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Abstract  8 

Many existing ACC systems require the processes of extracting regulatory information from natural 9 

language building-code requirements and transforming the extracted information into computer-10 

processable semantic representations. These processes could, however, be jeopardized by the ambiguous 11 

nature of the natural language and the hierarchically complex structures of building-code requirements. 12 

To address this problem, this paper proposes the concept of intelligent building code for bypassing the 13 

error-prone information extraction and transformation processes. In the proposed intelligent code, the 14 

natural-language requirements in the code are connected with highly structured computer-understandable 15 

semantic information, which is represented in the form of semantic requirement hierarchies and can be 16 

readily used by computers for ACC. The paper also proposes a deep learning-based method to 17 

automatically generate such intelligent code. The method leverages the requirement hierarchy 18 

representation, a proposed deep learning unit-to-text model for generating requirement sentence segments, 19 

and a proposed semantic correspondence score for configuring the segments into requirement sentences. 20 

The method was implemented and tested on a dataset from multiple regulatory documents. The generated 21 

intelligent requirements were evaluated in terms of both natural-language requirement comprehensibility 22 

and correspondence between the natural language and the semantic representation, with the results 23 

indicating high performance for the proposed representation and method. The proposed intelligent code 24 

will help reduce ACC errors, improve requirement comprehensibility, and facilitate intelligent code 25 

analytics. 26 

Keywords: Intelligent building code; Natural language generation; Deep learning; Automated compliance 27 
checking; Requirement representation. 28 
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1 Introduction 29 

Building designs are governed by a variety of regulatory documents in the architecture, engineering, and 30 

construction (AEC) domain. Traditional, manual checking of the compliance of building designs with 31 

these regulatory documents is time- and cost-consuming, and prone to errors. To improve the time- and 32 

cost-efficiency and to minimize the errors of the compliance checking processes, many automated 33 

compliance checking (ACC) methods and systems have been developed. Existing ACC systems, 34 

regardless of their level of automation (e.g., semi- or full-automation), all require the extraction of 35 

regulatory information (e.g., compliance checking attribute and quantity value) from the natural-language 36 

building-code requirements and the transformation of the extracted information into computer-37 

processable semantic representations. For example, the users of Solibri Office [1], a type of semi-38 

automated ACC system, first read the requirements, identify the correct rule templates for the 39 

requirements, and manually extract the values for the parameters of the templates from the requirements. 40 

The state-of-the-art, rule-based fully-automated ACC systems use semantic natural language processing 41 

(NLP) rules based on semantic and syntactic features to extract semantic information elements from 42 

regulatory documents and transform them into logic forms [2]. Despite the performance achieved by the 43 

existing ACC systems, the information extraction and transformation processes within these systems 44 

could, however, be jeopardized by the ambiguous nature of the natural language and the complex and 45 

recursive semantic and syntactic structures of building-code requirements [3,4]. For example, in the 46 

existing ACC systems that employ NLP-based information extraction and transformation methods, errors 47 

resulting from these methods could further cause errors in downstream ACC processes, such as computer-48 

processible rule-based compliance reasoning, and, eventually, errors in the final compliance checking 49 

results [5]. 50 

Aiming to bypass the error-prone information extraction and transformation processes and make building-51 

code requirements directly computer-processable, several research efforts have been undertaken to 52 

develop computer-processable semantic representations that enable the representation of building-code 53 
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requirements directly with only limited or even zero use of natural language. Following these approaches, 54 

to create new requirements, building code developers no longer need to write natural-language 55 

requirements; instead, they would solely provide the semantic regulatory information that defines the new 56 

requirements directly in the form of such representation (i.e., aiming to eliminate the natural-language 57 

form). For example, the conceptual graphs [6] and the visual code checking language [7] were proposed 58 

to represent rules that define building-code requirements, which consist of AEC domain-specific semantic 59 

concepts (e.g., building objects and relations between these objects) and connections (e.g., conjunctions, 60 

disjunctions, and constraints), in graph-like structures (e.g., nodes and edges). These semantic concepts 61 

and connections are provided by the users of these two representations as input in the form of nodes and 62 

edges to develop graphs that represent requirements. However, these computer-processable semantic 63 

representations suffer from two limitations. First, without the corresponding natural-language 64 

requirements, it is often difficult for practitioners to understand and comprehend the regulatory 65 

information in these representations [8]. Second, even when supplemented with the corresponding 66 

natural-language requirements, these representations still lack comprehensibility because the direct 67 

correspondence/link between the two forms (i.e., the natural language and the computer-processable 68 

semantic representation) is missing, limiting their use in ACC processes.  69 

An intelligent code, where highly structured computer-understandable semantic information that can be 70 

used directly by computers for semantic analysis tasks [9] is connected with its natural-language 71 

counterpart, takes the best of both worlds of the semantic representations and the natural language. Such 72 

intelligent code would (1) reduce the ambiguity of the natural-language requirements, while preserving its 73 

comprehensibility, (2) be both directly processable by computers and understood by humans [10], and (3) 74 

maintain the correspondence between the semantic information and the natural-language sentences.  75 

Recent advances in data-to-text generation (e.g., [11]) in the domains of computer science and natural 76 

language generation (NLG) provide an unprecedented opportunity for developing such intelligent code 77 

for both reduced ACC errors and improved requirement comprehensibility. NLG aims to produce human-78 
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readable text based on structured data/information or some intermediate semantic representation. Thus, 79 

there is a need for semantic NLG-based methods for converting and generating intelligent building codes 80 

in the AEC domain, i.e., methods to automatically generate natural-language sentences based on semantic 81 

regulatory information input and retain the correspondence between the words, phrases, and clauses in the 82 

sentence and their semantic sources during the generation process. However, such generation is not easy 83 

because of the following challenges: first, defining a representation that is both (1) readily semantic and 84 

computer-understandable (and thus could connect to exiting computer-processible representations used 85 

for compliance reasoning) and (2) directly linked to an NLG model (and thus could support fully 86 

automated conversion of the structured input into natural language sentences); second, generating 87 

meaningful sentences that are easy to understand; and third, retaining fidelity of the input data (e.g., by 88 

tracing back to the input data used for generating the output text) [12-14].   89 

To address this need, first, the paper proposes a new semantic representation of building-code 90 

requirements, the multi-form semantic (MFS) requirement hierarchy and the intelligent code 91 

representation, for supporting intelligent code generation and thus downstream ACC processes, such as 92 

compliance reasoning. The hierarchy consists of simple, manageable requirement units that are 93 

semantically represented and linked, where each unit is composed of semantic information elements (SIEs) 94 

that define the requirements (e.g., subject, compliance checking attribute, and quantity value). It is 95 

represented in two supplementary forms, the surface form and the background form. The intelligent code 96 

representation consists of the natural-language requirement, its corresponding MFS requirement hierarchy, 97 

and the semantic links that indicate the correspondence between the two. Second, a deep learning and 98 

semantic NLG-based method is proposed for generating such intelligent code. The method (1) uses the 99 

MFS requirement hierarchy representation as the input form for generating the corresponding natural 100 

language requirements; (2) trains a deep learning requirement unit-to-text model to generate natural-101 

language requirement sentence segments, using data prepared based on a large, multi-topic building-code 102 

corpus; and (3) connects these segments into intelligent requirement sentences. The natural language 103 
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requirements, along with their semantic counterparts (i.e., the MFS requirement hierarchies), form the 104 

intelligent code.   105 

2 Background 106 

2.1 Semantic representations of natural-language requirements for automated compliance checking  107 

Existing ACC systems represent the natural-language building-code requirements in computer-108 

processable semantic representations for supporting downstream ACC tasks, such as matching regulatory 109 

information to design information in building information models (BIM) and compliance reasoning. For 110 

example, Garrett and Hakim [15] developed object-oriented representation schemes of requirements. 111 

Ozkaya and Akin [16] proposed a design framework to incorporate requirements into digital designs. 112 

Yurchyshyna and Zarli [17] used the SPARQL Query Language for RDF to represent requirements for 113 

retrieving design information from BIM-based design files in the industry foundation classes (IFC) 114 

format. Pauwels et al. [18] used semantic web technologies to represent requirements as a directed, 115 

labeled graph of semantic concepts and connections and logic-based rules. Zhang and El-Gohary [5] 116 

proposed the semantic information elements (SIEs) for representing requirements in the form of logic 117 

rules that incorporate these SIEs, where the SIEs were extracted using ontologies and natural language 118 

processing methods. Lee et al. [19] designed the building environment and analysis language to represent 119 

objects and relations in the requirements in an object-oriented manner. Uhm et al. [20] adopted a context-120 

free grammar-based method for developing computer-interpretable rules. Dimyadi et al. [21] adopted the 121 

process model and notation (BPMN)-based compliant design procedures (CDP) for describing 122 

compliance checking workflows and embedding regulatory knowledge using regulatory knowledge query 123 

language (RKQL). The International Code Council and AEC3’s SmartCode project [22] used the 124 

requirement, application, selection, and exception (RASE) markups [23] to facilitate developing 125 

computer-processable rules that represent the requirements.  126 
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These semantic representations are at the core of existing ACC systems and/or software – they enable 127 

representing, processing, and checking building-code requirements automatically by computers; however, 128 

existing ACC systems typically lack the mechanisms to support fully automated (i.e., without human 129 

annotations or manually crafted extraction/transformation rules) extraction and conversion of natural-130 

language requirements into these representations. For example, Weise et al. [22] requires manual 131 

annotation of the codes with the RASE tags. Zhang and El-Gohary [5] although can do the information 132 

extraction fully automatically, still requires hand-crafted extraction and transformation rules to extract the 133 

semantic information from the natural language and convert the extracted information into computable 134 

logic rules. Recent research efforts have been undertaken to develop flexible and highly automated 135 

methods to support such extraction and conversion, by leveraging artificial intelligence (AI) technologies, 136 

such as machine learning and NLP. 137 

2.2 Deep learning for text analytics 138 

Deep learning methods use deep neural networks that consist of stacks of layers to capture different levels 139 

of information representations from data [24]. Deep learning methods have drastically improved the state-140 

of-the-art performance in automatically processing and understanding natural-language data, and 141 

meanwhile reduced or eliminated the manual effort in feature engineering compared to traditional 142 

machine learning methods. Recurrent neural networks (RNN) are deep learning models consisting of 143 

internal states specifically designed to process sequential data, such as text data, which consist of 144 

sequences of words. To solve the problem of vanishing gradient and improve the capability to capture 145 

long-term semantic and syntactic dependencies, two variants of the RNN, long short-term memories 146 

(LSTM) and gated recurrent units have been proposed and used. RNN-based models have been widely 147 

used in natural language processing, understanding, and generation tasks, such as text classification (e.g., 148 

[25]), sequence labeling (e.g., [26]), semantic parsing (e.g., [27]), and machine translation (e.g., [28]). A 149 

limited number of research efforts have been undertaken on deep learning-based methods for solving text 150 

analytics tasks in the AEC domain. For example, Pan and Zhang [29] developed RNN-based models to 151 
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analyze building information modeling (BIM) log data for extracting and discovering knowledge that 152 

supports design decisions. Zhong et al. [30] used bidirectional LSTM and CRF models to extract 153 

procedural constraints from construction regulations. Zhang and El-Gohary [31] used bidirectional LSTM 154 

and CRF models with transfer learning strategies for extracting semantic and syntactic information 155 

elements from building-code sentences. 156 

2.3 Data-to-text natural language generation 157 

Natural language generation (NLG) is the process of representing the semantic information contained in 158 

the input data – which could be in various forms such as tables, images, or formal languages – in the form 159 

of natural language for the purpose of information digestion and communication [32]. NLG plays an 160 

important role in intelligent systems such as spoken dialogue systems (e.g., [33]), image captioning (e.g., 161 

[34]), text summarization (e.g., [35]), and programming code management (e.g., [36]). Data-to-text 162 

generation is the NLG process that automatically generates text from non-linguistic, structured input, such 163 

as records in databases and knowledge bases [37].  164 

Data-to-text generation methods range from template- and rule-based methods to machine learning-based 165 

methods, including deep learning-based methods. Template- and rule-based methods rely on manually 166 

developed templates for forming sentences and rules to fill in the templates. They require manual effort 167 

for developing and maintaining the templates and rules, and typically lack the flexibility to deal with 168 

complex text [32]. Machine learning-based methods, instead of relying on predesigned rules and 169 

templates, use machine learning models to automatically capture the semantic and syntactic patterns in 170 

the training data, which are later used for supporting the generation of new text. Different deep learning 171 

model architectures were proposed for NLG applications, such as RNN-based encoder-decoder 172 

architectures (e.g., [11,38-41]), transformer-based architectures (e.g., [42]), and variational autoencoders 173 

(e.g., [43]). Variants of these model architectures have also been proposed. For example, the attention 174 

mechanism (e.g., [11,41]) and copying mechanism (e.g., [38,40]) in the encoder-decoder architecture 175 
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were proposed to improve the ability of the deep learning models to capture the structural dependency and 176 

maintain the data fidelity [39]. 177 

3 State of the art and knowledge gaps in regulatory text generation 178 

Existing methods and systems for generating regulatory text (e.g., requirements or documents) in the 179 

AEC domain are mainly based on premade templates and rules. For example, Thewalt and Moskowitz [44] 180 

used a network of decision tables for representing design standards and a set of handcrafted templates for 181 

standard text generation. Ryoo et al. [45] proposed a web-based construction specification system where 182 

users can query existing specifications, guidelines, and other materials for drafting new specifications. 183 

Commercial software such as e-Specs [46] and BIMdrive [47] use premade templates (e.g., templates 184 

based on the National Master Specifications) to facilitate the development and maintenance of 185 

specifications. The latest IDM schema [48] specified how IDM documents are developed, exchanged, and 186 

shared in the idmXML format and the IDM generation rules. These efforts have provided important 187 

insights and practical value for generating regulatory text in the AEC domain. Despite their importance, 188 

they typically have three limitations. First, developing and updating the templates and rules for generating 189 

regulatory text is labor-intensive and time-consuming. A comparative analysis of hybrid methods (that 190 

include machine learning) and entirely rule-based methods for data-to-text generation in the literature has 191 

demonstrated significant time and resource savings when leveraging machine learning [49]. For 192 

generating building-code requirements, this time and cost could significantly grow because a large 193 

number of building codes exist, including amendments to accommodate local needs, and many of these 194 

codes/amendments are subject to frequent and regular updates. Second, such manually developed 195 

templates and rules are typically rigid and hard to scale up in real-world applications and across different 196 

types of text. Methods using templates and rules are generally outperformed by machine learning-based 197 

methods in various data-to-text generation tasks (e.g., [32,50]). Flexibility and scalability are especially 198 

important for generating building-code requirements, because different types of building codes usually 199 

have different syntactic and semantic characteristics. Testing and adapting the templates and rules to 200 
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accommodate the variabilities across the different codes and requirements would be practically difficult. 201 

Third, they are limited in capturing the semantic and syntactic complexities and variations in the building-202 

code requirements. For example, energy code requirements tend to have hierarchically complex semantic 203 

and syntactic structures including deeply nested clauses, conjunctive and alternative obligations, and 204 

multiple restrictions and exceptions [3]. Developing rules to deal with such structural complexity based 205 

on limited templates (e.g., the templates are usually limited in the patterns of semantic features and 206 

structures they represent) is challenging.  207 

Deep learning-based methods, on the other hand, have achieved state-of-the-art performance in many 208 

NLG tasks including data-to-text tasks (e.g., [38-40]). However, there is a lack of efforts that used deep 209 

learning-based NLG methods for AEC applications. This poses a missed opportunity, particularly for 210 

intelligent code generation efforts. 211 

4 Research methodology  212 

The research methodology was composed of the following primary research tasks:  213 

• Representation development: In developing the representation (see Section 5), to overcome the 214 

challenges outlined in Section 1, a number of criteria were defined. These included developing a 215 

representation that: (1) is readily semantic and computer-understandable, while being directly linked 216 

to the generation model; (2) supports the generation of meaningful sentences that are well 217 

understandable to humans; and (3) retains fidelity of the input data (i.e., keeping the link between the 218 

semantic representation and the natural language sentences).  The representation development process 219 

included the following steps: (1) define the basic elements and the structure to represent the semantics; 220 

(2) define the different forms to represent the semantics and to serve as the input to the code 221 

generation model; and (3) define the links between these semantic elements and the forms.  222 

• Method development: The methodology for developing the semantic NLG-and deep learning-based 223 

method for generating intelligent code (see Section 6) included three primary steps:  224 
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• Data preparation: Datasets for training and testing were prepared, as discussed in more detail in 225 

Section 6.1.  226 

• Text generation model development: A deep learning-based generation model was developed for 227 

generating natural-language text (sentence segments) corresponding to the structured input 228 

representation, which included model design and training. The model design process included 229 

two primary steps: (1) select the learning model and adapt it to the problem at hand (i.e., 230 

automatically generating requirement sentence segments given the semantic information); and (2) 231 

define the design practices that are needed to further optimize the model for the task at hand. The 232 

RNN-based encoder-decoder model [51] was selected and adapted and three practices were 233 

defined (LSTM, bidirectional architecture, and attention mechanism), as discussed in Section 234 

6.2.1. For model training, four training practices were defined, as discussed in Section 6.2.2. 235 

• Intelligent building code generation method development: A divide-and-conquer paradigm was 236 

selected and followed for developing the method (see Section 6.3), where requirement segments 237 

(instead of the whole requirement sentence) were generated (using the trained text generation 238 

model), linked to the semantic representation, and connected into intelligent code requirements. 239 

• Experimental results and analysis: A set of experiments were conducted to test and evaluate the 240 

effectiveness of the proposed representation and the performance of the proposed intelligent code 241 

generation method, including flexibility across different types of codes and standards and sentence 242 

computability levels (see Section 7). 243 

5 Proposed representation: requirement hierarchy and intelligent code  244 

5.1 Multi-form semantic requirement hierarchy representation  245 

The paper proposes a new semantic representation, the multi-form semantic (MFS) requirement hierarchy 246 

[see Fig. 1(a) and (b)], to model building-code requirements, especially the hierarchically complex 247 

requirements with restrictions and exceptions, for facilitating the generation of intelligent code, which 248 

could further support downstream ACC processes, such as compliance reasoning based on semantic 249 
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representations (e.g., logic). An MFS requirement hierarchy models a requirement in a hierarchical 250 

structure that consists of several requirement units. Each requirement unit consists of several SIEs (as 251 

listed in Table 1), which are the constituent concepts (e.g., subject and compliance checking attribute), 252 

relations (e.g., subject relations), and indicators (e.g., deontic operator indicator) that define a requirement 253 

or a condition in a requirement. Each unit has at least one subject or compliance checking attribute and 254 

may or may not have other SIEs. Each unit does not have any secondary SIEs such as restrictions and 255 

exceptions, and thus is easily processable using most of the existing semi-automated or automated 256 

compliance checking methods and systems. There are two types of relations between the requirement 257 

units: simple and complex relations. Simple relations include conjunctions (e.g., “and”) and disjunctions 258 

(e.g., “or”). Complex relations include exceptions and restrictions.  259 

Table 1. Semantic Information Elements (SIEs) for Defining Requirements for Compliance Checking [1]. 260 
Semantic information element Definition 

Subject An ontology concept representing a thing (e.g., building element) that is subject 
to a particular requirement 

Subject relation 
A term or phrase that defines the type of relationship between two subjects, a 
subject and an attribute, or a subject or an attribute and a quantity (e.g., 
“equipped”) 

Compliance checking attribute An ontology concept representing a specific characteristic of a “subject” that is 
checked for compliance (e.g., “width”) 

Deontic operator indicator A term/phrase that indicates the deontic type of the requirement (i.e., obligation, 
permission, or prohibition) 

Comparative relation A term/phrase for comparing quantitative values, including “greater than or 
equal to,” “greater than,” “less than or equal to,” “less than,” and “equal to” 

Quantity value A numerical value that defines the quantity 
Quantity unit The unit of measure for a “quantity value” 

Reference A term or phrase that denotes the mentioning or reference to a chapter, section, 
document, table, or equation in a building-code sentence 

The MFS requirement hierarchy is represented in two supplementary forms: the surface form [see Fig. 261 

1(a)] and the background form [see Fig. 1(b)]. The surface form shows the requirement units and the SIEs 262 

within each unit in a hybrid, templatized and graphical, format. Similar to the conceptual graph [6] and 263 

the visual code checking language [7], the surface form can be visualized and manipulated for the purpose 264 

of requirement editing, development, or navigation. For example, the surface form can be embedded as a 265 

part of a user interface for the requirement developers to add or modify the requirement units, the 266 
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restriction dependencies between the units, and the SIEs within each unit, for the purposes of generating 267 

natural language requirements that are readily semantic and computer-understandable (i.e., the intelligent 268 

code). The background form shows the SIEs and the predicate-argument structures between the SIEs and 269 

the requirement units in a sequential format. The background form consists of two types of tokens: 270 

semantic tokens to represent the semantic meanings of the SIEs (e.g., words and numbers), and syntactic 271 

tokens to indicate the predicate-argument structures (e.g., parenthesis and vertical bars). The form can be 272 

directly embedded using vector representations and thus fed into the deep learning requirement unit-to-273 

text generation model for generating the requirement sentence segments corresponding to the units in the 274 

MFS requirement hierarchy. The surface form can be converted into the background form using rules 275 

(e.g., rules to concatenate words from the surface form and add syntactic tokens to build the background 276 

form). Examples of these rules, which were developed in Python 3, are shown in Fig. 1. Due to its 277 

semantic and structured representation, the MFS requirement hierarchy is potentially compatible and 278 

integrable with other ACC representations and workflows (e.g., CDP). 279 

5.2 Intelligent code representation  280 

The paper defines an intelligent code as a natural-language requirement connected with its corresponding 281 

MFS requirement hierarchy. It consists of three parts – the natural-language requirement, its 282 

corresponding MFS requirement hierarchy, and the semantic links that indicate the correspondence 283 

between the surface form and the background form of the hierarchy and the natural-language requirement 284 

(an example to illustrate the representation of the intelligent requirement is shown in Fig. 1). Each 285 

semantic correspondence key consists of a requirement unit identifier and an SIE identifier, and every 286 

token in the natural-language requirement and the requirement hierarchy is annotated with such a 287 

semantic correspondence key. Thus, intelligent requirements can be understood by both humans (via the 288 

natural-language requirement) and computers (via the MFS requirement hierarchy), and meanwhile, 289 

preserve the semantic links between the natural-language requirement and the requirement units and SIEs 290 

in the hierarchy (via the semantic correspondence keys). 291 
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Fig. 1 shows an example to illustrate the concept of intelligent requirements (using a sentence from IBC 292 

2018 [52]). The MFS requirement hierarchy is shown in Fig. 1(a) (the surface form) and Fig. 1(b) (the 293 

background form). The natural-language requirement with the semantic correspondence keys is shown in 294 

Fig. 1(c). In this example, the whole requirement is modeled as a requirement hierarchy consisting of 295 

three requirement units, with units 2 and 3 being restrictions of unit 1, which is the main requirement unit 296 

in this hierarchy. 297 
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      298 
Fig. 1. Example semantically annotated requirement: (a) surface form of the requirement hierarchy; (b) 299 
background form of the requirement hierarchy with semantic correspondence keys; (c) natural-language 300 

requirement sentence with semantic correspondence keys. 301 

6 Semantic NLG- and deep learning-based method for generating intelligent code  302 

The method for intelligent code generation was proposed and implemented on corpora of building-code 303 

requirements. The methodology consists of three primary steps, as per Fig. 2: data preparation, deep 304 

learning-based requirement unit-to-text generation model development, intelligent building-code 305 
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requirement generation. An example to illustrate how the intelligent requirements are generated (Step 3), 306 

using the trained requirement unit-to-text model (Step 2), is shown in Fig. 3.  307 

 308 
Fig. 2.  Research methodology for NLG- and deep learning-based intelligent building code generation. 309 

 310 
Fig. 3.  Intelligent building code generation. 311 

6.1 Data preparation 312 

The training and testing data were prepared for training the requirement unit-to-text generation model and 313 

evaluating the requirement generation results. The data are semantically annotated building-code 314 

requirements, including the natural-language requirement and the corresponding MFS requirement 315 
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hierarchy with both its surface and background forms. Both the training and testing data were prepared 316 

following three steps: corpus preparation, sentence selection, and sentence annotation.  317 

6.1.1 Corpus preparation 318 

Two building-code corpora were prepared – the training and testing corpora. The training corpus consists 319 

of sentences from the International Building Code (IBC) and its amendments. The testing corpus consists 320 

of sentences from three types of regulatory documents, including the IBC, International Energy 321 

Conservation Code (IECC), and Americans with Disabilities Act Standards for Accessible Design (ADA 322 

Standards).  The text files of these documents were crawled from webpages or converted from PDF files, 323 

and they were preprocessed following three steps: sentence segmentation, tokenization, and pruning. 324 

Sentence segmentation aims to detect the sentence boundaries (e.g., punctuations) and segment the text 325 

into sentences. Sentence tokenization aims to further split the sentences into tokens (e.g., words). 326 

Sentence pruning aims to remove the sentences or sentence segments that are not requirements (e.g., 327 

headings). The Natural Language Toolkit (NLTK) in Python was used for text preprocessing. 328 

6.1.2 Sentence selection 329 

Two groups of sentences and sentence segments were selected from the two corpora, respectively. The 330 

training group consists of about 7,500 sentences and sentence segments including about 100,000 tokens 331 

(e.g., words, numbers, and punctuations); and the testing group consists of about 600 sentences and 332 

fragments including about 15,000 tokens. For evaluation purposes, sentences having different levels of 333 

computability (i.e., the ability of sentences to be automatically processed, represented, and checked by 334 

ACC systems) were selected, based on the computability definition and metrics in [53].  335 

6.1.3 Data annotation 336 

The two sentence groups were annotated and converted into requirement hierarchies. The training group 337 

was automatically annotated using the pretrained requirement hierarchy extraction model [54] and the 338 

deep information extraction model [31]. The testing group was manually converted into requirement 339 

hierarchies and annotated with the semantic information elements by four experts – two from academia 340 
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(faculty) and two from industry – forming the gold standard for evaluation. A purposive sampling 341 

strategy, which pinpoints a specific type of participants according to predefined selection criteria [55], 342 

was adopted for selecting the experts. Three main selection criteria were defined: (1) expertise in the AEC 343 

domain; (2) familiarity with building codes and compliance checking processes; and (3) awareness of 344 

natural language processing and text analytics techniques. Each expert independently annotated the entire 345 

set of selected sentences, with an initial inter-annotator agreement of 80% in F1 measure, which indicates 346 

good reliability of the annotations [56]. The discrepancies among the annotations were then resolved by 347 

the experts to reach full agreement on the final annotations.  348 

6.2 Deep learning-based requirement unit-to-text generation model development 349 

6.2.1 Model design 350 

The RNN-based encoder-decoder model [51] was adapted to automatically generate the corresponding 351 

natural-language sentence segment, given the background form of a requirement unit. A sentence segment 352 

is defined as the natural-language counterpart of a requirement unit and is part of the building-code 353 

sentence corresponding to the whole requirement hierarchy that contains the unit. For example, in Fig. 3, 354 

“landings are permitted to be 914 mm minimum” is the sentence segment corresponding to the 355 

requirement unit with a subject of “landings”, a quantity value of “914”, a quantity unit of “millimeter”, 356 

and a comparative relation of “>=”). The model was selected because it has achieved state-of-the-art 357 

performance in various data-to-text generation tasks and has the potential to be adapted to the requirement 358 

unit-to-text generation task at hand.  359 

The model structure consists of two main parts: the encoder and the decoder, each consisting of several 360 

RNN layers, as illustrated in Fig. 4. The encoder [as per Eq.(1)] transforms the input sequence 361 

[𝑥1, 𝑥2, … , 𝑥𝑙] [i.e., the sequence of tokens (words and syntactic symbols) in the background form of the 362 

input requirement unit] of length l into a context vector representation c, which captures the semantic and 363 

syntactic information of the entire input sequence [as per Eq.(3)], based on the attention mechanism and 364 

the alignment weights 𝛼 [57] [as per Eq.(2)], which captures the correlations between the tokens in the 365 
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input and output sequences. The decoder [as per Eq.(4)] further transforms the vector representation 366 

generated by the encoder into the output sequence [𝑦1, 𝑦2, … , 𝑦𝑘] [i.e., the sequence of tokens (words, 367 

numbers, and punctuations) in the output requirement sentence segment] of length k. Each RNN layer 368 

consists of several stacked RNN units – each computes feature representations based on the input 369 

information corresponding to the current state, and the information propagated from the last state so that 370 

the information from previous states could be captured. In Eqs.(1)-(5), ℎ𝑖 is the RNN state corresponding 371 

to position i in the input sequence, 𝑠𝑜 is the RNN state corresponding to position o in the output sequence, 372 

f is the RNN, and 𝜑 is a multilayer neural network. 373 

ℎ𝑖 = 𝑓(𝑥𝑖 , ℎ𝑖−1)    (1) 374 

𝛼𝑜,𝑖 =
𝑒𝜑(𝑠𝑜−1,ℎ𝑖)

∑ 𝑒𝜑(𝑠𝑜−1,ℎ𝑖′)
𝑖′

    (2) 375 

 𝑐𝑜 = ∑ 𝛼𝑜,𝑖ℎ𝑖

𝑙

𝑖=1

    (3) 376 

𝑠𝑜 = 𝑓(𝑦𝑜−1, 𝑠𝑜−1,  𝑐𝑜)    (4) 377 

To further optimize the model for the task at hand, three model design practices were followed. First, an 378 

RNN alternative – the LSTM [58] was used to alleviate the vanishing gradient problem during the 379 

training of the RNN-based models. Second, the bidirectional architecture was used in the encoder – both 380 

the forward and backward tokens instead of only the forward one were considered when learning the 381 

feature representations for the current token [59], in order to improve the ability of the RNN-based 382 

models to deal with long-term dependencies in the requirement sentences. Third, the attention mechanism 383 

[57] was adopted in the model to incorporate the correlation between the tokens in the input sequence and 384 

the tokens in the output sequence in an attentive read vector representation, which replaces the fixed-385 

length vector representation, for better handling of long sentences. 386 
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 387 
Fig. 4.   Encoder-decoder model for requirement unit-to-text generation. 388 

6.2.2 Model training 389 

The following four training practices were followed. First, for optimizing the model parameters, 390 

perplexity was chosen as the loss function and was minimized during the training process. Perplexity is 391 

defined as the inverse probability of the training sentences given a language model (e.g., the encoder-392 

decoder model), normalized by the number of tokens in the training sentences [60]. Second, for 393 

determining the best values of the hyperparameters for both model structure and model training, the 394 

training data was split into a 9:1 ratio for model training and validation, respectively. Third, for improving 395 

computational efficiency, the training process was stopped at 20 epochs or when the change of the value 396 

of the loss function (i.e., perplexity) between two consecutive training epochs was less than the threshold. 397 

Fourth, for improving the sentence generation performance, the model learning rate was gradually 398 

decreased during the training process [51].  399 

6.3 Intelligent building-code requirement generation 400 

The method for generating intelligent building-code requirements includes three steps, as illustrated in Fig. 401 

3: requirement sentence segment generation, semantic linking, and requirement configuration.   402 

6.3.1 Requirement sentence segment generation 403 

For each unit in the input requirement hierarchy, a corresponding sentence segment was generated using 404 

the trained requirement unit-to-text generation model (see Step 1, Fig. 3). Given its surface form, first, a 405 

requirement unit was converted into its background form. Second, the background form was encoded into 406 

a vector representation by the encoder of the trained requirement unit-to-text generation model. Third, the 407 
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vector representation was decoded to generate the output sentence segment [which is composed of a 408 

sequence of tokens (words, numbers, and punctuations)] successively by the decoder of the model. Each 409 

time, for the decoder to generate a new token, two steps were followed: (1) a classifier g (e.g., a 410 

multilayer neural network with a softmax function) is applied to the decoder state, context vector, and the 411 

previously generated token to compute a probability distribution 𝑝(𝑦𝑜) = 𝑔(𝑦𝑜−1, 𝑠𝑜, 𝑐𝑜)  over the 412 

vocabulary; and (2) the beam search algorithm [61] keeps track of the best candidate sentence segments in 413 

terms of probability, until all the candidates reach the “end of a sentence” token, and returns the candidate 414 

sentence segment with the highest probability.  415 

6.3.2 Semantic linking 416 

This step aims to further link each token in the generated sentence segments to the SIEs in the 417 

requirement units (see Step 2, Fig. 3), using two sub-steps. First, semantic correspondence scores are 418 

calculated using the unit-to-text model. Each score measures the correspondence between a token in the 419 

sentence segment and a token in an SIE in the requirement unit according to the copying mechanism in 420 

the unit-to-text generation model [38]. The copying mechanism refers to the computational mechanism 421 

that locates the input tokens and places these tokens into the output sequence, thereby generating the 422 

output sentence [38]. As per Eq.(5), for each token to at position o in the generated sentence segment and 423 

each token ti at position i in the SIEs (in the background form of the input requirement unit), the semantic 424 

correspondence score 𝑠𝑐𝑜𝑟𝑒𝑜,𝑖 equals to the similarity between a linear projection (denoted by W) of the 425 

input and output RNN states (denoted by hi and so, which correspond to the input background form and 426 

the output sentence segment) of the model. The hyperbolic tangent function (tanh) was adopted because 427 

compared to other types of activation functions (e.g., sigmoid and rectified linear unit), tanh typically 428 

achieves higher computational performance when used in RNN-based models [62]. 429 

𝑠𝑐𝑜𝑟𝑒𝑜,𝑖 = tanh(ℎ𝑖𝑊𝑠𝑜)    (5) 430 

Second, based on the calculated correspondence scores, for a token to in the generated sentence segment, 431 

the candidate semantic token tp in the SIEs is determined by finding the argument of the maxima of the 432 
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semantic correspondence scores, as per Eq.(6). The final semantic token r equals to tp, if tp is not a 433 

syntactic token, in which case a semantic correspondence key is generated to link to to the SIE. Otherwise, 434 

r is void, and to is not linked to any SIEs, as per Eq.(7), where S is the set of all types of syntactic tokens 435 

used in the requirement hierarchy (i.e., brackets and vertical bars). For example, in the generated sentence 436 

segment “landings are permitted to be 914 mm minimum” in Fig. 3, “landings” is linked to the first SIE 437 

“subject: landings”, whereas “are” is not linked to any of the SIEs in the requirement hierarchy. 438 

𝑝 = argmax
0<𝑖≤𝑙

𝑠𝑐𝑜𝑟𝑒𝑜,𝑖       (6) 439 

𝑟 = {
𝑡𝑝,   𝑖𝑓 𝑡𝑝 ∉ 𝑆

void,   𝑖𝑓 𝑡𝑝 ∈ 𝑆 
     (7) 440 

6.3.3 Requirement configuration 441 

This step aims to combine the generated sentence segments into a whole requirement using a depth-first 442 

insertion and concatenation algorithm. Starting at the main requirement unit (i.e., the requirement unit that 443 

does not serve as a restriction to any other units), the algorithm recursively builds up the whole 444 

requirement using the sentence segments of restriction units. In each recursion (as per Fig. 5), a partial 445 

sentence (PS) of the current unit is updated by inserting the PS of the restriction unit to the PS of the 446 

current unit (when the two units share one or more SIEs) or concatenating the PSs of the current and 447 

restriction units (when the two units do not share an SIE). For example, in the requirement configuration 448 

example shown in Fig. 6, the current unit RU2 and the restriction unit RU3 share “Group R-2 individual 449 

dwelling units”. Accordingly, the PS of RU3 (“Group R-2 individual dwelling units that are not required 450 

to be Accessible units”) is inserted in the PS of RU2 (“landings in Group R-2 individual dwelling units”), 451 

resulting in the following updated PS: “landings in Group R-2 individual dwelling units that are not 452 

required to be Accessible units”. A recursion ends when all the restriction units of the current unit are 453 

processed. The algorithm returns the PS of the main unit as the whole requirement. 454 
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  455 
Fig. 5. Depth-first insertion and concatenation algorithm for requirement configuration.  456 
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  457 
Fig. 6. Example to illustrate requirement configuration.  458 

7 Experimental results and analysis 459 

Three sets of experiments were conducted to (1) optimize the deep learning-based requirement unit-to-460 

text generation model in the proposed intelligent code generation method; (2) test if the proposed MFS 461 

requirement hierarchy representation and the semantic correspondence score with the copying mechanism 462 

are effective in improving the model’s ability to generate the intelligent code; and (3) test the flexibility of 463 

the proposed method, i.e., test the comprehensibility and semantic linking of the generated intelligent 464 

requirements across different types of codes/standards and requirements with different computability 465 

levels.  466 

In testing and evaluating the proposed method, the requirement hierarchies in the gold standard data (see 467 

Section 6.1.3) were used as the input to the proposed method. The generated requirement sentences were 468 
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then compared against the gold standard sentences and evaluated using a set of metrics (see Section 7.1). 469 

An example of the gold standard sentences, the requirement hierarchies, and the generated sentences for 470 

illustrating the evaluation process is shown in Fig. 7).  471 

 472 
Fig. 7. Example generated requirement and its corresponding gold standard requirement. 473 

7.1 Evaluation metrics 474 

The generated intelligent requirements were evaluated in terms of both (1) comprehensibility of the 475 

generated natural-language requirements, and (2) semantic linking correctness of the intelligent 476 

requirement (i.e., correctness of the semantic correspondence between the natural-language requirements 477 

and the requirement hierarchy representation).  478 

7.1.1 Evaluation of generated natural-language requirements 479 

The generated natural-language sentences were evaluated in terms of adequacy and fluency.  Based on 480 

Papineni et al. [63], a generated sentence that uses same/similar words (unigrams) as the gold standard 481 

sentence tends to satisfy adequacy; and a generated sentence that has n-gram matches with the gold 482 

standard sentence tends to satisfy fluency. Both adequacy and fluency are used together as indicators of 483 

the comprehensibility of the natural language [63]. Two metrics were used to measure adequacy and 484 
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fluency: bilingual evaluation understudy (BLEU) and recall-oriented understudy for gisting evaluation 485 

(ROUGE).  486 

BLEU [63] measures the number of matches between the n-grams (continuous sequences of n tokens 487 

including words, numbers, and punctuations, e.g., bigram is a sequence of two adjacent tokens) in the 488 

generated sentences and the n-grams in the gold standard sentences. BLEUN is a modified metric that 489 

measures the precision of matching using weighted average; it is the weighted average of the n-gram 490 

precisions 𝑝𝑛 [e.g., weighted average of unigram precision (p1) and bigram precision (p2)], as per Eq.(8) 491 

[63], where 𝑤𝑛 is the weight of 𝑝𝑛, N is the length of the longest n-gram in calculating n-gram precisions, 492 

and b is a brevity penalty. Here, 𝑝𝑛 is measured using Eq.(9), where, for one generated sentence, mn is the 493 

number of n-grams that are in both the generated sentence and the gold standard sentence (e.g., number of 494 

2-gram matches) and GMn is the total number of n-grams in the generated sentence (e.g., total number of 495 

2-grams). The brevity penalty aims to penalize generated sentences that are briefer than the gold standard 496 

sentences., as per Eq.(10), where s is the length of the generated sentence and r is the length of the gold 497 

standard sentence. A high BLEU indicates that the generated sentences align well to the gold standard 498 

sentences, and thus the generated sentences have high comprehensibility (e.g., [64-66]). In this paper, 499 

BLEU1 and BLEU2 (i.e., 𝑁 ∈ {1, 2}) and uniform weights (i.e., 𝑤1 = 1 for BLEU1, and 𝑤1 = 𝑤2 = 0.5 500 

for BLEU2) were used. 501 

BLEU𝑁 =  𝑏 exp (∑ 𝑤𝑛 𝑙𝑜𝑔 𝑝𝑛

𝑁

𝑛=1

)    (8) 502 

𝑝𝑛 =    
𝑚𝑛

𝐺𝑀𝑛
     (9) 503 

𝑏 = {
1               if 𝑠 > 𝑟 
𝑒1−𝑠 𝑟⁄      if 𝑠 ≤ 𝑟

     (10) 504 

ROUGE [67] also measures matches between the n-grams in the generated sentences and the n-grams in 505 

the gold standard sentences. ROUGEn specifically measures the weighted harmonic mean of the n-gram 506 

precision (pn) and recall (rn) [e.g., the harmonic mean of the unigram precision (p1) and unigram recall 507 

(r1)], as per Eq.(11), where 𝛽 is the weighting factor. Here, 𝑟𝑛 is measured using Eq.(12), where, for one 508 
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generated sentence, mn is the number of n-grams that are in both the generated sentence and the gold 509 

standard sentence (e.g., number of unigram matches), and SMn is the total number of n-grams in the gold 510 

standard sentence (e.g., total number of unigrams). A high ROUGE indicates that the generated sentences 511 

align well to the gold standard sentences, and thus the generated sentences have high comprehensibility 512 

(e.g., [11,38,68]). In this paper, ROUGE1 and ROUGEl (i.e., 𝑛 ∈ {1, 𝑙}) were used, with the weighting 513 

factor 𝛽 = 1  for ROUGE1 and 𝛽 = 𝑝𝑙/𝑟𝑙  for ROUGEl [67], where l is the longest n-gram matched 514 

between the two sentences. 515 

ROUGE𝑛 =  
(1 + 𝛽2)𝑟𝑛𝑝𝑛

𝑟𝑛 + 𝛽2𝑝𝑛
     (11) 516 

𝑟𝑛 =     
𝑚𝑛

𝑆𝑀𝑛
     (12) 517 

7.1.2 Evaluation of semantic links between natural language and semantic representation 518 

Precision, recall, and F1 measure were used to evaluate the semantic linking [i.e., the linking of the tokens 519 

(words, numbers, and punctuations) of the generated sentence segments to the SIEs in the requirement 520 

units, as in Section 6.3.2)], as per Eqs.(13)-(15), where TP is the number of true positives (i.e., number of 521 

tokens that are correctly linked), FP is the number of false positives (i.e., number of tokens that are 522 

incorrectly linked), and FN is the number of false negatives (i.e., number of tokens that are not linked but 523 

should have been). TP, FP, and FN were calculated based on the expert annotations (see Section 6.3.1). 524 

Perfect (100%) precision, recall, and F1 measure indicate that all generated natural-language requirements 525 

are perfectly corresponding to all input requirement hierarchies (i.e., SIEs in the requirement hierarchies). 526 

Precision =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃 
      (13) 527 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
     (14) 528 

F1 measure = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
     (15) 529 

 530 

 531 

 532 
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7.2 Hyperparameter optimization 533 

The requirement unit-to-text generation model was trained using Tensorflow built in Python 3, and run 534 

using the Tesla K80 GPU provided in the Google Colaboratory. The values of the main hyperparameters 535 

for requirement generation are shown in Table 2. The values of the hyperparameters were determined 536 

based on: (1) the cross-validation performance of the grid search over different values [e.g., three 537 

numbers (one, two, and four) of RNN layers were tested in cross-validation, and two was selected 538 

because the model with two RNN layers achieved the best performance]; (2) the characteristics of the 539 

building-code sentences used in the experiments (e.g., the maximum length of input sentences is set as 540 

100 based on the corpus used); or (3) the practices in the referenced papers that use RNN-based sequence-541 

to-sequence model in data-to-text generation (e.g., the batch size for the training data was determined 542 

following [38]). 543 

Table 2. Main Hyperparameters for Requirement Generation 544 
Hyperparameter Value 

Model structure hyperparameters 
Number of recurrent neural network (RNN) layers in each of the 
encoder and decoder 

2 

Number of RNN units in each layer 512 
Type of RNN unit Long short term memory (LSTM) 
Maximum length of requirement sentence 100 
Model training hyperparameters 
Recurrent dropout rate 0.2 
Batch size for training data 32 
Size of gradient normalization 5 

The model structure was optimized. For example, different numbers of RNN layers and units in each 545 

layer were tested. Three numbers of RNN layers were tested: one (shallow), two (medium), and four 546 

(deep). Three numbers of RNN units in each layer were tested: 128 (small), 256 (medium), and 512 547 

(large). The model with medium model depth and large layer size achieved the best performance, in terms 548 

of both natural-language requirement comprehensibility and semantic linking, indicating that the model 549 

with medium model depth and large layer size is most suitable for the scale of the training data used – 550 

7,500 sentences. For a training dataset significantly different in scale than this dataset, other model sizes 551 

could be tested and used.  552 
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The model training process was optimized. For example, three recurrent dropout rates were tested: 0, 0.2, 553 

and 0.4. The model achieved the highest performance when the recurrent dropout rate was set as 0.2, in 554 

terms of both requirement sentence comprehensibility and semantic linking, which indicates that models 555 

with no or very little dropout might overfit to the training data used whereas models with large dropout 556 

might underfit to the data.  557 

7.3 Ablation analysis 558 

7.3.1 Impact of semantic representation   559 

To evaluate the proposed representation (i.e., the MFS requirement hierarchy), we tested an additional 560 

representation for the input, an SIE-based template representation, to serve as a baseline for comparative 561 

evaluation Each of the templates consists of a series of slots corresponding to the SIEs. For example, a 562 

template for quantitative requirement units consists of six types of slots that are corresponding to the 563 

following SIEs: compliance checking attribute, subject, subject relation, comparative relation, quantity 564 

value, quantity unit. To form the input to the requirement unit-to-text generation model using a template, 565 

the slots in the template were filled with the input SIEs accordingly. Thus, compared to the input in the 566 

form of the requirement hierarchy, the input generated using the templates has the same semantic 567 

information (i.e., the same set of SIEs) but different representation structures (i.e., it is a flat structure 568 

without defining units and linking the units into the requirement hierarchy). The same optimized 569 

hyperparameters (as shown in Table 2) and training and testing data were used for this experiment.  570 

As shown in Table 3, the proposed representation achieved better performance. In terms of natural-571 

language requirement comprehensibility, it outperformed the baseline representation by 3.1% in BLEU1, 572 

3.7% in BLEU2, 3.2% in ROUGE1, and 2.1% in ROUGEl. In terms of semantic linking, it outperformed 573 

the baseline by 3.4% in precision, 2.5% in recall, and 2.9% in F1 measure. The results indicate that the 574 

proposed representation better captured the hierarchically complex semantic and syntactic structures in 575 

the requirements, which helped improve the model’s ability to generate the intelligent code. 576 
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Table 3. Impact of Proposed Semantic Representation on Intelligent Code Generation 577 

Representation 
Natural-language requirement 

comprehensibility 
Semantic linking 

BLEU1 BLEU2 ROUGE1 ROUGEl Precision Recall F1 measure 

Proposed 
representation (MFS 

requirement hierarchy) 
94.2% 90.5% 95.6% 93.1% 91.9% 92.3% 92.1% 

Baseline representation 
(template representation) 91.1% 86.8% 92.4% 91.0% 88.5% 89.8% 89.2% 

1Bolded font indicates the highest performance. 578 

7.3.2 Impact of semantic correspondence measurement and copying mechanism  579 

Two different intelligent code generation methods with their models were tested for comparative 580 

evaluation: using the proposed correspondence score with the copying mechanism in the model (the 581 

proposed method) and without using any of the correspondence score or the copying mechanism in the 582 

model but only the RNN-based encoder-decoder model [Eqs.(1)-(4)] (the baseline). The alignment 583 

weights [Eq.(2)] of the model were used instead for semantic linking: the token in the output sentence 584 

segment is linked to the input token that has the highest alignment weight [57]. The same optimized 585 

hyperparameters (as shown in Table 2) and training and testing data were used for this evaluation.  586 

As shown in Table 4, the proposed method achieved better performance. In terms of natural-language 587 

requirement comprehensibility, it outperformed the baseline method by 17.0% in BLEU1, 18.9% in 588 

BLEU2, 15.1% in ROUGE1, and 14.6% in ROUGEl. In terms of semantic linking, it outperformed the 589 

baseline method by 13.3% in precision, 12.9% in recall, and 13.1% in F1 measure. The results indicate 590 

that the proposed semantic correspondence score and the adopted copying mechanism helped improve the 591 

model’s ability to generate the intelligent code. 592 

 593 

 594 

 595 
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Table 4. Impact of Correspondence Score and Copying Mechanism on Intelligent Code Generation 596 

Method 
Natural-language requirement 

comprehensibility 
Semantic linking 

BLEU1 BLEU2 ROUGE1 ROUGEl Precision Recall F1 measure 

Proposed method (using 
correspondence score 
and copying mechanism) 

94.2% 90.5% 95.6% 93.1% 91.9% 92.3% 92.1% 

Baseline method (not using 
correspondence score and 
copying mechanism) 

77.2% 71.6% 80.5% 78.5% 78.6% 79.4% 79.0% 

 1Bolded font indicates the highest performance. 597 

7.4 Flexibility analysis 598 

7.4.1 Performance across different types of codes and standards 599 

To test the flexibility of the proposed method, i.e., test its performance across different regulatory 600 

documents, the proposed method was used to generate three different types of intelligent requirements: 601 

using MFS requirement hierarchies developed based on IBC, IECC, and ADA Standards. This is 602 

important to evaluate, because requirements in different codes/standards typically have different semantic 603 

and syntactic structures (e.g., terminology, vocabulary, and sentence length). As shown in Table 5, the 604 

proposed method achieved consistently high performance across all three types of codes/standards, in 605 

terms of both natural-language requirement comprehensibility (i.e., over 80.0% for all BLEU and 606 

ROUGE scores) and semantic linking (i.e., over 88% for precision, recall, and F1 measure), indicating 607 

that the approach has a good level of flexibility in dealing with different types of codes/requirements.  608 

Table 5. Performance of the Proposed Approach Across Different Types of Codes/Requirements 609 

Code/standard 
Natural-language requirement 

comprehensibility Semantic linking 

BLEU1 BLEU2 ROUGE1 ROUGEl Precision Recall F1 measure 
International Building 
Code (IBC) 96.2% 91.0% 96.2% 94.4% 93.4% 95.2% 94.1% 

International Energy 
Conservation Code 
(IECC) 

86.1% 80.3% 88.5% 85.4% 88.9% 89.5% 89.2% 

Americans with 
Disabilities Act Standards 
for Accessible Design 
(ADA Standards) 

87.7% 80.8% 90.4% 84.0% 89.6% 90.1% 89.8% 

        610 
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7.4.2 Performance across different levels of computability 611 

To further evaluate its performance with respect to requirement computability, the proposed method was 612 

used to generate intelligent requirements with three different levels of computability: moderately high, 613 

moderately low, and low. These are the top three types of sentences that appear most frequently in 614 

building codes in terms of computability (e.g., they account for 22%, 39%, and 23% of a corpus of 615 

sentences from IBC and its amendments, respectively) [53]. The lower the level of computability, the 616 

more complex the semantic and syntactic structures of the sentences.  617 

As shown in Table 6, the proposed method achieved consistently high performance (i.e., over 85% for all 618 

BLEU and ROUGE scores, and over 88% for precision, recall, and F1 measure) across all three 619 

computability levels, in terms of both natural-language requirement comprehensibility and semantic 620 

linking, indicating that the method has a good level of flexibility in generating requirements of various 621 

levels of computability. Also, all three selected types of requirements have hierarchical complex semantic 622 

and syntactic structures [3,53], indicating that the method is able to deal with such structures effectively. 623 

Table 6. Performance of the Proposed Approach Across Different Code Computability Levels 624 
Computability of 

requirements 

Natural-language requirement 
comprehensibility 

Semantic linking 

BLEU1 BLEU2 ROUGE1 ROUGEl Precision Recall F1 measure 
Moderately high  92.2% 88.4% 95.0% 90.6% 92.3% 93.6% 93.2% 
Moderately low 89.0% 85.5% 91.4% 87.3% 88.3% 89.2% 88.6% 
Low 91.6% 85.4% 92.9% 89.4% 89.6% 90.1% 89.8% 

 625 

7.5 Comparison to a rule-based method 626 

The rule-based method for NLG based on structured data by Bauer et al. [69] was used to serve as a 627 

baseline method for comparative evaluation of the generated natural language requirements (no semantic 628 

linking is needed for the rule-based approach because the generated sentences are directly constructed 629 

using the input SIEs, hence the comparison of semantic linking is not relevant).  630 

Only the sentences from the IBC were used when developing the rules, to make the rule-based method 631 

and the proposed method, which was trained on sentences from the IBC only, comparable. Example rules 632 
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include: (1) Sentence subject rule: “IF (S is NOT None) AND (A is NOT None), THEN  (Ssub = TA + “of” 633 

+ TS OR Ssub = TS + “with” + TA”); (2) Sentence quantity rule: “IF (C is NOT None) AND (QV is NOT 634 

None) & (QU is NOT None), THEN Sq = TC + TQV + TQU”; (3) Sentence predicate rule:  “IF (Ssub is NOT 635 

None) AND (SR is NOT None) AND (Sq  is NOT None), THEN S = Ssub + TSR + Sq”,  where Ssub, Sq, S, 636 

are the partial sentences built using the sentence subject rule, sentence quantity rule, and sentence 637 

predicate rule, respectively; TA, TS, TC, TQV, TQU, TSR are the textual input corresponding to compliance 638 

checking attribute (A), subject (S), comparative relation (C), quantity value (QV), quantity unit (QU), and 639 

subject relation (SR), respectively.  640 

As shown in Table 7, the proposed method achieved better performance. In terms of natural-language 641 

requirement comprehensibility, it outperformed the baseline method by 29.0% in BLEU2, 7.4% in 642 

ROUGE1, and 36.9% in ROUGEl. The baseline’s drop in ROUGEl is because compared to the gold 643 

standard sentences, although the sentences generated by the baseline method consist of a similar set of 644 

words, they are organized in a different way that is semantically less meaningful/correct, especially when 645 

the sentences have complex syntactic or semantic structures, as shown in the following example. 646 

Compared to the baseline method, the proposed method generated sentences that (1) capture more words 647 

that are seen in the gold standard sentences (indicated by the higher ROUGE1), and (2) share similar 648 

semantic and syntactic structures with gold standard sentences (indicated by the higher BLEU2 and 649 

ROUGEl), as shown in the examples in Table 8.   650 

Table 7. Impact of Correspondence Score and Copy Mechanism on Intelligent Code Generation 651 

Method 
Natural-language requirement 

comprehensibility  
BLEU1 BLEU2 ROUGE1 ROUGEl 

Proposed method  94.2% 90.5% 95.6% 93.1% 

Baseline method 99.3% 61.5% 88.2% 56.2% 
 1Bolded font indicates the highest performance. 652 

 653 

 654 
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Table 8. Example Gold Standard and Generated Requirement Sentences 655 
Example Requirement source Requirement sentence 

Example 1 

Generated by the 
baseline method 

“maximum 19 mm height of existing or altered thresholds with slope not 
steeper than 0.5 have beveled edge on each side shall not be required with 
404.2.5” 

Generated by the 
proposed method 

“existing or altered thresholds 19 mm high maximum that have a beveled 
edge on each side with not steeper than 1:2 slope shall not be required to 
comply with the 404.2.5” 

Gold standard 
“existing or altered thresholds 19 mm high maximum that have a beveled 
edge on each side with a slope not steeper than 1:2 shall not be required to 
comply with 404.2.5” [70] 

Example 2 

Generated by the 
baseline method 

“with area of not more than 22500 square feet from any point in smoke 
compartment to smoke barrier door and travel distance shall not exceed 
200 feet such stories shall be divided into smoke compartments”  

Generated by the 
proposed method 

“such stories shall be divided into the smoke compartments with an area of 
not more than 22500 square feet and travel distance from any point in the 
smoke compartment to a smoke barrier door shall not exceed 200 feet” 

Gold standard 

“such stories shall be divided into smoke compartments with an area of not 
more than 22500 square feet and the travel distance from any point in a 
smoke compartment to a smoke barrier door shall not exceed 200 feet” 
[52] 

7.6 Error analysis 656 

Four main sources of sentence generation errors were identified based on the analysis of the experimental 657 

results: training and testing corpus noises, training data annotation errors, out-of-vocabulary tokens, and 658 

structural complexity. First, the training and testing corpus were developed using regulatory documents 659 

crawled from webpages and converted from PDF files, resulting in addition of noise during the data 660 

crawling and conversion processes. For example, building codes typically contain a significant amount of 661 

non-textual data such as tables and equations, some of which are difficult to be separated from the 662 

requirement sentences and thus remain in the text files as noise. Second, the training data that were used 663 

to train and evaluate the requirement unit-to-text generation model have errors, because they were 664 

automatically annotated by pretrained regulatory information extraction models, which have not achieved 665 

perfect (100%) performance. For example, the pretrained models tend to have errors in dealing with 666 

multiword expressions (e.g., “path of egress”), each of which shall be annotated as a single SIE but could 667 

be mistakenly annotated as two (e.g., “of” in the subject “path of egress” is not corrected linked). Third, 668 

the requirement unit-to-text generation model in the proposed method could generate flawed requirement 669 
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sentence segments when the input requirement hierarchy contains out-of-vocabulary words (i.e., words 670 

not contained in the training data). For example, during testing, the method performed worse on 671 

requirements from IECC than those from ADA Standards and IBC because IECC has a relatively 672 

different vocabulary than those of ADA Standards and IBC. For instance, the proposed method failed 673 

when dealing with the compliance checking attribute (“area-weighted average maximum fenestration U-674 

factor”), the quantitative values and units, and the reference (“tradeoffs from Section R402.1.5 or R405”) 675 

in the gold standard “the area-weighted average maximum fenestration U-factor permitted using tradeoffs 676 

from Section R402.1.5 or R405 shall be 0.48 in Climate Zones 4 and 5 and 0.40 in Climate Zones 6 677 

through 8 for vertical fenestration, and 0.75 in Climate Zones 4 through 8 for skylights” [71].  Fourth, the 678 

requirement-to-text generation model in the method could generate flawed requirement sentence 679 

segments when the target requirements have very high structural complexity. For example, the model 680 

might fail when dealing with sentence characteristics that indicate high syntactic complexity (e.g., 681 

complex noun phrases, verb phrases, and preposition phrases, and clauses of different types) or high 682 

semantic complexity (e.g., having multiple references and restrictions). For instance, the proposed method 683 

failed to capture the multiple subjects (e.g., “treatment rooms”) and the compliance checking attribute 684 

(“aggregate area”) in the gold standard “the aggregate area of corridors, patient rooms, treatment rooms, 685 

lounge or dining areas and other low-hazard areas on each side of each smoke barrier” [52], which is 686 

represented within a very complex noun and preposition phrase. 687 

8 Limitations 688 

Two limitations of the research are acknowledged. First, although the proposed method has been well 689 

supported by the proposed requirement hierarchy, further research is needed to study the usability of the 690 

proposed NLG-based approach when used in generating new requirements (i.e., new requirements, which 691 

are not in existing codes). In future work, the authors plan to develop a user-friendly BIM-integrated 692 

graphical user interface for capturing user input (i.e., the semantic information for the requirement 693 

hierarchies) and to study the usability of the proposed approach using such an interface. When 694 
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transforming existing codes to intelligent codes, no user input is needed, and the requirement hierarchies 695 

could be automatically generated using existing algorithms [31,54]. Second, although the proposed 696 

representation and method showed successful performance on requirements with different levels of 697 

computability and from different building codes and standards, the testing and evaluation did not cover all 698 

possible types of requirements, especially the challenging ones such as requirements that have hidden 699 

dependencies or assumptions, requirements that have ambiguities and require human judgment by nature, 700 

and requirements that have very complex syntactically and semantically structures. Further research is, 701 

thus, needed to (1) study the limit of the machine learning-based approach in the intelligent code 702 

generation, (2) better understand the benefits and challenges of machine learning-based methods 703 

compared to rule-based methods, especially when dealing with these challenging types of requirements, 704 

and (3) further refine, improve, and adapt the proposed representation and method based on these findings. 705 

9 Contribution to the body of knowledge 706 

This research is important from both intellectual and application perspectives. From an intellectual 707 

perspective, this research contributes to the body of knowledge in three primary ways. First, this research 708 

proposes a novel NLG-based approach for intelligent building code representation. It models intelligent 709 

requirements as natural-language requirements connected with their corresponding multi-form semantic 710 

(MFS) requirement hierarchies. The MFS requirement hierarchy is a new semantic representation of 711 

requirements for representing, analyzing, and generating requirements, especially the hierarchically 712 

complex ones. Its two forms, the forward and backward forms, support automated generation of 713 

intelligent code by facilitating the capturing of the semantic and syntactic structures of the requirements 714 

and the automated conversion and linking of the structured semantic information into natural-language 715 

sentences. The proposed intelligent code can circumvent the error-prone information extraction and 716 

transformation processes in the ACC systems and bring together the comprehensibility of the natural 717 

language with the computer-processability of the semantic representations. Second, this research is the 718 

first effort to automatically generate intelligent code given the regulatory information that defines the 719 
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requirements. It proposes a deep learning and NLG-based method, where an RNN-based sequence-to-720 

sequence model is adopted to generate requirement sentence segments and a semantic correspondence 721 

score with a depth-first insertion and concatenation algorithm is defined to connect the segments into 722 

whole requirements. The experimental results show that the proposed method achieved consistent 723 

performance across intelligent requirements from different codes/standards and with different levels of 724 

computability (i.e., from high to low computability), in terms of both natural language requirement 725 

comprehensibility and semantic linking correctness. Third, it offers an approach for generating intelligent 726 

code, with minimal development effort. The proposed method achieves competitive performance 727 

compared to semantic and rule-based methods, while eliminating the need for handcrafting rules for 728 

generating intelligent code. It further minimizes the manual effort for creating annotated data in training 729 

the deep learning-based NLG models by leveraging pretrained domain-specific information extraction 730 

and semantic relation extraction models and rules to automatically create large-scale annotated data to 731 

train the requirement unit-to-text model.   732 

From a practical perspective, first, the proposed intelligent code could help reduce ACC errors, improve 733 

requirement comprehensibility, and facilitate intelligent analytics of building codes. All would lead to 734 

enhanced project efficiency (e.g., by reducing time and cost of ACC) and fewer violations of building 735 

codes and standards. Second, the application of the proposed NLG-based approach could be extended to 736 

support many other applications and purposes such as automated generation of contract documents like 737 

specifications and agreements, project planning documents like site plans, and progress reports. We can 738 

envision many more applications of NLG in the AEC domain if combined with other artificial 739 

intelligence (AI) approaches, like computer vision (e.g., automated generation of progress reports based 740 

on site images). 741 

10 Conclusions and future work 742 

In this paper, a deep learning-based approach for generating intelligent building codes was proposed. First, 743 

a new semantic representation of requirements, multi-form semantic (MFS) requirement hierarchy, was 744 
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proposed to support seamless and automated natural-language requirement generation. An MFS 745 

requirement hierarchy represents a requirement in a hierarchical structure that consists of requirement 746 

units and the relations between these units. Each requirement unit is further defined by several SIEs, such 747 

as subject, compliance checking attribute, quantity value, and quantity unit. The requirement hierarchy is 748 

represented in two supplementary forms: the surface form, which shows the units, relations, and SIEs and 749 

thus can be used for requirement editing and development purposes, and the background form, which 750 

shows the predicate-argument structures of the SIEs in a sequential format that can be directly fed into the 751 

deep learning unit-to-text model for requirement generation purpose. Second, an intelligent code was 752 

defined as a set of natural-language requirements connected with their corresponding requirement 753 

hierarchies. An intelligent requirement consists of three parts – the natural-language requirement, its 754 

corresponding requirement hierarchy, and the semantic correspondence keys that indicate the 755 

correspondence between the requirement hierarchy and the natural-language requirement. Third, a deep 756 

learning and semantic NLG-based method for generating intelligent building-code requirements was 757 

proposed, which consists of three primary steps, requirement sentence segments generation, semantic 758 

linking, and requirement configuration. 759 

The requirement unit-to-text generation model was trained on training data automatically annotated using 760 

pretrained information extraction models, which consist of 7,500 sentences, and tested on testing data 761 

manually created that consisted of 600 sentences. Requirement sentence segments were generated using 762 

the trained model, linked to the MFS requirement hierarchies based on semantic correspondence scores 763 

and keys, and then configured into whole intelligent requirements. The comprehensibility of the generated 764 

natural-language requirements was then evaluated using BLEU and ROUGE metrics, and the semantic 765 

linking correctness of the links was evaluated using precision, recall, and F1 measure. A BLEU1 of 94.2%, 766 

BLEU2 of 90.5%, ROUGE1 of 95.6%, and ROUGEl of 93.1%, and a precision of 91.9%, recall of 92.3%, 767 

and F1 measure of 92.1% were achieved, with the optimized hyperparameters. The ablation analysis 768 

results indicate that the proposed requirement hierarchy and the proposed semantic correspondence 769 
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measurement, along with the adopted copying mechanism, are effective in generating intelligent code. 770 

The flexibility analysis results indicate that the proposed method performed consistently on requirements 771 

from different types of codes/standards and with different levels of computability from high (with 772 

relatively simple semantic and syntactic structures) to low (with relatively complex semantic and 773 

syntactic structures).  774 

In future work, the authors plan to focus on improving the proposed intelligent code and the generation 775 

method in three directions. First, the authors will explore the alignment of the proposed semantic 776 

representation (i.e., the MFS requirement hierarchy) with the IFC schema. This would require the 777 

matching and alignment of the regulatory concepts and the BIM/IFC concepts, using a machine learning-778 

based, rule-based, or hybrid approach, along with an ontology to support the semantic similarity analysis 779 

and matching. Such alignment efforts could also be further incorporated within the intelligent code 780 

generation process to have the resulting intelligent code readily aligned with the BIM. This would help 781 

add an additional layer of intelligence for the code, which would not only be both human-comprehensible 782 

and computer-understandable but also intelligently aligned with the BIM. Second, the deep learning-783 

based requirement sentence segment generation model could be improved by exploring different types of 784 

model structures, such as transformer-based models (e.g., Bidirectional Encoder Representations from 785 

Transformers) and model hyperparameters (e.g., activation functions such as ReLU and GeLU), and 786 

incorporating more diversified syntactic and semantic patterns in the training data (e.g., including 787 

different types of regulatory documents). Third, and most importantly, the authors will conduct additional 788 

studies to further evaluate the practicality (e.g., in terms of time and cost) of using the proposed approach 789 

in transforming natural-language building codes into intelligent codes, and combine the proposed 790 

intelligent code with downstream ACC processes (e.g., BIM-regulatory information alignment and 791 

semantic representation-based compliance reasoning) and existing semantic representations of 792 

requirements (e.g., logic) in an integrated ACC system. Our ultimate goal is to leverage NLG, deep 793 

learning, and other artificial intelligence approaches to reach a level where we can automatically and 794 
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effectively generate and use intelligent building codes for supporting fully automated compliance 795 

checking and other intelligent analytics processes in the AEC domain.  796 
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