


tain noisy supervision for the solution description

from the associated commit message or pull request

title which describe the bug-resolving changes in

natural language. To control for noise, we apply

filtering techniques. The dataset and code are pub-

licly available for research use.1

With this data, we set benchmarks for generating

solution descriptions, conditioned on the discus-

sion. From the long context, a model must learn

to tease out and condense information relevant to

the solution. Handling long context is critical for

tasks with dialogue as input, since the input grows

rapidly with the number of interactions. Addition-

ally, the context entails technical text, with natu-

ral language and source code often appearing in

the same sentence (Li et al., 2018). So, deducing

information from the context to articulate a mean-

ingful description requires complex reasoning. We

explore generation models including transformer

models (Vaswani et al., 2017) and PLBART (Ah-

mad et al., 2021), which was pretrained on large

quantities of code and technical text. We evaluate

with automated metrics and human evaluation.

Furthermore, we investigate integrating our task

into a real-time setting. An informative description

can be generated only if there is sufficient context

about the solution, so we must wait until this con-

text is available. In Figure 1, generation should be

performed only after utterance #4 is made in the

discussion. Since the solution is not formulated un-

til that point, there is insufficient context to reliably

generate a description before then. We design two

methods for integrating a classifier that determines

when to generate with a generation model: (1) a

pipelined system with independently trained classi-

fication and generation models; (2) a joint system

that is simultaneously trained for both tasks.

By monitoring progress and later chiming into

the discussion with a solution description, this com-

bined system lays the groundwork for future work

on developing an intelligent dialogue agent which

participates in discussions to facilitate more effi-

cient bug resolution. While there is growing inter-

est in building tools to support development activi-

ties such as code summarization (Iyer et al., 2016;

Ahmad et al., 2020), comment updating (Panthap-

lackel et al., 2020b), and commit message genera-

tion (Loyola et al., 2017), dialogue systems have

been largely understudied in this domain. We con-

1https://github.com/panthap2/

describing-bug-report-solutions

sider our work as a step towards building more

dialogue-based AI tools for software development.

2 Problem Setting

As shown in Figure 1, when a user reports a bug,

they state the problem in the title (e.g., ªBlack

screen appears when we seek over an AdGroup")

and initiate a discussion by making the first utter-

ance (U1), which usually elaborates on the prob-

lem. Other participants join the discussion at later

time steps through utterances (U2...UT ), where T

is the total number of utterances. Throughout the

discussion, developers discuss various aspects of

the bug, including a potential solution (Arya et al.,

2019). We propose the task of generating a concise

description of the solution (e.g., ªPrevent shutter

closing for within-window seeks to unprepared pe-

riods") by synthesizing relevant content within the

title and sequence of utterances (U1, U2...).

3 Data

Following prior work on other tasks (Kavaler et al.,

2017; Panichella et al., 2021), we mine issue re-

ports corresponding to open-source Java projects

from GitHub Issues. Issue reports can entail fea-

ture requests as well as bug reports. In this work,

we focus on the latter. We identify bug reports

by searching for ªbug" in the labels assigned to a

report and by using a heuristic for identifying bug-

related commits (Karampatsis and Sutton, 2020).

3.1 Data Collection

A bug report is organized as an event timeline,

recording activity from when it is opened to when

it is closed. From comments that are posted on

this timeline, we extract utterances which form

the discussion corresponding to a bug report, or-

dered based on their timestamps. We specifically

consider bug reports that resulted in code (or doc-

umentation) fixes (Nguyen et al., 2012). These

changes are made through commits and pull re-

quests, which also appear on the timeline. Changes

made in a commit or pull request are described

using natural language, in the corresponding com-

mit message (Loyola et al., 2017; Xu et al., 2019)

or pull request title (Kononenko et al., 2018; Zhao

et al., 2019). In practice, commit messages and pull

request titles are written after code changes. How-

ever, like contemporary work (Chakraborty and

Ray, 2021), we treat them as a proxy for solution

descriptions to drive bug-resolving code changes.
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Train Valid Test Total

Projects 395 (330) 145 (111) 134 (104) 412 (344)
Examples 9,862 (4,664) 1,232 (599) 1,234 (593) 12,328 (5,856)

# Commit messages 4,520 (2,355) 410 (234) 386 (189) 5,316 (2,778)
# PR titles 5,342 (2,309) 822 (365) 848 (404) 7,012 (3,078)

Avg T 3.9 (4.5) 3.8 (4.4) 4.0 (4.4) 3.9 (4.5)
Avg tg 2.9 (3.4) 2.9 (3.4) 3.2 (3.6) 2.9 (3.4)
Avg utterance length (#tokens) 68.4 (75.6) 74.8 (84.3) 70.2 (75.7) 69.2 (76.5)
Avg title length (#tokens) 10.6 (10.6) 11.2 (11.0) 11.5 (11.3) 10.7 (10.7)
Avg description length (#tokens) 9.1 (10.5) 8.9 (9.9) 9.1 (10.1) 9.1 (10.4)

Table 1: Data statistics. In parentheses, we show metrics computed on the filtered subset.

Furthermore, we extract the position of a com-

mit or pull request on the timeline, relative to the

utterances in the discussion. We consider this as

the point at which a developer acquired enough

information about the solution to implement the

necessary changes and describe these changes with

the corresponding commit message or pull request

title. So, if the implementation is done immediately

after Ug on the timeline, then we take this position

tg as the ªgold" time step for when sufficient con-

text becomes available to generate an informative

description of the solution. This leads to examples

of the form (Title, U1...UT , tg, description).

We disregard issues with multiple commit mes-

sages/PR titles, so there is at most one example per

issue. This is because the reason for needing mul-

tiple sets of changes is not clear (e.g., the solution

could be implemented in parts or the first solution

may have been incorrect and it is later corrected).2

3.2 Handling Noise

Due to significant noise in large online code bases

like GitHub and StackOverflow, automatically ex-

tracted data from these sources is typically filtered

both for more effective supervision and for more

accurate evaluation (Panthaplackel et al., 2020a;

Allamanis et al., 2016; Hu et al., 2018; Fernan-

des et al., 2019; Iyer et al., 2016; Yao et al., 2018;

Yin et al., 2018). Upon studying the data, we also

deemed filtering to be necessary. First, we apply

simple heuristics to reduce noise, which we discuss

in more detail in Appendix A. From this, we obtain

the examples that are primarily used for training

and evaluation in this work, which we refer to as

the full dataset. Next, we identify three sources of

noise that are more difficult to control with simple

heuristics and use techniques described below to

quantify them and build a filtered subset of the full

dataset that is less noisy. This subset is used for

more detailed analysis of the models that are dis-

2However, since such examples could be useful for future
work, they are available in the data we release.

cussed in the paper, and we find that training on

this subset leads to improved performance (§4.3).

Generic descriptions: Commit messages and pull

request titles are sometimes generic (e.g., ªfix is-

sue.º) (Etemadi and Monperrus, 2020). To limit

such cases, we compute normalized inverse word

frequency (NIWF), which is used in prior work to

quantify specificity (Zhang et al., 2018). The filter

excludes 1,658 examples in which the reference

description’s NIWF score is below 0.116 (10th per-

centile computed from the training data).

Uninformative descriptions: Instead of describ-

ing the solution, the commit message or pull re-

quest title sometimes essentially re-states the prob-

lem (which is usually mentioned in the title of the

bug report). To control for this, we compute the

percentage of unique, non-stopword tokens in the

reference description which also appear in the ti-

tle. The filtered subset excludes 3,552 additional

examples in which this percentage is 50% or more.

Discussions without sufficient context: While

enough context is available to a developer to imple-

ment a solution at tg, this context may not always

be available in the discussion and could instead be

from their technical expertise or external resources.

For instance, in the discussion in the footnote3,

only a stack trace and personal exchanges between

developers are present. From the utterance before

the PR, ªOr PM me the query that failed" suggests

that an offline conversation occurred. Since rel-

evant content is not available in such cases, it is

unreasonable to expect to generate an informative

description. We try to identify such examples with

an approach (Nallapati et al., 2017) for greedily

constructing an extractive summary based on a ref-

erence abstractive summary. The filtered subset ex-

cludes 1,262 more examples for which a summary

could not be constructed (i.e., there is no relevant

sentence that is extracted from the context). After

applying all three filters, we have 5,856 examples.

3https://github.com/prestodb/presto/

issues/14567
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1 2 3 4

Full
Title 73.0 88.9 94.0 96.1
U1...Utg 54.7 87.6 95.0 97.6
Title + U1...Utg 47.9 82.0 91.2 94.8

Filtr.
Title 82.3 95.6 98.4 99.4
U1...Utg 49.9 87.4 95.1 97.8
Title + U1...Utg 47.5 86.0 94.5 97.5

Table 2: Percent of novel unigrams, bigrams, trigrams, and
4-grams in the reference description, with respect to the title,
U1...Utg , and title + U1...Utg . High percentages show that
generating solutions is an abstractive task.

3.3 Preprocessing

Since text in this domain can contain code tokens,

we subtokenize (e.g., snake_case → snake case,

camelCase → camel case) in the title, utterances,

and description. We retain inlined code (on average

5.7 tokens/utterance); however, we remove code

blocks and embedded code snippets (with mark-

down tags), as done in prior work (Tabassum et al.,

2020; Ahmad et al., 2021). Capturing meaning

from large bodies of code often requires reasoning

with respect to the abstract syntax tree (Alon et al.,

2019) and data and control flow graphs (Allamanis

et al., 2018). However, markdown tags are not al-

ways used to identify code (Tabassum et al., 2020),

and consequently, we observe some instances of

larger code blocks within utterances that cannot

be easily removed. We do not use source code

files within a project’s repository and leave it to fu-

ture work to incorporate large bodies of code. We

discard URLs and mentions of GitHub usernames

from utterances. From the description, we remove

references to issue and pull request numbers.

3.4 Partitioning

The dataset spans bug reports from April 2011 -

July 2020. We partition based on the timestamp of

the commit or pull request associated with a given

example. Namely, we require all timestamps in

the training set to precede those in the validation

set and those in the validation set to precede those

in the test set. Partitioning with respect to time

ensures that we are not using models trained on

future data to make predictions in the present, more

closely resembling the real-world scenario (Nie

et al., 2022). Dataset statistics are shown in Table 1.

4 Generating Solution Descriptions

We first generate informative solution descriptions

in a static setting, in which we leverage the ora-

cle context from the discussion (i.e., the title and

U1...Utg ). From Table 1, the average length of a

single utterance is ∼70 tokens while the average de-

scription length is only ∼9 tokens. Therefore, this

task requires not only effectively selecting content

about the solution from the long context (which

could span multiple utterances) but also synthe-

sizing this content to produce a concise descrip-

tion. Following See et al. (2017), we compute the

percent of novel n-grams in the reference descrip-

tion with respect to the input context in Table 2.

The high percentages underline the need for an ab-

stractive approach, rather than an extractive one

which generates a description by merely copying

over utterances or sentences within the discussion.4

Furthermore, this task requires complex, bimodal

reasoning over the discussion, encompassing both

natural language and source code.

4.1 Models

We benchmark various models for this task.

To represent the input in neural models, we

insert <TITLE_START> before the title and

<UTTERANCE_START> before each utterance.

Copy Title: Though the bug report title usually

only states a problem, we observe that it sometimes

also puts forth a possible solution, so we evaluate

how well it can serve as a solution description.

S2S + Ptr: We consider a transformer encoder-

decoder model (Vaswani et al., 2017) in which

we flatten the context into a single input sequence.

Generating the output often requires incorporating

project-specific out-of-vocabulary tokens from the

input, so we support copying with a pointer genera-

tor network (Vinyals et al., 2015).

Hier S2S + Ptr: Inspired by hierarchical ap-

proaches for dialogue response generation (Serban

et al., 2016), we consider a hierarchical variant of

the S2S + Ptr model with two separate encoders:

one for representing an individual utterance, and

one for representing the whole discussion. We pro-

vide implementation details in Appendix B.

PLBART: Ahmad et al. (2021) proposed PLBART,

which is pretrained on a large amount of code

from GitHub and software-related natural language

from StackOverflow, using BART-like (Lewis

et al., 2020) training objectives. With fine-tuning,

PLBART achieves state-of-the-art performance on

many program and language understanding tasks.

We fine-tune PLBART on our training set and eval-

uate its ability to comprehend bug report discus-

4We observe very low performance with extractive ap-
proaches, as shown in Appendix C.
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Model BLEU METEOR ROUGE
F

u
ll

Copy Title 14.4∥ 13.1 24.4§

S2S + Ptr 12.6 9.8 25.0‡

Hier S2S + Ptr 12.4 9.6 24.1§

PLBART 16.6 14.5 28.3

PLBART (F) 14.2∥ 12.3 25.1‡

F
il

tr
.

Copy Title 10.0∗† 8.3 16.6
S2S + Ptr 10.2∗ 7.5 20.1

Hier S2S + Ptr 9.9† 7.4 19.6

PLBART 12.3‡ 9.9 21.1

PLBART (F) 12.3‡ 10.2 21.9

Table 3: Automated metrics. S2S + Ptr and Hier S2S + Ptr
scores are averaged across 3 trials. Differences that are not
statistically significant are indicated with matching symbols.

sions and generate descriptions of solutions.5 Note

that PLBART has a 1024 token limit. We use left

truncation to keep the most recent content.

PLBART (F): Since PLBART is pretrained on a

large amount of data, we can afford to reduce the

fine-tuning data. So we fine-tune on only the fil-

tered subset of the training set (cf. §3.2), to in-

vestigate whether fine-tuning on this ªless noisy"

sample can lead to improved performance.

4.2 Results: Automated Metrics

We use text generation metrics, BLEU-4 (Papineni

et al., 2002), METEOR (Banerjee and Lavie, 2005),

and ROUGE-L (Lin, 2004). We compute statistical

significance with bootstrap tests (Berg-Kirkpatrick

et al., 2012) with p < 0.05. Results are in Table 3.

On the full test set, PLBART significantly outper-

forms other models, demonstrating the value of

pretraining on large amounts of data. PLBART (F)

underperforms PLBART on the full test set. On the

filtered subset, it either beats or matches PLBART.

Performance drops across models between the

full and filtered test sets. The relatively high perfor-

mance of the naive Copy Title baseline shows that

simply copying or rephrasing the title performs

well in many cases, particularly for the full test.

The filtered subset is designed to remove uninfor-

mative reference descriptions that merely re-state

the problem, as illustrated in Table 2 with filtered

reference descriptions having higher percentages

of novel n-grams, with respect to the title. Nonethe-

less, keywords relevant to the solution are often

also in the title, so the Copy Title baseline still

achieves reasonable scores on the filtered subset.

Although automated metrics provide some signal,

they emphasize syntactic similarity over semantic

similarity. So, we conduct human evaluation.

5We focus on PLBART rather than vanilla BART because
it achieves higher performance, as shown in Appendix D.

Model Full Filtered

Copy Title 8.1 6.0

S2S + Ptr 1.3∗ 1.2†

Hier S2S + Ptr 1.3∗ 1.2†

PLBART 11.9 10.5

PLBART (F) 33.1‡ 39.5

All Poor 20.0 22.1

Insufficient Context 31.9‡ 25.6

Table 4: Human evaluation results: Percent of annotations
for which users selected predictions made by each model.
This entails 160 annotations for the full test set, 86 of which
correspond to examples in our filtered subset. Differences that
are not significant are indicated with matching superscripts.

4.3 Results: Human Evaluation

Evaluators first read the title and discussion

(U1...Utg ). For each example, they are shown pre-

dictions from the 5 models discussed in Section 4.1.

From these, they must select one or more that are

most informative towards resolving the bug. If all

candidates are uninformative, they select a separate

option: ªAll candidates are poor." There is also

another option to indicate that there is insufficient

context about the solution (§3.2), making it diffi-

cult to evaluate candidate descriptions. They also

write a rationale for their response.

Since annotation requires not only technical ex-

pertise, but also high cognitive load and time com-

mitment, it is hard to perform human evaluation

on a large number of examples with multiple judg-

ments per example. Similar to Iyer et al. (2016),

we resort to having each example annotated by

one user to obtain more examples. We recruited 8

graduate students with 3+ years of programming

experience and familiarity with Java. They are not

active contributors, so they will likely select the op-

tion of insufficient context more often than if they

had a deeper understanding of the various software

projects. However, it is difficult to conduct a user

study at a similar scale with contributors. Nonethe-

less, there are developers aiming to become first-

time contributors for a particular project (Tan et al.,

2020). Our study better aligns with this use case.

Each user annotated 20 examples, leading to an-

notations for 160 unique examples in the full test

set. In Table 4, we show that PLBART (F) sub-

stantially outperforms all other models, with users

selecting its output 33.1% of the time. Even though

the title typically only states a problem, users se-

lected it 8.1% of the time. From rationales that

users were asked to write, we found that there were

cases in which the title not only posed the problem

but also offered a solution. Users rarely preferred

the output of S2S + Ptr and Hier S2S + Ptr as they
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Title ↓ U1...Utg only ↑

Model 1 2 1 2

Copy Title 100.0 100.0 0.0 0.0
S2S + Ptr 64.8 37.1 31.6 25.3
Hier S2S + Ptr 60.3 34.2 38.7 26.1
PLBART 80.8 77.7 31.0 41.4
PLBART (F) 36.9 28.4 52.8 42.3
Reference 32.7 22.2 38.8 25.4

Table 5: Percent of unigrams and bigrams in the prediction
(or reference) which appear in the title and in U1..Utg only
(excluding the title), on the CS subset.

Model Prediction

Copy Title black screen appears when we seek
over an ad group .

S2S + Ptr fix black ads

Hier S2S + Ptr fix seeking in ad tag

PLBART suppress closing shutter when seek-
ing over an ad group

PLBART (F) suppress closing the shutter when
seeking to an unprepared period

Reference prevent shutter closing for within -
window seeks to unprepared periods

Table 6: Model outputs for the example shown in Figure 1.

usually just rephrased the problem. PLBART also

appears to be re-stating the problem in many cases;

however, less often than other models.

Though we see similar trends across the full

test set and the filtered subset, all models except

PLBART (F) tend to perform worse on the filtered

subset, as previously observed on automated met-

rics. Also, the average number of cases with in-

sufficient context is lower for the filtered subset,

confirming that we are able to reduce such cases

through filtering. We find the results on the fil-

tered data to align better with human judgment. By

fine-tuning on the filtered training set, PLBART

(F) learns to pick out important information from

within the context and generate descriptions which

reflect the solution rather than the problem.

4.4 Analysis

Of the 160 annotated examples, users found 109 to

have sufficient context about the solution. We con-

sider this the context-sufficient subset (CS), which

we will release for future research. To analyze

how models exploit the provided context, we mea-

sure the percent of n-grams in the prediction which

overlap with the title as well as U1...Utg (excluding

n-grams already in the title) in Table 5. PLBART

(F)’s predictions tend to have less n-gram overlap

with the title and more overlap with the utterances.

This suggests that this model predicts fewer unin-

formative descriptions which merely re-state the

problem mentioned in the title and instead focuses

on other content from the utterances.

In Table 6, we show model outputs for the exam-

ple in Figure 1. SeqToSeq and Hier S2S + Ptr es-

sentially rephrase aspects of the problem, which are

described in the title. Both PLBART and PLBART

(F) capture the solution, with PLBART (F) provid-

ing more information. When there is sufficient

context, 62.4% of the time, either PLBART or

PLBART (F) generates output that is informative

towards bug resolution. While this demonstrates

that fine-tuning this large, pretrained model on our

data can be useful in supporting bug resolution in

on-line discussions to some extent, it also shows

that there is opportunity for improvement.

We manually inspected PLBART (F)’s outputs

and associated user rationales. We observe that the

model tends to perform better when the solution is

clearly stated in 1-3 consecutive sentences (Table 7

(1) and (2)). When more complex synthesis is

needed, it sometimes stitches together tokens from

the input incorrectly (Table 7 (3)). Next, although

the model picks up on information in the context,

sometimes, it draws content from an elaboration of

the problem from within the discussion rather than

a formulation of the solution (Table 7 (4)). This

demonstrates that it still struggles to disentangle

content relevant to the solution from that about the

problem. It also sometimes struggles to generate

meaningful output when in-lined code is present,

highlighting the challenge in bimodal reasoning

about code and natural language (Table 7 (5)).

5 Supporting Real-Time Generation

Generating an informative description requires suf-

ficient context about the solution being available

in the discussion. In a real-time setting, this con-

text is likely not immediately available but rather

emerges as the discussion progresses, and we must

wait until it becomes available to generate a solu-

tion description. However, the time step at which it

becomes available (tg) is not known beforehand, so

we must instead predict it (tp) in order to perform

generation during ongoing discussions. For this,

we consider classifying whether sufficient context

is available upon each new utterance. In Figure 1,

the solution is formulated in U4, so the correct be-

havior is to predict the negative label at t = 1, 2, 3
and the positive label at t = 4. Once the positive la-

bel is predicted at tp
6, the description is generated,

conditioned on the title and U1...Utp . We develop

6Classifications are not made at t > tp. We leave generat-
ing at multiple time steps for future work.
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Title PLBART (F) Reference

(1) Issue with dex: OIDC server is not available
at the ’quarkus.oidc.auth-server-url’ URL

fix trailing slash in auth - server
url

strip trailing forward slash from
oidc url

(2) InvalidDataTypeException: UDATA con-
tains value larger than Integer.MAX_VALUE
DDR issue decoding lookswitch

fix bug in byte code dumper
when tableswitch instruction
precedes tableswitch instruction

fix interpretation of switch in-
structions in byte code dumper

(3) Worldmap viewport changes when switching
between dashboard pages

don ’ t refresh widget grid when
worldmap loses viewport

define key prop for map visual-
ization to update map on dimen-
sion change

(4) Workaround comments exist in opengrok-
indexer/pom.xml file while the related issues
are already fixed.

fix jflex - de / jflex # 705 ( com-
ment )

use jflex 1.8.2

(5) Why subscribe with single action for onNext
design to crush if error happened?

1 . x : fix subscription . sub-
scribe ( ) to return observable .
empty ( ) 2 . x : fix subscription
. subscribe ( ) to return observ-
able . empty ( )

fixed sonar findings

Table 7: Output of PLBART (F) for a sample of examples in the test set. Derived from: https://github.com/

quarkusio/quarkus/issues/10227, https://github.com/eclipse-openj9/openj9/issues/9294,
https://github.com/Graylog2/graylog2-server/issues/7997, https://github.com/oracle/

opengrok/issues/3172, https://github.com/ReactiveX/RxJava/issues/637.

two systems for integrating classification with a

generation model: pipelined and joint trained.

5.1 Pipelined System

We design an independent classifier built on

PLBART’s encoder. When a new utterance Ut is

made in the discussion, we encode the context so

far (the title and all utterances up to and including

Ut). We take the final hidden state, et, as the con-

text representation at t, which we feed et through

a 3-layer classification head and apply softmax to

classify whether or not sufficient context is avail-

able. We train to minimize cross entropy loss. At

test time, we use the already trained PLBART (F)

model to generate a solution description with con-

text available at tp.

5.2 Joint System

We initialize an encoder-decoder model from

PLBART with an additional classification head

(§5.1). The encoder is shared among the two tasks.

When classifying whether sufficient context about

the solution is available, there is likely specific

solution-related content that contributes to predict-

ing the positive label. So, classification may en-

hance encoder representations, improving content

selection for generating solution descriptions.

Furthermore, having sufficient context correlates

with whether it can be used to generate an infor-

mative description. So, the informativeness of a

description that can be generated with the available

context can provide signal for classifying whether

that context is sufficient. Additionally, if sufficient

context was not previously available at t − 1 but

becomes available at t, we expect an improvement

in the informativeness of the descriptions generated

at the two time steps. We represent these descrip-

tions with the final decoder states at the two time

steps, dt−1 and dt. We concatenate et, dt−1, and dt
to form the input into the classification head. For

training loss, we sum the generation and classifica-

tion losses across time steps t1...tg. Sufficient con-

text for generation may not be available at t < tg,

so we mask generation loss for earlier time steps.

5.3 Evaluation Setup

We train on filtered data since we found this to

improve performance. At test time, a system can

generate a solution description at tp ≤ tg, or it

can fail to predict the positive label before or at tg.

After a commit/PR for fixing the bug is made at

tg, the state of the discussion changes, with possi-

ble mentions of the solution that is implemented.

Since using this as context to generate a solution

description can be considered ªcheating,º we do

not make predictions for time steps after tg. We

treat this as the system refraining from generating

after not finding sufficient context.

5.4 Results: Automated Metrics

The pipelined and joint systems refrained from gen-

erating 33.3-35.4% and 36.4-39.8% of the time re-

spectively. We present automated metrics for the

remaining cases in Table 8. We find that tg − tp is

between 1.69 and 1.85 for the pipelined system and

between 1.81 and 1.97 for the joint system. While a

system should wait until sufficient context is avail-

able, sometimes, the last couple utterances before

the implementation do not add context about the so-

lution but are personal exchanges (e.g., ªThanksº,
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tp ≤ tg tg − tp BLEU METEOR ROUGE

Pipelined
Full

@tp 1.69 14.3‡ 12.4§ 25.1¶

@tg - 14.4‡ 12.5§ 25.3¶

Filtr.
@tp 1.85 12.5∗ 10.1 21.7
@tg - 12.6∗ 10.5 22.3

Joint
Full

@tp 1.81 13.1 11.4 22.4†

@tg - 13.2 11.7 22.5†

Filtr.
@tp 1.97 11.7 9.5 19.3
@tg - 11.9 9.9 19.7

Table 8: Automated metrics for combined systems when tp ≤ tg . We compare the generated description @tp with that if the
system had generated @tg . Differences that are not statistically significant are indicated with matching superscripts.

tg − tp BLEU METEOR ROUGE

Full
Pipelined 2.09 14.4 12.4 24.8
Joint 1.86 12.9 11.3 22.3

Filtr.
Pipelined 2.16 12.4 10.0 21.0
Joint 2.03 11.4 9.2 18.7

Table 9: Performance at tp on examples for which both systems predicted tp ≤ tg (614 of full and 304 of filtered test sets). All
differences are statistically significant.

ªI’ll open a PRº). So, generating slightly before

tg is acceptable in some cases. Moreover, despite

generating early in some cases, the generated out-

put @tp achieves comparable performance to that

@tg, with respect to the generation metrics (BLEU,

METEOR, and ROUGE).

Note that the numbers are not directly compara-

ble across the two systems since the exact subset

of examples for which tp ≤ tg varies between the

two. In Table 9, we present results for the sub-

set of examples for which both systems predict

tp ≤ tg. The joint system achieves lower average

error (tg − tp) for classification while the pipelined

system performs better on generation metrics.

5.5 Results: Human Evaluation

We also do human evaluation, for which we re-

cruited 6 graduate students with 3+ years of Java

experience. Each user evaluated outputs of the two

systems for 20 random examples from the filtered

test set. Users are given the same information as

Section 4.3. If the system refrained from generat-

ing, we ask them if there is sufficient context about

the solution at any time step t ≤ tg. Otherwise,

we show them the generated description and ask if

there is sufficient context about the solution at tp
and also to rate the informativeness of the descrip-

tion on a Likert scale: 1: incomprehensible, com-

pletely incorrect, irrelevant; 2: generic, rephrasing

problem; 3: includes some useful information but

does not capture the solution; 4: partially captures

solution; 5: completely captures solution.

In the cases that the system generated a descrip-

tion, users found there to be sufficient context at

tp 39.0% and 33.8% of the time for the pipelined

and joint systems, with average informativeness

being 3.3 for both. This suggests that when suffi-

cient context is available, these systems generate

descriptions which can be useful for bug resolution.

Because a real-time system must act at a given

time step agnostic to future activity, classifying

when to generate is challenging. It should defer

generation to later time steps if the optimal context

is not available. Generating too early can result in

output that is generic and re-states the problem. For

the cases in which the system generated a descrip-

tion without sufficient context at tp, the average

informativeness ratings were 2.2 (pipelined) and

2.0 (joint). However, deferring generation for too

long by expecting more context to emerge later also

poses a risk. After the solution has already been im-

plemented, it is too late for a generated description

to be useful towards resolving the bug. In the cases

that the pipelined and joint systems refrained from

generating, there was sufficient context about the

solution 34.2% and 37.0% of the time respectively.

Despite the pipelined and joint systems having

nuanced differences, we find them to perform simi-

larly. Through our evaluation of these systems, we

demonstrate room for improvement, particularly

for the classification component in determining the

optimal time step for generation. We leave it to

future work to develop more intricate end systems.

6 Related Work

Bug report summarization: To help developers

gather information from bug reports, there is in-

terest in automatic bug report summarization. Ap-

proaches for this are designed to generate holistic

summaries of bug reports, with a summary being
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25% of the length of the bug report (Liu et al.,

2020b). We instead aim to generate a concise

description that captures a specific aspect of the

bug report. Next, bug report summaries are not

widely available, so approaches for this task rely

on unsupervised techniques (Li et al., 2018; Liu

et al., 2020b) or supervision from a small amount of

data (Rastkar et al., 2014; Jiang et al., 2016). Our

approach for obtaining noisy supervision allows

us to train supervised models on a large amount

of data. Bug report summarization is a post hoc

task, done after the bug has been resolved, to help

developers address related bug reports in the fu-

ture. In contrast, our goal is to help resolve the

present bug report, so our system must learn when

to perform generation during an ongoing discus-

sion. Approaches for bug report summarization

have been predominantly extractive whereas ours

is abstractive. While we are interested in how bug

report summarization techniques fair on our task,

their implementations are not publicly available.

Commit message generation: Unlike the task

of automatically generating commit messages to

describe code changes that have already been

made (Loyola et al., 2017; Xu et al., 2019), our

system aims to generate natural language descrip-

tions that can drive code changes.

Response triggering: Classifying when to gen-

erate a description relates to chatbots learning to

respond at an appropriate time (Liu et al., 2020a)

in dyadic conversations. The goal is to avoid in-

terrupting a user who splits up an utterance across

multiple turns. We instead consider multi-party dia-

logue in which an agent should wait until a specific

type of content emerges in the discussion. Bohus

and Horvitz (2011) studied turn-taking decisions

in spoken dialogue systems, using audio-visual fea-

tures, while ours is a text-based system.

Dialogue + software: We view our work as a step

towards building a dialogue agent for streamlining

software bug resolution. There has been minimal

work in building interactive systems for this do-

main, with the exception of a few for tasks like

query refinement (Zhang et al., 2020) and code gen-

eration (Chaurasia and Mooney, 2017; Yao et al.,

2019). Wood et al. (2018) recently built a dia-

logue corpus through a ªWizard of Oz" experiment

to study the potential of a Q&A assistant during

bug fixing. Lowe et al. (2015) developed a dia-

logue corpus based on Ubuntu chat logs to study

Q&A assistants for technical support. In contrast,

our dataset is designed for building a collaborative

agent that participates in multi-party conversations

rather than one which answers directed questions.

7 Conclusion

We presented the novel task of generating concise

natural language solution descriptions to guide de-

velopers in absorbing information relevant towards

bug resolution from long discussions. We estab-

lished benchmarks for this task using a dataset that

we constructed with supervision derived from com-

mit messages and pull request titles. Through auto-

mated and human evaluation, we demonstrated the

utility of these models and also highlight their short-

comings, to encourage more research in exploring

ways to address these challenges. We also simu-

lated a real-time setting through two approaches for

combining a generation model with a classification

component for determining when sufficient context

for generating an informative description emerges

in an ongoing discussion. We believe this lays the

groundwork for future work on building a dialogue

agent that participates in bug report discussions to

foster efficient resolution.
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they implement could potentially be incomplete or

incorrect, if the system’s output misses important

details. Instead, developers should use the gener-

ated output to guide their focus and understanding

as they read through the discussion.

To build our system, we used data from GitHub,

in accordance with its acceptable use policy, and

no additional permission was required. Namely,

the policy states: ªResearchers may use public,

non-personal information from the Service for re-

search purposes, only if any publications resulting

from that research are open access.º7 We use only

publicly available data and use it only for research

purposes. Additionally, the data we used to train

and evaluate models (and publicly release) does

not contain personal information (e.g., usernames

of users who authored utterances and linked men-

tions). We require that any future work using our

dataset must abide by GitHub’s official policy as

well. For evaluation, we conducted human evalu-

ation, for which participants willfully volunteered

to be part of the study. They were not compensated

for their participation.
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A Data Cleaning

We focus on closed bug reports from the top 1,000

Java projects (in terms of number of stars), as a

way of identifying well-maintained projects (Jar-

czyk et al., 2014). We require there to be at least

two distinct ªactors" in the discussion, in which

the actor can either be a developer who makes an

utterance in the discussion or an actor who imple-

ments the solution through a commit or pull re-

quest. We discard examples in which the reference

description is identical to the title (disregarding

stopwords), as these are cases in which either the

reference description only states the problem and is

uninformative or the title already puts forth a solu-

tion (in which case a generated description would

not be useful). We remove examples with com-

mits or pull requests which simultaneously address

multiple bug reports.

We mined 141,389 issues (from 770 of the top

1,000 projects). After applying heuristics, we get

35,010 (from 525 projects), which will be released.

Of these, 16,899 pertain to bugs and 18,111 pertain

to non-bugs. From the 16,899 bug-related issues,

we focus on the 12,328 issues with a single com-

mit message/PR title. We explain our reasoning

for discarding examples linked to multiple com-

mits and/or pull requests in Section 3.1. However,

such examples (which are available in the data we

release) can be useful for supporting generating

descriptions at multiple time steps in future work.

From an example’s description, we remove ref-

erences to issue and pull request numbers, as they

do not contribute to the meaning and are instead

used as identifiers for organizational purposes.

B Details of Hier S2S + Ptr Model

We encode Ut using a transformer-based encoder

and feed the contextualized representation of its

first token (<UTTERANCE_START>) into the

RNN-based discussion encoder to update the dis-

cussion state, st. When encoding Ut, we also con-

catenate st−1 to embeddings, to help the model

relate Ut with the broader context of the discussion.

Note that we treat the title as U0 in the discus-

sion. This process continues until Utg is encoded,

at which point all accumulated token-level hidden

states are fed into a transformer-based decoder to

generate the output.

Unlike the S2S + Ptr model which is designed

to reason about the full input at once, this approach

reasons step-by-step, with self-attention in the ut-

terance encoder only being applied to tokens within

the same utterance. Since the input context for this

task is often very large, we investigate whether it

is useful to break down the encoding process in

this way. We also equip this model with a pointer

generator network.

C Additional Generation Baselines

We considered additional baselines; however, since

they were performing much lower than other ap-

proaches (on wide statistically significant margins),

we chose to exclude them from the main paper. We

briefly describe these baselines below.

C.1 Extractive Baselines

Supervised Extractive: Using a greedy approach

for obtaining noisy extractive summaries (Nallap-

ati et al., 2017), we train a supervised extractive

summarization model, similar to (Liu and Lapata,

2019).

LexRank: We use LexRank (Erkan and Radev,

2004), an unsupervised graph-based extractive sum-

marization approach. We extract 1 sentence with

threshold 0.1.

U1 (Lead 1): This entails simply taking the first

sentence of the first utterance, intended to simu-

late the Lead-1 baseline that is commonly used in

summarization.

U1 (Lead 3): This entails simply taking the first 3

sentences of the first utterance, intended to simu-

late the Lead-3 baseline that is commonly used in

summarization.

Utg : Since some part of the solution is often men-

tioned within Utg , we copy this utterance.

Utg (Lead 1): Since the length of an utterance is

quite different than that of a description (Table 1),

we extract only the lead sentence of Utg .

Utg (Lead 3): For the reason stated above, we also

apply the Lead-3 baseline to this utterance.

Utg (Last sentence): Rather than extracting the

lead sentence, we extract the last sentence of Utg .

Utg (Last 3 sentences): Rather than extracting

the lead 3 sentences, we try extracting the last 3

sentences of Utg .

C.2 Retrieval Baselines

Retrieval (Title-Title): Using TF-IDF, we com-

pute cosine similarity between the test example’s

title and titles in the training set, to identify the

closest training example, from which we take the

description.
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Model BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

Full

Supervised Extractive 0.537 0.536 0.807 0.010 0.767
LexRank 2.252 1.851 2.629 0.061 2.470
U1 (Lead 1) 4.793 6.537 10.077 2.534 8.752
U1 (Lead 3) 3.085 7.955 9.778 2.303 8.687
Utg 2.842 5.425 7.426 1.363 6.712
Utg (Lead 1) 4.028 4.453 7.736 1.451 6.889
Utg (Lead 3) 3.189 5.692 8.153 1.504 7.359
Utg (Last sentence) 3.475 3.480 6.089 0.930 5.476
Utg (Last 3 sentences) 3.234 5.082 7.525 1.287 6.787
Retrieval (Title-Title) 6.866 4.497 11.517 1.281 10.748
Retrieval (Title-Desc) 8.763 6.167 15.965 2.426 14.776
Project Retrieval (Title-Title) 7.442 4.709 11.501 1.49 10.943
Project Retrieval (Title-Desc) 9.118 6.299 14.949 2.232 14.089
Copy Title 14.358 13.142 27.361 11.539 24.427
S2S + Ptr 12.583 9.838 27.589 4.258 25.024
Hier S2S + Ptr 12.365 9.564 26.785 3.672 24.084
PLBART 16.551 14.484 31.564 11.549 28.295
PLBART (F) 14.188 12.302 27.443 8.349 25.128

Filtr.

Supervised Extractive 0.711 0.653 1.084 0.005 1.029
LexRank 2.442 1.946 2.843 0.066 2.637
U1 (Lead 1) 4.951 6.207 9.881 1.938 8.553
U1 (Lead 3) 3.055 7.907 9.890 1.875 8.777
Utg 2.899 6.045 8.081 1.507 7.346
Utg (Lead 1) 4.406 4.808 8.424 1.507 7.590
Utg (Lead 3) 3.356 6.257 8.894 1.681 8.060
Utg (Last sentence) 3.515 3.961 6.547 1.046 5.868
Utg (Last 3 sentences) 3.345 5.722 8.200 1.460 7.448
Retrieval (Title-Title) 6.117 3.727 9.546 0.711 8.965
Retrieval (Title-Desc) 6.998 4.542 12.082 1.257 11.410
Project Retrieval (Title-Title) 6.646 4.195 9.603 1.273 9.255
Project Retrieval (Title-Desc) 7.593 5.064 11.895 1.638 11.328
Copy Title 9.962 8.291 18.538 4.943 16.641
S2S + Ptr 10.168 7.521 21.846 2.278 20.116
Hier S2S + Ptr 9.893 7.369 21.562 2.131 19.649
PLBART 12.319 9.877 23.419 5.452 21.097
PLBART (F) 12.266 10.218 23.786 5.712 21.857

Table 10: Comparing models in main paper with low-performing baselines for generating solution descriptions. Scores for
Supervised Extractive are averaged across three trials.

Retrieval (Title-Desc): Using TF-IDF, we com-

pute cosine similarity between the test example’s

title and descriptions in the training set, to identify

the closest training example, from which we take

the description.

Project Retrieval (Title-Title): Using TF-IDF, we

compute cosine similarity between the test exam-

ple’s title and titles for the same project in the train-

ing set, to identify the closest training example,

from which we take the description.

Project Retrieval (Title-Desc): Using TF-IDF, we

compute cosine similarity between the test exam-

ple’s title and descriptions for the same project in

the training set, to identify the closest training ex-

ample, from which we take the description.

C.3 Baseline Results

We present baseline results in Table 10. In ad-

dition to the metrics used in the main paper, we

report ROUGE-1 and ROUGE-2. All of these base-

lines substantially underperform models presented

in the main paper, especially the Supervised Ex-

tractive model. We believe this model performs so

poorly due to noise in the supervision and because

the extracted summaries are longer and structured

differently than the reference descriptions in our

dataset. Additionally, there are many examples in

which the model does not select a single sentence

from the input, resulting in the prediction being

the empty string. LexRank also performs poorly in

terms of automated metrics against the reference

description. This unsupervised approach aims to

identify a ªcentroid" sentence that summarizes the

full input context and is not designed to specifically

focus on solution-related context.

All baselines that extract a whole utterance or

sentences from specific utterances perform poorly,

demonstrating the need for content selection from

the broader context and content synthesis rather

than relying on simple heuristics to produce a de-

scription of the solution. We find that the retrieval

baselines tend to achieve higher scores, as retrieved
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Model BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L

Full

mBART base (randomly initialized) 9.978 6.976 17.000 2.498 15.744
mBART large 15.251 12.503 28.522 9.520 26.109
BART base 14.226 11.522 26.957 8.864 24.746
PLBART 16.551 14.484 31.564 11.549 28.295

Filtr.

mBART base (randomly initialized) 8.819 6.151 14.870 2.011 13.574

mBART large 11.663 9.233 22.295 5.159† 20.458

BART base 10.820 8.583 21.247 5.055† 19.537
PLBART 12.319 9.877 23.419 5.452 21.097

Table 11: Comparing performance of BART-based models. Training/fine-tuning is done with our full training set. Differences
that are not statistically significant are shown with matching symbols.

descriptions are from the same distribution as the

reference descriptions. However, these numbers

are still much lower than those in the main paper.

D BART Models

We use PLBART (Ahmad et al., 2021), which was

pretrained on large amounts of code from GitHub

and software-related natural language from Stack-

Overflow. Compared to other pretrained models,

fine-tuning PLBART achieves higher performance

for various NL+code tasks, including code sum-

marization, code generation, code translation, and

code classification. Since our task also requires

reasoning about code and technical text, we choose

PLBART over other pretrained models in our work.

We present automated metrics for PLBART and

PLBART (F) in Table 3. The average length of

PLBART’s output is 9.0 and 8.6 tokens on the full

and filtered test sets respectively, while it is 9.3 and

9.4 for PLBART (F).

For completion, we compare against BART-

based models which are not pretrained on code

or technical text. First, we consider mBART base

(multilingual BART) (Tang et al., 2020), which is

the underlying architecture of PLBART. Without

pretraining (randomly initializing the same archi-

tecture), performance is very low, as shown in Ta-

ble 11. The publicly released pretrained mBART

model, which is pretrained on non-technical natu-

ral language, does not use the base architecture

but rather large. We also fine-tune this model

on our training set but find that it achieves lower

performance than PLBART. Finally, we compare

against BART base (Lewis et al., 2020), which is

also pretrained on non-technical natural language.

Again, this model underperforms PLBART. Be-

cause PLBART’s performance is higher, we choose

to focus on this model in our work.

E Human Evaluation Setup

In the user study, users are shown the title of the

bug report, all utterances up till (and including)

Utg , and the reference description in our dataset for

the given example. We choose to provide this as

a manual suggestion to help guide users in better

understanding a bug report, for a software project

with which they have minimal familiarity. How-

ever, we state in our instructions that this is merely

provided for reference and is not necessarily the

exact and only valid answer.

Next, we show them up to 5 model predictions

and ask them to ªselect the one(s) which add(s) the

most amount of useful information that will help

resolve the bug, beyond just re-stating the prob-

lem itself." Note that these are presented in random

order (per example), without any identifying infor-

mation about the underlying models that generated

them. We explain that we consider a description

to be informative if it provides content that will be

useful towards fixing the issue, beyond just rephras-

ing the problem itself. And we encourage users to

select candidates based on content that is informa-

tive, rather than focusing on exact phrasing. If all

candidates appear to be poor (completely unrelated

to the resolving the bug, uninformative, incompre-

hensible, or plain wrong), users are asked to select

another option: ªAll candidates are poor." If there

is no useful information towards resolving the bug

in the context and they are unable to evaluate can-

didate descriptions, they are asked to select another

option: ªThe context does not have any useful in-

formation for resolving the bug." They must also

justify their selection by writing a brief rationale.

This is a challenging task, as it requires reading

through and reasoning about a large amount of text

to evaluate each example. To prepare annotators,

we first present a set of training examples and a

training video in which we demonstrate how the

task should be completed.

F Analyzing CS Subset

The CS subset consists of 109 examples from the

test set spanning 45 projects, with average T = 4.1
and tg = 3.2. We present automated metrics for
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Model BLEU METEOR ROUGE

Copy Title 12.6 12.2¶ 22.1
S2S + Ptr 11.6 8.9 23.1
Hier S2S + Ptr 12.0 9.0 22.9
PLBART 14.6 13.2 26.0

PLBART (F) 14.2 12.3¶ 25.1

Table 12: Automated metrics for generation on CS subset.
Differences that are not statistically significant are indicated
with matching symbols.

this subset in Table 12. Results are analogous to the

full test set, except that the numbers are generally

lower for all models other than for PLBART (F),

which achieves consistent performance. PLBART

(F) slightly underperforms PLBART on automated

metrics overall. However, this is because these

metrics are computed against the single reference

description, which could diverge from how the solu-

tion is formulated in the discussion since the devel-

oper could have written an uninformative/generic

description. To do more fine-grained analysis, in

Figure 2, we plot automated metrics for varying

percentages of token overlap between the reference

description and U1...Utg (excluding tokens already

present in the title which have been used to state

the problem). Higher overlap suggests that the ref-

erence description draws more content from within

the discussion. For higher percentages, PLBART

(F) generally achieves higher scores against the

reference than PLBART and all other models, in-

dicating that this model is better at gathering infor-

mation from within the discussion. In Table 13, we

supplement the n-gram analysis from Section 4.4.

G Classification Performance

To benchmark performance on the classification

task for determining when sufficient context is

available for generating an informative description,

we consider some simple baselines. We observe

that there are many cases in which tg = 1, 2, i.e.,

the solution is implemented immediately after the

first or second utterance. So, we include the FIRST

baseline which always predicts a positive label at

t = 1, and SECOND which predicts negative at

t = 1 and positive at t = 2, if tg ≥ 2 (otherwise it

never predicts positive).

We include the RAND (uni) baseline which pro-

gresses through the discussion, randomly deciding

between the positive and negative label after each

utterance, based on a uniform distribution. We

also include RAND (dist), which instead uses the

probability distribution of labels at the example-

level estimated from the filtered training set (pos =

1

N

∑N
n=1

1

tg
=0.510, neg = 0.490). Results are aver-

aged across 3 trials. We present results in Table 14.

H Reproducibility Checklist

H.1 Validation Performance

We report performances on the full validation set.

Results for the generation task are in Table 15.

I Hyperparameters

All neural models were implemented using Py-

Torch. For S2S + Ptr and Hier S2S + Ptr, we

use a batch size of 8, an initial learning rate of

3e-05, and a dropout rate of 0.2. Our transformer

models have 4 encoder and decoder layers, 4 heads

in multi-head attention, a hidden size of 64, and

feedforward hidden size 256. We use Adam as

the optimizer and have a learning rate scheduler

with gamma 0.95 which decays after an epoch if

the validation loss has not improved. We use early

stopping with patience 5 during training.

For classification, the classification head con-

sists of a linear layer (dimension 768), followed by

a tanh non-linear layer, and a final linear projec-

tion layer (dimension 2). When computing cross

entropy loss for classification, we weight the pos-

itive and negative labels using the inverse of the

class proportion to handle class imbalance (1.70

and 0.71 respectively). For the joint model, loss

for a given example is computed as follows, with

λ1 = 0.8, λ2 = 0.2 (tuned on validation data).

L = λ1Lgen(tg) + λ2

t=tg∑

t=1

Lclass(t)

.

I.1 Tuning

For S2S + Ptr and Hier S2S + Ptr, hyperparameters

are tuned manually. For batch size, we consider

{8,16,32}, learning rate {1e-03, 1e-04, 3e-05},

dropout {0.1, 0.2, 0.4, 0.5, 0.6}, encoder/decoder

layers {2, 4, 6, 8}, number of heads {2, 4, 8}, hid-

den sizes {32, 62, 128}, and feedforward dimen-

sions {128, 256, 512}. These hyperparameters are

tuned on validation data, using the text generation

metrics mentioned in Section 4.2 for generation.

For tuning, we do not do grid search but rather com-

pare performances between models trained with

identical configurations, with the exception of a

single parameter. Therefore, the number of hy-

perparameter tuning runs scales linearly. We ran
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Title ↓ U1...Utg only ↑

Model 1 2 3 4 1 2 3 4

Full

Copy Title 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
S2S + Ptr 65.6 34.4 39.3 46.5 28.6 24.9 27.0 25.0
Hier S2S + Ptr 60.2 33.9 41.1 50.4 37.4 27.9 28.3 29.2
PLBART 79.3 75.0 72.5 71.7 30.7 34.8 34.6 39.9
PLBART (F) 43.2 37.4 38.3 43.1 47.1 38.1 35.6 37.2
Reference 35.1 30.9 33.5 37.7 34.5 22.2 22.2 25.3

Filtered

Copy Title 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
S2S + Ptr 64.5 33.8 39.1 38.3 29.4 25.3 23.8 0.0
Hier S2S + Ptr 58.4 33.3 39.3 45.7 40.4 28.4 30.0 29.2
PLBART 76.9 73.4 71.1 70.4 34.0 37.0 36.3 41.2
PLBART (F) 38.4 33.9 35.2 40.7 51.0 40.0 36.6 38.1
Reference 23.7 18.6 18.4 16.3 40.1 22.8 21.4 23.0

CS

Copy Title 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
S2S + Ptr 64.8 37.1 38.5 22.5 31.6 25.3 33.1 25.0
Hier S2S + Ptr 60.3 34.2 37.9 28.3 38.7 26.1 29.2 0.0
PLBART 80.8 77.7 72.8 70.3 31.0 41.4 37.0 50.0
PLBART (F) 36.9 28.4 30.8 34.1 52.8 42.3 39.4 45.0
Reference 32.7 22.2 26.2 35.6 38.8 25.4 23.1 27.1

Table 13: Percent of unigrams, bigrams, trigrams and 4-grams in the prediction (or reference) which appear in the

title and in U1..Utg only (excluding the title). Lower is better for the title and higher is better for U1..Utg only.

FIRST SECOND RAND (uni) RAND (dist) Pipelined Joint

Full
(↑) tp ≤ tg 100.0% 70.5% 76.0% 77.1% 66.7% 60.2%
(↓) tg − tp 2.2 2.1 2.2 2.2 1.7 1.8

Filtr.
(↑) tp ≤ tg 100.0% 76.2% 79.4% 80.1% 64.6% 63.6%
(↓) tg − tp 2.6 2.4 2.5 2.5 1.9 2.0

Table 14: Percent of time tp ≤ tg and for these particular cases, the mean absolute error between tg and tp.

Model BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L

Copy Title 15.223 13.645 28.088 12.322 25.341
S2S + Ptr 12.896 10.241 27.757 4.571 25.921
Hier S2S + Ptr 12.758 10.119 28.722 3.934 25.275
PLBART 16.924 14.979 32.152 12.124 29.623
PLBART (F) 15.059 13.057 29.107 9.111 26.710

Table 15: Scores for generation @ tg on the 1,232 examples in the full validation set.

Model Train Eval Epoch

S2S + Ptr 2:56:19 0:01:12 52.0
Hier S2S + Ptr 4:47:34 0:01:22 51.0
PLBART (fine-tuning) 0:32:07 0:00:25 11.0
PLBART (F) (fine-tuning) 0:26:08 0:00:28 15.0
Pipelined system (classifier only) 2:12:48 0:02:09 12.0
Jointly trained combined system 6:25:01 0:15:06 22.0

Table 16: Average training time, inference time, and number of epochs. Format for time is H:M:S.

each configuration once. For PLBART-based mod-

els, we use the same configurations as the scripts

released by Ahmad et al. (2021).

I.2 Random Seeds

For the randomly initialized models, random seeds

are set according to the timestamp, and we average

results across 3 trials. For S2S + Ptr, the seeds

were: 1620001129, 1620001158, and 1620004022.

For Hier S2S + Ptr, the seeds were: 1620001125,

1620001159, and 1620004024.

J Statistical Significance Testing

We compute statistical significance using bootstrap

tests (Berg-Kirkpatrick et al., 2012) with p < 0.05
and 10,000 samples of size 5,000 each.

J.1 Running Times

Table 16 reports average training time, inference

time, and # epochs for the various models con-

sidered in this work. The PLBART-based models

were trained/fine-tuned on NVIDIA DGX GPUs

(32 GB) and all other models were trained and eval-

uated using on GeForce GTX Titan GPUs (8 GB).

All models used single-GPU training.
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