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a b s t r a c t

Uncertainties in many physical systems have impulsive properties poorly modeled by Gaussian distri-

butions. Refocusing previous work, an estimator is derived for a scalar discrete-time linear system with

additive Laplace measurement and process noises. The a priori and a posteriori conditional probability

density functions (pdf) of the state given a measurement sequence are propagated recursively and

in closed form, and the a posteriori conditional mean and variance are derived analytically from the

conditional pdf. A simulation for an estimator is presented, demonstrating marked resilience to large,

un-modeled spikes in the measurements.

© 2022 Published by Elsevier Ltd.
1. Introduction

In many engineering applications, random processes or noises
have volatility that are not well-modeled by Gaussian distribu-
tions. The Gaussian distribution is considered light-tailed, i.e. the
decay rate of the tail is exponential or faster (Bryson, 1974). While
its structure lends itself to compact, closed-form analytical state
estimation and control, this is in fact a constraint on the robust-
ness of its modeling. The light tails poorly model systems with
noise spikes, such as radar, sonar (Kuruoglu, Fitzgerald, & Rayner,
998), and stock market volatility (Linden, 2005), and algorithms
erived assuming Gaussian distributions are susceptible to such
utliers. While ad-hoc methods, such as pre-filters, have been
eveloped to compensate for this limitation, we instead wish to
xploit the properties of the Laplace distribution for this purpose.
With the advent of fast, inexpensive computational capabili-

ies, simulation or Monte Carlo methods have been used to fill
n the gap where analytical filters have been absent. Particle
ilters have had widespread use in non-linear systems (Musso,
ui Quang, & Le Gland, 2011) in robotics (Kozierski, Sadalla,
wczarkowski, & Drgas, 2016), navigation, and image processing,
sing both Gaussian and non-Gaussian noise. Laplace densities
ave been used in areas such as image (Rabbani, Vafadust, &
azor, 2006) and speech (Laska, Bolic, & Goubran, 2010) process-

ing. However, these techniques are approximate by nature and
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do not produce explicit closed-form expressions for the minimum
variance error of the state estimate.

In contrast with Monte Carlo methods and prior to this work,
there were two known analytic recursive linear estimators: the
Kalman filter and the Cauchy estimator. The former, derived
based on Gaussian noise, has been applied to a large class of prob-
lems. However, it is susceptible to outliers, which result in both
large estimation error as well as under-estimated error variances.
The Cauchy estimator was developed in Idan and Speyer (2010,
2012, 2014), which addresses these limitations. It is considered
a heavy-tailed estimator, and its behavior is quite different com-
pared to the Kalman filter. In particular, the conditional variance
was shown to be a function of the measurements as well as
the noise parameters, whereas the Kalman filter variance can be
computed a priori. One can see the consequences of this when the
Kalman filter processes data with Cauchy noise (Idan & Speyer,
2012).

Earlier work was done in the estimation of a Laplace random
vector corrupted by Gaussian noise (Selesnick, 2008) and state
estimation for linear systems driven by Laplace noise using a bank
of Kalman filters (Farokhi, Milosevic, & Sandberg, 2016). However,
in this work, we derive a recursive analytical state estimator in
closed-form. Like the Kalman filter and Cauchy state estimator,
the solution is the exact minimum-variance estimator for a linear
system with additive Laplace noise, not an approximation. These
three analytic linear estimators can be distinguished by their a
posteriori conditional pdfs of the state given the measurement
history (referred to as cdpf for brevity). The a posteriori cpdf of
the Kalman filter is Gaussian and is therefore both symmetric
and unimodal. In contrast, the a posteriori cpdf of the Cauchy
estimator is neither symmetric nor unimodal. Sitting between the
other two, the a posteriori cpdf of the Laplace estimator is not

symmetric but is unimodal.
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Like the Cauchy estimator, the Laplace estimator is resilient to
outliers, but it also retains all its moments for the a posteriori cpdf,
whereas the Cauchy estimator only preserves the first two mo-
ments. In addition, the a priori cpdf of the Cauchy estimator has
no moments, whereas the Laplace estimator’s a priori cpdf retains
all its moments. Furthermore, note that in the development of
the Cauchy estimator for vector states, the characteristic function
of the cpdf is used. The characteristic function of the Cauchy
pdf in the spectral variable is functionally similar to the Laplace
pdf. This allows the integral formula used in Appendix of Idan
nd Speyer (2014) for measurement updates to be applicable to
ime propagation for the Laplace estimator derivation, as will
e shown in Section 3. In this paper, make use of characteristic
unctions but only to normalize the cpfs and obtain the moments
or the Laplace estimator. This method is simpler to implement
ompared to using the integral formula to directly obtain the
oments, as was done in Duong, Speyer, Yoneyama, and Idan

2018).
In Section 2, we define the scalar discrete-time linear system

nd state our problem. In Section 3, we clarify and expand on the
erivation of the unnormalized conditional pdfs (ucpdf) for the
irst steps presented previously in Duong et al. (2018) and present
he general form of the a priori ucpdf up to k− 1 measurements.
e then prove the recursion by induction in Section 4 and detail
robust algorithm to combine terms in Section 5. In Section 6 we
erive the closed-form equations for the mean and variance using
haracteristic functions and examine unique features of the mean
nd variance as a function of the measurements. In Section 7, we
resent and discuss a 50-step numerical simulation which shows
he robustness of the scalar Laplace estimator. Finally, we offer
ome concluding remarks in Section 8.

. Problem statement

A scalar discrete-time linear system with scalar state x̃k, mea-
urement z̃k, independent measurement noise vk and indepen-
ent process noise wk is given by

˜k+1 = Φ x̃k + wk, z̃k = Hx̃k + vk, (1)

here x̃1, wk and vk are Laplace distributed as

X̃1
(x̃1) =

1
2α

e−
1
α |x̃1−x̄1| (2)

fW (wk) =
1
2β

e−
1
β

|wk| ≜
1
2β

f̄W (wk) (3)

V (vk) =
1
2γ

e−
1
γ |vk| ≜

1
2γ

f̄V (vk), (4)

and x̄1 is the mean of x1. For convenience, we decompose the
system into deterministic and stochastic parts, so that

x̃k = x̄k + xk, z̃k = z̄k + zk, (5)

where the deterministic part is

x̄k+1 = Φ x̄k, z̄k = Hx̄k, (6)

and the stochastic part is

xk+1 = Φxk + wk, zk = Hxk + vk, (7)

with the stochastic initial conditions

fX1 (x1) =
1
2α

e−
1
α |x1| ≜

1
2α

f̄X1 (x1). (8)

We define the stochastic part of the measurement history up
to step k as a random sequence Y k = {Z1, . . . , Zk}, with the
associated realization y = {z , . . . , z }. For the remainder of the
k 1 k

2

estimation derivation, we consider only the stochastic part of the
system.

Throughout this paper, we will refer to the sgn (x) function,
which is defined using the convention

sgn (x) =

{
−1, x ≤ 0
+1, x > 0.

(9)

The goal of this paper is to develop the conditional density
function (cpdf) in an analytic form for the system described in (7).
From the cpdf, we derive expressions for the mean and variance
for an estimator.

3. Laplace conditional PDF

To motivate the a priori cpdf fXk|Y k−1

(
xk|yk−1

)
at step k − 1,

we begin with the initial pdf fX1 and sequentially determine
the conditional pdf as we make a measurement update and
perform time propagation. We then deduce the general form of
fXk|Y k−1

(
xk|yk−1

)
.

We will use a special superscript to keep track of the index
of the state and last measurement. The superscript k|k refers to
components of the a posteriori pdf of xk conditioned on the mea-
surement sequence Y k, or fXk|Y k (xk|yk). After a time propagation,
xk becomes xk+1, and components of the a priori conditional pdf,
fXk+1|Y k (xk+1|yk), are indicated with the superscript k + 1|k.

3.1. Measurement update at k = 1

We make a measurement at k = 1, whose noise pdf is given
in (4). The pdf of X1 conditioned on the measurement sequence
Y 1 = {Z1} is, by Bayes’ Theorem,

fX1|Y1 (x1|y1) =
fY1|X1 (y1|x1)fX1 (x1)

fY1 (y1)
, (10)

here y1 = {z1}. The computations are less cumbersome if the
onditional pdf is updated and propagated without the normal-
zation factor, fY1 (y1). For the same reasons, we will also use the
nitial condition and process and measurement noises without
heir constant factors, indicated by a bar as defined in (8), (3) and
(4), i.e. f̄X1 , f̄W and f̄V . Therefore, let us define the unnormalized
conditional pdf (ucpdf), i.e. the joint density, as

f̄X1|Y1 (x1|y1) = f̄Y1|X1 (y1|x1)f̄X1 (x1)

= f̄Z1|X1 (z1|x1)f̄X1 (x1).
(11)

Using the measurement equation in (7) and f̄V in (4), f̄Z1|X1 (z1|x1)
= f̄V (z1 − Hx1), or

f̄Z1|X1 (z1|x1) = exp
[
−

|H|

γ

⏐⏐⏐ z1
H

− x1
⏐⏐⏐] . (12)

Combining (12) and (8), we rewrite the ucpdf as f̄X1|Y1 (x1|y1) =

f̄V (z1 − Hx1)f̄X1 (x1), or

¯X1|Y1 (x1|y1) = exp
[
−

|H|

γ

⏐⏐⏐ z1
H

− x1
⏐⏐⏐ −

1
α

|x1|
]

. (13)

.2. Propagation from k = 1 to k = 2

The time propagation from step k = 1 to step k = 2 involves
determining the conditional density f̄X2|Y1 (x2|y1). To do so, first
construct the joint density,

f̄X1,X2|Y1 (x2, x1|y1) = f̄X1|Y1 (x1|y1)f̄X2|X1,Y1 (x2|x1, y1)

= f̄X1|Y1 (x1|y1)f̄X2|X1 (x2|x1),
(14)

where the second factor simplifies because fX2|X1 does not explic-
itly depend on y . That is, given y does not change the pdf having
1 1
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een given x1. Using the dynamical equation in (7) and fW in (3),
f̄X2|X1 (x2|x1) = f̄W (x2 − Φx1), or

f̄X2|X1 (x2|x1) = exp
[

|Φ|

β

⏐⏐⏐x2
Φ

− x1
⏐⏐⏐] , (15)

nd we can rewrite (14) as

¯X1,X2|Y1 (x1, x2|y1) = f̄X1|Y1 (x1|y1)f̄X2|X1 (x2|x1)

= f̄X1|Y1 (x1|y1)f̄W (x2 − Φx1)

= exp
[
−

1
α

|x1| −
|H|

γ

⏐⏐⏐ z1
H

− x1
⏐⏐⏐ −

|Φ|

β

⏐⏐⏐x2
Φ

− x1
⏐⏐⏐] .

(16)

e then use the Chapman–Kolmogorov equation by integrating
16) over x1,

¯X2|Y1 (x2|y1) =

∫
∞

−∞

f̄X1,X2|Y1 (x1, x2|y1) dx1. (17)

The solution to the integral in (17) was shown in Appendix B
of Idan and Speyer (2014) and is restated in (A.1) of the Appendix
for convenience. Using that result and defining g(x) = 1, (17) is
evaluated as

f̄X2|Y1 (x2, y1) = ḡ2|1
1 · exp

[
−

1
α

⏐⏐⏐ z1
H

⏐⏐⏐ −
1
β

⏐⏐⏐⏐Φz1
H

− x2

⏐⏐⏐⏐]
+ ḡ2|1

2 · exp
[
−

1
γ

|z1| −
1
β

|−x2|
]

+ ḡ2|1
3 · exp

[
−

|H|

γ |Φ|

⏐⏐⏐⏐Φz1
H

− x2

⏐⏐⏐⏐ −
1

α |Φ|
|−x2|

]
,

(18)

here, for δi(ρl) =
∑3

l=1
l̸=i

ρlsgn (ξl − ξi),

¯
2|1
i =

1
ρi + δi(ρl)

−
1

−ρi + δi(ρl)
, (19)

nd ρ1 =
|H|

γ
, ρ2 =

1
α

, ρ3 =
|Φ|

β
, ξ1 =

z1
H

, ξ2 = 0, ξ3 =
x2
Φ

.

ince the exponentials without x2 are constant, we can collapse
them into the coefficients to get

f̄X2|Y1 (x2, y1) = ḡ2|1
1 · exp

[
−

1
β

⏐⏐⏐⏐Φz1
H

− x2

⏐⏐⏐⏐]
+ ḡ2|1

2 · exp
[
−

1
β

|x2|
]

+ ḡ2|1
3 · exp

[
−

|H|

γ |Φ|

⏐⏐⏐⏐Φz1
H

− x2

⏐⏐⏐⏐ −
1

α |Φ|
|−x2|

]
.

(20)

he coefficient terms ḡ2|1
i are constant except for one or two step

hanges. From this observation, we state the following theorem.

heorem 1. For

= {A0, A1, . . . , Am}

≜ {(−∞, ξ1), [ξ1, ξ2), . . . , [ξm, +∞)} ,
(21)

ith ξ1 < · · · < ξm ∈ R, any g : R → R constant on Ai ∈ A, can
e expressed as

(x) = ρ0 +

m∑
i=1

ρisgn (ξi − x) , (22)

here, ρ0 =
g(x0) + g(xm)

2
and ρi =

g(xi−1) − g(xi)
2

, for xi ∈ Ai.

This theorem is a special case of a more general theorem
hose proof is presented in Duong, Idan, Pinchasi, and Speyer
3

(2021). Therefore, the complicated expressions for ḡ2|1
i can be

implified to

¯
2|1
i = ρ̄

2|1
i0 +

M2|1
i∑

l=1

ρ̄
2|1
il sgn

(
ξ
2|1
il − x2

)
, (23)

here M2|1
i is the ith element of M2|1

=
[
1 1 2

]T . This
conversion from a nested fractional form in (19) to a sum in
(23) is key to developing the recursive structure of the Laplace
estimator. The number of sign functions in each term corresponds
to the number of addends with x2 in the associated exponential.
We will refer to these addends as ‘‘elements’’. Therefore, M2|1

i
refers to the number of unique sign functions of term i.

In addition, we can form an indicator matrix which maps
between a certain ordering of terms with an ordering of elements
from newest to oldest, or

B2 =

[1 0
0 1
1 1

]
. (24)

We can see how rows and columns of B2 correspond to the terms
and elements in the exponentials of (20). This indicator matrix is
used in the estimation algorithm to keep track of the elements in
each term.

3.3. General form of ucpdf

From the first steps presented, we hypothesize that the gen-
eral form of the a priori unnormalized conditional pdf at step
k|k − 1 is

f̄Xk|Yk−1 (xk|yk−1) =

Nk|k−1∑
i=1

ḡk|k−1
i ϵ

k|k−1
i , (25)

where

ḡk|k−1
i = ρ̄

k|k−1
i0 +

Mk|k−1
i∑
l=1

ρ̄
k|k−1
il sgn

(
ξ
k|k−1
il − xk

)

ϵ
k|k−1
i = exp

⎡⎢⎣−

Mk|k−1
i∑
l=1

η
k|k−1
il

⏐⏐⏐ξ k|k−1
il − xk

⏐⏐⏐
⎤⎥⎦ .

(26)

Note that the arguments of the sign functions match those of the
associated absolute value functions in (26).

The number of terms in (25) is

Nk|k−1
=

k∑
i=1

i =
k(k + 1)

2
. (27)

The number of elements (or sign functions) in each term is given
by

Mk|k−1
=

⎡⎢⎢⎢⎣
1k

× 1
1k−1

× 2
...

11
× k

⎤⎥⎥⎥⎦ , (28)

where 1k is a column vector of length k composed of 1’s and each
row corresponds to a term. There are k terms with one element,
k− 1 terms with two elements, k− 2 terms with three elements,
· · · , and one term with k elements. We can see that M2|1 after
Eq. (23) has the form of (28) for k = 2.
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As was done in (24), we can order the elements and terms so
that they are mapped using an indicator matrix,

Bk =

⎡⎢⎢⎢⎢⎢⎣
Ik[

1k−1×1, Ik−1
]

...[
12×k−1, I2

]
11×k

⎤⎥⎥⎥⎥⎥⎦ , (29)

here Im is the identity matrix of dimension m×m, and the rows
and columns represent the terms and elements, respectively. We
can see that (24) is equal to Bk for k = 2 and that the sum of
the columns of Bk equals Mk|k−1. Bk provides an accounting for
which terms contains which elements, and it is used to manage
the growing number of terms when implementing the estimation
algorithm.

An important property of the conditional pdf is that it is
log-concave and unimodal. Consider the joint density function
of the initial condition and one measurement. To compute the
conditional pdf under time propagation, we use the Chapman–
Kolmogorov equation, which involves evaluating a convolution
integral involving the product of the density functions of the
initial condition, measurement noise and process noise. Since
each of these density functions is log-concave, and log-concavity
is preserved under multiplication and convolution, it follows that
both the a priori and a posteriori conditional pdfs at time step
1, and by extension step k, are also log-concave. This prop-
erty has important implications when considering algorithms to
extremize cost functions based on the a posteriori conditional
pdfs, such as computing the maximum a posteriori estimates.
However, in this paper, we will focus on the conditional mean
estimate.

4. General form ucpdf proved by induction

We generalize the propagation and update structures pre-
sented in Section 3 and show that the general form (25) is
reserved under measurement update and time propagation by
nduction. The following steps should also serve as a guide to
evelop an implementation of the recursive Laplace estimation
lgorithm.

.1. Update from k|k − 1 to k|k

Assuming the ucpdf of the form in (25), we perform a mea-
urement update to step k by

¯Xk|Y k (xk|yk) = f̄Xk|Y k−1 (xk|yk−1)f̄Zk|Xk (zk|xk)

= f̄Xk|Y k−1 (xk|yk−1)f̄V
( zk
H

− xk
)

.
(30)

.2. Propagate from k|k to k + 1|k

Next, we perform the time propagation to step k+ 1 by using
he Chapman–Kolmogorov equation, forming the joint density
¯Xk+1,Xk|Yk and evaluating the convolution integral

f̄Xk+1|Yk (xk+1|yk) =

∫
∞

−∞

f̄Xk|Yk f̄Xk+1|Xk dxk

=

∫
∞

−∞

f̄Xk|Yk f̄W
(xk+1

Φ
− xk

)
dxk.

(31)

ach term i in f̄Xk+1|Yk must be evaluated using the integral for-
mula (A.1) of Appendix. We choose temporary parameters ρ, η

nd ξ (obviating the need for superscripts), to directly match
 m

4

their counterparts in the integral formula. In addition, we use
the parameters from f̄Xk|Yk−1 for convenience, because it is simple
to append the parameters associated with f̄V from (30) and f̄W
from (31) to the temporary parameters to maintain a convenient
ndexing scheme. Using the integral formula, we generate the a
riori ucpdf at k + 1|k using the a priori ucpdf at k|k − 1 in (25).
ased on the patterns for 2|1, we determine that the parameters
t k + 1|k are

i1 = ρ̄
k|k−1
i1 ξi1 = ξ

k|k−1
i1 ηi1 = η

k|k−1
i1

i2 = ρ̄
k|k−1
i2 ξi2 = ξ

k|k−1
i2 ηi2 = η

k|k−1
i2

...

i,M̃i
= ρ̄

k|k−1
i,M̃i

ξi,M̃i
= ξ

k|k−1
i,M̃i

ηi,M̃i
= η

k|k−1
i,M̃i

i,M̃i+1 = 0 ξi,M̃i+1 =
zk
H ηi,M̃i+1 =

|H|

γ

ρi,M̃i+2 = 0 ξi,M̃i+2 =
xk+1
Φ

ηi,M̃i+2 =
|Φ|

β

(32)

where the temporary variable M̃i = Mk|k−1
i is used here only for

compactness. The solution to the integral is determined using the
integral formula (A.1) of Appendix.

4.3. Isolate xk+1 and factor out constant terms

After performing the integral, the arguments of the sign func-
tions are of the form ξl−ξi, and only some of these involve ξi,M̃i+1
in (32) containing xk+1. Every term not involving xk+1 is constant,
so the corresponding exponentials are factored out as a scalar
multiple. Some algebra is required to isolate xk+1 so that it has the
form shown in (26). For example, an element of the exponential
function can be re-factored as

ηj

⏐⏐⏐xk+1

Φ
−

zk
H

⏐⏐⏐ =
ηj

|Φ|

⏐⏐⏐⏐Φzk
H

− xk+1

⏐⏐⏐⏐ . (33)

4.4. Simplify coefficient function and combine terms

The complicated coefficient (g) functions are simplified using
the method described in Theorem 1. This allows for the terms
with identical exponential parts to be combined by adding the
coefficients of the common sign functions. Finally, the expression
is rewritten in the general form given in (25), with the indices
k − 1 and k incremented to k and k + 1, respectively, as

f̄Xk+1|Yk (xk+1|yk) =

Nk+1|k∑
i=1

ḡk+1|k
i ϵ

k+1|k
i , (34)

here

¯
k+1|k
i = ρ̄

k+1|k
i0 +

Mk+1|k
i∑
l=1

ρ̄
k+1|k
il sgn

(
ξ
k+1|k
il − xk+1

)

ϵ
k+1|k
i = exp

⎡⎢⎣−

Mk+1|k
i∑
l=1

η
k+1|k
il

⏐⏐⏐ξ k+1|k
il − xk+1

⏐⏐⏐
⎤⎥⎦ .

(35)

. Term combination

After the isolation step in Section 4.3, the ucpdf has many
erms which have the same exponential functions and may be
ombined by summing their coefficient functions. The number
f terms, Nk|k−1 in (27), elements per term, Mk|k−1 in (28), and

apping between each term and each element, Bk in (29), are
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nly valid if all terms that can combine are combined. We can
etermine which terms of the a priori ucpdf combine at any step
|k − 1 by using an indicator matrix that can be constructed
ecursively.

First, note that every element, ξ , contains a particular mea-
urement zk or the initial condition x̄1 and assume that they are
rdered from newest to oldest. Then, for k ≥ 2, we can construct
n indicator matrix Ek similarly to Bk, composed of sub-matrices
ki, for i = 2, . . . , k. Let

ki =

[
Ii

11×i

]
≜

[
Āki aki

]
, (36)

here aki is the last column of Aki, Ii is the identity matrix of size
× i and 1 is a vector with elements all equal to 1. Then,

ki =

⎡⎢⎣Āki aki · · · 0
...

...
. . .

...

Āki 0 · · · aki

⎤⎥⎦ . (37)

he matrix Eki in (37) as shown is true for k ≥ i > 4 for the
sake of demonstrating the form. However, the pattern should be
apparent for smaller k and i. Finally, we define the full indicator
matrix

Ek =

⎡⎢⎢⎣
Ek2
Ek3
...

Ekk

⎤⎥⎥⎦ . (38)

Terms corresponding to rows of Ek with the same elements will
combine, which is done by adding their coefficient functions.
Since the element is ordered, this simply involves summing the
coefficients, ρ. We have found that, barring a numerical coinci-
dence, only terms with one element will sum. Once all of the
terms are combined, Ek becomes Bk.

6. Conditional mean and variance

Now that we have the a priori ucpdf, we can obtain the a
posteriori ucpdf, f̄Xk|Y k (xk|yk), simply by multiplying f̄V

( zk
H

− xk
)
.

We can then use it to compute the minimum variance estimate,
or conditional mean, x̂k and estimation error variance σ̂ 2, which
are given as

x̂k = E [Xk|Yk]

σ̂ 2
k = E

[
(Xk − x̂k)2|Yk

]
= E

[
X2
k |Yk

]
− x̂2k,

(39)

here E[Xk|Yk] and E[X2
k |Yk] are the first and second moments of

he normalized conditional pdf fXk|Yk , respectively.
First, we need to normalize the a posteriori ucpdf f̄Xk|Yk , which

is given by (25) and (30), or more explicitly,

f̄Xk|Yk (xk|yk) =

⎡⎣Nk|k−1
+1∑

i=1

gk|k−1
i ϵ

k|k−1
i

⎤⎦
×

1
2γ

exp
[
−

|H|

γ

⏐⏐⏐ zk
H

− xk
⏐⏐⏐] ,

(40)

here gk|k−1
i and ϵ

k|k−1
i are given in (26). Since

1
2γ

also ap-

ears in the normalization factor, we can pre-divide it simply by
eglecting it at this stage. After re-indexing the terms, we get

¯Xk|Yk (xk|yk) =

Nk|k∑
i=1

ḡk|k
i ϵ

k|k
i , (41)
here

5

ḡk|k
i = ρ̄

k|k
i0 +

Mk|k
i∑

l=1

ρ̄
k|k
il sgn

(
ξ
k|k
il − xk

)

ϵ
k|k
i = exp

⎡⎢⎣−

Mk|k−1
i∑
l=1

η
k|k−1
il

⏐⏐⏐ξ k|k−1
il − xk

⏐⏐⏐ −
|H|

γ

⏐⏐⏐ zk
H

− xk
⏐⏐⏐
⎤⎥⎦

≜ exp

⎡⎢⎣−

Mk|k
i∑

l=1

η
k|k
il

⏐⏐⏐ξ k|k
il − xk

⏐⏐⏐
⎤⎥⎦ .

(42)

he normalization of f̄Xk|Yk (xk|yk), fY k , is given by

Y k =

∫
∞

−∞

f̄Xk|Yk (xk|yk) dxk, (43)

hich can be evaluated using the integral formula (A.1) in Ap-
endix. The first moment is defined as

[Xk|Y k] =

∫
∞

−∞

xkfXk|Y k dxk =

∫
∞

−∞
xk f̄Xk|Y k dxk
fY k

, (44)

here f̄Xk|Y k is given in (41) and fY k is given in (43). Unlike the
ormalization factor, determining the first and second moments
s more involved. The numerator of (44) can be integrated by
parts. However, the intermediate steps can quickly become cum-
bersome. While we have performed the computation, it is difficult
to present succinctly. Fortunately, we can avoid this complexity
by making use of characteristic functions, which only require one
integration using the integral formula (A.1) in the Appendix,
ollowed by much simpler differentiation.

.1. Characteristic function

For ν, x ∈ R, the characteristic function of f̄Xk|Y k is

¯Xk|Y k (ν) =

∫
∞

−∞

ejνxk f̄Xk|Y k (xk|yk) dxk. (45)

he derivation of the characteristic function can be found in
ppendix A.2 of the Appendix, where it simply is an application

of the same integral formula (A.1) that was used in propagation.
Using (A.8) for each term of f̄ iXk|Y k

≜ giϵi, the corresponding term
in the characteristic function is

φ̄i
Xk|Y k

= Gi(ν)Ei(ν) (46)

where, for δi(·) =

M2|1
i +1∑
l=0
l̸=j

(·)sgn
(
ξil − ξij

)
,

Gi(ν) =
ρ0 + ρi + δi(ρl)
jν + ηi + δi(ηl)

−
ρ0 − ρi + δi(ρl)
jν − ηi + δi(ηl)

≜
ai1

jν + ai2
−

bi1
jν + bi2

Ei(ν) = exp

⎡⎢⎣−

Mi∑
l=1
l̸=i

ηl |ξl − ξi| + jνξi

⎤⎥⎦
≜ exp (ci1 + ci2jν) .

(47)

.2. Normalization

From (A.10) of the Appendix, the normalization factor fY k is
simply fY k = φ̄Xk|Y k (0). Therefore, using (46), we get

fY k =

m∑(
ai1
a

−
bi1
b

)
exp (ci1) . (48)
i=1 i2 i2
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.3. First moment and second moments at step k

The conditional mean and variance are given by x̂k = E [Xk|Y k]
and Var(x̂k) = E

[
X2
k |Y k

]
− x̂2k , where

E [Xk|Y k] =

[
1
j
dφXk|Y k (ν)

dν

]
ν=0[

X2
k |Y k

]
=

[
−

d2φXk|Y k (ν)
dν2

]
ν=0

.

(49)

Note that the moments are derived from the normalized char-
acteristic function φXk|Y k , which is simply φ̄X |Y divided by fY k in
(48). Using the formulas in Appendix A.3 of the Appendix, the
irst and second moments of term i are given by

Ei[Xk|Y k] =
1
fY k

m∑
i=1

1
j

[
∂Gi

∂ν
Ei + Gi

∂Ei
∂ν

]
≜

Ēi[Xk|Y k]

fY k

i[X2
k |Y k] = −

1
fY k

m∑
i=1

[
∂2Gi

∂ν2 Ei + 2
∂Gi

∂ν
·
∂Ei
∂ν

+ Gi
∂2Ei
∂ν2

]
≜

Ēi[X2
k |Y k]

fY k

,

(50)

here, Ēi[Xk|Y k] and Ēi[X2
k |Y k] are defined as the unnormalized

art of term i of the first and second moments, respectively.
For brevity, the partial derivatives are shown in Appendix A.3
f Appendix.

.4. Example: a posteriori conditional mean and variance of fX1|Y1

We examine the mean and variance of the Laplace estimator
fter one update step to see distinguishing features of the Laplace
stimates compared with those of a Kalman filter and Cauchy
stimator. Consider a generic example of the mean for the ucpdf
fter the first update, f̄X1|Y1 . For simplicity, let H = 1. From (13),

¯X1|Y1 =
1

4αγ
exp

(
−

1
γ

|z1 − x1| −
1
α

|x1|
)
. Then, from (46), the

nnormalized characteristic function, φ̄X1|Y1 (ν), is determined.
etting ν go to zero gives the normalization factor,

fY1 =

α exp
(
−

1
α

|z1|
)
− γ exp

(
−

1
γ

|z1|
)

2
(
α2 − γ 2

) , (51)

nd from (50) evaluated at ν equal to zero, the normalized first
oment is obtained as

ˆ1 ≜
Ē[X1|Y 1]

fY1

=

αz1 −
2α2γ 2sgn(z1)

α2−γ 2

α − γ exp
(
−

α−γ

αγ
|z1|

)
+

2α2γ 2sgn (z1)
α2 − γ 2 ·

1

α exp
(

α−γ

αγ
|z1|

)
− γ

.

(52)

Fig. 1 shows x̂1 as a function of z1 for (α, γ ) ∈ {(1, 0.33),
1, 0.67), (1, 1), (0.67, 1), (0.33, 1)}. We can see the linear behav-
or when z1 is small and when γ < α, but for γ > α the
onditional estimate seems to saturate for large z1. Also, we can

ee that the slope is
1
2

when α = γ . This is consistent with our

ntuition that the estimate should favor the measurement when
he measurement noise is lower than the prior noise. Conversely,
hen the measurement noise is larger, its effects should be
ttenuated. When they are equal, it splits the difference.
6

Fig. 1. Conditional mean x̂1 versus measurement z1 .

6.4.1. Example: a posteriori variance at k = 1
Consider the variance of fX1|Y1 . Using (51) and (50), the second

moment is then given by

E[X2
1 |Y 1] =

z21α −
4α2γ 2|z1|

α2−γ 2 +
2α3γ 2

(
α2

+3γ 2
)

(α2−γ 2)
2

α − γ exp
(
−

α−γ

αγ
|z1|

)
−

2α2γ 3
(
γ 2

+ 3α2
)(

α2 − γ 2
)2 ·

1

α exp
(

α−γ

αγ
|z1|

)
− γ

.

(53)

e examine some of the properties of Var(x̂1) = E[X2
1 |Y 1]− x̂21 at

ts extremes. Fig. 2 shows the error variance of x1 as a function of
easurement z1 for (α, γ ) ∈ {(1, 1), (0.5, 1), (0.33, 1)}. For small

z1, the error variance looks quadratic, but for large z1, the error
ariance goes to a constant. It appears that while the variance is a
unction of the measurements, the effect of large measurements
n the variance is bounded, except when α = γ .
It is also instructive to qualitatively compare the Laplace error

ariance with those of the Cauchy estimator and Kalman filter.
igs. 3 and 4 show the error variance of x̂1 as a function of
easurement z1 for these three estimators. We can see that the
ualitative behavior of the Laplace variance approaches that of
he Kalman filter as the difference between α and γ becomes
arge, while it approaches a parabolic shape similar to that of the
auchy estimator when α approaches γ (the coefficient for the

z2 term of the Cauchy variance is 1
4 Idan & Speyer, 2014).

7. Numerical example for k = 1, . . . , 50

We recursively and analytically computed the conditional pdf
as well as the minimum variance state estimate and state esti-
mation error variance for 50 steps using the parameters Φ =

.9,H = 1, α = 1/5, β = 1/4, γ = 1/3. The measurements
ere generated using a Laplace random number generator, and
wo spikes of magnitude 10 were added to the measurements
t k = 16 and k = 33 to simulate un-modeled anomalies.
or comparison, we used a Kalman filter to process the same
easurement history. By a least-squares fit of a Gaussian pdf to a
aplace pdf, the standard deviation was set approximately equal
o the corresponding Laplace spread parameter.
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Fig. 2. Variance versus measurement z1 .

Fig. 3. Variance versus measurement z1 for α = 1, γ = 1.

Fig. 4. Variance versus measurement z1 for α = 0.5, γ = 1.

Fig. 5 shows the measurement noise as well as the estimation
errors and estimated standard deviation bounds for the Kalman
filter and Laplace estimator. We can see that the Kalman estimate
reacts strongly to the spikes, while its variance remains constant,
thus severely underestimating the uncertainty. In contrast, the
Laplace estimate appears to attenuate the measurement spikes
and the estimated standard deviation increases to account for
the increased uncertainty. This is similar to the behavior of the
Cauchy estimator in Idan and Speyer (2012), which was shown to
ttenuate noise spikes in Cauchy-distributed measurement noise
nd increase its estimated error variance accordingly.
7

Fig. 5. Measurement noise and estimation error for the Kalman filter and
Laplace estimator.

8. Conclusions

We have developed the minimum-variance estimator for a
scalar discrete-time linear system with additive independent
Laplace measurement and process noises. We used the charac-
teristic function in lieu of evaluating the moments directly. Using
these results, we implemented the estimator in MATLAB, demon-
strating both novel, intrinsic and desirable non-linear properties
that differ considerably from the Kalman filter. The results of this
paper highlight promising avenues for future research into robust
estimation and L1 optimal control schemes.
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ppendix

.1. Key integral formula

A key integral formula was derived by Idan and Speyer in
ppendix B of Idan and Speyer (2014) and is restated here for
onvenience.

=

∫
∞

−∞

g(x) exp

[
−

M∑
i=1

ηi |ξi − x| + jzx

]
dx

=

M∑
i=1

gi exp

⎡⎢⎣−

M∑
l=1
l̸=i

ηlsgn (ξl − ξi) + jzξi

⎤⎥⎦ ,

(A.1)

here, for δi(ηl) =
∑M

l=1
l̸=i

ηlsgn (ξl − ξi),

gi =
ρi + δi(ρl)

−
−ρi + δi(ρl)

. (A.2)

jz + ηi + δi(ηl) jz − ηi + δi(ηl)
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.2. Scalar characteristic function

Given the form of the general scalar ucpdf in (25), the charac-
eristic function is the expectation of ejνx, or

¯X |Y =

∫
R
ejνx f̄X |Y (x|y) dx (A.3)

here

i(x) = ρ0 +

P∑
l=1

ρlsgn (ξl − x)

ϵi(x) = exp

[
−

M∑
l=1

ηl |ξl − x|

]
.

(A.4)

ence, φ̄X |Y can be computed term-wise as

¯ i
X |Y =

∫
R
gi(x) exp

[
−

M∑
l=1

ηl |ξl − x| + jνx

]
dx. (A.5)

he solution to this integral is given by (A.1), or

¯ i
X |Y =

n∑
i=1

Gi(ν) exp

⎡⎢⎣−

n∑
l=1
l̸=i

ηlsgn (ξl − ξi) + jνξi

⎤⎥⎦ , (A.6)

here, for δi(∗) =
∑n

l=1
l̸=i

(∗)sgn (ξl − ξi),

i =
ρi + δi(ρl)

jν + ηi + δi(ηl)
−

−ρi + δi(ρl)
jν − ηi + δi(ηl)

. (A.7)

owever, since all the variables are constant with the exception
f ν, Gi(ν) and ϵi(ν) have the form

i(ν) =
ai1

jν + ai2
−

bi1
jν + bi2

ϵi(ν) = exp (ci1 + ci2 · jν)

(A.8)

.3. Scalar moments from characteristic function

The normalization factor of f̄X |Y (x) and moments of fX |Y (x)
iven its characteristic function φX |Y (ν) are

fY = φ̄X |Y (0)

E[X |Y ] =

[
1
j
∂φX |Y (ν)

∂ν

]
ν=0

E[X2
|Y ] =

[
−

∂2φX |Y (ν)

∂ν2

]
ν=0

.

(A.9)

sing the generic form for each term, the ith term of the normal-
zation of f̄X |Y is

Y ,i =
[
φi
X |Y (0)

]
=

(
ai1
ai2

−
bi1
bi2

)
exp (ci1) . (A.10)

he ith term of the first moment is Ei[X |Y ] =

[
1
j
∂φX |Y ,i(ν)

∂ν

]
ν=0

,
or

Ei[X |Y ] =
1
j

[
∂Gi

∂ν
ϵi + Gi

∂ϵi

∂ν

]
ν=0

, (A.11)

here
∂Gi

∂ν

]
ν=0

= −
ai1 · j
(ai2)2

+
bi1 · j
(bi2)2

,[
∂ϵi

]
= jci2 exp (ci1) .

(A.12)
∂ν ν=0

8

The ith term of the second moment is

Ei[X2
|Y ] =

[
−

∂2φX |Y (ν)
∂ν2

]
ν=0

= −

[
∂2Gi

∂ν2 ϵi + 2
∂Gi

∂ν
·
∂ϵi

∂ν
+ Gi

∂2ϵi

∂ν2

]
ν=0

(A.13)

where[
∂2Gi

∂ν2

]
ν=0

= −
2ai1
(ai2)3

+
2bi1
(bi2)3

,[
∂2ϵi

∂ν2

]
ν=0

= −c2i2 exp (ci1) .

(A.14)
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