Thanks in advance.

Utterance #4:

This happens because we close the shutter when seeking to an unprepared period. The same
issue occurs if seeking to a different (unprepared) period within the same piece of DASH
content. | think we should suppress closing the shutter in this case, provided the old and new
periods belong to the same window.

[ User-Written Commit Message Describing Solution (Reference): J

Prevent shutter closing for within-window seeks to unprepared periods

System-Generated Solution Description:
Suppress closing the shutter when seeking to an unprepared period

Figure 1: ExoPlayer bug report discussion with user-written
and system-generated solution descriptions.

developers who are not closely following the dis-
cussion (Arya et al., 2019; Tan et al., 2020). Con-
sequently, the resolution can be delayed.

As developers scan through the long discussion,
it is desirable to have an automated system that
guides them to more easily absorb information rel-
evant towards implementing the solution. We pro-
pose automatically generating a concise natural lan-
guage description of the solution by synthesizing
relevant content as it emerges in the discussion. For
example, as the discussion in Figure 1 progresses,
the cause of the bug is identified as the shutter get-
ting closed “when seeking to an unprepared period”
and a solution emerges: “suppress closing the shut-
ter in this case, provided the old and new periods
belong to the same window.” Our task aims to
describe this solution: Prevent shutter closing for
within-window seeks to unprepared periods.

To study this task, we build a corpus from bug
report discussions on GitHub Issues. The changes
made within the code base to resolve the bug are of-
ten linked to the bug report in the form of a commit
or pull request. We develop a novel approach to ob-
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tain noisy supervision for the solution description
from the associated commit message or pull request
title which describe the bug-resolving changes in
natural language. To control for noise, we apply
filtering techniques. The dataset and code are pub-
licly available for research use.!

With this data, we set benchmarks for generating
solution descriptions, conditioned on the discus-
sion. From the long context, a model must learn
to tease out and condense information relevant to
the solution. Handling long context is critical for
tasks with dialogue as input, since the input grows
rapidly with the number of interactions. Addition-
ally, the context entails technical text, with natu-
ral language and source code often appearing in
the same sentence (Li et al., 2018). So, deducing
information from the context to articulate a mean-
ingful description requires complex reasoning. We
explore generation models including transformer
models (Vaswani et al., 2017) and PLBART (Ah-
mad et al., 2021), which was pretrained on large
quantities of code and technical text. We evaluate
with automated metrics and human evaluation.

Furthermore, we investigate integrating our task
into a real-time setting. An informative description
can be generated only if there is sufficient context
about the solution, so we must wait until this con-
text is available. In Figure 1, generation should be
performed only after utterance #4 is made in the
discussion. Since the solution is not formulated un-
til that point, there is insufficient context to reliably
generate a description before then. We design two
methods for integrating a classifier that determines
when to generate with a generation model: (1) a
pipelined system with independently trained classi-
fication and generation models; (2) a joint system
that is simultaneously trained for both tasks.

By monitoring progress and later chiming into
the discussion with a solution description, this com-
bined system lays the groundwork for future work
on developing an intelligent dialogue agent which
participates in discussions to facilitate more effi-
cient bug resolution. While there is growing inter-
est in building tools to support development activi-
ties such as code summarization (Iyer et al., 2016;
Ahmad et al., 2020), comment updating (Panthap-
lackel et al., 2020b), and commit message genera-
tion (Loyola et al., 2017), dialogue systems have
been largely understudied in this domain. We con-

"https://github.com/panthap2/
describing-bug-report-solutions

sider our work as a step towards building more
dialogue-based Al tools for software development.

2 Problem Setting

As shown in Figure 1, when a user reports a bug,
they state the problem in the title (e.g., “Black
screen appears when we seek over an AdGroup")
and initiate a discussion by making the first utter-
ance (Uy), which usually elaborates on the prob-
lem. Other participants join the discussion at later
time steps through utterances (Us...Ur), where T'
is the total number of utterances. Throughout the
discussion, developers discuss various aspects of
the bug, including a potential solution (Arya et al.,
2019). We propose the task of generating a concise
description of the solution (e.g., “Prevent shutter
closing for within-window seeks to unprepared pe-
riods") by synthesizing relevant content within the
title and sequence of utterances (Uy, Us...).

3 Data

Following prior work on other tasks (Kavaler et al.,
2017; Panichella et al., 2021), we mine issue re-
ports corresponding to open-source Java projects
from GitHub Issues. Issue reports can entail fea-
ture requests as well as bug reports. In this work,
we focus on the latter. We identify bug reports
by searching for “bug" in the labels assigned to a
report and by using a heuristic for identifying bug-
related commits (Karampatsis and Sutton, 2020).

3.1 Data Collection

A bug report is organized as an event timeline,
recording activity from when it is opened to when
it is closed. From comments that are posted on
this timeline, we extract utterances which form
the discussion corresponding to a bug report, or-
dered based on their timestamps. We specifically
consider bug reports that resulted in code (or doc-
umentation) fixes (Nguyen et al., 2012). These
changes are made through commits and pull re-
quests, which also appear on the timeline. Changes
made in a commit or pull request are described
using natural language, in the corresponding com-
mit message (Loyola et al., 2017; Xu et al., 2019)
or pull request title (Kononenko et al., 2018; Zhao
etal., 2019). In practice, commit messages and pull
request titles are written after code changes. How-
ever, like contemporary work (Chakraborty and
Ray, 2021), we treat them as a proxy for solution
descriptions to drive bug-resolving code changes.
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Train Valid Test Total
Projects 395 (330) 145 (111) 134 (104) 412 (344)
Examples 9,862 (4,664) 1,232(599) 1,234 (593) 12,328 (5,856)
# Commit messages 4,520 (2,355) 410 (234) 386 (189) 5,316 (2,778)
# PR titles 5,342 (2,309) 822 (365) 848 (404) 7,012 (3,078)
Avg T 3.94.5) 3.8(4.4) 4.0 (4.4) 3.9 4.5)
Avgtg 2.9 (3.4) 29 (3.4) 3.2 (3.6) 29 (3.4)
Avg utterance length (#tokens) 68.4 (75.6) 74.8 (84.3) 70.2(75.7) 69.2(76.5)
Avg title length (#tokens) 10.6 (10.6) 11.2(11.0) 11.5(11.3)  10.7 (10.7)
Avg description length (#tokens) 9.1 (10.5) 8.9 (9.9) 9.1 (10.1) 9.1 (10.4)

Table 1: Data statistics. In parentheses, we show metrics computed on the filtered subset.

Furthermore, we extract the position of a com-
mit or pull request on the timeline, relative to the
utterances in the discussion. We consider this as
the point at which a developer acquired enough
information about the solution to implement the
necessary changes and describe these changes with
the corresponding commit message or pull request
title. So, if the implementation is done immediately
after U, on the timeline, then we take this position
t4 as the “gold" time step for when sufficient con-
text becomes available to generate an informative
description of the solution. This leads to examples
of the form (7itle, Uy...Ur, g4, description).

We disregard issues with multiple commit mes-
sages/PR titles, so there is at most one example per
issue. This is because the reason for needing mul-
tiple sets of changes is not clear (e.g., the solution
could be implemented in parts or the first solution
may have been incorrect and it is later corrected).?

3.2 Handling Noise

Due to significant noise in large online code bases
like GitHub and StackOverflow, automatically ex-
tracted data from these sources is typically filtered
both for more effective supervision and for more
accurate evaluation (Panthaplackel et al., 2020a;
Allamanis et al., 2016; Hu et al., 2018; Fernan-
des et al., 2019; Iyer et al., 2016; Yao et al., 2018;
Yin et al., 2018). Upon studying the data, we also
deemed filtering to be necessary. First, we apply
simple heuristics to reduce noise, which we discuss
in more detail in Appendix A. From this, we obtain
the examples that are primarily used for training
and evaluation in this work, which we refer to as
the full dataset. Next, we identify three sources of
noise that are more difficult to control with simple
heuristics and use techniques described below to
quantify them and build a filtered subset of the full
dataset that is less noisy. This subset is used for
more detailed analysis of the models that are dis-

ZHowever, since such examples could be useful for future
work, they are available in the data we release.

cussed in the paper, and we find that training on
this subset leads to improved performance (§4.3).
Generic descriptions: Commit messages and pull
request titles are sometimes generic (e.g., “fix is-
sue.”) (Etemadi and Monperrus, 2020). To limit
such cases, we compute normalized inverse word
frequency (NIWF), which is used in prior work to
quantify specificity (Zhang et al., 2018). The filter
excludes 1,658 examples in which the reference
description’s NIWF score is below 0.116 (10th per-
centile computed from the training data).
Uninformative descriptions: Instead of describ-
ing the solution, the commit message or pull re-
quest title sometimes essentially re-states the prob-
lem (which is usually mentioned in the title of the
bug report). To control for this, we compute the
percentage of unique, non-stopword tokens in the
reference description which also appear in the ti-
tle. The filtered subset excludes 3,552 additional
examples in which this percentage is 50% or more.
Discussions without sufficient context: While
enough context is available to a developer to imple-
ment a solution at ¢4, this context may not always
be available in the discussion and could instead be
from their technical expertise or external resources.
For instance, in the discussion in the footnote?,
only a stack trace and personal exchanges between
developers are present. From the utterance before
the PR, “Or PM me the query that failed" suggests
that an offline conversation occurred. Since rel-
evant content is not available in such cases, it is
unreasonable to expect to generate an informative
description. We try to identify such examples with
an approach (Nallapati et al., 2017) for greedily
constructing an extractive summary based on a ref-
erence abstractive summary. The filtered subset ex-
cludes 1,262 more examples for which a summary
could not be constructed (i.e., there is no relevant
sentence that is extracted from the context). After
applying all three filters, we have 5,856 examples.

‘https://github.com/prestodb/presto/
issues/14567
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1 2 3 4

Title 73.0 889 940 96.1
Full  U;...Us, 547 87.6 950 97.6
Title+ Us...Uy, 479 82.0 91.2 9438
Title 823 956 984 994

Filtr.  U;...Uy, 499 874 951 978

Title+ Uy...Uy, 475 86.0 945 975

Table 2: Percent of novel unigrams, bigrams, trigrams, and
4-grams in the reference description, with respect to the title,
U1...U,gg, and title + U1...Utg. High percentages show that
generating solutions is an abstractive task.

3.3 Preprocessing

Since text in this domain can contain code tokens,
we subtokenize (e.g., snake_case — snake case,
camelCase — camel case) in the title, utterances,
and description. We retain inlined code (on average
5.7 tokens/utterance); however, we remove code
blocks and embedded code snippets (with mark-
down tags), as done in prior work (Tabassum et al.,
2020; Ahmad et al., 2021). Capturing meaning
from large bodies of code often requires reasoning
with respect to the abstract syntax tree (Alon et al.,
2019) and data and control flow graphs (Allamanis
et al., 2018). However, markdown tags are not al-
ways used to identify code (Tabassum et al., 2020),
and consequently, we observe some instances of
larger code blocks within utterances that cannot
be easily removed. We do not use source code
files within a project’s repository and leave it to fu-
ture work to incorporate large bodies of code. We
discard URLs and mentions of GitHub usernames
from utterances. From the description, we remove
references to issue and pull request numbers.

3.4 Partitioning

The dataset spans bug reports from April 2011 -
July 2020. We partition based on the timestamp of
the commit or pull request associated with a given
example. Namely, we require all timestamps in
the training set to precede those in the validation
set and those in the validation set to precede those
in the test set. Partitioning with respect to time
ensures that we are not using models trained on
future data to make predictions in the present, more
closely resembling the real-world scenario (Nie
etal., 2022). Dataset statistics are shown in Table 1.

4 Generating Solution Descriptions

We first generate informative solution descriptions
in a static setting, in which we leverage the ora-
cle context from the discussion (i.e., the title and
Uy...U,). From Table 1, the average length of a

single utterance is ~70 tokens while the average de-
scription length is only ~9 tokens. Therefore, this
task requires not only effectively selecting content
about the solution from the long context (which
could span multiple utterances) but also synthe-
sizing this content to produce a concise descrip-
tion. Following See et al. (2017), we compute the
percent of novel n-grams in the reference descrip-
tion with respect to the input context in Table 2.
The high percentages underline the need for an ab-
stractive approach, rather than an extractive one
which generates a description by merely copying
over utterances or sentences within the discussion.*
Furthermore, this task requires complex, bimodal
reasoning over the discussion, encompassing both
natural language and source code.

4.1 Models

We benchmark various models for this task.
To represent the input in neural models, we
insert <TITLE_START> before the title and
<UTTERANCE_START> before each utterance.
Copy Title: Though the bug report title usually
only states a problem, we observe that it sometimes
also puts forth a possible solution, so we evaluate
how well it can serve as a solution description.
S2S + Ptr: We consider a transformer encoder-
decoder model (Vaswani et al., 2017) in which
we flatten the context into a single input sequence.
Generating the output often requires incorporating
project-specific out-of-vocabulary tokens from the
input, so we support copying with a pointer genera-
tor network (Vinyals et al., 2015).

Hier S2S + Ptr: Inspired by hierarchical ap-
proaches for dialogue response generation (Serban
et al., 2016), we consider a hierarchical variant of
the S2S + Ptr model with two separate encoders:
one for representing an individual utterance, and
one for representing the whole discussion. We pro-
vide implementation details in Appendix B.
PLBART: Ahmad et al. (2021) proposed PLBART,
which is pretrained on a large amount of code
from GitHub and software-related natural language
from StackOverflow, using BART-like (Lewis
et al., 2020) training objectives. With fine-tuning,
PLBART achieves state-of-the-art performance on
many program and language understanding tasks.
We fine-tune PLBART on our training set and eval-
uate its ability to comprehend bug report discus-

*We observe very low performance with extractive ap-
proaches, as shown in Appendix C.
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Model BLEU METEOR ROUGE
Copy Title 1447 131 2448
— S2S+Pur 126 98 25.0°
2  Hier S2S +Ptr 124 9.6 24.18
PLBART 16.6 14.5 28.3
PLBART (F) 1421 123 25.1%
Copy Title 10.0°T 83 16.6
- S2S+Ptr 102* 75 20.1
= Hier S2S+Prr 997 7.4 19.6
PLBART 123t 99 21.1
PLBART (F) 1234 102 21.9

Table 3: Automated metrics. S2S + Ptr and Hier S2S + Ptr
scores are averaged across 3 trials. Differences that are not
statistically significant are indicated with matching symbols.

sions and generate descriptions of solutions.> Note
that PLBART has a 1024 token limit. We use left
truncation to keep the most recent content.

PLBART (F): Since PLBART is pretrained on a
large amount of data, we can afford to reduce the
fine-tuning data. So we fine-tune on only the fil-
tered subset of the training set (cf. §3.2), to in-
vestigate whether fine-tuning on this “less noisy"
sample can lead to improved performance.

4.2 Results: Automated Metrics

We use text generation metrics, BLEU-4 (Papineni
etal., 2002), METEOR (Banerjee and Lavie, 2005),
and ROUGE-L (Lin, 2004). We compute statistical
significance with bootstrap tests (Berg-Kirkpatrick
et al., 2012) with p < 0.05. Results are in Table 3.
On the full test set, PLBART significantly outper-
forms other models, demonstrating the value of
pretraining on large amounts of data. PLBART (F)
underperforms PLBART on the full test set. On the
filtered subset, it either beats or matches PLBART.
Performance drops across models between the
full and filtered test sets. The relatively high perfor-
mance of the naive Copy Title baseline shows that
simply copying or rephrasing the title performs
well in many cases, particularly for the full test.
The filtered subset is designed to remove uninfor-
mative reference descriptions that merely re-state
the problem, as illustrated in Table 2 with filtered
reference descriptions having higher percentages
of novel n-grams, with respect to the title. Nonethe-
less, keywords relevant to the solution are often
also in the title, so the Copy Title baseline still
achieves reasonable scores on the filtered subset.
Although automated metrics provide some signal,
they emphasize syntactic similarity over semantic
similarity. So, we conduct human evaluation.

>We focus on PLBART rather than vanilla BART because
it achieves higher performance, as shown in Appendix D.

Model Full Filtered
Copy Title 8.1 6.0

S2S + Ptr 1.3 1.2t
Hier S2S + Ptr 13*  1.2f
PLBART 119 105
PLBART (F) 33.1% 395

All Poor 20.0 22.1
Insufficient Context  31.9%  25.6

Table 4: Human evaluation results: Percent of annotations
for which users selected predictions made by each model.
This entails 160 annotations for the full test set, 86 of which
correspond to examples in our filtered subset. Differences that
are not significant are indicated with matching superscripts.

4.3 Results: Human Evaluation

Evaluators first read the title and discussion
(U;...Ut,). For each example, they are shown pre-
dictions from the 5 models discussed in Section 4.1.
From these, they must select one or more that are
most informative towards resolving the bug. If all
candidates are uninformative, they select a separate
option: “All candidates are poor." There is also
another option to indicate that there is insufficient
context about the solution (§3.2), making it diffi-
cult to evaluate candidate descriptions. They also
write a rationale for their response.

Since annotation requires not only technical ex-
pertise, but also high cognitive load and time com-
mitment, it is hard to perform human evaluation
on a large number of examples with multiple judg-
ments per example. Similar to Iyer et al. (2016),
we resort to having each example annotated by
one user to obtain more examples. We recruited 8
graduate students with 3+ years of programming
experience and familiarity with Java. They are not
active contributors, so they will likely select the op-
tion of insufficient context more often than if they
had a deeper understanding of the various software
projects. However, it is difficult to conduct a user
study at a similar scale with contributors. Nonethe-
less, there are developers aiming to become first-
time contributors for a particular project (Tan et al.,
2020). Our study better aligns with this use case.

Each user annotated 20 examples, leading to an-
notations for 160 unique examples in the full test
set. In Table 4, we show that PLBART (F) sub-
stantially outperforms all other models, with users
selecting its output 33.1% of the time. Even though
the title typically only states a problem, users se-
lected it 8.1% of the time. From rationales that
users were asked to write, we found that there were
cases in which the title not only posed the problem
but also offered a solution. Users rarely preferred
the output of S2S + Ptr and Hier S2S + Ptr as they
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Title | Ui...Uy, only T
1 2

Model 1 2

Copy Title 100.0 100.0 0.0 0.0
S2S + Ptr 64.8 37.1 31.6 25.3
Hier S2S + Ptr  60.3 342 38.7 26.1
PLBART 80.8 7.7 31.0 41.4
PLBART (F) 36.9 28.4 52.8 42.3
Reference 32.7 22.2 38.8 254

Table 5: Percent of unigrams and bigrams in the prediction
(or reference) which appear in the title and in Uy..Uz, only
(excluding the title), on the CS subset.

Model Prediction

Copy Title black screen appears when we seek
over an ad group .

S2S + Ptr fix black ads

Hier S2S + Ptr  fix seeking in ad tag

PLBART suppress closing shutter when seek-
ing over an ad group

PLBART (F) suppress closing the shutter when
seeking to an unprepared period

Reference prevent shutter closing for within -

window seeks to unprepared periods

Table 6: Model outputs for the example shown in Figure 1.

usually just rephrased the problem. PLBART also
appears to be re-stating the problem in many cases;
however, less often than other models.

Though we see similar trends across the full
test set and the filtered subset, all models except
PLBART (F) tend to perform worse on the filtered
subset, as previously observed on automated met-
rics. Also, the average number of cases with in-
sufficient context is lower for the filtered subset,
confirming that we are able to reduce such cases
through filtering. We find the results on the fil-
tered data to align better with human judgment. By
fine-tuning on the filtered training set, PLBART
(F) learns to pick out important information from
within the context and generate descriptions which
reflect the solution rather than the problem.

4.4 Analysis

Of the 160 annotated examples, users found 109 to
have sufficient context about the solution. We con-
sider this the context-sufficient subset (CS), which
we will release for future research. To analyze
how models exploit the provided context, we mea-
sure the percent of n-grams in the prediction which
overlap with the title as well as U ..U, (excluding
n-grams already in the title) in Table 5. PLBART
(F)’s predictions tend to have less n-gram overlap
with the title and more overlap with the utterances.
This suggests that this model predicts fewer unin-
formative descriptions which merely re-state the
problem mentioned in the title and instead focuses
on other content from the utterances.

In Table 6, we show model outputs for the exam-
ple in Figure 1. SeqToSeq and Hier S2S + Ptr es-
sentially rephrase aspects of the problem, which are
described in the title. Both PLBART and PLBART
(F) capture the solution, with PLBART (F) provid-
ing more information. When there is sufficient
context, 62.4% of the time, either PLBART or
PLBART (F) generates output that is informative
towards bug resolution. While this demonstrates
that fine-tuning this large, pretrained model on our
data can be useful in supporting bug resolution in
on-line discussions to some extent, it also shows
that there is opportunity for improvement.

We manually inspected PLBART (F)’s outputs
and associated user rationales. We observe that the
model tends to perform better when the solution is
clearly stated in 1-3 consecutive sentences (Table 7
(1) and (2)). When more complex synthesis is
needed, it sometimes stitches together tokens from
the input incorrectly (Table 7 (3)). Next, although
the model picks up on information in the context,
sometimes, it draws content from an elaboration of
the problem from within the discussion rather than
a formulation of the solution (Table 7 (4)). This
demonstrates that it still struggles to disentangle
content relevant to the solution from that about the
problem. It also sometimes struggles to generate
meaningful output when in-lined code is present,
highlighting the challenge in bimodal reasoning
about code and natural language (Table 7 (5)).

S Supporting Real-Time Generation

Generating an informative description requires suf-
ficient context about the solution being available
in the discussion. In a real-time setting, this con-
text is likely not immediately available but rather
emerges as the discussion progresses, and we must
wait until it becomes available to generate a solu-
tion description. However, the time step at which it
becomes available () is not known beforehand, so
we must instead predict it (¢,) in order to perform
generation during ongoing discussions. For this,
we consider classifying whether sufficient context
is available upon each new utterance. In Figure 1,
the solution is formulated in Uy, so the correct be-
havior is to predict the negative label at¢t = 1,2, 3
and the positive label at £ = 4. Once the positive la-
bel is predicted at tpé, the description is generated,
conditioned on the title and Uy ...Uy,. We develop

®Classifications are not made at t > t,. We leave generat-
ing at multiple time steps for future work.
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Title

PLBART (F)

Reference

1

Issue with dex: OIDC server is not available
at the ’quarkus.oidc.auth-server-url’ URL

fix trailing slash in auth - server
url

strip trailing forward slash from
oidc url

(2) InvalidDataTypeException: UDATA con- fix bug in byte code dumper fix interpretation of switch in-
tains value larger than Integer MAX_VALUE  when tableswitch instruction structions in byte code dumper
DDR issue decoding lookswitch precedes tableswitch instruction

(3) Worldmap viewport changes when switching  don ’ t refresh widget grid when  define key prop for map visual-
between dashboard pages worldmap loses viewport ization to update map on dimen-

sion change

(4)  Workaround comments exist in opengrok- fix jflex - de / jlex # 705 (com- use jflex 1.8.2
indexer/pom.xml file while the related issues  ment )
are already fixed.

(5) Why subscribe with single action for onNext 1. x : fix subscription . sub- fixed sonar findings

design to crush if error happened?

scribe () to return observable .
empty () 2. x : fix subscription
. subscribe () to return observ-
able . empty ()

Table 7: Output of PLBART (F) for a sample of examples in the test set. Derived from: https://github.com/

quarkusio/quarkus/issues/10227,

https://github.com/Graylog2/graylog2-server/issues/7997,

https://github.com/eclipse-openj9/openj9/issues/ 9294,

https://github.com/oracle/

opengrok/issues/3172, https://github.com/ReactiveX/RxJava/issues/637.

two systems for integrating classification with a
generation model: pipelined and joint trained.

5.1 Pipelined System

We design an independent classifier built on
PLBART’s encoder. When a new utterance U; is
made in the discussion, we encode the context so
far (the title and all utterances up to and including
U;). We take the final hidden state, ¢;, as the con-
text representation at ¢, which we feed e; through
a 3-layer classification head and apply softmax to
classify whether or not sufficient context is avail-
able. We train to minimize cross entropy loss. At
test time, we use the already trained PLBART (F)
model to generate a solution description with con-
text available at 7,,.

5.2 Joint System

We initialize an encoder-decoder model from
PLBART with an additional classification head
(§5.1). The encoder is shared among the two tasks.
When classifying whether sufficient context about
the solution is available, there is likely specific
solution-related content that contributes to predict-
ing the positive label. So, classification may en-
hance encoder representations, improving content
selection for generating solution descriptions.
Furthermore, having sufficient context correlates
with whether it can be used to generate an infor-
mative description. So, the informativeness of a
description that can be generated with the available
context can provide signal for classifying whether
that context is sufficient. Additionally, if sufficient
context was not previously available at ¢ — 1 but
becomes available at ¢, we expect an improvement

in the informativeness of the descriptions generated
at the two time steps. We represent these descrip-
tions with the final decoder states at the two time
steps, d;—1 and d;. We concatenate ey, d;_1, and d;
to form the input into the classification head. For
training loss, we sum the generation and classifica-
tion losses across time steps ?1...t,. Sufficient con-
text for generation may not be available at t < ¢,
so we mask generation loss for earlier time steps.

5.3 Evaluation Setup

We train on filtered data since we found this to
improve performance. At test time, a system can
generate a solution description at ¢, < {4, or it
can fail to predict the positive label before or at Z,,.
After a commit/PR for fixing the bug is made at
t4, the state of the discussion changes, with possi-
ble mentions of the solution that is implemented.
Since using this as context to generate a solution
description can be considered ‘“cheating,” we do
not make predictions for time steps after t,. We
treat this as the system refraining from generating
after not finding sufficient context.

5.4 Results: Automated Metrics

The pipelined and joint systems refrained from gen-
erating 33.3-35.4% and 36.4-39.8% of the time re-
spectively. We present automated metrics for the
remaining cases in Table 8. We find that ¢, — ¢, is
between 1.69 and 1.85 for the pipelined system and
between 1.81 and 1.97 for the joint system. While a
system should wait until sufficient context is avail-
able, sometimes, the last couple utterances before
the implementation do not add context about the so-
lution but are personal exchanges (e.g., “Thanks”,
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t, <ty tz _t, BLEU METEOR ROUGE
@t, 1.69 1437 1248 25.17
Bl o 1448 1259 2537
: : g - 0 3 .
Pipelined e @ 185 25 101 217
et . 126° 105 223
@t 1.81 131 114 2247
Full P
Toint Y e, . 132 117 22,51
e @ 197 17 95 93
et ) 119 99 19.7

Table 8: Automated metrics for combined systems when ¢, < t,. We compare the generated description @t,, with that if the
system had generated @t,. Differences that are not statistically significant are indicated with matching superscripts.

te —tp, BLEU METEOR ROUGE
Full Pipelined 2.09 144 124 24.8
Joint 1.86 12.9 11.3 223
Filtr Pipelined 2.16 12.4 10.0 21.0
* Joint 2.03 114 9.2 18.7

Table 9: Performance at ¢, on examples for which both systems predicted ¢, < t4 (614 of full and 304 of filtered test sets). All

differences are statistically significant.

“I’Il open a PR”). So, generating slightly before
t4 is acceptable in some cases. Moreover, despite
generating early in some cases, the generated out-
put @t,, achieves comparable performance to that
@t,, with respect to the generation metrics (BLEU,
METEOR, and ROUGE).

Note that the numbers are not directly compara-
ble across the two systems since the exact subset
of examples for which ¢, < ¢, varies between the
two. In Table 9, we present results for the sub-
set of examples for which both systems predict
tp < t4. The joint system achieves lower average
error (t, — t,,) for classification while the pipelined
system performs better on generation metrics.

5.5 Results: Human Evaluation

We also do human evaluation, for which we re-
cruited 6 graduate students with 3+ years of Java
experience. Each user evaluated outputs of the two
systems for 20 random examples from the filtered
test set. Users are given the same information as
Section 4.3. If the system refrained from generat-
ing, we ask them if there is sufficient context about
the solution at any time step ¢ < t,. Otherwise,
we show them the generated description and ask if
there is sufficient context about the solution at ¢,
and also to rate the informativeness of the descrip-
tion on a Likert scale: 1: incomprehensible, com-
pletely incorrect, irrelevant; 2: generic, rephrasing
problem; 3: includes some useful information but
does not capture the solution; 4: partially captures
solution; 5: completely captures solution.

In the cases that the system generated a descrip-
tion, users found there to be sufficient context at
tp 39.0% and 33.8% of the time for the pipelined

and joint systems, with average informativeness
being 3.3 for both. This suggests that when suffi-
cient context is available, these systems generate
descriptions which can be useful for bug resolution.

Because a real-time system must act at a given
time step agnostic to future activity, classifying
when to generate is challenging. It should defer
generation to later time steps if the optimal context
is not available. Generating too early can result in
output that is generic and re-states the problem. For
the cases in which the system generated a descrip-
tion without sufficient context at ¢,, the average
informativeness ratings were 2.2 (pipelined) and
2.0 (joint). However, deferring generation for too
long by expecting more context to emerge later also
poses a risk. After the solution has already been im-
plemented, it is too late for a generated description
to be useful towards resolving the bug. In the cases
that the pipelined and joint systems refrained from
generating, there was sufficient context about the
solution 34.2% and 37.0% of the time respectively.

Despite the pipelined and joint systems having
nuanced differences, we find them to perform simi-
larly. Through our evaluation of these systems, we
demonstrate room for improvement, particularly
for the classification component in determining the
optimal time step for generation. We leave it to
future work to develop more intricate end systems.

6 Related Work

Bug report summarization: To help developers
gather information from bug reports, there is in-
terest in automatic bug report summarization. Ap-
proaches for this are designed to generate holistic
summaries of bug reports, with a summary being
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25% of the length of the bug report (Liu et al.,
2020b). We instead aim to generate a concise
description that captures a specific aspect of the
bug report. Next, bug report summaries are not
widely available, so approaches for this task rely
on unsupervised techniques (Li et al., 2018; Liu
etal., 2020b) or supervision from a small amount of
data (Rastkar et al., 2014; Jiang et al., 2016). Our
approach for obtaining noisy supervision allows
us to train supervised models on a large amount
of data. Bug report summarization is a post hoc
task, done after the bug has been resolved, to help
developers address related bug reports in the fu-
ture. In contrast, our goal is to help resolve the
present bug report, so our system must learn when
to perform generation during an ongoing discus-
sion. Approaches for bug report summarization
have been predominantly extractive whereas ours
is abstractive. While we are interested in how bug
report summarization techniques fair on our task,
their implementations are not publicly available.

Commit message generation: Unlike the task
of automatically generating commit messages to
describe code changes that have already been
made (Loyola et al., 2017; Xu et al., 2019), our
system aims to generate natural language descrip-
tions that can drive code changes.

Response triggering: Classifying when to gen-
erate a description relates to chatbots learning to
respond at an appropriate time (Liu et al., 2020a)
in dyadic conversations. The goal is to avoid in-
terrupting a user who splits up an utterance across
multiple turns. We instead consider multi-party dia-
logue in which an agent should wait until a specific
type of content emerges in the discussion. Bohus
and Horvitz (2011) studied turn-taking decisions
in spoken dialogue systems, using audio-visual fea-
tures, while ours is a text-based system.

Dialogue + software: We view our work as a step
towards building a dialogue agent for streamlining
software bug resolution. There has been minimal
work in building interactive systems for this do-
main, with the exception of a few for tasks like
query refinement (Zhang et al., 2020) and code gen-
eration (Chaurasia and Mooney, 2017; Yao et al.,
2019). Wood et al. (2018) recently built a dia-
logue corpus through a “Wizard of Oz" experiment
to study the potential of a Q&A assistant during
bug fixing. Lowe et al. (2015) developed a dia-
logue corpus based on Ubuntu chat logs to study
Q&A assistants for technical support. In contrast,

our dataset is designed for building a collaborative
agent that participates in multi-party conversations
rather than one which answers directed questions.

7 Conclusion

We presented the novel task of generating concise
natural language solution descriptions to guide de-
velopers in absorbing information relevant towards
bug resolution from long discussions. We estab-
lished benchmarks for this task using a dataset that
we constructed with supervision derived from com-
mit messages and pull request titles. Through auto-
mated and human evaluation, we demonstrated the
utility of these models and also highlight their short-
comings, to encourage more research in exploring
ways to address these challenges. We also simu-
lated a real-time setting through two approaches for
combining a generation model with a classification
component for determining when sufficient context
for generating an informative description emerges
in an ongoing discussion. We believe this lays the
groundwork for future work on building a dialogue
agent that participates in bug report discussions to
foster efficient resolution.
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to reduce the life span of software bugs and vulnera-
bilities that can significantly disrupt everyday oper-
ations. Our system is designed to assist developers
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they implement could potentially be incomplete or
incorrect, if the system’s output misses important
details. Instead, developers should use the gener-
ated output to guide their focus and understanding
as they read through the discussion.

To build our system, we used data from GitHub,
in accordance with its acceptable use policy, and
no additional permission was required. Namely,
the policy states: “Researchers may use public,
non-personal information from the Service for re-
search purposes, only if any publications resulting
from that research are open access.”” We use only
publicly available data and use it only for research
purposes. Additionally, the data we used to train
and evaluate models (and publicly release) does
not contain personal information (e.g., usernames
of users who authored utterances and linked men-
tions). We require that any future work using our
dataset must abide by GitHub’s official policy as
well. For evaluation, we conducted human evalu-
ation, for which participants willfully volunteered
to be part of the study. They were not compensated
for their participation.
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A Data Cleaning

We focus on closed bug reports from the top 1,000
Java projects (in terms of number of stars), as a
way of identifying well-maintained projects (Jar-
czyk et al., 2014). We require there to be at least
two distinct “actors" in the discussion, in which
the actor can either be a developer who makes an
utterance in the discussion or an actor who imple-
ments the solution through a commit or pull re-
quest. We discard examples in which the reference
description is identical to the title (disregarding
stopwords), as these are cases in which either the
reference description only states the problem and is
uninformative or the title already puts forth a solu-
tion (in which case a generated description would
not be useful). We remove examples with com-
mits or pull requests which simultaneously address
multiple bug reports.

We mined 141,389 issues (from 770 of the top
1,000 projects). After applying heuristics, we get
35,010 (from 525 projects), which will be released.
Of these, 16,899 pertain to bugs and 18,111 pertain
to non-bugs. From the 16,899 bug-related issues,
we focus on the 12,328 issues with a single com-
mit message/PR title. We explain our reasoning
for discarding examples linked to multiple com-
mits and/or pull requests in Section 3.1. However,
such examples (which are available in the data we
release) can be useful for supporting generating
descriptions at multiple time steps in future work.

From an example’s description, we remove ref-
erences to issue and pull request numbers, as they
do not contribute to the meaning and are instead
used as identifiers for organizational purposes.

B Details of Hier S2S + Ptr Model

We encode Uy using a transformer-based encoder
and feed the contextualized representation of its
first token (KUTTERANCE_START>) into the
RNN-based discussion encoder to update the dis-
cussion state, s;. When encoding Uy, we also con-
catenate s;—; to embeddings, to help the model
relate U; with the broader context of the discussion.
Note that we treat the title as Uy in the discus-
sion. This process continues until Uy, is encoded,
at which point all accumulated token-level hidden
states are fed into a transformer-based decoder to
generate the output.

Unlike the S2S + Ptr model which is designed
to reason about the full input at once, this approach
reasons step-by-step, with self-attention in the ut-

terance encoder only being applied to tokens within
the same utterance. Since the input context for this
task is often very large, we investigate whether it
is useful to break down the encoding process in
this way. We also equip this model with a pointer
generator network.

C Additional Generation Baselines

We considered additional baselines; however, since
they were performing much lower than other ap-
proaches (on wide statistically significant margins),
we chose to exclude them from the main paper. We
briefly describe these baselines below.

C.1 Extractive Baselines

Supervised Extractive: Using a greedy approach
for obtaining noisy extractive summaries (Nallap-
ati et al., 2017), we train a supervised extractive
summarization model, similar to (Liu and Lapata,
2019).

LexRank: We use LexRank (Erkan and Radev,
2004), an unsupervised graph-based extractive sum-
marization approach. We extract 1 sentence with
threshold 0.1.

U, (Lead 1): This entails simply taking the first
sentence of the first utterance, intended to simu-
late the Lead-1 baseline that is commonly used in
summarization.

U; (Lead 3): This entails simply taking the first 3
sentences of the first utterance, intended to simu-
late the Lead-3 baseline that is commonly used in
summarization.

Uy, : Since some part of the solution is often men-
tioned within Uy, we copy this utterance.

Uy, (Lead 1): Since the length of an utterance is
quite different than that of a description (Table 1),
we extract only the lead sentence of Uy, .

Uy, (Lead 3): For the reason stated above, we also
apply the Lead-3 baseline to this utterance.

U, (Last sentence): Rather than extracting the
lead sentence, we extract the last sentence of Uy, .
U, (Last 3 sentences): Rather than extracting
the lead 3 sentences, we try extracting the last 3
sentences of Uz, .

C.2 Retrieval Baselines

Retrieval (Title-Title): Using TF-IDF, we com-
pute cosine similarity between the test example’s
title and titles in the training set, to identify the
closest training example, from which we take the
description.
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Model BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L
Supervised Extractive 0.537 0.536 0.807 0.010 0.767
LexRank 2.252 1.851 2.629 0.061 2.470
U (Lead 1) 4.793 6.537 10.077 2.534 8.752
Ui (Lead 3) 3.085 7.955 9.778 2.303 8.687
Ui, 2.842 5.425 7.426 1.363 6.712
Ui, (Lead 1) 4.028 4.453 7.736 1.451 6.889
Ui, (Lead 3) 3.189 5.692 8.153 1.504 7.359
U:, (Last sentence) 3.475 3.480 6.089 0.930 5.476
Full Uy, (Last 3 sentences) 3.234 5.082 7.525 1.287 6.787
Retrieval (Title-Title) 6.866 4.497 11.517 1.281 10.748
Retrieval (Title-Desc) 8.763 6.167 15.965 2.426 14.776
Project Retrieval (Title-Title) 7.442 4.709 11.501 1.49 10.943
Project Retrieval (Title-Desc) 9.118 6.299 14.949 2.232 14.089
Copy Title 14.358 13.142 27.361 11.539 24.427
S2S + Ptr 12.583 9.838 27.589 4.258 25.024
Hier S2S + Ptr 12.365 9.564 26.785 3.672 24.084
PLBART 16.551 14.484 31.564 11.549 28.295
PLBART (F) 14.188 12.302 27.443 8.349 25.128
Supervised Extractive 0.711 0.653 1.084 0.005 1.029
LexRank 2.442 1.946 2.843 0.066 2.637
U; (Lead 1) 4.951 6.207 9.881 1.938 8.553
Ui (Lead 3) 3.055 7.907 9.890 1.875 8.777
Ui, 2.899 6.045 8.081 1.507 7.346
Ui, (Lead 1) 4.406 4.808 8.424 1.507 7.590
Ui, (Lead 3) 3.356 6.257 8.894 1.681 8.060
U:, (Last sentence) 3.515 3.961 6.547 1.046 5.868
Filtr. Uy, (Last 3 sentences) 3.345 5.722 8.200 1.460 7.448
Retrieval (Title-Title) 6.117 3.727 9.546 0.711 8.965
Retrieval (Title-Desc) 6.998 4.542 12.082 1.257 11.410
Project Retrieval (Title-Title) 6.646 4.195 9.603 1.273 9.255
Project Retrieval (Title-Desc) 7.593 5.064 11.895 1.638 11.328
Copy Title 9.962 8.291 18.538 4,943 16.641
S2S + Ptr 10.168 7.521 21.846 2.278 20.116
Hier S2S + Ptr 9.893 7.369 21.562 2.131 19.649
PLBART 12.319 9.877 23.419 5.452 21.097
PLBART (F) 12.266 10.218 23.786 5.712 21.857

Table 10: Comparing models in main paper with low-performing baselines for generating solution descriptions. Scores for

Supervised Extractive are averaged across three trials.

Retrieval (Title-Desc): Using TF-IDF, we com-
pute cosine similarity between the test example’s
title and descriptions in the training set, to identify
the closest training example, from which we take
the description.

Project Retrieval (Title-Title): Using TF-IDF, we
compute cosine similarity between the test exam-
ple’s title and titles for the same project in the train-
ing set, to identify the closest training example,
from which we take the description.

Project Retrieval (Title-Desc): Using TF-IDF, we
compute cosine similarity between the test exam-
ple’s title and descriptions for the same project in
the training set, to identify the closest training ex-
ample, from which we take the description.

C.3 Baseline Results

We present baseline results in Table 10. In ad-
dition to the metrics used in the main paper, we
report ROUGE-1 and ROUGE-2. All of these base-
lines substantially underperform models presented

in the main paper, especially the Supervised Ex-
tractive model. We believe this model performs so
poorly due to noise in the supervision and because
the extracted summaries are longer and structured
differently than the reference descriptions in our
dataset. Additionally, there are many examples in
which the model does not select a single sentence
from the input, resulting in the prediction being
the empty string. LexRank also performs poorly in
terms of automated metrics against the reference
description. This unsupervised approach aims to
identify a “centroid" sentence that summarizes the
full input context and is not designed to specifically
focus on solution-related context.

All baselines that extract a whole utterance or
sentences from specific utterances perform poorly,
demonstrating the need for content selection from
the broader context and content synthesis rather
than relying on simple heuristics to produce a de-
scription of the solution. We find that the retrieval
baselines tend to achieve higher scores, as retrieved

2948



Model BLEU METEOR ROUGE-1 ROUGE-2 ROUGEL
mBART base (randomly initialized) 9.978  6.976 17.000 2.498 15.744

ol MBART large 15251  12.503 28.522 9.520 26.109
BART base 14226 11.522 26.957 8.864 24.746
PLBART 16.551 14.484 31.564 11.549 28.295
mBART base (randomly initialized) 8.819 6.151 14.870 2.011 13.574
mBART large 11.663  9.233 22.295 5.1591 20.458

Filt.  BART base 10.820 8.583 21.247 5.055" 19.537
PLBART 12.319 9.877 23.419 5.452 21.097

Table 11: Comparing performance of BART-based models. Training/fine-tuning is done with our full training set. Differences
that are not statistically significant are shown with matching symbols.

descriptions are from the same distribution as the
reference descriptions. However, these numbers
are still much lower than those in the main paper.

D BART Models

We use PLBART (Ahmad et al., 2021), which was
pretrained on large amounts of code from GitHub
and software-related natural language from Stack-
Overflow. Compared to other pretrained models,
fine-tuning PLBART achieves higher performance
for various NL+code tasks, including code sum-
marization, code generation, code translation, and
code classification. Since our task also requires
reasoning about code and technical text, we choose
PLBART over other pretrained models in our work.
We present automated metrics for PLBART and
PLBART (F) in Table 3. The average length of
PLBART’s output is 9.0 and 8.6 tokens on the full
and filtered test sets respectively, while it is 9.3 and
9.4 for PLBART (F).

For completion, we compare against BART-
based models which are not pretrained on code
or technical text. First, we consider mBART base
(multilingual BART) (Tang et al., 2020), which is
the underlying architecture of PLBART. Without
pretraining (randomly initializing the same archi-
tecture), performance is very low, as shown in Ta-
ble 11. The publicly released pretrained mBART
model, which is pretrained on non-technical natu-
ral language, does not use the base architecture
but rather large. We also fine-tune this model
on our training set but find that it achieves lower
performance than PLBART. Finally, we compare
against BART base (Lewis et al., 2020), which is
also pretrained on non-technical natural language.
Again, this model underperforms PLBART. Be-
cause PLBART’s performance is higher, we choose
to focus on this model in our work.

E Human Evaluation Setup

In the user study, users are shown the title of the
bug report, all utterances up till (and including)

Ut,, and the reference description in our dataset for
the given example. We choose to provide this as
a manual suggestion to help guide users in better
understanding a bug report, for a software project
with which they have minimal familiarity. How-
ever, we state in our instructions that this is merely
provided for reference and is not necessarily the
exact and only valid answer.

Next, we show them up to 5 model predictions
and ask them to “select the one(s) which add(s) the
most amount of useful information that will help
resolve the bug, beyond just re-stating the prob-
lem itself." Note that these are presented in random
order (per example), without any identifying infor-
mation about the underlying models that generated
them. We explain that we consider a description
to be informative if it provides content that will be
useful towards fixing the issue, beyond just rephras-
ing the problem itself. And we encourage users to
select candidates based on content that is informa-
tive, rather than focusing on exact phrasing. If all
candidates appear to be poor (completely unrelated
to the resolving the bug, uninformative, incompre-
hensible, or plain wrong), users are asked to select
another option: “All candidates are poor." If there
is no useful information towards resolving the bug
in the context and they are unable to evaluate can-
didate descriptions, they are asked to select another
option: “The context does not have any useful in-
formation for resolving the bug." They must also
justify their selection by writing a brief rationale.

This is a challenging task, as it requires reading
through and reasoning about a large amount of text
to evaluate each example. To prepare annotators,
we first present a set of training examples and a
training video in which we demonstrate how the
task should be completed.

F Analyzing CS Subset

The CS subset consists of 109 examples from the
test set spanning 45 projects, with average T = 4.1
and t, = 3.2. We present automated metrics for
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Model BLEU METEOR ROUGE
Copy Title 12.6 1227 22.1
S2S + Ptr 11.6 8.9 23.1
Hier S2S + Ptr  12.0 9.0 229
PLBART 14.6 13.2 26.0
PLBART (F) 14.2 12.39 25.1

Table 12: Automated metrics for generation on CS subset.
Differences that are not statistically significant are indicated
with matching symbols.

this subset in Table 12. Results are analogous to the
full test set, except that the numbers are generally
lower for all models other than for PLBART (F),
which achieves consistent performance. PLBART
(F) slightly underperforms PLBART on automated
metrics overall. However, this is because these
metrics are computed against the single reference
description, which could diverge from how the solu-
tion is formulated in the discussion since the devel-
oper could have written an uninformative/generic
description. To do more fine-grained analysis, in
Figure 2, we plot automated metrics for varying
percentages of token overlap between the reference
description and Uy ..Uy, (excluding tokens already
present in the title which have been used to state
the problem). Higher overlap suggests that the ref-
erence description draws more content from within
the discussion. For higher percentages, PLBART
(F) generally achieves higher scores against the
reference than PLBART and all other models, in-
dicating that this model is better at gathering infor-
mation from within the discussion. In Table 13, we
supplement the n-gram analysis from Section 4.4.

G Classification Performance

To benchmark performance on the classification
task for determining when sufficient context is
available for generating an informative description,
we consider some simple baselines. We observe
that there are many cases in which t, = 1,2, i.e.,
the solution is implemented immediately after the
first or second utterance. So, we include the FIRST
baseline which always predicts a positive label at
t = 1, and SECOND which predicts negative at
t = 1 and positive at t = 2, if t, > 2 (otherwise it
never predicts positive).

We include the RAND (uni) baseline which pro-
gresses through the discussion, randomly deciding
between the positive and negative label after each
utterance, based on a uniform distribution. We
also include RAND (dist), which instead uses the
probability distribution of labels at the example-
level estimated from the filtered training set (pos =

n=1 ¢

% ZN lg:O.SlO, neg = 0.490). Results are aver-
aged across 3 trials. We present results in Table 14.

H Reproducibility Checklist

H.1 Validation Performance

We report performances on the full validation set.
Results for the generation task are in Table 15.

I Hyperparameters

All neural models were implemented using Py-
Torch. For S2S + Ptr and Hier S2S + Ptr, we
use a batch size of 8, an initial learning rate of
3e-05, and a dropout rate of 0.2. Our transformer
models have 4 encoder and decoder layers, 4 heads
in multi-head attention, a hidden size of 64, and
feedforward hidden size 256. We use Adam as
the optimizer and have a learning rate scheduler
with gamma 0.95 which decays after an epoch if
the validation loss has not improved. We use early
stopping with patience 5 during training.

For classification, the classification head con-
sists of a linear layer (dimension 768), followed by
a tanh non-linear layer, and a final linear projec-
tion layer (dimension 2). When computing cross
entropy loss for classification, we weight the pos-
itive and negative labels using the inverse of the
class proportion to handle class imbalance (1.70
and 0.71 respectively). For the joint model, loss
for a given example is computed as follows, with
A1 = 0.8, Ay = 0.2 (tuned on validation data).

t=tg

L= Angen(tg) + )\2 Z Lclass(t)
t=1

I.1 Tuning

For S2S + Ptr and Hier S2S + Ptr, hyperparameters
are tuned manually. For batch size, we consider
{8,16,32}, learning rate {le-03, 1e-04, 3e-05},
dropout {0.1, 0.2, 0.4, 0.5, 0.6}, encoder/decoder
layers {2, 4, 6, 8}, number of heads {2, 4, 8}, hid-
den sizes {32, 62, 128}, and feedforward dimen-
sions {128, 256, 512}. These hyperparameters are
tuned on validation data, using the text generation
metrics mentioned in Section 4.2 for generation.
For tuning, we do not do grid search but rather com-
pare performances between models trained with
identical configurations, with the exception of a
single parameter. Therefore, the number of hy-
perparameter tuning runs scales linearly. We ran
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Figure 2: Metrics for CS subset, with buckets corresponding to the % of tokens in reference description which also
appear in U;...U;,, (disregarding title tokens). Bucket 10 corresponds to [0, 10)%, 20 corresponds to [10, 20)%, etc.
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Title |

Ui...U, only T

Model 1 2 3 4 1 2 3 4
Copy Title 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
S2S + Ptr 65.6 344 39.3 46.5 2806 249 27.0 250
Full Hier S2S + Ptr  60.2 33.9 41.1 50.4 374 279 283 292
PLBART 79.3 75.0 72.5 71.7 30.7 348 346 399
PLBART (F) 43.2 37.4 38.3 43.1 471 381 356 372
Reference 351 30.9 33.5 37.7 345 222 222 253
Copy Title 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
S2S + Ptr 64.5 33.8 39.1 38.3 294 253 238 0.0
Filtered Hier S2S + Ptr 584 33.3 39.3 45.7 404 284 30.0 292
PLBART 76.9 73.4 71.1 70.4 340 370 363 41.2
PLBART (F) 384 33.9 35.2 40.7 51.0 40.0 36.6 38.1
Reference 23.7 18.6 18.4 16.3 40.1 228 214 230
Copy Title 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
S2S + Ptr 64.8 37.1 38.5 22.5 316 253 331 250
cs Hier S2S +Ptr  60.3 34.2 37.9 28.3 387 261 292 0.0
PLBART 80.8 77.7 72.8 70.3 31.0 414 37.0 50.0
PLBART (F) 36.9 28.4 30.8 34.1 528 423 394 450
Reference 32.7 22.2 26.2 35.6 388 254 231 27.1

Table 13: Percent of unigrams, bigrams, trigrams and 4-grams in the prediction (or reference) which appear in the
title and in U;..Uy,, only (excluding the title). Lower is better for the title and higher is better for U;..U;, only.

FIRST SECOND RAND (uni) RAND (dist) Pipelined Joint
Fap (Dte <tg 100.0% 70.5% 76.0% 77.1% 66.7% 60.2%
Q) tg —tp 22 2.1 22 2.2 1.7 1.8
Filtr Mty <tg 100.0% 76.2% 79.4% 80.1% 64.6% 63.6%
T Dtg—tp 2.6 24 2.5 2.5 1.9 2.0
Table 14: Percent of time ¢, < t, and for these particular cases, the mean absolute error between ¢y and ¢p.
Model BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L
Copy Title 15.223 13.645 28.088 12.322 25.341
S2S + Ptr 12.896 10.241 27.757 4.571 25.921
Hier S2S + Ptr  12.758 10.119 28.722 3.934 25.275
PLBART 16.924 14.979 32.152 12.124 29.623
PLBART (F) 15.059 13.057 29.107 9.111 26.710
Table 15: Scores for generation @ t, on the 1,232 examples in the full validation set.
Model Train Eval Epoch
S2S + Ptr 2:56:19  0:01:12  52.0
Hier S2S + Ptr 4:47:34  0:01:22 510
PLBART (fine-tuning) 0:32:07 0:00:25 11.0
PLBART (F) (fine-tuning) 0:26:08  0:00:28 15.0
Pipelined system (classifier only)  2:12:48  0:02:09 12.0
Jointly trained combined system  6:25:01  0:15:06  22.0

Table 16: Average training time, inference time, and number of epochs. Format for time is H:M:S.

each configuration once. For PLBART-based mod-
els, we use the same configurations as the scripts
released by Ahmad et al. (2021).

I.2 Random Seeds

For the randomly initialized models, random seeds
are set according to the timestamp, and we average
results across 3 trials. For S2S + Ptr, the seeds
were: 1620001129, 1620001158, and 1620004022.
For Hier S28S + Ptr, the seeds were: 1620001125,
1620001159, and 1620004024

J Statistical Significance Testing

We compute statistical significance using bootstrap
tests (Berg-Kirkpatrick et al., 2012) with p < 0.05
and 10,000 samples of size 5,000 each.

J.1 Running Times

Table 16 reports average training time, inference
time, and # epochs for the various models con-
sidered in this work. The PLBART-based models
were trained/fine-tuned on NVIDIA DGX GPUs
(32 GB) and all other models were trained and eval-
uated using on GeForce GTX Titan GPUs (8 GB).
All models used single-GPU training.
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