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Abstract

Much of modern-day text simplification re-

search focuses on sentence-level simplifica-

tion, transforming original, more complex sen-

tences into simplified versions. However,

adding content can often be useful when dif-

ficult concepts and reasoning need to be ex-

plained. In this work, we present the first data-

driven study of content addition in text simpli-

fication, which we call elaborative simplifica-

tion. We introduce a new annotated dataset of

1.3K instances of elaborative simplification in

the Newsela corpus, and analyze how entities,

ideas, and concepts are elaborated through

the lens of contextual specificity. We estab-

lish baselines for elaboration generation using

large-scale pre-trained language models, and

demonstrate that considering contextual speci-

ficity during generation can improve perfor-

mance. Our results illustrate the complexities

of elaborative simplification, suggesting many

interesting directions for future work.

1 Introduction

Text simplification aims to help audiences read

and understand a piece of text through lexical, syn-

tactic, and discourse modifications, while remain-

ing faithful to its central idea and meaning (Sid-

dharthan, 2014). It remains an important task, im-

proving text accessibility for children (De Belder

and Moens, 2010; Kajiwara et al., 2013), language

learners (Yano et al., 1994; Petersen and Osten-

dorf, 2007; Pellow and Eskenazi, 2014; Paetzold,

2016), and those with language impairments (Car-

roll et al., 1998; Rello et al., 2013). Text simplifi-

cation can also be a useful pre-processing step for

other NLP tasks such as machine translation (Chen

et al., 2012; Štajner and Popovic, 2016) and sum-

marization (Vanderwende et al., 2007; Silveira and

Branco, 2012).

With the introduction of large, parallel cor-

pora (Zhu et al., 2010; Woodsend and Lapata,

Original Text

Results, she said, “could help the team better un-
derstand ancient Egyptian health” and, correspond-
ingly, modern-day health. For instance, some mum-
mies still have arteries in their mummified remains,
Miller-Thomas said. And, sometimes, scientists can
tell if those arteries had hardened.

Simplified Text

The scans could help the team understand about an-
cient Egyptians’ health. For example, some mum-
mies still have arteries. An artery is a tube that
moves blood through the body. The artery could show
if the person had been healthy or not.

Figure 1: Elaborative simplification with two elabora-

tions of varying contextual specificity.

2011; Coster and Kauchak, 2011; Xu et al., 2015),

text simplification research has rapidly advanced

in recent years, especially in sentence simplifi-

cation (Alva-Manchego et al., 2020). However,

document simplification involves rich linguistic

phenomena that cannot be easily characterized by

sentence-level transformations of text, e.g., the

omission and addition of content (Petersen and

Ostendorf, 2007; Siddharthan, 2014).

This paper presents the first data-driven, dedi-

cated study of elaborative simplification, which

involves inserting elaborations in the form of def-

initions, explanations or clarifications to improve

readability by providing readers with necessary

additional context. Effective elaborations must pro-

vide background in a contextual manner, adding

relevant information to the surrounding text.

Figure 1 shows an example. The original text

snippet explains that scientists study mummy arter-

ies to see whether they are hardened. In the corre-

sponding simplified text, we see two elaborations

inserted – one, in green, simply defines an artery,

and the second, in blue, states the implication of

hardened arteries. The content of both elaborations

is semantically absent from the original text.
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Our goal is to provide resources and directions

toward understanding and generating naturally oc-

curring elaborations. We present an annotated

dataset of 1.3K instances of elaborative simplifica-

tion in the Newsela corpus (Xu et al., 2015). We

automatically identify candidate elaborations from

simplified documents, and have human annotators

verify candidates. We find that many elaborations

require multi-hop reasoning, inference, common-

sense reasoning, and relevant information retrieval,

making it an interesting testbed for a bevy of re-

lated tasks.

The previous example highlights two elabora-

tions on opposite ends of the spectrum – the first

requires little context, while the second is highly

contextualized, drawing a conclusion from content

presented in the original text. To this end, we char-

acterize elaborations by annotating their contextual

specificity, i.e., the extent to which the added con-

tent is specific to the current topic under discussion.

We reveal that our dataset contains a fairly bal-

anced distribution of contextual specificity. Quali-

tatively, while inserting definitions may help pro-

vide background about entities, highly contextual-

ized elaborations interpreting or clarifying content

can help readers understand the larger implications

or significance of ideas presented in the original

text. We propose the primary task of generating

elaborations given document context. We present

baselines for elaboration generation mainly using

GPT-2 (Radford et al., 2019), and discuss some

of the challenges, especially with respect to the

contextual specificity of added content.

We find that generation quality can be improved

by selecting an elaboration with an appropriate

predicted contextual specificity level. However, ex-

isting methods struggle to effectively incorporate

input context to generate elaborations. We hope

that this study will motivate advancement in elabo-

rative simplification.

In summary, our main contributions include:

1. Introduction of elaborative simplification, a

previously understudied phenomenon in text

simplification;

2. A new, annotated dataset of 1.3K naturally

occurring elaborations in the Newsela corpus

and their contextual specificity;

3. Analysis of the challenges of elaborative sim-

plification for pre-trained language models

through performance of our baselines.

We make our annotations and code avail-

able at https://github.com/nehasrikn/

elaborative-simplification.

2 Data and Annotation

Elaborative simplification involves the insertion of

content to make simplified text easier to understand.

We present an annotated dataset of 1.3K elabora-

tions from the Newsela corpus (Xu et al., 2015),

which contains English news articles manually sim-

plified by professional editors. We describe the

scope of our elaborative simplification study (§2.1),

strategies for trusted annotators to extract elabora-

tions (§2.2) and rate contextual specificity (§2.3),

and scaling up annotation through crowdsourcing

with rigorous quality control (§2.4).

2.1 What is an elaboration?

We consider a sentence an elaboration if it contains

new content (e.g. statements about entities, actions,

or concepts) present in the simplified document,

but semantically missing from the original docu-

ment. Note that while elaborations can contain mul-

tiple sentences, we define our label at the sentence

level. Past simplification research has focused on

operations such as substitution and deletion, but

simplifying a piece of text that may contain un-

known or difficult concepts could involve inserting

simple explanations as well. As we highlight in

§6, others have shown that audiences such as new

language learners benefit from elaboration or ex-

planation insertion (and conversely, that unfamil-

iar concepts negatively impact reading comprehen-

sion), though computational approaches till date

have been largely limited to definition retrieval.

Scope. We intentionally choose to study how con-

cepts are elaborated, posing a scenario where an

author has the freedom to specify where to elabo-

rate, and our system generates an appropriate elab-

oration. We do this for two main reasons: first,

understanding how to elaborate can be utilized in a

system where users specify what to elaborate on, in

the spirit of personalized simplification (Paetzold

and Specia, 2016; Bingel et al., 2018). Second,

determining when to elaborate is arguably pragmat-

ically more complex, in that the need for elabora-

tion often relies on the writer’s belief about their

readers’ background, knowledge, and reading abil-

ity, as well as their own judgments on how often to

elaborate. For example, in the extreme case, insert-

ing an elaboration after every sentence could prove
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candidate elaboration by taking the mode of all re-

sponses. The expert annotation consisted of 150 of

these candidate elaborations under the same setup.

Figure 2 shows some examples of verified and re-

jected candidate elaborations.

Agreement. Cohen’s Kappa among the two ex-

pert annotators is 0.75, indicating substantial agree-

ment (Artstein and Poesio, 2008). Cohen’s Kappa

between expert annotations and aggregated student

annotations is also substantial, at 0.67. Krippen-

dorff’s alpha among the 13 student annotators is

0.37. As in complex NLP annotations (Nye et al.,

2018), although there is subjectivity among indi-

vidual annotators due to the complicated nature of

the task, their aggregated judgment can be of as

high quality as trained expert annotators.

2.3 Contextual Specificity

At first glance, it seemed that elaborative sim-

plification might simply involve retrieving defini-

tions (Paetzold and Specia, 2016) or crafting infor-

mative post modifiers (Kang et al., 2019). However,

while annotating candidate elaborations, we no-

ticed that elaborations in our corpus took a variety

of forms.

To better understand content addition, we con-

ducted an extensive study of elaborations and found

that often times, clarification or analysis sentences

specific to document context are inserted to aid

comprehension or facilitate connections between

content in the original text. Notably, elaborations

vary in their contextual specificity, i.e., the degree

to which an elaboration is specific to the context.1

For example, while simple definitions can be in-

serted into several different documents mention-

ing the same entity (low contextual specificity),

some elaborations containing clarifications, com-

monsense reasoning applied to document content,

or explicit inference are more contextually specific,

as illustrated in Figure 2.

This formulation is inspired by prior work in text

specificity (Li et al., 2016; Ko et al., 2019) which

is related to how a sentence “stands on its own” or

sentence “decontextualization” as in Parikh et al.

(2020). As we discuss in §2.4, contextually specific

elaborations tend to have slightly lower sentence

specificity, thus depending on the surrounding con-

text to enhance understanding.

1We draw a distinction between contextual specificity and
contextual relevance (as in Kang et al. (2019)).

We ask the pair of experts from the previous pi-

lot to annotate 116 randomly chosen verified elab-

orations for contextual specificity. Each expert

was again given the entirety of the original and

simplified documents with the highlighted elabo-

ration, and asked to label its contextual specificity

on a scale of 1–3 (low/medium/high). Their Fleiss’

Kappa showed moderate agreement (Landis and

Koch, 1977) with κ = 0.57. Spearman’s correla-

tion between the two annotators is 0.72. To enable

collection, study, and modeling of this linguistic

knowledge at scale, we gather contextual specificity

ratings during crowdsourcing.

2.4 Crowdsourcing

Annotating elaboration verification and contextual

specificity requires careful reading and thoughtful

reasoning over text. For the pilot described in §2.2,

we provided thorough instructions and example

documents and annotations. While these trusted

annotators delivered high quality, reliable annota-

tions, they ultimately cannot annotate a dataset of

the scale supervised systems require. To remedy

this, we use Amazon Mechanical Turk to collect

labels at scale, albeit with slightly more noise. Our

rationale is that models can tolerate this during

training, and we ensure cleaner validation and test

sets through expert annotations.

Task setup. We ask workers to annotate elabo-

ration verification and contextual specificity in a

single task (HIT). For each candidate elaboration,

we provide crowdworkers with the text region from

the simplified document containing the elaboration,

and the aligned text region from the original doc-

ument. We ask crowdworkers to categorize each

candidate as a true elaboration, not an elaboration,

or indicate that the snippets were unrelated. If true

elaboration is selected for a candidate, we asked

them to rate its contextual specificity2. From feed-

back during our expert pilots, we determined that

providing entire documents was often distracting,

proving necessary only in rare cases where content

was drastically rearranged. Instead, we display text

regions of 5–7 sentences from both the simplified

and original documents. The simplified text region

contains the candidate elaboration and surrounding

sentences, and the original text region contains sen-

tences that are aligned with neighboring sentences

2During crowdsourcing we utilized a 5-point scale, but ag-
gregated the labels to a 3-point scale because the two scores on
either end of the scale are not distinctive (i.e., are subjective).
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3 Elaboration Generation

We frame elaborative simplification as a natural

language generation task, and describe a process

mimicking editors elaborating as they compose a

simplified document from the beginning (i.e. elabo-

rations may be generated based only on the preced-

ing simplified/original context) 4. Elaboration gen-

eration is a challenging test for a model’s ability to

produce relevant and effective elaborations ranging

in contextual specificity given snippets of context

from documents in our corpus. We investigate the

abilities of pre-trained language models to generate

elaborations, establishing baselines in §3.1 and in-

corporating contextual specificity in §3.2. We find

that selecting elaborations of appropriate levels of

predicted contextual specificity can help improve

elaboration generation results.

3.1 Baseline Elaboration Generation

We generate elaborations using GPT-2 (Radford

et al., 2019), a large-scale pre-trained language

model which has been shown to be effective in

a range of generation tasks, including in recent

efforts to elicit world and commonsense knowledge

(Zhou et al., 2020; Shwartz et al., 2020).

Formally, we generate elaborations by condition-

ing on some document context, C. In this baseline

setting, we generate sequences via greedy decoding.

We utilize context from the original document (Co)

and from the simplified text (Cs). To understand

the role that context plays in elaboration generation,

we elicit elaborations from the language model by

providing it one of the following: (1) 2 sentences

prior to the gold elaboration in the simplified doc-

ument (C2s), (2) a concatenation of 2 sentences

prior to the gold elaboration from the simplified

document and the corresponding aligned region in

the original document (C2s + Co), (3) 4 sentences

prior to the gold elaboration in the simplified docu-

ment (C4s).

Finetuning. We finetune GPT-2 on the set of sim-

plified documents written for the lowest grade level

in the Newsela corpus, as well as on our dataset

of verified elaborations excluding the test set. We

found that such fine-tuning substantially improves

generation quality (c.f. Appendix B.1).

4We explored elaboration generation as a post-processing
task after document simplification (Appendix B.2). From
preliminary results, we find it to be a more nuanced task
which we leave for future work.

3.2 Specificity-guided Generation

As discussed in §2.3, elaborations in our corpus

are notably diverse in terms of their contextual

specificity. Producing elaborations of appropriate

contextual specificity is important, e.g., inserting

an unnecessary definition instead of explaining a

central concept can be ineffective or detrimental to

readers’ understanding. Rows 1-2 in Figure 4 show

examples where the elaboration generated by the

model in §3.1 does not match the level of contex-

tual specificity of the gold elaboration, motivating

our exploration of including contextual specificity

and its prediction to aid elaboration generation.

Contextual specificity prediction. We build a

model to classify the level of contextual speci-

ficity of an elaboration as low, medium, or high

to incorporate downstream during generation. We

leverage BERT (Devlin et al., 2019) for this task.

Appendix A explores this auxiliary task further to

understand modern NLP models’ ability to capture

this linguistic information.

We train the model on (E, s) pairs, where E is

an elaboration, and s is its labeled contextual speci-

ficity. We feed E as input to BERT, and then feed

the [CLS] token embedding into an output layer

for classification. We freeze the BERT parameters

since fine-tuning yielded unstable results. We uti-

lize bert-base from the HuggingFace library

(Wolf et al., 2019). After tuning on the validation

set, we train for 5 epochs, using a batch size of

32 and a learning rate of 2e-3. We use the default

dropout rate of 0.1 for self-attention layers, but

refrain from adding dropout on our linear layer.

This contextual specificity model achieved an

accuracy of 56.8± 1.5, a macro-averaged F1 score

of 55.3±1.6, a Spearman correlation of 47.5±2.6,

and a mean absolute error of 0.552 ± 0.01, aver-

aged across 15 randomly initialized runs. This

performance is better or on par with other mod-

els that incorporate document context in different

ways (Appendix A). We find contextual specificity

prediction to be a challenging task for BERT. Pre-

diction of expected contextual specificity (i.e pre-

diction from context alone, without the elaboration)

was particularly difficult, and we leave building

stronger models in this setting to future work.

Generation. We investigate the importance of

contextual specificity in generating effective elab-

orations by comparing sequences generated in 3

ways:
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1. Greedy: Generate elaborations via greedy de-

coding. This setting was discussed in §3.1.

2. Top-k: Sample a sequence from the language

model using top-k sampling (Fan et al., 2018),

without considering contextual specificity.

3. Contextual specificity-informed sampling,

shorthand Contextual: Sample sequences

using top-k sampling until we have 3 elab-

orations of low, medium, and high contex-

tual specificity, as predicted by the contex-

tual specificity model, and select the sequence

with predicted contextual specificity matching

the gold specificity level.

In practice, one would ideally use a contextual

specificity model trained without the elaboration

itself (i.e., Context-Only models in Appendix A)

to predict the appropriate level of contextual speci-

ficity of a generated elaboration. However, since

we leave to future work to build a strong model

presented with this setup, we instead utilize the

gold specificity label and explore the upper bound

with our generation experiments.

We use sampling-based decoding strategies to

achieve contextual specificity diversity because we

find that while beam-based decoding methods may

result in sequences with diverse content, they do

not necessarily result in sequences with diverse

contextual specificity.

3.3 Experimental Settings

We use GPT-2 medium from the HuggingFace li-

brary (Wolf et al., 2019) to finetune and generate

elaborations. We finetune GPT-2 on documents

simplified for the lowest-grade level in the Newsela

corpus for 3 epochs with a learning rate of 1e-5 and

a batch size of 32. For sampled sequences, we use

top-k sampling with k = 40, and a temperature of

t = 0.45, tuned on validation data.

4 Generation Evaluation

As elaboration generation is a new task, we include

BLEU scores for completeness and emphasize hu-

man evaluation, which provides important insight

early on in the study of a new phenomenon.

4.1 Automatic Evaluation

We report BLEU (Papineni et al., 2002), a standard

metric in generation tasks. Table 2 shows corpus

BLEU-1 and BLEU-2 scores on our test set. As il-

lustrated in Table 2, the best models, as reflected by

Greedy Top-k Contextual

Context B-1 B-2 B-1 B-2 B-1 B-2

C2s 20.8 6.77 20.4 6.12 21.4 7.26
C2s + Co 18.7 5.66 17.2 4.32 19.0 5.31
C4s 20.8 5.54 19.7 6.06 22.4 7.56

Table 2: BLEU-1 and BLEU-2 scores for elaborations

generated by GPT-2, finetuned on the Newsela sim-

plified document corpus. Results for our best model,

which we conduct human evaluation on, are in bold.

System Greedy Top-k Contextual

% selected 53.2 44.9 58.0

Table 3: Percentage of annotations for which users se-

lected elaborations generated by each model.

BLEU, are those finetuned on the Newsela simpli-

fied corpus, with four sentences from the simplified

document before the gold elaboration as context.

While BLEU captures lexical overlap between

generated and gold elaborations, it is also criticized

due to poor correlation with human judgments (Liu

et al., 2016; Novikova et al., 2017; Chaganty et al.,

2018), as it fails to capture semantic similarity or

reward multiple plausible hypotheses. During man-

ual inspection of these sequences, we find that elab-

orations produced after finetuning GPT-2 can be

semantically plausible, coherent, and elaboration-

like. Content that is pertinent and new, but that

does not overlap with the content in the gold elab-

oration is not rewarded. In some cases, staying

true to the content of the gold elaboration is likely

unnecessary, as long as the contextual specificity

is comparable (see row 4 in Figure 4). To that

end, we also perform a human evaluation study

of generated elaborations, given that the purpose

of elaborations is largely to make simplified text

easier to understand for readers.

4.2 Human Evaluation

We set up our human evaluation similar to Panthap-

lackel et al. (2020), providing a pair of expert evalu-

ators elaborations generated by our C4s model (see

Table 2) in each of the three setups (greedy, top-k,

contextual), and ask them to select the sequence

they thought was most coherent, topical, seman-

tically plausible, and elaboration-like. We allow

selection of multiple sequences if they are equally

good, and no selection if all sequences are poor. We

report human evaluation results as the percentage

for which evaluators chose the sequence as higher
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For most of our models, we do see an improvement

when appropriately contextually specific sequences

are chosen (rows 1–3 in Figure 4), suggesting the

importance and need for further improvement of

contextual specificity models.

While our methods take contextual specificity

into account, they do not consider factuality or

larger document relevance. An improved decoding

scheme considering these could promote sequences

that better align with larger document context.

Retrieval. Elaborations of medium to high con-

textual specificity often involve external knowledge

not readily available from the simplified or original

text. For example, generating factually correct de-

tails about a certain event or entity with little to no

background on the event the document is referring

to can prove challenging for pre-trained language

models. To that end, generating truly effective elab-

orations of medium to high contextual specificity

may require some type of retrieval module.

6 Related Work

Text simplification has been studied exten-

sively (Siddharthan, 2014), especially at the sen-

tence level. Recent progress has largely been driven

by adapting monolingual translation for sentence

simplification (Wubben et al., 2012; Wang et al.,

2016; Xu et al., 2016; Zhang and Lapata, 2017;

Dong et al., 2019; Kriz et al., 2019). This paradigm,

while effective at transforming text, does not suf-

fice when new content needs to be generated. A

recent survey (Alva-Manchego et al., 2020) iden-

tifies explanation generation in simplification as

an understudied area in dire need of new resources

and methods. We tackle content addition, framed as

explanation generation during simplification, and

name it broadly as elaborative simplification.

The need for elaborative simplification is high-

lighted in prior hand-coded analysis (Yano et al.,

1994), which showed that language learners and

other audiences benefit from insertion of relevant

elaborations and explanations, and that new or un-

familiar concepts negatively impact reading com-

prehension (Kintsch and Vipond, 1985). However,

existing computational approaches are limited to

the retrieval of definitions (Damay et al., 2006;

Kandula et al., 2010; Eom et al., 2012; Paetzold

and Specia, 2016), or constrained tasks such as

post-modifier generation (Kang et al., 2019).

7 Conclusion

We presented the first data-driven study of elabo-

rative simplification, i.e., content insertion during

text simplification. We constructed a new corpus

of 1.3K verified elaborations, observing a spectrum

of contextual specificity and rich types of added

content. We developed baselines for elaboration

generation using pre-trained language models and

found that considering contextual specificity could

improve generation quality. We discussed some

of the challenges of generating elaborations, and

call for techniques to address elaborative simplifi-

cation.
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Sanja Štajner and Maja Popovic. 2016. Can text simpli-
fication help machine translation? In Proceedings of
the 19th Annual Conference of the European Associ-
ation for Machine Translation, pages 230–242.

Lucy Vanderwende, Hisami Suzuki, Chris Brockett,
and Ani Nenkova. 2007. Beyond sumbasic: Task-
focused summarization with sentence simplification
and lexical expansion. Information Processing &
Management, 43(6):1606–1618.

Tong Wang, Ping Chen, John Rochford, and Jipeng
Qiang. 2016. Text simplification using neural ma-
chine translation. In Proceedings of AAAI.



5134

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
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A Contextual Specificity Prediction

We further explore the auxiliary task of contextual

specificity prediction introduced in §3.2, prompted

by the observation of diverse elaborations in our

corpus. Formally, the task involves predicting the

contextual specificity s of an elaboration E as low,

medium, or high, given some document context C.

A.1 Methods

As described in §3.2, we use BERT (Devlin et al.,

2019) for this classification task. We do so in two

settings based on surrounding text and/or the actual

elaboration. Settings which include the elaboration

can aid generation models by utilizing generated

hypothesis elaborations and surrounding text to

select sequences that are appropriately contextually

specific. Settings that operate off context alone

capture the expected level of specificity. In addition

to the E-only model presented in §3.2, we explore

combinations of E, Co (original document context)

and C4s (4 sentences prior to the gold elaboration

from the simplified document).

With elaboration. We feed the input sequence

into BERT and use [CLS] token representation of

the sequence, projecting it using a weight matrix

W ∈ R
dx3. Input sequences with the elaboration

consist of [CLS] C [SEP] E, where C is ei-

ther Co or C4s, or both. When both types of context

are used, we learn a representation for a separation

token [CONTEXT SEP] to distinguish between

the two, and use C = Co[CONTEXT SEP]C4s.

Context only. While contextual specificity

clearly involves the elaboration itself, context-only

models help us understand whether it is predictable

from context alone, and simulate a realistic setting

during simplification, when these models may be

incorporated before the actual elaborative text

is generated. Input to these models is crafted

similarly, but excluding E from the sequence.

A.2 Experiments and Analysis

We train on (E, s) pairs, and utilize bert-base

from the HuggingFace Transformers library. We

feed the sequence representation from the [CLS]

token embedding into an output layer for classifica-

tion 5. For each setting, we train for 5 epochs, using

a batch size of 32, and a learning rate of 2e-3. We

5We tried finetuning our contextual specificity prediction
models on our elaboration dataset, but found that our dataset
was too small to yield stable results.

use the default dropout rate of 0.1 for self-attention

layers, but refrain from adding dropout on our lin-

ear layer.

Results. We use the same four metrics to eval-

uate our results – two classification metrics (ac-

curacy, macro-averaged F1), and two regression

metrics (Spearman’s correlation and mean abso-

lute error), and we again report mean performance

over 15 different, randomly initialized runs. Re-

sults are shown in Table 4, and suggest that this is

a challenging task, even for powerful pre-trained

language models. The best predictor of contex-

tual specificity, in terms of correlation and MAE,

is context in the form of 4 sentences before the

elaboration combined with the elaboration itself.

However, the elaboration-only model performs the

best in terms of accuracy and F1.

Original Text Presence. In all settings in which

the aligned snippet of text from the original docu-

ment was fed in as partial or complete input to the

model, we see a reduction in performance. Com-

pared to text from the simplified document, text

from the original document is stylistically distinct.

Consequently, when jointly fed in as context with

simplified text, the input is largely incoherent, po-

tentially impacting the model. We leave studying

more effective ways of incorporating context from

the original document to future work.

Qualitative Analysis. In cases where linguistic

cues explicitly indicate the level of contextual speci-

ficity, our model performs well—i.e when defini-

tions are inserted as ”A is B” or reasoning is in-

serted as ”A but B” or ”The reason for A is B”.

However, predicting the contextual specificity of

more nuanced sentences may require an improved

method of modeling surrounding context. For ex-

ample, when the elaboration contains a definition

of a term from a different sentence using coref-

erent mentions, our model predicts a higher level

of contextual specificity. In general, our model

over-predicts highly contextualized elaborations,

and under-predicts lower levels of contextual speci-

ficity. Medium contextual specificity was hardest

for our models to predict accurately.

Amount of context. To understand the impact of

the amount of context on performance, we vary the

number of sentences ({2, 4, 6}) before the elabora-

tion to feed into our best performing model involv-

ing context (Cs + E). Table 5 shows these results.

We see that merely increasing the amount of con-
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Context Acc. F1 Correlation MAE

Co + C4s 45.2± 3.0 43.1± 2.8 27.8± 4.9 0.729± 0.05
Context Only C4s 46.4± 2.9 44.9± 3.0 32.4± 4.4 0.679± 0.04

Co 37.9± 4.6 36.1± 5.4 20.2± 1.0 0.813± 0.07

E 56.8± 1.5 55.3± 1.6 47.5± 2.6 0.552± 0.01
With Elaboration Co + C4s + E 50.5± 3.8 48.3± 4.0 40.4± 5.8 0.628± 0.05

C4s + E 55.3± 3.3 54.0± 2.5 50.8± 4.1 0.545± 0.03

Co + E 43.7± 1.8 41.7± 2.0 26.7± 3.6 0.749± 0.03

Table 4: Contextual Specificity Prediction results, including accuracy, macro-averaged F1, Spearman’s correlation,

and Mean Absolute Error, reported across 15 runs. We bold our best results. The performance differences between

(1) C4s + E vs E, (2) Co + C4s vs C4s, and (3) Co + C4s + E vs. C4s + E are not statistically significant.

Acc. F1 Corr MAE

C2s 53.6± 1.8 51.2± 3.1 51.7± 6.8 0.566± 0.05
C4s 55.3± 3.3 54.0± 2.5 50.8± 4.1 0.545± 0.03

C6s 53.9± 4.0 52.0± 3.6 44.3± 5.5 0.591± 0.04

Table 5: Mean performance of Cs + E model over 15

runs with varying amounts of pre-elaboration context.

text fed to the model does not translate to stronger

results – considering overall performance, 4 sen-

tences before the elaboration from the simplified

document performed best.

B Elaboration Generation

B.1 GPT-2 Finetuning

We explore generation with GPT-2 across vary-

ing finetuning settings – (1) zero shot (no finetun-

ing, only relying on GPT-2’s pre-training), (2) fine-

tuning on the set of simplified documents in the

Newsela corpus (excluding documents from the

test set), and (3) finally on our elaboration corpus.

We utilize the same 3 decoding schemes described

in § 3.2 across these different finetuning settings.

We used a temperature of t = 0.7 for the zero shot

setting, and t = 0.45 for finetuned settings. For

finetuning on our elaboration corpus, we trained

for 3 epochs with a batch size of 8 and a learning

rate of 1e-3. We report BLEU-1 and BLEU-2 as de-

scribed in § 4.1. As BLEU metrics for setting 2 are

already included in Table 2, we report metrics for

zero-shot generation (Table 6), and for generation

after finetuning on our elaboration corpus (Table

7). Comparatively, finetuning GPT-2 on the set

of simplified Newsela documents yielded the best

performance, and we attribute this to there being

strictly more data in that setting as opposed to our

corpus of verified elaborations.

Pre-trained GPT-2
Greedy Top-k Contextual

Context B-1 B-2 B-1 B-2 B-1 B-2

C2s 12.48 2.71 9.82 2.04 11.93 2.66
C2s + Co 12.21 2.58 9.80 2.08 10.86 2.82
C4s 13.46 3.35 11.78 2.43 13.80 3.89

Table 6: BLEU-1 and BLEU-2 for generation after fine-

tuning on our elaboration corpus.

Fine-tuned GPT-2: Elaboration Corpus
Greedy Top-k Contextual

Context B-1 B-2 B-1 B-2 B-1 B-2

C2s 20.9 6.82 19.11 5.32 19.38 5.47
C2s + Co 11.89 2.78 12.72 2.77 14.2 3.05
C4s 20.17 5.87 16.89 4.09 18.97 5.16

Table 7: BLEU-1 and BLEU-2 for the zero-shot gener-

ation setting.

B.2 Generation with BART

In addition to GPT-2, we experimented with

BART (Lewis et al., 2020), a pre-trained sequence

to sequence model. The encoder-decoder nature

of BART allows us to explore elaborative simplifi-

cation as a post-processing/post-editing scenario,

where the model can receive context both preced-

ing and following the elaboration in the simplified

text.

We finetune bart-base available via the Hug-

gingFace Transformers library, and feed in four dif-

ferent types of context (1) C2s, (2) C4s, (3) C2s+,

(4) C4s+. The latter two context settings utilize two

and four sentences before and after the elaboration

(without the elaboration itself). In all settings, the

gold elaboration was the target. We finetune for

3 epochs, with a batch size of 2, and a learning

rate of 1e-4, and generate elaborations via greedy

decoding. Results are shown in Table 8.

We find that BART is able to adopt elaborative



5137

C2s C2s+ C4s C4s+

B-1 18.9 21.5 20.2 20.1
B-2 5.05 6.68 6.02 6.18

Table 8: BLEU-1 and BLEU-2 for greedy generation

with BART.

style, generating short sequences with limited vo-

cabulary, however we observe that the smaller size

of our corpus affected BART’s ability to generate

coherent, diverse elaborations. In addition, we note

that framing elaborative simplification as a post-

processing task is a more difficult, nuanced setting

– the generated elaboration to be inserted must main-

tain the flow of the text and blend with the content

present subsequent sentences. Elaborative simpli-

fication in this setting is another interesting, rich

direction for future work.


