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1. Introduction

In many engineering applications, random processes or noises
have volatility that are not well-modeled by Gaussian distribu-
tions. The Gaussian distribution is considered light-tailed, i.e. the
decay rate of the tail is exponential or faster (Bryson, 1974). While
its structure lends itself to compact, closed-form analytical state
estimation and control, this is in fact a constraint on the robust-
ness of its modeling. The light tails poorly model systems with
noise spikes, such as radar, sonar (Kuruoglu, Fitzgerald, & Rayner,
1998), and stock market volatility (Linden, 2005), and algorithms
derived assuming Gaussian distributions are susceptible to such
outliers. While ad-hoc methods, such as pre-filters, have been
developed to compensate for this limitation, we instead wish to
exploit the properties of the Laplace distribution for this purpose.

With the advent of fast, inexpensive computational capabili-
ties, simulation or Monte Carlo methods have been used to fill
in the gap where analytical filters have been absent. Particle
filters have had widespread use in non-linear systems (Musso,
Bui Quang, & Le Gland, 2011) in robotics (Kozierski, Sadalla,
Owczarkowski, & Drgas, 2016), navigation, and image processing,
using both Gaussian and non-Gaussian noise. Laplace densities
have been used in areas such as image (Rabbani, Vafadust, &
Gazor, 2006) and speech (Laska, Bolic, & Goubran, 2010) process-
ing. However, these techniques are approximate by nature and
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do not produce explicit closed-form expressions for the minimum
variance error of the state estimate.

In contrast with Monte Carlo methods and prior to this work,
there were two known analytic recursive linear estimators: the
Kalman filter and the Cauchy estimator. The former, derived
based on Gaussian noise, has been applied to a large class of prob-
lems. However, it is susceptible to outliers, which result in both
large estimation error as well as under-estimated error variances.
The Cauchy estimator was developed in Idan and Speyer (2010,
2012, 2014), which addresses these limitations. It is considered
a heavy-tailed estimator, and its behavior is quite different com-
pared to the Kalman filter. In particular, the conditional variance
was shown to be a function of the measurements as well as
the noise parameters, whereas the Kalman filter variance can be
computed a priori. One can see the consequences of this when the
Kalman filter processes data with Cauchy noise (Idan & Speyer,
2012).

Earlier work was done in the estimation of a Laplace random
vector corrupted by Gaussian noise (Selesnick, 2008) and state
estimation for linear systems driven by Laplace noise using a bank
of Kalman filters (Farokhi, Milosevic, & Sandberg, 2016). However,
in this work, we derive a recursive analytical state estimator in
closed-form. Like the Kalman filter and Cauchy state estimator,
the solution is the exact minimum-variance estimator for a linear
system with additive Laplace noise, not an approximation. These
three analytic linear estimators can be distinguished by their a
posteriori conditional pdfs of the state given the measurement
history (referred to as cdpf for brevity). The a posteriori cpdf of
the Kalman filter is Gaussian and is therefore both symmetric
and unimodal. In contrast, the a posteriori cpdf of the Cauchy
estimator is neither symmetric nor unimodal. Sitting between the
other two, the a posteriori cpdf of the Laplace estimator is not
symmetric but is unimodal.
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Like the Cauchy estimator, the Laplace estimator is resilient to
outliers, but it also retains all its moments for the a posteriori cpdf,
whereas the Cauchy estimator only preserves the first two mo-
ments. In addition, the a priori cpdf of the Cauchy estimator has
no moments, whereas the Laplace estimator’s a priori cpdf retains
all its moments. Furthermore, note that in the development of
the Cauchy estimator for vector states, the characteristic function
of the cpdf is used. The characteristic function of the Cauchy
pdf in the spectral variable is functionally similar to the Laplace
pdf. This allows the integral formula used in Appendix of Idan
and Speyer (2014) for measurement updates to be applicable to
time propagation for the Laplace estimator derivation, as will
be shown in Section 3. In this paper, make use of characteristic
functions but only to normalize the cpfs and obtain the moments
for the Laplace estimator. This method is simpler to implement
compared to using the integral formula to directly obtain the
moments, as was done in Duong, Speyer, Yoneyama, and Idan
(2018).

In Section 2, we define the scalar discrete-time linear system
and state our problem. In Section 3, we clarify and expand on the
derivation of the unnormalized conditional pdfs (ucpdf) for the
first steps presented previously in Duong et al. (2018) and present
the general form of the a priori ucpdf up to k — 1 measurements.
We then prove the recursion by induction in Section 4 and detail
a robust algorithm to combine terms in Section 5. In Section 6 we
derive the closed-form equations for the mean and variance using
characteristic functions and examine unique features of the mean
and variance as a function of the measurements. In Section 7, we
present and discuss a 50-step numerical simulation which shows
the robustness of the scalar Laplace estimator. Finally, we offer
some concluding remarks in Section 8.

2. Problem statement

A scalar discrete-time linear system with scalar state x, mea-
surement Z,, independent measurement noise v, and indepen-

dent process noise wy is given by
X1 = @Ry + wy, Zy = Hxy + vy, (1)

where X;, wy and vy, are Laplace distributed as

5 T 15 %
fy, () = 5 e abal (2)
fwwe) = et e LE 3)
w k 2[3 2,3 w k
1 1 _
o) = oot 2 %fv(vk)» (4)

and x; is the mean of x;. For convenience, we decompose the
system into deterministic and stochastic parts, so that

X = Xy + Xi, Zx = Zx + Z, (5)
where the deterministic part is

X1 = DXy, Zx = HXxy, (6)
and the stochastic part is
X1 = Py + wy, 2z = Hxy + vy, (7)

with the stochastic initial conditions

1 1 1-
_ -zl &

X1) = —e ™1l & —f (xq). 8
fx, (x1) e 2O[fxl( 1) (8)
We define the stochastic part of the measurement history up
to step k as a random sequence Y, = {Z,...,Z}, with the

associated realization y, = {z1, ..., zx}. For the remainder of the
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estimation derivation, we consider only the stochastic part of the
system.

Throughout this paper, we will refer to the sgn (x) function,
which is defined using the convention

-1, x<0
= ’ - 9
sgn (x) {+1, o 9)
The goal of this paper is to develop the conditional density
function (cpdf) in an analytic form for the system described in (7).
From the cpdf, we derive expressions for the mean and variance
for an estimator.

3. Laplace conditional PDF

To motivate the a priori cpdf fy, v, , (x[y,_;) at step k — 1,
we begin with the initial pdf fx, and sequentially determine
the conditional pdf as we make a measurement update and
perform time propagation. We then deduce the general form of
¥ (xk|yk—1)'

We will use a special superscript to keep track of the index
of the state and last measurement. The superscript k|k refers to
components of the a posteriori pdf of x; conditioned on the mea-
surement sequence Yy, or fx, v, (Xk|y,). After a time propagation,
Xk becomes X1, and components of the a priori conditional pdf,
Fxee1ve(Xk+11Y), are indicated with the superscript k + 11k.

3.1. Measurement update at k = 1

We make a measurement at k = 1, whose noise pdf is given
in (4). The pdf of X; conditioned on the measurement sequence
Y1 = {Z;} is, by Bayes’ Theorem,
Sy 1 1%1 ), (%1)

fri (1) '
where y; = {z;}. The computations are less cumbersome if the
conditional pdf is updated and propagated without the normal-
ization factor, fy,(y;). For the same reasons, we will also use the
initial condition and process and measurement noises without
their constant factors, indicated by a bar as defined in (8), (3) and

(4), ie. fxl, fw and fy. Therefore, let us define the unnormalized
conditional pdf (ucpdf), i.e. the joint density, as

Sy (xaly1) = fry i, 01 1% )fx, (%1)
= fz,, (21 %1 )fx, (%1)-

Using the measurement equation in (7) and fy in (4),le 1x; (211%1)
= fv(z1 — Hxy), or

Sy, (x1lyq) = (10)

(11)

fzx,(z11%1) = exp [—';” Gl —M)]. (12)

H
Combining (12) and (8), we rewrite the ucpdf as Fagv, (xaly) =
Fv(z1 — Hxq)fx, (%1), or

[H| |21

Faw,(alyy) = exp [_y 2

! |><1|}. (13)
o

3.2. Propagation fromk =1tok =2

The time propagation from step k = 1 to step k = 2 involves
determining the conditional density fy,y,(x2|y;)- To do so, first
construct the joint density,
fxl,xzm(xz, x1ly1) =fx1\y1(’<1 |Y1)fx2\x1,Y1(X2|X1,J’1)

= frqiv, (X11y1 g 1x; (X21%1),

where the second factor simplifies because f,x, does not explic-
itly depend on y. That is, given y, does not change the pdf having

(14)
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been given x;. Using the dynamical equation in (7) and fw in (3),
Fop, (x21%1) = fw (X — Px1), Or

= 1P| |x
B (X2 1) = exp [ 2 x|, (15)
and we can rewrite (14) as

Feyso1v, (X1, X2 1Y) = fy v, (X213 1 )iy 1, (X21%1)

= fx, v, (xa ¥ 1w (%2 — ®x1) (16)
1 [H] [P | X2
= exp _*|X1|_7*_1_7*_X1

We then use the Chapman-Kolmogorov equation by integrating
(16) over xq,

o0
T (alyy) = / Feosotrs (x1, x2ly1) dr. (17)
-0

The solution to the integral in (17) was shown in Appendix B
of Idan and Speyer (2014) and is restated in (A.1) of the Appendix
for convenience. Using that result and defining g(x) = 1, (17) is
evaluated as

_ bz
foy, (x2,¥1) = g]2\1 exp[ ‘* -2 71 —X i|
1 1
211
+8, -exp [— lz1] — — I—le} (18)
2 % B
~2[1 |H| d)Z]
+8 exp[ v R [—x2| |,
} e o |P|
where, for 8;(p;) 21 =1 oisgn (& — &,
1 1
21— - , (19)
pi+8i(o)  —pi+3i(or)
H| 1 || z X
and = —, = —, = —, = —, = O7 = —.
01 02 ol &1 q & & >

Since the exponentials without x, are constant, we can collapse
them into the coefficients to get

- 1|Pz4
fxzwl(xz,yl) gf“ exp|:— — — X2

B| H
201 1
+&, -exp B X2 (20)
201 _HI 4521 1
+ 85 exp[ — =X — ——— |—x2| |.
y1ol ol

The coefficient terms g,?“ are constant except for one or two step
changes. From this observation, we state the following theorem.

Theorem 1. For
A=1{Ao,A1,...,An}
£ {(_007 51)7 [517 52)7 ey [§m7 +OO)} 3

with& < --- < &n € R, any g : R — R constant on A; € A, can
be expressed as

(21)

m

g = po+ ) pisgn (& —x). (22)
i=1

where, po = g(XO)‘;g(Xm) and p; = g(xH)z— g(xi), for x; € A

This theorem is a special case of a more general theorem
whose proof is presented in Duong, Idan, Pinchasi, and Speyer
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(2021). Therefore, the complicated expressions for gf“ can be
simplified to

giz = p,zoll + Zpﬁ“sgn( g2 —x2> , (23)
where M’ is the ith element of M2 = [1 1 Z]T. This

conversion from a nested fractional form in (19) to a sum in
(23) is key to developing the recursive structure of the Laplace
estimator. The number of sign functions in each term corresponds
to the number of addends with x; in the associated exponential.
We will refer to these addends as “elements”. Therefore, Mi2 It
refers to the number of unique sign functions of term i.

In addition, we can form an indicator matrix which maps
between a certain ordering of terms with an ordering of elements
from newest to oldest, or

10
BZ=|:0 1]. (24)
11

We can see how rows and columns of B, correspond to the terms
and elements in the exponentials of (20). This indicator matrix is
used in the estimation algorithm to keep track of the elements in
each term.

3.3. General form of ucpdf

From the first steps presented, we hypothesize that the gen-
eral form of the a priori unnormalized conditional pdf at step
klk — 1is

NkIk=1
z —klk—1_k|k—1
P ey = Y g e (25)
i=1
where
k|k—1
gik|k -k|k + Z pk|k 1 n( k\k—l _Xk>
M-klk (26)

klk—1
E,’( — Xk

1
klk—1 klk—1
€ =exp| — E i

=1

Note that the arguments of the sign functions match those of the
associated absolute value functions in (26).
The number of terms in (25) is

L kK4 1)
=;,= ) (27)

Nk\k71

The number of elements (or sign functions) in each term is given
by

1 x1
1I<—1 x 2

MAE=T = , , (28)
1" xk

where 1¥ is a column vector of length k composed of 1’s and each
row corresponds to a term. There are k terms with one element,
k — 1 terms with two elements, k — 2 terms with three elements,

, and one term with k elements. We can see that M2 after
Eq. (23) has the form of (28) for k = 2.
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As was done in (24), we can order the elements and terms so
that they are mapped using an indicator matrix,

I
k—lxlk
[0 1]
Bk: . ’ (29)
12xk—1, I
[ 11xk 2]

where [, is the identity matrix of dimension m x m, and the rows
and columns represent the terms and elements, respectively. We
can see that (24) is equal to B, for k = 2 and that the sum of
the columns of By equals M**~!. B, provides an accounting for
which terms contains which elements, and it is used to manage
the growing number of terms when implementing the estimation
algorithm.

An important property of the conditional pdf is that it is
log-concave and unimodal. Consider the joint density function
of the initial condition and one measurement. To compute the
conditional pdf under time propagation, we use the Chapman-
Kolmogorov equation, which involves evaluating a convolution
integral involving the product of the density functions of the
initial condition, measurement noise and process noise. Since
each of these density functions is log-concave, and log-concavity
is preserved under multiplication and convolution, it follows that
both the a priori and a posteriori conditional pdfs at time step
1, and by extension step k, are also log-concave. This prop-
erty has important implications when considering algorithms to
extremize cost functions based on the a posteriori conditional
pdfs, such as computing the maximum a posteriori estimates.
However, in this paper, we will focus on the conditional mean
estimate.

4. General form ucpdf proved by induction

We generalize the propagation and update structures pre-
sented in Section 3 and show that the general form (25) is
preserved under measurement update and time propagation by
induction. The following steps should also serve as a guide to
develop an implementation of the recursive Laplace estimation
algorithm.

4.1. Update from k|k — 1 to k|k

Assuming the ucpdf of the form in (25), we perform a mea-
surement update to step k by
P i) = Pty XklY i1 Wzux (Zlxi)

_ 30
= f¥i ulyi1 )y (* - Xk) 30)

4.2. Propagate from k|k to k + 1|k

Next, we perform the time propagation to step k + 1 by using
the Chapman-Kolmogorov equation, forming the joint density
fXisr1 Xy, and evaluating the convolution integral

(o]
ka+1 1Yy (Xk+1 |yk) = / ka|kaXk+1 Xk ka
—00

< [ Xk+1
= Favdw | —— — Xk ) dxi.
- @

Each term i in fy,,,y, must be evaluated using the integral for-
mula (A.1) of Appendix. We choose temporary parameters p, n
and & (obviating the need for superscripts), to directly match

(31
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their counterparts in the integral formula. In addition, we use
the parameters from _ka‘yk_l for convenience, because it is simple
to append the parameters associated with f, from (30) and fy
from (31) to the temporary parameters to maintain a convenient
indexing scheme. Using the integral formula, we generate the a
priori ucpdf at k + 1|k using the a priori ucpdf at k|k — 1 in (25).
Based on the patterns for 2|1, we determine that the parameters
at k+ 1]k are

Pl = ﬁ:;lk_l &n = 5klk ! Nin = ’I,k1|k !
Pi2 = /_),kzlk ! §p = %'klk ! Ni2 = 77,kzlk !
—klk—1 T k=1 Klk—1 (32)
Pty = Py, & M = f,M Mifg, = g,
Pim+1 = 0 5i.1\71,-+1 = % Mim+1 = l;”
Pijt+2 =0 §ift2 = X’iTTl Nim+2 = l%‘

where the temporary variable 1\711‘ = M,.k“< s used here only for

compactness. The solution to the integral is determined using the
integral formula (A.1) of Appendix.

4.3. Isolate x,1 and factor out constant terms

After performing the integral, the arguments of the sign func-
tions are of the form & —&;, and only some of these involve §; 1
in (32) containing X.1. Every term not involving x4 is constant
so the corresponding exponentials are factored out as a scalar
multiple. Some algebra is required to isolate x;,1 so that it has the
form shown in (26). For example, an element of the exponential
function can be re-factored as

Xk+1 Zk 77] (PZk

® HI o (33)

— X1 -

4.4. Simplify coefficient function and combine terms

The complicated coefficient (g) functions are simplified using
the method described in Theorem 1. This allows for the terms
with identical exponential parts to be combined by adding the
coefficients of the common sign functions. Finally, the expression
is rewritten in the general form given in (25), with the indices
k — 1 and k incremented to k and k + 1, respectively, as

Nk+11k
—k+1|k k+1\k

ka“wk Xer1Yi) = E (34)
where

Mk+1\k
—k+1lk  —k+1]k —k+1]k k+1|k
&; =pp + E Py Sgn — Xk+1

M."“”‘ (35)

1
k+1lk k+1]k | ok+1]k
€ =exp| — E i & — X

=1

5. Term combination

After the isolation step in Section 4.3, the ucpdf has many
terms which have the same exponential functions and may be
combined by summing their coefficient functions. The number
of terms, N¥*=1 in (27), elements per term, M**~1 in (28), and
mapping between each term and each element, By in (29), are
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only valid if all terms that can combine are combined. We can
determine which terms of the a priori ucpdf combine at any step
klk — 1 by using an indicator matrix that can be constructed
recursively.

First, note that every element, &, contains a particular mea-
surement z; or the initial condition x; and assume that they are
ordered from newest to oldest. Then, for k > 2, we can construct
an indicator matrix Ej similarly to By, composed of sub-matrices
Ey, fori=2,...,k. Let

[ 1
A = 11x1] [Av  aw]. (36)
where qy; is the last column of Ay, [; is the identity matrix of size
i x iand 1 is a vector with elements all equal to 1. Then,

[Av aw -~ 0
Ee=|: © 1] (37)
A 0 -+
The matrix Ej; in (37) as shown is true for k > i > 4 for the
sake of demonstrating the form. However, the pattern should be

apparent for smaller k and i. Finally, we define the full indicator
matrix

E k2

Eis
Ek=1| . |. (38)

Ejk
Terms corresponding to rows of E, with the same elements will
combine, which is done by adding their coefficient functions.
Since the element is ordered, this simply involves summing the
coefficients, p. We have found that, barring a numerical coinci-
dence, only terms with one element will sum. Once all of the
terms are combined, E;, becomes By.

6. Conditional mean and variance

Now that we have the a priori ucpdf, we can obtain the a
. 7 . L= (Zk
posteriori ucpdf, fx, v, (xx|yy), simply by multiplying fy (E - xk).
We can then use it to compute the minimum variance estimate,

or conditional mean, &, and estimation error variance 2, which
are given as

X = E [Xi|Yi]
6¢ = E[(Xk — &) IYi] = E [X71Ye] — &7,

where E[X,|Y,] and E [X,f|Yk] are the first and second moments of
the normalized conditional pdf fx,|y,, respectively.
First, we need to normalize the a posteriori ucpdf fy,y,, which

is given by (25) and (30), or more explicitly,

(39)

NKlk=14 1
z klk—1_K|k—
v Xelyy) = Z gi“ lei‘ 1
i=1 (40)
ook exp[ |y
2 y IH k||
1
where gklk and ek‘k ! are given in (26). Since > also ap-

pears in the normalization factor, we can pre-divide it simply by
neglecting it at this stage. After re-indexing the terms, we get

NKIk

nglk Mk (41)

FaaveXelye)

where
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k\k
—kk klk klk kk
8i = '010‘ + Z Iolll sgn ( - Xk)

Mk\k 1

Kk x klk 1] klk— [H| |z
€ =€xp|— ; ‘5 ‘ 7 E_Xk‘ (42)
M
Lexp|— Z 775”( Ei’ldk — Xk
1=1
The normalization of ka‘yk(xk [¥&), fy,. is given by
o0
o= [ Funody) i, (43)
—00

which can be evaluated using the integral formula (A.1) in Ap-
pendix. The first moment is defined as

- -
oo Xufx 1y, Xk

> /
E[Xk|Yi] = f Xifxy v, dXe =
—o0 fYk

where fx, |y, is given in (41) and fy, is given in (43). Unlike the
normalization factor, determining the first and second moments
is more involved. The numerator of (44) can be integrated by
parts. However, the intermediate steps can quickly become cum-
bersome. While we have performed the computation, it is difficult
to present succinctly. Fortunately, we can avoid this complexity
by making use of characteristic functions, which only require one
integration using the integral formula (A.1) in the Appendix,
followed by much simpler differentiation.

(44)

)

6.1. Characteristic function

For v, x € R, the characteristic function of _ka|yk is

() = / &% v, (xely) (45)

The derivation of the characteristic function can be found in
Appendix A.2 of the Appendix, where it simply is an application
of the same integral formula (A.1) that was used in propagation.

Using (A.8) for each term of f}klyk £ gi¢;, the corresponding term
in the characteristic function is

Px v, = GiV)E(W) (46)
M2
where, for &(-) = Z (-)sgn (&1 — &),
>
Gvy= TPt Sip1) — po — pi+8i(p)
l v +ni+&m)  jv—ni+8i(m)
s G1 by
jv+ap  jv+bp
(47)
M;
E(v)=exp | — Y mlE — &l +jvé
I4i

£ exp (ci1 + Cigjv) .
6.2. Normalization

From (A.10) of the Appendix, the normalization factor fy, is
simply fy, = ¢x,v,(0). Therefore, using (46), we get

; b;
> (Z—; - b—i) exp (ci) - (48)
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6.3. First moment and second moments at step k

The conditional mean and variance are given by X, = E [Xi|Y ]
and Var(%) = E [X?|Y\] — X2, where

E[XclYi] = [1d¢xk|y,(V)]
J dv o .
2
E[¢Ive] = [_dqﬁ;(v)} |
v=0

Note that the moments are derived from the normalized char-
acteristic function ¢y, y,, which is simply ¢xy divided by fy, in
(48). Using the formulas in Appendix A.3 of the Appendix, the
first and second moments of term i are given by

1 & 196G 35,} Ei[Xk|Yi]
EilXe|Yi] = — .[3+ i— | & ——
iLAkl Xk fYk izzll v i !31) fYk
1 < [92G; 3G A& 92¢;
E: X2 Y. ] = —— 715. 271 . i G-il (50)
z[ kl k] fYk ; |: 312 i + 3 Jv + 18])2
» B
fyk '

where, Ei[Xle,<] and E,-[X,<2|Yk] are defined as the unnormalized
part of term i of the first and second moments, respectively.
For brevity, the partial derivatives are shown in Appendix A.3
of Appendix.

6.4. Example: a posteriori conditional mean and variance of fx,y,

We examine the mean and variance of the Laplace estimator
after one update step to see distinguishing features of the Laplace
estimates compared with those of a Kalman filter and Cauchy
estimator. Consider a generic example of the mean for the ucpdf
after the first update, fxl‘yl. For simplicity, let H = 1. From (13),

1
" day exp
unnormalized characteristic function, (z)xl‘yl( v), is determined.
Letting v go to zero gives the normalization factor,

_ 1
f)(l‘y1 —; |z1 — x1| — & |x1| ). Then, from (46), the

1 1
o ex —=|Z — ex —=1Z
wexp (=2 fal) —yexp (1 fai) -

e 2 (az - )/2) ’

and from (50) evaluated at v equal to zero, the normalized first
moment is obtained as

B 2022
oo BV om - R
‘1 = =
fri a—yex (—u |z I)
Y exp oy 14 (52)
20%y?sgn (z1) 1

2 _ 2 _ )
ey aexp(%lzll)—y

Fig. 1 shows %; as a function of z; for (a,y) € {(1,0.33),
(1,0.67), (1, 1),(0.67, 1), (0.33, 1)}. We can see the linear behav-
ior when z; is small and when y < «, but for y > « the
conditional estimate seems to saturate for large z;. Also, we can

see that the slope is 3 when o = y. This is consistent with our

intuition that the estimate should favor the measurement when
the measurement noise is lower than the prior noise. Conversely,
when the measurement noise is larger, its effects should be
attenuated. When they are equal, it splits the difference.
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Fig. 1. Conditional mean X; versus measurement z;.

6.4.1. Example: a posteriori variance at k = 1
Consider the variance of fx,y,. Using (51) and (50), the second
moment is then given by

3.2(,2.3,2

2 da2y?zy| | 20V (O‘ 3 )
221 B s 7 2
4 («*>=r?)

o — Yy exp <_% |Zl|> (53)
B 2023 (yz + 3a2) 1
(w2 = 72)"

We examine some of the properties of Var(;) = E[X?|Y1] — X2 at
its extremes. Fig. 2 shows the error variance of x; as a function of
measurement z; for («, y) € {(1, 1), (0.5, 1), (0.33, 1)}. For small
z1, the error variance looks quadratic, but for large z;, the error
variance goes to a constant. It appears that while the variance is a
function of the measurements, the effect of large measurements
on the variance is bounded, except when o = y.

It is also instructive to qualitatively compare the Laplace error
variance with those of the Cauchy estimator and Kalman filter.
Figs. 3 and 4 show the error variance of X; as a function of
measurement z; for these three estimators. We can see that the
qualitative behavior of the Laplace variance approaches that of
the Kalman filter as the difference between « and y becomes
large, while it approaches a parabolic shape similar to that of the
Cauchy estimator when « approaches y (the coefficient for the
z% term of the Cauchy variance is % Idan & Speyer, 2014).

22

EIXTIY1] =

o exp (% |Zl|) -y

7. Numerical example for k =1,...,50

We recursively and analytically computed the conditional pdf
as well as the minimum variance state estimate and state esti-
mation error variance for 50 steps using the parameters @ =
09,H = 1, = 1/5,8 = 1/4,y = 1/3. The measurements
were generated using a Laplace random number generator, and
two spikes of magnitude 10 were added to the measurements
at k = 16 and k = 33 to simulate un-modeled anomalies.
For comparison, we used a Kalman filter to process the same
measurement history. By a least-squares fit of a Gaussian pdf to a
Laplace pdf, the standard deviation was set approximately equal
to the corresponding Laplace spread parameter.
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Fig. 2. Variance versus measurement z;.

Fig. 3. Variance versus measurement z; fora =1,y = 1.
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Fig. 4. Variance versus measurement z; for « = 0.5,y = 1.

Fig. 5 shows the measurement noise as well as the estimation
errors and estimated standard deviation bounds for the Kalman
filter and Laplace estimator. We can see that the Kalman estimate
reacts strongly to the spikes, while its variance remains constant,
thus severely underestimating the uncertainty. In contrast, the
Laplace estimate appears to attenuate the measurement spikes
and the estimated standard deviation increases to account for
the increased uncertainty. This is similar to the behavior of the
Cauchy estimator in Idan and Speyer (2012), which was shown to
attenuate noise spikes in Cauchy-distributed measurement noise
and increase its estimated error variance accordingly.
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Fig. 5. Measurement noise and estimation error for the Kalman filter and
Laplace estimator.

8. Conclusions

We have developed the minimum-variance estimator for a
scalar discrete-time linear system with additive independent
Laplace measurement and process noises. We used the charac-
teristic function in lieu of evaluating the moments directly. Using
these results, we implemented the estimator in MATLAB, demon-
strating both novel, intrinsic and desirable non-linear properties
that differ considerably from the Kalman filter. The results of this
paper highlight promising avenues for future research into robust
estimation and L; optimal control schemes.
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Appendix

A.1. Key integral formula
A key integral formula was derived by Idan and Speyer in

Appendix B of Idan and Speyer (2014) and is restated here for
convenience.

) M
1=/ g(x)exp [—Zm & — x| +jzx} dx

© i=1
y y (A1)
=Y giexp | — ) msgn (& — &) +izki |,
= ok
where, for 8;(n;) = Z%l msgn (& — &,
, pi + 8i( o) —pi + &i(or) (A2)

Tizni+sim)  jz—ni+(m)
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A.2. Scalar characteristic function

Given the form of the general scalar ucpdf in (25), the charac-
teristic function is the expectation of ¢**, or

fz’xw =/ejuxfxw(x|.}’)dx (A.3)
R

where

P
&%) = po+ Y _ pisgn (& — X)

I=1
y (A4)
cilx)=exp [ =Y ml& —x|
I=1
Hence, a)x‘y can be computed term-wise as
M
v = [ w0oep | =Y e —x o | . (A5)
R I=1
The solution to this integral is given by (A.1), or
n n
By = > Gilv)exp | — Y msgn (& — &) +jvéi | , (A6)
=t =
where, for &;(*) = ZYI:? (*)sgn (& — &),
S — i+ 8
G — pi + 8ip1) pi + 8i(p1) (A7)

C v mi i) v — i+ i)’
However, since all the variables are constant with the exception
of v, Gi(v) and ¢;(v) have the form
_an by
Cjv+ap jv+bp (A.8)
€i(v) = exp (cin + Ciz - jv)

Gi(v)

A.3. Scalar moments from characteristic function

The normalization factor of fx|y(x) and moments of fxy(x)
given its characteristic function ¢xy(v) are

fy = éxv(0)
_ [ 19gxiy (v)
Elxiv] = [j v ]U_O (A.9)
2exyy (v)
2 — | —
E[X°|Y] = [ 5,2 i| 0.

Using the generic form for each term, the ith term of the normal-
ization of fyy is
an  bn

fri=[¢ky(0)] = (* - *) exp (Cir) -

(A.10)
ap  bp

The ith term of the first moment is E;[X|Y] = [j 5
v
or

1 8¢X|Y,i(v):|
v—O,

1 E)Gi 361'
EX|Y]=~ | —€+G— , (A11)
JjLov v |, o
where
0G; an-j  bi-j
- = — 2 + 20
v |, (a2) (bi2) (A12)

o .
— = jcip exp (i) .
AV I
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The ith term of the second moment is

32
EX?|Y] = [_";"v‘;(”)}
v=0 (A.13)
826,' + 286,- aéi 326,'
= | il i)
dv2 v v ],
where
|:32(;i:| _ 2a; an
w2 ], (@) (bp)*’ (A14)
326,' 2 )
o | = —C exp(ci1) .
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