
1

 Natural language generation and deep learning for intelligent building codes 1

Ruichuan Zhanga; and Nora El-Goharyb 2

a Graduate Student, Department of Civil and Environmental Engineering, University of Illinois at Urbana-3
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States. E-mail: rzhang65@illinois.edu. 4

b Associate Professor, Department of Civil and Environmental Engineering, University of Illinois at Urbana-5
Champaign, 205 N. Mathews Ave., Urbana, IL 61801, United States (corresponding author). E-mail: 6

gohary@illinois.edu; Tel: +1-217-333-6620. 7

Abstract 8

Many existing ACC systems require the processes of extracting regulatory information from natural 9

language building-code requirements and transforming the extracted information into computer-10

processable semantic representations. These processes could, however, be jeopardized by the ambiguous 11

nature of the natural language and the hierarchically complex structures of building-code requirements. 12

To address this problem, this paper proposes the concept of intelligent building code for bypassing the 13

error-prone information extraction and transformation processes. In the proposed intelligent code, the 14

natural-language requirements in the code are connected with highly structured computer-understandable 15

semantic information, which is represented in the form of semantic requirement hierarchies and can be 16

readily used by computers for ACC. The paper also proposes a deep learning-based method to 17

automatically generate such intelligent code. The method leverages the requirement hierarchy 18

representation, a proposed deep learning unit-to-text model for generating requirement sentence segments, 19

and a proposed semantic correspondence score for configuring the segments into requirement sentences. 20

The method was implemented and tested on a dataset from multiple regulatory documents. The generated 21

intelligent requirements were evaluated in terms of both natural-language requirement comprehensibility 22

and correspondence between the natural language and the semantic representation, with the results 23

indicating high performance for the proposed representation and method. The proposed intelligent code 24

will help reduce ACC errors, improve requirement comprehensibility, and facilitate intelligent code 25

analytics. 26

Keywords: Intelligent building code; Natural language generation; Deep learning; Automated compliance 27
checking; Requirement representation. 28

2

1 Introduction 29

Building designs are governed by a variety of regulatory documents in the architecture, engineering, and 30

construction (AEC) domain. Traditional, manual checking of the compliance of building designs with 31

these regulatory documents is time- and cost-consuming, and prone to errors. To improve the time- and 32

cost-efficiency and to minimize the errors of the compliance checking processes, many automated 33

compliance checking (ACC) methods and systems have been developed. Existing ACC systems, 34

regardless of their level of automation (e.g., semi- or full-automation), all require the extraction of 35

regulatory information (e.g., compliance checking attribute and quantity value) from the natural-language 36

building-code requirements and the transformation of the extracted information into computer-37

processable semantic representations. For example, the users of Solibri Office [1], a type of semi-38

automated ACC system, first read the requirements, identify the correct rule templates for the 39

requirements, and manually extract the values for the parameters of the templates from the requirements. 40

The state-of-the-art, rule-based fully-automated ACC systems use semantic natural language processing 41

(NLP) rules based on semantic and syntactic features to extract semantic information elements from 42

regulatory documents and transform them into logic forms [2]. Despite the performance achieved by the 43

existing ACC systems, the information extraction and transformation processes within these systems 44

could, however, be jeopardized by the ambiguous nature of the natural language and the complex and 45

recursive semantic and syntactic structures of building-code requirements [3,4]. For example, in the 46

existing ACC systems that employ NLP-based information extraction and transformation methods, errors 47

resulting from these methods could further cause errors in downstream ACC processes, such as computer-48

processible rule-based compliance reasoning, and, eventually, errors in the final compliance checking 49

results [5]. 50

Aiming to bypass the error-prone information extraction and transformation processes and make building-51

code requirements directly computer-processable, several research efforts have been undertaken to 52

develop computer-processable semantic representations that enable the representation of building-code 53

3

requirements directly with only limited or even zero use of natural language. Following these approaches, 54

to create new requirements, building code developers no longer need to write natural-language 55

requirements; instead, they would solely provide the semantic regulatory information that defines the new 56

requirements directly in the form of such representation (i.e., aiming to eliminate the natural-language 57

form). For example, the conceptual graphs [6] and the visual code checking language [7] were proposed 58

to represent rules that define building-code requirements, which consist of AEC domain-specific semantic 59

concepts (e.g., building objects and relations between these objects) and connections (e.g., conjunctions, 60

disjunctions, and constraints), in graph-like structures (e.g., nodes and edges). These semantic concepts 61

and connections are provided by the users of these two representations as input in the form of nodes and 62

edges to develop graphs that represent requirements. However, these computer-processable semantic 63

representations suffer from two limitations. First, without the corresponding natural-language 64

requirements, it is often difficult for practitioners to understand and comprehend the regulatory 65

information in these representations [8]. Second, even when supplemented with the corresponding 66

natural-language requirements, these representations still lack comprehensibility because the direct 67

correspondence/link between the two forms (i.e., the natural language and the computer-processable 68

semantic representation) is missing, limiting their use in ACC processes. 69

An intelligent code, where highly structured computer-understandable semantic information that can be 70

used directly by computers for semantic analysis tasks [9] is connected with its natural-language 71

counterpart, takes the best of both worlds of the semantic representations and the natural language. Such 72

intelligent code would (1) reduce the ambiguity of the natural-language requirements, while preserving its 73

comprehensibility, (2) be both directly processable by computers and understood by humans [10], and (3) 74

maintain the correspondence between the semantic information and the natural-language sentences. 75

Recent advances in data-to-text generation (e.g., [11]) in the domains of computer science and natural 76

language generation (NLG) provide an unprecedented opportunity for developing such intelligent code 77

for both reduced ACC errors and improved requirement comprehensibility. NLG aims to produce human-78

4

readable text based on structured data/information or some intermediate semantic representation. Thus, 79

there is a need for semantic NLG-based methods for converting and generating intelligent building codes 80

in the AEC domain, i.e., methods to automatically generate natural-language sentences based on semantic 81

regulatory information input and retain the correspondence between the words, phrases, and clauses in the 82

sentence and their semantic sources during the generation process. However, such generation is not easy 83

because of the following challenges: first, defining a representation that is both (1) readily semantic and 84

computer-understandable (and thus could connect to exiting computer-processible representations used 85

for compliance reasoning) and (2) directly linked to an NLG model (and thus could support fully 86

automated conversion of the structured input into natural language sentences); second, generating 87

meaningful sentences that are easy to understand; and third, retaining fidelity of the input data (e.g., by 88

tracing back to the input data used for generating the output text) [12-14]. 89

To address this need, first, the paper proposes a new semantic representation of building-code 90

requirements, the multi-form semantic (MFS) requirement hierarchy and the intelligent code 91

representation, for supporting intelligent code generation and thus downstream ACC processes, such as 92

compliance reasoning. The hierarchy consists of simple, manageable requirement units that are 93

semantically represented and linked, where each unit is composed of semantic information elements (SIEs) 94

that define the requirements (e.g., subject, compliance checking attribute, and quantity value). It is 95

represented in two supplementary forms, the surface form and the background form. The intelligent code 96

representation consists of the natural-language requirement, its corresponding MFS requirement hierarchy, 97

and the semantic links that indicate the correspondence between the two. Second, a deep learning and 98

semantic NLG-based method is proposed for generating such intelligent code. The method (1) uses the 99

MFS requirement hierarchy representation as the input form for generating the corresponding natural 100

language requirements; (2) trains a deep learning requirement unit-to-text model to generate natural-101

language requirement sentence segments, using data prepared based on a large, multi-topic building-code 102

corpus; and (3) connects these segments into intelligent requirement sentences. The natural language 103

5

requirements, along with their semantic counterparts (i.e., the MFS requirement hierarchies), form the 104

intelligent code. 105

2 Background 106

2.1 Semantic representations of natural-language requirements for automated compliance checking 107

Existing ACC systems represent the natural-language building-code requirements in computer-108

processable semantic representations for supporting downstream ACC tasks, such as matching regulatory 109

information to design information in building information models (BIM) and compliance reasoning. For 110

example, Garrett and Hakim [15] developed object-oriented representation schemes of requirements. 111

Ozkaya and Akin [16] proposed a design framework to incorporate requirements into digital designs. 112

Yurchyshyna and Zarli [17] used the SPARQL Query Language for RDF to represent requirements for 113

retrieving design information from BIM-based design files in the industry foundation classes (IFC) 114

format. Pauwels et al. [18] used semantic web technologies to represent requirements as a directed, 115

labeled graph of semantic concepts and connections and logic-based rules. Zhang and El-Gohary [5] 116

proposed the semantic information elements (SIEs) for representing requirements in the form of logic 117

rules that incorporate these SIEs, where the SIEs were extracted using ontologies and natural language 118

processing methods. Lee et al. [19] designed the building environment and analysis language to represent 119

objects and relations in the requirements in an object-oriented manner. Uhm et al. [20] adopted a context-120

free grammar-based method for developing computer-interpretable rules. Dimyadi et al. [21] adopted the 121

process model and notation (BPMN)-based compliant design procedures (CDP) for describing 122

compliance checking workflows and embedding regulatory knowledge using regulatory knowledge query 123

language (RKQL). The International Code Council and AEC3’s SmartCode project [22] used the 124

requirement, application, selection, and exception (RASE) markups [23] to facilitate developing 125

computer-processable rules that represent the requirements. 126

6

These semantic representations are at the core of existing ACC systems and/or software – they enable 127

representing, processing, and checking building-code requirements automatically by computers; however, 128

existing ACC systems typically lack the mechanisms to support fully automated (i.e., without human 129

annotations or manually crafted extraction/transformation rules) extraction and conversion of natural-130

language requirements into these representations. For example, Weise et al. [22] requires manual 131

annotation of the codes with the RASE tags. Zhang and El-Gohary [5] although can do the information 132

extraction fully automatically, still requires hand-crafted extraction and transformation rules to extract the 133

semantic information from the natural language and convert the extracted information into computable 134

logic rules. Recent research efforts have been undertaken to develop flexible and highly automated 135

methods to support such extraction and conversion, by leveraging artificial intelligence (AI) technologies, 136

such as machine learning and NLP. 137

2.2 Deep learning for text analytics 138

Deep learning methods use deep neural networks that consist of stacks of layers to capture different levels 139

of information representations from data [24]. Deep learning methods have drastically improved the state-140

of-the-art performance in automatically processing and understanding natural-language data, and 141

meanwhile reduced or eliminated the manual effort in feature engineering compared to traditional 142

machine learning methods. Recurrent neural networks (RNN) are deep learning models consisting of 143

internal states specifically designed to process sequential data, such as text data, which consist of 144

sequences of words. To solve the problem of vanishing gradient and improve the capability to capture 145

long-term semantic and syntactic dependencies, two variants of the RNN, long short-term memories 146

(LSTM) and gated recurrent units have been proposed and used. RNN-based models have been widely 147

used in natural language processing, understanding, and generation tasks, such as text classification (e.g., 148

[25]), sequence labeling (e.g., [26]), semantic parsing (e.g., [27]), and machine translation (e.g., [28]). A 149

limited number of research efforts have been undertaken on deep learning-based methods for solving text 150

analytics tasks in the AEC domain. For example, Pan and Zhang [29] developed RNN-based models to 151

7

analyze building information modeling (BIM) log data for extracting and discovering knowledge that 152

supports design decisions. Zhong et al. [30] used bidirectional LSTM and CRF models to extract 153

procedural constraints from construction regulations. Zhang and El-Gohary [31] used bidirectional LSTM 154

and CRF models with transfer learning strategies for extracting semantic and syntactic information 155

elements from building-code sentences. 156

2.3 Data-to-text natural language generation 157

Natural language generation (NLG) is the process of representing the semantic information contained in 158

the input data – which could be in various forms such as tables, images, or formal languages – in the form 159

of natural language for the purpose of information digestion and communication [32]. NLG plays an 160

important role in intelligent systems such as spoken dialogue systems (e.g., [33]), image captioning (e.g., 161

[34]), text summarization (e.g., [35]), and programming code management (e.g., [36]). Data-to-text 162

generation is the NLG process that automatically generates text from non-linguistic, structured input, such 163

as records in databases and knowledge bases [37]. 164

Data-to-text generation methods range from template- and rule-based methods to machine learning-based 165

methods, including deep learning-based methods. Template- and rule-based methods rely on manually 166

developed templates for forming sentences and rules to fill in the templates. They require manual effort 167

for developing and maintaining the templates and rules, and typically lack the flexibility to deal with 168

complex text [32]. Machine learning-based methods, instead of relying on predesigned rules and 169

templates, use machine learning models to automatically capture the semantic and syntactic patterns in 170

the training data, which are later used for supporting the generation of new text. Different deep learning 171

model architectures were proposed for NLG applications, such as RNN-based encoder-decoder 172

architectures (e.g., [11,38-41]), transformer-based architectures (e.g., [42]), and variational autoencoders 173

(e.g., [43]). Variants of these model architectures have also been proposed. For example, the attention 174

mechanism (e.g., [11,41]) and copying mechanism (e.g., [38,40]) in the encoder-decoder architecture 175

8

were proposed to improve the ability of the deep learning models to capture the structural dependency and 176

maintain the data fidelity [39]. 177

3 State of the art and knowledge gaps in regulatory text generation 178

Existing methods and systems for generating regulatory text (e.g., requirements or documents) in the 179

AEC domain are mainly based on premade templates and rules. For example, Thewalt and Moskowitz [44] 180

used a network of decision tables for representing design standards and a set of handcrafted templates for 181

standard text generation. Ryoo et al. [45] proposed a web-based construction specification system where 182

users can query existing specifications, guidelines, and other materials for drafting new specifications. 183

Commercial software such as e-Specs [46] and BIMdrive [47] use premade templates (e.g., templates 184

based on the National Master Specifications) to facilitate the development and maintenance of 185

specifications. The latest IDM schema [48] specified how IDM documents are developed, exchanged, and 186

shared in the idmXML format and the IDM generation rules. These efforts have provided important 187

insights and practical value for generating regulatory text in the AEC domain. Despite their importance, 188

they typically have three limitations. First, developing and updating the templates and rules for generating 189

regulatory text is labor-intensive and time-consuming. A comparative analysis of hybrid methods (that 190

include machine learning) and entirely rule-based methods for data-to-text generation in the literature has 191

demonstrated significant time and resource savings when leveraging machine learning [49]. For 192

generating building-code requirements, this time and cost could significantly grow because a large 193

number of building codes exist, including amendments to accommodate local needs, and many of these 194

codes/amendments are subject to frequent and regular updates. Second, such manually developed 195

templates and rules are typically rigid and hard to scale up in real-world applications and across different 196

types of text. Methods using templates and rules are generally outperformed by machine learning-based 197

methods in various data-to-text generation tasks (e.g., [32,50]). Flexibility and scalability are especially 198

important for generating building-code requirements, because different types of building codes usually 199

have different syntactic and semantic characteristics. Testing and adapting the templates and rules to 200

9

accommodate the variabilities across the different codes and requirements would be practically difficult. 201

Third, they are limited in capturing the semantic and syntactic complexities and variations in the building-202

code requirements. For example, energy code requirements tend to have hierarchically complex semantic 203

and syntactic structures including deeply nested clauses, conjunctive and alternative obligations, and 204

multiple restrictions and exceptions [3]. Developing rules to deal with such structural complexity based 205

on limited templates (e.g., the templates are usually limited in the patterns of semantic features and 206

structures they represent) is challenging. 207

Deep learning-based methods, on the other hand, have achieved state-of-the-art performance in many 208

NLG tasks including data-to-text tasks (e.g., [38-40]). However, there is a lack of efforts that used deep 209

learning-based NLG methods for AEC applications. This poses a missed opportunity, particularly for 210

intelligent code generation efforts. 211

4 Research methodology 212

The research methodology was composed of the following primary research tasks: 213

• Representation development: In developing the representation (see Section 5), to overcome the 214

challenges outlined in Section 1, a number of criteria were defined. These included developing a 215

representation that: (1) is readily semantic and computer-understandable, while being directly linked 216

to the generation model; (2) supports the generation of meaningful sentences that are well 217

understandable to humans; and (3) retains fidelity of the input data (i.e., keeping the link between the 218

semantic representation and the natural language sentences). The representation development process 219

included the following steps: (1) define the basic elements and the structure to represent the semantics; 220

(2) define the different forms to represent the semantics and to serve as the input to the code 221

generation model; and (3) define the links between these semantic elements and the forms. 222

• Method development: The methodology for developing the semantic NLG-and deep learning-based 223

method for generating intelligent code (see Section 6) included three primary steps: 224

10

• Data preparation: Datasets for training and testing were prepared, as discussed in more detail in 225

Section 6.1. 226

• Text generation model development: A deep learning-based generation model was developed for 227

generating natural-language text (sentence segments) corresponding to the structured input 228

representation, which included model design and training. The model design process included 229

two primary steps: (1) select the learning model and adapt it to the problem at hand (i.e., 230

automatically generating requirement sentence segments given the semantic information); and (2) 231

define the design practices that are needed to further optimize the model for the task at hand. The 232

RNN-based encoder-decoder model [51] was selected and adapted and three practices were 233

defined (LSTM, bidirectional architecture, and attention mechanism), as discussed in Section 234

6.2.1. For model training, four training practices were defined, as discussed in Section 6.2.2. 235

• Intelligent building code generation method development: A divide-and-conquer paradigm was 236

selected and followed for developing the method (see Section 6.3), where requirement segments 237

(instead of the whole requirement sentence) were generated (using the trained text generation 238

model), linked to the semantic representation, and connected into intelligent code requirements. 239

• Experimental results and analysis: A set of experiments were conducted to test and evaluate the 240

effectiveness of the proposed representation and the performance of the proposed intelligent code 241

generation method, including flexibility across different types of codes and standards and sentence 242

computability levels (see Section 7). 243

5 Proposed representation: requirement hierarchy and intelligent code 244

5.1 Multi-form semantic requirement hierarchy representation 245

The paper proposes a new semantic representation, the multi-form semantic (MFS) requirement hierarchy 246

[see Fig. 1(a) and (b)], to model building-code requirements, especially the hierarchically complex 247

requirements with restrictions and exceptions, for facilitating the generation of intelligent code, which 248

could further support downstream ACC processes, such as compliance reasoning based on semantic 249

11

representations (e.g., logic). An MFS requirement hierarchy models a requirement in a hierarchical 250

structure that consists of several requirement units. Each requirement unit consists of several SIEs (as 251

listed in Table 1), which are the constituent concepts (e.g., subject and compliance checking attribute), 252

relations (e.g., subject relations), and indicators (e.g., deontic operator indicator) that define a requirement 253

or a condition in a requirement. Each unit has at least one subject or compliance checking attribute and 254

may or may not have other SIEs. Each unit does not have any secondary SIEs such as restrictions and 255

exceptions, and thus is easily processable using most of the existing semi-automated or automated 256

compliance checking methods and systems. There are two types of relations between the requirement 257

units: simple and complex relations. Simple relations include conjunctions (e.g., “and”) and disjunctions 258

(e.g., “or”). Complex relations include exceptions and restrictions. 259

Table 1. Semantic Information Elements (SIEs) for Defining Requirements for Compliance Checking [1]. 260
Semantic information element Definition

Subject An ontology concept representing a thing (e.g., building element) that is subject
to a particular requirement

Subject relation
A term or phrase that defines the type of relationship between two subjects, a
subject and an attribute, or a subject or an attribute and a quantity (e.g.,
“equipped”)

Compliance checking attribute An ontology concept representing a specific characteristic of a “subject” that is
checked for compliance (e.g., “width”)

Deontic operator indicator A term/phrase that indicates the deontic type of the requirement (i.e., obligation,
permission, or prohibition)

Comparative relation A term/phrase for comparing quantitative values, including “greater than or
equal to,” “greater than,” “less than or equal to,” “less than,” and “equal to”

Quantity value A numerical value that defines the quantity
Quantity unit The unit of measure for a “quantity value”

Reference A term or phrase that denotes the mentioning or reference to a chapter, section,
document, table, or equation in a building-code sentence

The MFS requirement hierarchy is represented in two supplementary forms: the surface form [see Fig. 261

1(a)] and the background form [see Fig. 1(b)]. The surface form shows the requirement units and the SIEs 262

within each unit in a hybrid, templatized and graphical, format. Similar to the conceptual graph [6] and 263

the visual code checking language [7], the surface form can be visualized and manipulated for the purpose 264

of requirement editing, development, or navigation. For example, the surface form can be embedded as a 265

part of a user interface for the requirement developers to add or modify the requirement units, the 266

12

restriction dependencies between the units, and the SIEs within each unit, for the purposes of generating 267

natural language requirements that are readily semantic and computer-understandable (i.e., the intelligent 268

code). The background form shows the SIEs and the predicate-argument structures between the SIEs and 269

the requirement units in a sequential format. The background form consists of two types of tokens: 270

semantic tokens to represent the semantic meanings of the SIEs (e.g., words and numbers), and syntactic 271

tokens to indicate the predicate-argument structures (e.g., parenthesis and vertical bars). The form can be 272

directly embedded using vector representations and thus fed into the deep learning requirement unit-to-273

text generation model for generating the requirement sentence segments corresponding to the units in the 274

MFS requirement hierarchy. The surface form can be converted into the background form using rules 275

(e.g., rules to concatenate words from the surface form and add syntactic tokens to build the background 276

form). Examples of these rules, which were developed in Python 3, are shown in Fig. 1. Due to its 277

semantic and structured representation, the MFS requirement hierarchy is potentially compatible and 278

integrable with other ACC representations and workflows (e.g., CDP). 279

5.2 Intelligent code representation 280

The paper defines an intelligent code as a natural-language requirement connected with its corresponding 281

MFS requirement hierarchy. It consists of three parts – the natural-language requirement, its 282

corresponding MFS requirement hierarchy, and the semantic links that indicate the correspondence 283

between the surface form and the background form of the hierarchy and the natural-language requirement 284

(an example to illustrate the representation of the intelligent requirement is shown in Fig. 1). Each 285

semantic correspondence key consists of a requirement unit identifier and an SIE identifier, and every 286

token in the natural-language requirement and the requirement hierarchy is annotated with such a 287

semantic correspondence key. Thus, intelligent requirements can be understood by both humans (via the 288

natural-language requirement) and computers (via the MFS requirement hierarchy), and meanwhile, 289

preserve the semantic links between the natural-language requirement and the requirement units and SIEs 290

in the hierarchy (via the semantic correspondence keys). 291

13

Fig. 1 shows an example to illustrate the concept of intelligent requirements (using a sentence from IBC 292

2018 [52]). The MFS requirement hierarchy is shown in Fig. 1(a) (the surface form) and Fig. 1(b) (the 293

background form). The natural-language requirement with the semantic correspondence keys is shown in 294

Fig. 1(c). In this example, the whole requirement is modeled as a requirement hierarchy consisting of 295

three requirement units, with units 2 and 3 being restrictions of unit 1, which is the main requirement unit 296

in this hierarchy. 297

14

 298
Fig. 1. Example semantically annotated requirement: (a) surface form of the requirement hierarchy; (b) 299
background form of the requirement hierarchy with semantic correspondence keys; (c) natural-language 300

requirement sentence with semantic correspondence keys. 301

6 Semantic NLG- and deep learning-based method for generating intelligent code 302

The method for intelligent code generation was proposed and implemented on corpora of building-code 303

requirements. The methodology consists of three primary steps, as per Fig. 2: data preparation, deep 304

learning-based requirement unit-to-text generation model development, intelligent building-code 305

15

requirement generation. An example to illustrate how the intelligent requirements are generated (Step 3), 306

using the trained requirement unit-to-text model (Step 2), is shown in Fig. 3. 307

 308
Fig. 2. Research methodology for NLG- and deep learning-based intelligent building code generation. 309

 310
Fig. 3. Intelligent building code generation. 311

6.1 Data preparation 312

The training and testing data were prepared for training the requirement unit-to-text generation model and 313

evaluating the requirement generation results. The data are semantically annotated building-code 314

requirements, including the natural-language requirement and the corresponding MFS requirement 315

16

hierarchy with both its surface and background forms. Both the training and testing data were prepared 316

following three steps: corpus preparation, sentence selection, and sentence annotation. 317

6.1.1 Corpus preparation 318

Two building-code corpora were prepared – the training and testing corpora. The training corpus consists 319

of sentences from the International Building Code (IBC) and its amendments. The testing corpus consists 320

of sentences from three types of regulatory documents, including the IBC, International Energy 321

Conservation Code (IECC), and Americans with Disabilities Act Standards for Accessible Design (ADA 322

Standards). The text files of these documents were crawled from webpages or converted from PDF files, 323

and they were preprocessed following three steps: sentence segmentation, tokenization, and pruning. 324

Sentence segmentation aims to detect the sentence boundaries (e.g., punctuations) and segment the text 325

into sentences. Sentence tokenization aims to further split the sentences into tokens (e.g., words). 326

Sentence pruning aims to remove the sentences or sentence segments that are not requirements (e.g., 327

headings). The Natural Language Toolkit (NLTK) in Python was used for text preprocessing. 328

6.1.2 Sentence selection 329

Two groups of sentences and sentence segments were selected from the two corpora, respectively. The 330

training group consists of about 7,500 sentences and sentence segments including about 100,000 tokens 331

(e.g., words, numbers, and punctuations); and the testing group consists of about 600 sentences and 332

fragments including about 15,000 tokens. For evaluation purposes, sentences having different levels of 333

computability (i.e., the ability of sentences to be automatically processed, represented, and checked by 334

ACC systems) were selected, based on the computability definition and metrics in [53]. 335

6.1.3 Data annotation 336

The two sentence groups were annotated and converted into requirement hierarchies. The training group 337

was automatically annotated using the pretrained requirement hierarchy extraction model [54] and the 338

deep information extraction model [31]. The testing group was manually converted into requirement 339

hierarchies and annotated with the semantic information elements by four experts – two from academia 340

17

(faculty) and two from industry – forming the gold standard for evaluation. A purposive sampling 341

strategy, which pinpoints a specific type of participants according to predefined selection criteria [55], 342

was adopted for selecting the experts. Three main selection criteria were defined: (1) expertise in the AEC 343

domain; (2) familiarity with building codes and compliance checking processes; and (3) awareness of 344

natural language processing and text analytics techniques. Each expert independently annotated the entire 345

set of selected sentences, with an initial inter-annotator agreement of 80% in F1 measure, which indicates 346

good reliability of the annotations [56]. The discrepancies among the annotations were then resolved by 347

the experts to reach full agreement on the final annotations. 348

6.2 Deep learning-based requirement unit-to-text generation model development 349

6.2.1 Model design 350

The RNN-based encoder-decoder model [51] was adapted to automatically generate the corresponding 351

natural-language sentence segment, given the background form of a requirement unit. A sentence segment 352

is defined as the natural-language counterpart of a requirement unit and is part of the building-code 353

sentence corresponding to the whole requirement hierarchy that contains the unit. For example, in Fig. 3, 354

“landings are permitted to be 914 mm minimum” is the sentence segment corresponding to the 355

requirement unit with a subject of “landings”, a quantity value of “914”, a quantity unit of “millimeter”, 356

and a comparative relation of “>=”). The model was selected because it has achieved state-of-the-art 357

performance in various data-to-text generation tasks and has the potential to be adapted to the requirement 358

unit-to-text generation task at hand. 359

The model structure consists of two main parts: the encoder and the decoder, each consisting of several 360

RNN layers, as illustrated in Fig. 4. The encoder [as per Eq.(1)] transforms the input sequence 361

[𝑥1, 𝑥2, … , 𝑥𝑙] [i.e., the sequence of tokens (words and syntactic symbols) in the background form of the 362

input requirement unit] of length l into a context vector representation c, which captures the semantic and 363

syntactic information of the entire input sequence [as per Eq.(3)], based on the attention mechanism and 364

the alignment weights 𝛼 [57] [as per Eq.(2)], which captures the correlations between the tokens in the 365

18

input and output sequences. The decoder [as per Eq.(4)] further transforms the vector representation 366

generated by the encoder into the output sequence [𝑦1, 𝑦2, … , 𝑦𝑘] [i.e., the sequence of tokens (words, 367

numbers, and punctuations) in the output requirement sentence segment] of length k. Each RNN layer 368

consists of several stacked RNN units – each computes feature representations based on the input 369

information corresponding to the current state, and the information propagated from the last state so that 370

the information from previous states could be captured. In Eqs.(1)-(5), ℎ𝑖 is the RNN state corresponding 371

to position i in the input sequence, 𝑠𝑜 is the RNN state corresponding to position o in the output sequence, 372

f is the RNN, and 𝜑 is a multilayer neural network. 373

ℎ𝑖 = 𝑓(𝑥𝑖 , ℎ𝑖−1) (1) 374

𝛼𝑜,𝑖 =
𝑒𝜑(𝑠𝑜−1,ℎ𝑖)

∑ 𝑒𝜑(𝑠𝑜−1,ℎ𝑖′)
𝑖′

 (2) 375

 𝑐𝑜 = ∑ 𝛼𝑜,𝑖ℎ𝑖

𝑙

𝑖=1

 (3) 376

𝑠𝑜 = 𝑓(𝑦𝑜−1, 𝑠𝑜−1, 𝑐𝑜) (4) 377

To further optimize the model for the task at hand, three model design practices were followed. First, an 378

RNN alternative – the LSTM [58] was used to alleviate the vanishing gradient problem during the 379

training of the RNN-based models. Second, the bidirectional architecture was used in the encoder – both 380

the forward and backward tokens instead of only the forward one were considered when learning the 381

feature representations for the current token [59], in order to improve the ability of the RNN-based 382

models to deal with long-term dependencies in the requirement sentences. Third, the attention mechanism 383

[57] was adopted in the model to incorporate the correlation between the tokens in the input sequence and 384

the tokens in the output sequence in an attentive read vector representation, which replaces the fixed-385

length vector representation, for better handling of long sentences. 386

19

 387
Fig. 4. Encoder-decoder model for requirement unit-to-text generation. 388

6.2.2 Model training 389

The following four training practices were followed. First, for optimizing the model parameters, 390

perplexity was chosen as the loss function and was minimized during the training process. Perplexity is 391

defined as the inverse probability of the training sentences given a language model (e.g., the encoder-392

decoder model), normalized by the number of tokens in the training sentences [60]. Second, for 393

determining the best values of the hyperparameters for both model structure and model training, the 394

training data was split into a 9:1 ratio for model training and validation, respectively. Third, for improving 395

computational efficiency, the training process was stopped at 20 epochs or when the change of the value 396

of the loss function (i.e., perplexity) between two consecutive training epochs was less than the threshold. 397

Fourth, for improving the sentence generation performance, the model learning rate was gradually 398

decreased during the training process [51]. 399

6.3 Intelligent building-code requirement generation 400

The method for generating intelligent building-code requirements includes three steps, as illustrated in Fig. 401

3: requirement sentence segment generation, semantic linking, and requirement configuration. 402

6.3.1 Requirement sentence segment generation 403

For each unit in the input requirement hierarchy, a corresponding sentence segment was generated using 404

the trained requirement unit-to-text generation model (see Step 1, Fig. 3). Given its surface form, first, a 405

requirement unit was converted into its background form. Second, the background form was encoded into 406

a vector representation by the encoder of the trained requirement unit-to-text generation model. Third, the 407

20

vector representation was decoded to generate the output sentence segment [which is composed of a 408

sequence of tokens (words, numbers, and punctuations)] successively by the decoder of the model. Each 409

time, for the decoder to generate a new token, two steps were followed: (1) a classifier g (e.g., a 410

multilayer neural network with a softmax function) is applied to the decoder state, context vector, and the 411

previously generated token to compute a probability distribution 𝑝(𝑦𝑜) = 𝑔(𝑦𝑜−1, 𝑠𝑜, 𝑐𝑜) over the 412

vocabulary; and (2) the beam search algorithm [61] keeps track of the best candidate sentence segments in 413

terms of probability, until all the candidates reach the “end of a sentence” token, and returns the candidate 414

sentence segment with the highest probability. 415

6.3.2 Semantic linking 416

This step aims to further link each token in the generated sentence segments to the SIEs in the 417

requirement units (see Step 2, Fig. 3), using two sub-steps. First, semantic correspondence scores are 418

calculated using the unit-to-text model. Each score measures the correspondence between a token in the 419

sentence segment and a token in an SIE in the requirement unit according to the copying mechanism in 420

the unit-to-text generation model [38]. The copying mechanism refers to the computational mechanism 421

that locates the input tokens and places these tokens into the output sequence, thereby generating the 422

output sentence [38]. As per Eq.(5), for each token to at position o in the generated sentence segment and 423

each token ti at position i in the SIEs (in the background form of the input requirement unit), the semantic 424

correspondence score 𝑠𝑐𝑜𝑟𝑒𝑜,𝑖 equals to the similarity between a linear projection (denoted by W) of the 425

input and output RNN states (denoted by hi and so, which correspond to the input background form and 426

the output sentence segment) of the model. The hyperbolic tangent function (tanh) was adopted because 427

compared to other types of activation functions (e.g., sigmoid and rectified linear unit), tanh typically 428

achieves higher computational performance when used in RNN-based models [62]. 429

𝑠𝑐𝑜𝑟𝑒𝑜,𝑖 = tanh(ℎ𝑖𝑊𝑠𝑜) (5) 430

Second, based on the calculated correspondence scores, for a token to in the generated sentence segment, 431

the candidate semantic token tp in the SIEs is determined by finding the argument of the maxima of the 432

21

semantic correspondence scores, as per Eq.(6). The final semantic token r equals to tp, if tp is not a 433

syntactic token, in which case a semantic correspondence key is generated to link to to the SIE. Otherwise, 434

r is void, and to is not linked to any SIEs, as per Eq.(7), where S is the set of all types of syntactic tokens 435

used in the requirement hierarchy (i.e., brackets and vertical bars). For example, in the generated sentence 436

segment “landings are permitted to be 914 mm minimum” in Fig. 3, “landings” is linked to the first SIE 437

“subject: landings”, whereas “are” is not linked to any of the SIEs in the requirement hierarchy. 438

𝑝 = argmax
0<𝑖≤𝑙

𝑠𝑐𝑜𝑟𝑒𝑜,𝑖 (6) 439

𝑟 = {
𝑡𝑝, 𝑖𝑓 𝑡𝑝 ∉ 𝑆

void, 𝑖𝑓 𝑡𝑝 ∈ 𝑆
 (7) 440

6.3.3 Requirement configuration 441

This step aims to combine the generated sentence segments into a whole requirement using a depth-first 442

insertion and concatenation algorithm. Starting at the main requirement unit (i.e., the requirement unit that 443

does not serve as a restriction to any other units), the algorithm recursively builds up the whole 444

requirement using the sentence segments of restriction units. In each recursion (as per Fig. 5), a partial 445

sentence (PS) of the current unit is updated by inserting the PS of the restriction unit to the PS of the 446

current unit (when the two units share one or more SIEs) or concatenating the PSs of the current and 447

restriction units (when the two units do not share an SIE). For example, in the requirement configuration 448

example shown in Fig. 6, the current unit RU2 and the restriction unit RU3 share “Group R-2 individual 449

dwelling units”. Accordingly, the PS of RU3 (“Group R-2 individual dwelling units that are not required 450

to be Accessible units”) is inserted in the PS of RU2 (“landings in Group R-2 individual dwelling units”), 451

resulting in the following updated PS: “landings in Group R-2 individual dwelling units that are not 452

required to be Accessible units”. A recursion ends when all the restriction units of the current unit are 453

processed. The algorithm returns the PS of the main unit as the whole requirement. 454

22

 455
Fig. 5. Depth-first insertion and concatenation algorithm for requirement configuration. 456

23

 457
Fig. 6. Example to illustrate requirement configuration. 458

7 Experimental results and analysis 459

Three sets of experiments were conducted to (1) optimize the deep learning-based requirement unit-to-460

text generation model in the proposed intelligent code generation method; (2) test if the proposed MFS 461

requirement hierarchy representation and the semantic correspondence score with the copying mechanism 462

are effective in improving the model’s ability to generate the intelligent code; and (3) test the flexibility of 463

the proposed method, i.e., test the comprehensibility and semantic linking of the generated intelligent 464

requirements across different types of codes/standards and requirements with different computability 465

levels. 466

In testing and evaluating the proposed method, the requirement hierarchies in the gold standard data (see 467

Section 6.1.3) were used as the input to the proposed method. The generated requirement sentences were 468

24

then compared against the gold standard sentences and evaluated using a set of metrics (see Section 7.1). 469

An example of the gold standard sentences, the requirement hierarchies, and the generated sentences for 470

illustrating the evaluation process is shown in Fig. 7). 471

 472
Fig. 7. Example generated requirement and its corresponding gold standard requirement. 473

7.1 Evaluation metrics 474

The generated intelligent requirements were evaluated in terms of both (1) comprehensibility of the 475

generated natural-language requirements, and (2) semantic linking correctness of the intelligent 476

requirement (i.e., correctness of the semantic correspondence between the natural-language requirements 477

and the requirement hierarchy representation). 478

7.1.1 Evaluation of generated natural-language requirements 479

The generated natural-language sentences were evaluated in terms of adequacy and fluency. Based on 480

Papineni et al. [63], a generated sentence that uses same/similar words (unigrams) as the gold standard 481

sentence tends to satisfy adequacy; and a generated sentence that has n-gram matches with the gold 482

standard sentence tends to satisfy fluency. Both adequacy and fluency are used together as indicators of 483

the comprehensibility of the natural language [63]. Two metrics were used to measure adequacy and 484

25

fluency: bilingual evaluation understudy (BLEU) and recall-oriented understudy for gisting evaluation 485

(ROUGE). 486

BLEU [63] measures the number of matches between the n-grams (continuous sequences of n tokens 487

including words, numbers, and punctuations, e.g., bigram is a sequence of two adjacent tokens) in the 488

generated sentences and the n-grams in the gold standard sentences. BLEUN is a modified metric that 489

measures the precision of matching using weighted average; it is the weighted average of the n-gram 490

precisions 𝑝𝑛 [e.g., weighted average of unigram precision (p1) and bigram precision (p2)], as per Eq.(8) 491

[63], where 𝑤𝑛 is the weight of 𝑝𝑛, N is the length of the longest n-gram in calculating n-gram precisions, 492

and b is a brevity penalty. Here, 𝑝𝑛 is measured using Eq.(9), where, for one generated sentence, mn is the 493

number of n-grams that are in both the generated sentence and the gold standard sentence (e.g., number of 494

2-gram matches) and GMn is the total number of n-grams in the generated sentence (e.g., total number of 495

2-grams). The brevity penalty aims to penalize generated sentences that are briefer than the gold standard 496

sentences., as per Eq.(10), where s is the length of the generated sentence and r is the length of the gold 497

standard sentence. A high BLEU indicates that the generated sentences align well to the gold standard 498

sentences, and thus the generated sentences have high comprehensibility (e.g., [64-66]). In this paper, 499

BLEU1 and BLEU2 (i.e., 𝑁 ∈ {1, 2}) and uniform weights (i.e., 𝑤1 = 1 for BLEU1, and 𝑤1 = 𝑤2 = 0.5 500

for BLEU2) were used. 501

BLEU𝑁 = 𝑏 exp (∑ 𝑤𝑛 𝑙𝑜𝑔 𝑝𝑛

𝑁

𝑛=1

) (8) 502

𝑝𝑛 =
𝑚𝑛

𝐺𝑀𝑛
 (9) 503

𝑏 = {
1 if 𝑠 > 𝑟
𝑒1−𝑠 𝑟⁄ if 𝑠 ≤ 𝑟

 (10) 504

ROUGE [67] also measures matches between the n-grams in the generated sentences and the n-grams in 505

the gold standard sentences. ROUGEn specifically measures the weighted harmonic mean of the n-gram 506

precision (pn) and recall (rn) [e.g., the harmonic mean of the unigram precision (p1) and unigram recall 507

(r1)], as per Eq.(11), where 𝛽 is the weighting factor. Here, 𝑟𝑛 is measured using Eq.(12), where, for one 508

26

generated sentence, mn is the number of n-grams that are in both the generated sentence and the gold 509

standard sentence (e.g., number of unigram matches), and SMn is the total number of n-grams in the gold 510

standard sentence (e.g., total number of unigrams). A high ROUGE indicates that the generated sentences 511

align well to the gold standard sentences, and thus the generated sentences have high comprehensibility 512

(e.g., [11,38,68]). In this paper, ROUGE1 and ROUGEl (i.e., 𝑛 ∈ {1, 𝑙}) were used, with the weighting 513

factor 𝛽 = 1 for ROUGE1 and 𝛽 = 𝑝𝑙/𝑟𝑙 for ROUGEl [67], where l is the longest n-gram matched 514

between the two sentences. 515

ROUGE𝑛 =
(1 + 𝛽2)𝑟𝑛𝑝𝑛

𝑟𝑛 + 𝛽2𝑝𝑛
 (11) 516

𝑟𝑛 =
𝑚𝑛

𝑆𝑀𝑛
 (12) 517

7.1.2 Evaluation of semantic links between natural language and semantic representation 518

Precision, recall, and F1 measure were used to evaluate the semantic linking [i.e., the linking of the tokens 519

(words, numbers, and punctuations) of the generated sentence segments to the SIEs in the requirement 520

units, as in Section 6.3.2)], as per Eqs.(13)-(15), where TP is the number of true positives (i.e., number of 521

tokens that are correctly linked), FP is the number of false positives (i.e., number of tokens that are 522

incorrectly linked), and FN is the number of false negatives (i.e., number of tokens that are not linked but 523

should have been). TP, FP, and FN were calculated based on the expert annotations (see Section 6.3.1). 524

Perfect (100%) precision, recall, and F1 measure indicate that all generated natural-language requirements 525

are perfectly corresponding to all input requirement hierarchies (i.e., SIEs in the requirement hierarchies). 526

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (13) 527

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 528

F1 measure = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (15) 529

 530

 531

 532

27

7.2 Hyperparameter optimization 533

The requirement unit-to-text generation model was trained using Tensorflow built in Python 3, and run 534

using the Tesla K80 GPU provided in the Google Colaboratory. The values of the main hyperparameters 535

for requirement generation are shown in Table 2. The values of the hyperparameters were determined 536

based on: (1) the cross-validation performance of the grid search over different values [e.g., three 537

numbers (one, two, and four) of RNN layers were tested in cross-validation, and two was selected 538

because the model with two RNN layers achieved the best performance]; (2) the characteristics of the 539

building-code sentences used in the experiments (e.g., the maximum length of input sentences is set as 540

100 based on the corpus used); or (3) the practices in the referenced papers that use RNN-based sequence-541

to-sequence model in data-to-text generation (e.g., the batch size for the training data was determined 542

following [38]). 543

Table 2. Main Hyperparameters for Requirement Generation 544
Hyperparameter Value

Model structure hyperparameters
Number of recurrent neural network (RNN) layers in each of the
encoder and decoder

2

Number of RNN units in each layer 512
Type of RNN unit Long short term memory (LSTM)
Maximum length of requirement sentence 100
Model training hyperparameters
Recurrent dropout rate 0.2
Batch size for training data 32
Size of gradient normalization 5

The model structure was optimized. For example, different numbers of RNN layers and units in each 545

layer were tested. Three numbers of RNN layers were tested: one (shallow), two (medium), and four 546

(deep). Three numbers of RNN units in each layer were tested: 128 (small), 256 (medium), and 512 547

(large). The model with medium model depth and large layer size achieved the best performance, in terms 548

of both natural-language requirement comprehensibility and semantic linking, indicating that the model 549

with medium model depth and large layer size is most suitable for the scale of the training data used – 550

7,500 sentences. For a training dataset significantly different in scale than this dataset, other model sizes 551

could be tested and used. 552

28

The model training process was optimized. For example, three recurrent dropout rates were tested: 0, 0.2, 553

and 0.4. The model achieved the highest performance when the recurrent dropout rate was set as 0.2, in 554

terms of both requirement sentence comprehensibility and semantic linking, which indicates that models 555

with no or very little dropout might overfit to the training data used whereas models with large dropout 556

might underfit to the data. 557

7.3 Ablation analysis 558

7.3.1 Impact of semantic representation 559

To evaluate the proposed representation (i.e., the MFS requirement hierarchy), we tested an additional 560

representation for the input, an SIE-based template representation, to serve as a baseline for comparative 561

evaluation Each of the templates consists of a series of slots corresponding to the SIEs. For example, a 562

template for quantitative requirement units consists of six types of slots that are corresponding to the 563

following SIEs: compliance checking attribute, subject, subject relation, comparative relation, quantity 564

value, quantity unit. To form the input to the requirement unit-to-text generation model using a template, 565

the slots in the template were filled with the input SIEs accordingly. Thus, compared to the input in the 566

form of the requirement hierarchy, the input generated using the templates has the same semantic 567

information (i.e., the same set of SIEs) but different representation structures (i.e., it is a flat structure 568

without defining units and linking the units into the requirement hierarchy). The same optimized 569

hyperparameters (as shown in Table 2) and training and testing data were used for this experiment. 570

As shown in Table 3, the proposed representation achieved better performance. In terms of natural-571

language requirement comprehensibility, it outperformed the baseline representation by 3.1% in BLEU1, 572

3.7% in BLEU2, 3.2% in ROUGE1, and 2.1% in ROUGEl. In terms of semantic linking, it outperformed 573

the baseline by 3.4% in precision, 2.5% in recall, and 2.9% in F1 measure. The results indicate that the 574

proposed representation better captured the hierarchically complex semantic and syntactic structures in 575

the requirements, which helped improve the model’s ability to generate the intelligent code. 576

29

Table 3. Impact of Proposed Semantic Representation on Intelligent Code Generation 577

Representation
Natural-language requirement

comprehensibility
Semantic linking

BLEU1 BLEU2 ROUGE1 ROUGEl Precision Recall F1 measure

Proposed
representation (MFS

requirement hierarchy)
94.2% 90.5% 95.6% 93.1% 91.9% 92.3% 92.1%

Baseline representation
(template representation) 91.1% 86.8% 92.4% 91.0% 88.5% 89.8% 89.2%

1Bolded font indicates the highest performance. 578

7.3.2 Impact of semantic correspondence measurement and copying mechanism 579

Two different intelligent code generation methods with their models were tested for comparative 580

evaluation: using the proposed correspondence score with the copying mechanism in the model (the 581

proposed method) and without using any of the correspondence score or the copying mechanism in the 582

model but only the RNN-based encoder-decoder model [Eqs.(1)-(4)] (the baseline). The alignment 583

weights [Eq.(2)] of the model were used instead for semantic linking: the token in the output sentence 584

segment is linked to the input token that has the highest alignment weight [57]. The same optimized 585

hyperparameters (as shown in Table 2) and training and testing data were used for this evaluation. 586

As shown in Table 4, the proposed method achieved better performance. In terms of natural-language 587

requirement comprehensibility, it outperformed the baseline method by 17.0% in BLEU1, 18.9% in 588

BLEU2, 15.1% in ROUGE1, and 14.6% in ROUGEl. In terms of semantic linking, it outperformed the 589

baseline method by 13.3% in precision, 12.9% in recall, and 13.1% in F1 measure. The results indicate 590

that the proposed semantic correspondence score and the adopted copying mechanism helped improve the 591

model’s ability to generate the intelligent code. 592

 593

 594

 595

30

Table 4. Impact of Correspondence Score and Copying Mechanism on Intelligent Code Generation 596

Method
Natural-language requirement

comprehensibility
Semantic linking

BLEU1 BLEU2 ROUGE1 ROUGEl Precision Recall F1 measure

Proposed method (using
correspondence score
and copying mechanism)

94.2% 90.5% 95.6% 93.1% 91.9% 92.3% 92.1%

Baseline method (not using
correspondence score and
copying mechanism)

77.2% 71.6% 80.5% 78.5% 78.6% 79.4% 79.0%

 1Bolded font indicates the highest performance. 597

7.4 Flexibility analysis 598

7.4.1 Performance across different types of codes and standards 599

To test the flexibility of the proposed method, i.e., test its performance across different regulatory 600

documents, the proposed method was used to generate three different types of intelligent requirements: 601

using MFS requirement hierarchies developed based on IBC, IECC, and ADA Standards. This is 602

important to evaluate, because requirements in different codes/standards typically have different semantic 603

and syntactic structures (e.g., terminology, vocabulary, and sentence length). As shown in Table 5, the 604

proposed method achieved consistently high performance across all three types of codes/standards, in 605

terms of both natural-language requirement comprehensibility (i.e., over 80.0% for all BLEU and 606

ROUGE scores) and semantic linking (i.e., over 88% for precision, recall, and F1 measure), indicating 607

that the approach has a good level of flexibility in dealing with different types of codes/requirements. 608

Table 5. Performance of the Proposed Approach Across Different Types of Codes/Requirements 609

Code/standard
Natural-language requirement

comprehensibility Semantic linking

BLEU1 BLEU2 ROUGE1 ROUGEl Precision Recall F1 measure
International Building
Code (IBC) 96.2% 91.0% 96.2% 94.4% 93.4% 95.2% 94.1%

International Energy
Conservation Code
(IECC)

86.1% 80.3% 88.5% 85.4% 88.9% 89.5% 89.2%

Americans with
Disabilities Act Standards
for Accessible Design
(ADA Standards)

87.7% 80.8% 90.4% 84.0% 89.6% 90.1% 89.8%

 610

31

7.4.2 Performance across different levels of computability 611

To further evaluate its performance with respect to requirement computability, the proposed method was 612

used to generate intelligent requirements with three different levels of computability: moderately high, 613

moderately low, and low. These are the top three types of sentences that appear most frequently in 614

building codes in terms of computability (e.g., they account for 22%, 39%, and 23% of a corpus of 615

sentences from IBC and its amendments, respectively) [53]. The lower the level of computability, the 616

more complex the semantic and syntactic structures of the sentences. 617

As shown in Table 6, the proposed method achieved consistently high performance (i.e., over 85% for all 618

BLEU and ROUGE scores, and over 88% for precision, recall, and F1 measure) across all three 619

computability levels, in terms of both natural-language requirement comprehensibility and semantic 620

linking, indicating that the method has a good level of flexibility in generating requirements of various 621

levels of computability. Also, all three selected types of requirements have hierarchical complex semantic 622

and syntactic structures [3,53], indicating that the method is able to deal with such structures effectively. 623

Table 6. Performance of the Proposed Approach Across Different Code Computability Levels 624
Computability of

requirements

Natural-language requirement
comprehensibility

Semantic linking

BLEU1 BLEU2 ROUGE1 ROUGEl Precision Recall F1 measure
Moderately high 92.2% 88.4% 95.0% 90.6% 92.3% 93.6% 93.2%
Moderately low 89.0% 85.5% 91.4% 87.3% 88.3% 89.2% 88.6%
Low 91.6% 85.4% 92.9% 89.4% 89.6% 90.1% 89.8%

 625

7.5 Comparison to a rule-based method 626

The rule-based method for NLG based on structured data by Bauer et al. [69] was used to serve as a 627

baseline method for comparative evaluation of the generated natural language requirements (no semantic 628

linking is needed for the rule-based approach because the generated sentences are directly constructed 629

using the input SIEs, hence the comparison of semantic linking is not relevant). 630

Only the sentences from the IBC were used when developing the rules, to make the rule-based method 631

and the proposed method, which was trained on sentences from the IBC only, comparable. Example rules 632

32

include: (1) Sentence subject rule: “IF (S is NOT None) AND (A is NOT None), THEN (Ssub = TA + “of” 633

+ TS OR Ssub = TS + “with” + TA”); (2) Sentence quantity rule: “IF (C is NOT None) AND (QV is NOT 634

None) & (QU is NOT None), THEN Sq = TC + TQV + TQU”; (3) Sentence predicate rule: “IF (Ssub is NOT 635

None) AND (SR is NOT None) AND (Sq is NOT None), THEN S = Ssub + TSR + Sq”, where Ssub, Sq, S, 636

are the partial sentences built using the sentence subject rule, sentence quantity rule, and sentence 637

predicate rule, respectively; TA, TS, TC, TQV, TQU, TSR are the textual input corresponding to compliance 638

checking attribute (A), subject (S), comparative relation (C), quantity value (QV), quantity unit (QU), and 639

subject relation (SR), respectively. 640

As shown in Table 7, the proposed method achieved better performance. In terms of natural-language 641

requirement comprehensibility, it outperformed the baseline method by 29.0% in BLEU2, 7.4% in 642

ROUGE1, and 36.9% in ROUGEl. The baseline’s drop in ROUGEl is because compared to the gold 643

standard sentences, although the sentences generated by the baseline method consist of a similar set of 644

words, they are organized in a different way that is semantically less meaningful/correct, especially when 645

the sentences have complex syntactic or semantic structures, as shown in the following example. 646

Compared to the baseline method, the proposed method generated sentences that (1) capture more words 647

that are seen in the gold standard sentences (indicated by the higher ROUGE1), and (2) share similar 648

semantic and syntactic structures with gold standard sentences (indicated by the higher BLEU2 and 649

ROUGEl), as shown in the examples in Table 8. 650

Table 7. Impact of Correspondence Score and Copy Mechanism on Intelligent Code Generation 651

Method
Natural-language requirement

comprehensibility
BLEU1 BLEU2 ROUGE1 ROUGEl

Proposed method 94.2% 90.5% 95.6% 93.1%

Baseline method 99.3% 61.5% 88.2% 56.2%
 1Bolded font indicates the highest performance. 652

 653

 654

33

Table 8. Example Gold Standard and Generated Requirement Sentences 655
Example Requirement source Requirement sentence

Example 1

Generated by the
baseline method

“maximum 19 mm height of existing or altered thresholds with slope not
steeper than 0.5 have beveled edge on each side shall not be required with
404.2.5”

Generated by the
proposed method

“existing or altered thresholds 19 mm high maximum that have a beveled
edge on each side with not steeper than 1:2 slope shall not be required to
comply with the 404.2.5”

Gold standard
“existing or altered thresholds 19 mm high maximum that have a beveled
edge on each side with a slope not steeper than 1:2 shall not be required to
comply with 404.2.5” [70]

Example 2

Generated by the
baseline method

“with area of not more than 22500 square feet from any point in smoke
compartment to smoke barrier door and travel distance shall not exceed
200 feet such stories shall be divided into smoke compartments”

Generated by the
proposed method

“such stories shall be divided into the smoke compartments with an area of
not more than 22500 square feet and travel distance from any point in the
smoke compartment to a smoke barrier door shall not exceed 200 feet”

Gold standard

“such stories shall be divided into smoke compartments with an area of not
more than 22500 square feet and the travel distance from any point in a
smoke compartment to a smoke barrier door shall not exceed 200 feet”
[52]

7.6 Error analysis 656

Four main sources of sentence generation errors were identified based on the analysis of the experimental 657

results: training and testing corpus noises, training data annotation errors, out-of-vocabulary tokens, and 658

structural complexity. First, the training and testing corpus were developed using regulatory documents 659

crawled from webpages and converted from PDF files, resulting in addition of noise during the data 660

crawling and conversion processes. For example, building codes typically contain a significant amount of 661

non-textual data such as tables and equations, some of which are difficult to be separated from the 662

requirement sentences and thus remain in the text files as noise. Second, the training data that were used 663

to train and evaluate the requirement unit-to-text generation model have errors, because they were 664

automatically annotated by pretrained regulatory information extraction models, which have not achieved 665

perfect (100%) performance. For example, the pretrained models tend to have errors in dealing with 666

multiword expressions (e.g., “path of egress”), each of which shall be annotated as a single SIE but could 667

be mistakenly annotated as two (e.g., “of” in the subject “path of egress” is not corrected linked). Third, 668

the requirement unit-to-text generation model in the proposed method could generate flawed requirement 669

34

sentence segments when the input requirement hierarchy contains out-of-vocabulary words (i.e., words 670

not contained in the training data). For example, during testing, the method performed worse on 671

requirements from IECC than those from ADA Standards and IBC because IECC has a relatively 672

different vocabulary than those of ADA Standards and IBC. For instance, the proposed method failed 673

when dealing with the compliance checking attribute (“area-weighted average maximum fenestration U-674

factor”), the quantitative values and units, and the reference (“tradeoffs from Section R402.1.5 or R405”) 675

in the gold standard “the area-weighted average maximum fenestration U-factor permitted using tradeoffs 676

from Section R402.1.5 or R405 shall be 0.48 in Climate Zones 4 and 5 and 0.40 in Climate Zones 6 677

through 8 for vertical fenestration, and 0.75 in Climate Zones 4 through 8 for skylights” [71]. Fourth, the 678

requirement-to-text generation model in the method could generate flawed requirement sentence 679

segments when the target requirements have very high structural complexity. For example, the model 680

might fail when dealing with sentence characteristics that indicate high syntactic complexity (e.g., 681

complex noun phrases, verb phrases, and preposition phrases, and clauses of different types) or high 682

semantic complexity (e.g., having multiple references and restrictions). For instance, the proposed method 683

failed to capture the multiple subjects (e.g., “treatment rooms”) and the compliance checking attribute 684

(“aggregate area”) in the gold standard “the aggregate area of corridors, patient rooms, treatment rooms, 685

lounge or dining areas and other low-hazard areas on each side of each smoke barrier” [52], which is 686

represented within a very complex noun and preposition phrase. 687

8 Limitations 688

Two limitations of the research are acknowledged. First, although the proposed method has been well 689

supported by the proposed requirement hierarchy, further research is needed to study the usability of the 690

proposed NLG-based approach when used in generating new requirements (i.e., new requirements, which 691

are not in existing codes). In future work, the authors plan to develop a user-friendly BIM-integrated 692

graphical user interface for capturing user input (i.e., the semantic information for the requirement 693

hierarchies) and to study the usability of the proposed approach using such an interface. When 694

35

transforming existing codes to intelligent codes, no user input is needed, and the requirement hierarchies 695

could be automatically generated using existing algorithms [31,54]. Second, although the proposed 696

representation and method showed successful performance on requirements with different levels of 697

computability and from different building codes and standards, the testing and evaluation did not cover all 698

possible types of requirements, especially the challenging ones such as requirements that have hidden 699

dependencies or assumptions, requirements that have ambiguities and require human judgment by nature, 700

and requirements that have very complex syntactically and semantically structures. Further research is, 701

thus, needed to (1) study the limit of the machine learning-based approach in the intelligent code 702

generation, (2) better understand the benefits and challenges of machine learning-based methods 703

compared to rule-based methods, especially when dealing with these challenging types of requirements, 704

and (3) further refine, improve, and adapt the proposed representation and method based on these findings. 705

9 Contribution to the body of knowledge 706

This research is important from both intellectual and application perspectives. From an intellectual 707

perspective, this research contributes to the body of knowledge in three primary ways. First, this research 708

proposes a novel NLG-based approach for intelligent building code representation. It models intelligent 709

requirements as natural-language requirements connected with their corresponding multi-form semantic 710

(MFS) requirement hierarchies. The MFS requirement hierarchy is a new semantic representation of 711

requirements for representing, analyzing, and generating requirements, especially the hierarchically 712

complex ones. Its two forms, the forward and backward forms, support automated generation of 713

intelligent code by facilitating the capturing of the semantic and syntactic structures of the requirements 714

and the automated conversion and linking of the structured semantic information into natural-language 715

sentences. The proposed intelligent code can circumvent the error-prone information extraction and 716

transformation processes in the ACC systems and bring together the comprehensibility of the natural 717

language with the computer-processability of the semantic representations. Second, this research is the 718

first effort to automatically generate intelligent code given the regulatory information that defines the 719

36

requirements. It proposes a deep learning and NLG-based method, where an RNN-based sequence-to-720

sequence model is adopted to generate requirement sentence segments and a semantic correspondence 721

score with a depth-first insertion and concatenation algorithm is defined to connect the segments into 722

whole requirements. The experimental results show that the proposed method achieved consistent 723

performance across intelligent requirements from different codes/standards and with different levels of 724

computability (i.e., from high to low computability), in terms of both natural language requirement 725

comprehensibility and semantic linking correctness. Third, it offers an approach for generating intelligent 726

code, with minimal development effort. The proposed method achieves competitive performance 727

compared to semantic and rule-based methods, while eliminating the need for handcrafting rules for 728

generating intelligent code. It further minimizes the manual effort for creating annotated data in training 729

the deep learning-based NLG models by leveraging pretrained domain-specific information extraction 730

and semantic relation extraction models and rules to automatically create large-scale annotated data to 731

train the requirement unit-to-text model. 732

From a practical perspective, first, the proposed intelligent code could help reduce ACC errors, improve 733

requirement comprehensibility, and facilitate intelligent analytics of building codes. All would lead to 734

enhanced project efficiency (e.g., by reducing time and cost of ACC) and fewer violations of building 735

codes and standards. Second, the application of the proposed NLG-based approach could be extended to 736

support many other applications and purposes such as automated generation of contract documents like 737

specifications and agreements, project planning documents like site plans, and progress reports. We can 738

envision many more applications of NLG in the AEC domain if combined with other artificial 739

intelligence (AI) approaches, like computer vision (e.g., automated generation of progress reports based 740

on site images). 741

10 Conclusions and future work 742

In this paper, a deep learning-based approach for generating intelligent building codes was proposed. First, 743

a new semantic representation of requirements, multi-form semantic (MFS) requirement hierarchy, was 744

37

proposed to support seamless and automated natural-language requirement generation. An MFS 745

requirement hierarchy represents a requirement in a hierarchical structure that consists of requirement 746

units and the relations between these units. Each requirement unit is further defined by several SIEs, such 747

as subject, compliance checking attribute, quantity value, and quantity unit. The requirement hierarchy is 748

represented in two supplementary forms: the surface form, which shows the units, relations, and SIEs and 749

thus can be used for requirement editing and development purposes, and the background form, which 750

shows the predicate-argument structures of the SIEs in a sequential format that can be directly fed into the 751

deep learning unit-to-text model for requirement generation purpose. Second, an intelligent code was 752

defined as a set of natural-language requirements connected with their corresponding requirement 753

hierarchies. An intelligent requirement consists of three parts – the natural-language requirement, its 754

corresponding requirement hierarchy, and the semantic correspondence keys that indicate the 755

correspondence between the requirement hierarchy and the natural-language requirement. Third, a deep 756

learning and semantic NLG-based method for generating intelligent building-code requirements was 757

proposed, which consists of three primary steps, requirement sentence segments generation, semantic 758

linking, and requirement configuration. 759

The requirement unit-to-text generation model was trained on training data automatically annotated using 760

pretrained information extraction models, which consist of 7,500 sentences, and tested on testing data 761

manually created that consisted of 600 sentences. Requirement sentence segments were generated using 762

the trained model, linked to the MFS requirement hierarchies based on semantic correspondence scores 763

and keys, and then configured into whole intelligent requirements. The comprehensibility of the generated 764

natural-language requirements was then evaluated using BLEU and ROUGE metrics, and the semantic 765

linking correctness of the links was evaluated using precision, recall, and F1 measure. A BLEU1 of 94.2%, 766

BLEU2 of 90.5%, ROUGE1 of 95.6%, and ROUGEl of 93.1%, and a precision of 91.9%, recall of 92.3%, 767

and F1 measure of 92.1% were achieved, with the optimized hyperparameters. The ablation analysis 768

results indicate that the proposed requirement hierarchy and the proposed semantic correspondence 769

38

measurement, along with the adopted copying mechanism, are effective in generating intelligent code. 770

The flexibility analysis results indicate that the proposed method performed consistently on requirements 771

from different types of codes/standards and with different levels of computability from high (with 772

relatively simple semantic and syntactic structures) to low (with relatively complex semantic and 773

syntactic structures). 774

In future work, the authors plan to focus on improving the proposed intelligent code and the generation 775

method in three directions. First, the authors will explore the alignment of the proposed semantic 776

representation (i.e., the MFS requirement hierarchy) with the IFC schema. This would require the 777

matching and alignment of the regulatory concepts and the BIM/IFC concepts, using a machine learning-778

based, rule-based, or hybrid approach, along with an ontology to support the semantic similarity analysis 779

and matching. Such alignment efforts could also be further incorporated within the intelligent code 780

generation process to have the resulting intelligent code readily aligned with the BIM. This would help 781

add an additional layer of intelligence for the code, which would not only be both human-comprehensible 782

and computer-understandable but also intelligently aligned with the BIM. Second, the deep learning-783

based requirement sentence segment generation model could be improved by exploring different types of 784

model structures, such as transformer-based models (e.g., Bidirectional Encoder Representations from 785

Transformers) and model hyperparameters (e.g., activation functions such as ReLU and GeLU), and 786

incorporating more diversified syntactic and semantic patterns in the training data (e.g., including 787

different types of regulatory documents). Third, and most importantly, the authors will conduct additional 788

studies to further evaluate the practicality (e.g., in terms of time and cost) of using the proposed approach 789

in transforming natural-language building codes into intelligent codes, and combine the proposed 790

intelligent code with downstream ACC processes (e.g., BIM-regulatory information alignment and 791

semantic representation-based compliance reasoning) and existing semantic representations of 792

requirements (e.g., logic) in an integrated ACC system. Our ultimate goal is to leverage NLG, deep 793

learning, and other artificial intelligence approaches to reach a level where we can automatically and 794

39

effectively generate and use intelligent building codes for supporting fully automated compliance 795

checking and other intelligent analytics processes in the AEC domain. 796

11 Data Availability Statement 797

The labeled gold standard data generated and used during the study are available from this link: 798

https://publish.illinois.edu/rzhang65-data-sharing/. 799

12 Acknowledgements 800

The authors would like to thank the National Science Foundation (NSF). This material is based on work 801

supported by the NSF under Grant No. 1827733. Any opinions, findings, and conclusions or 802

recommendations expressed in this material are those of the authors and do not necessarily reflect the 803

views of the NSF. 804

13 References 805

[1] Solibri. (2020). “Solibri Model Checker.” https://www.solibri.com/products/solibri-model-checker. (Dec 15, 806
2020) 807

[2] Zhang, J., and El-Gohary, N. 2017. Semantic-based logic representation and reasoning for automated 808
regulatory compliance checking. Journal of Computing in Civil Engineering, 31(1), 809
10.1061/(ASCE)CP.1943-5487.0000583. 810

[3] Zhou, P., and El-Gohary, N. 2017. “Ontology-based automated information extraction from building 811
energy conservation codes.” Automation in Construction, 74, 103-117. 812

[4] Nawari, N.O. 2019. “A Generalized Adaptive Framework (GAF) for Automating Code Compliance 813
Checking.” Buildings, 9(4), 86. 814

[5] Zhang, J., and El-Gohary, N. 2013. “Semantic NLP-based information extraction from construction 815
regulatory documents for automated compliance checking.” Journal of Computing in Civil Engineering, 816
10.1061/(ASCE)CP.1943-5487.0000346, 04015014. 817

[6] Solihin, W. and Eastman, C.M. 2016. “A knowledge representation approach in BIM rule requirement 818
analysis using the conceptual graph.” ITcon, 21, 370-401. 819

[7] Preidel, C., and Borrmann, A. 2016. “Towards code compliance checking on the basis of a visual 820
programming language.” ITcon. 21(25), 402-421. 821

[8] Wang, N. and Issa, R.R. 2020. “Natural Language Generation from Building Information Models for 822
Intelligent NLP-based Information Extraction.” In 27th EG-ICE International Workshop on Intelligent 823
Computing in Engineering 2020. Universitatsverlag der TU Berlin. 275-284. 824

[9] Berlanga, R., Nebot, V. and Pérez, M. 2015. “Tailored semantic annotation for semantic search.” Journal of 825
Web Semantics, 30, 69-81. 826

[10] Gao, G., Liu, Y.S., Lin, P., Wang, M., Gu, M. and Yong, J.H. 2017. “BIMTag: Concept-based automatic 827
semantic annotation of online BIM product resources.” Advanced Engineering Informatics, 31, 48-61. 828

40

[11] Wang, Q., Pan, X., Huang, L., Zhang, B., Jiang, Z., Ji, H. and Knight, K. 2018. “Describing a knowledge 829
base.” arXiv preprint arXiv:1809.01797. 830

[12] Novikova, J., Dušek, O. and Rieser, V., 2017. The E2E dataset: New challenges for end-to-end generation. 831
arXiv preprint arXiv:1706.09254. 832

[13] Wiseman, S., Shieber, S.M. and Rush, A.M., 2017. Challenges in data-to-document generation. arXiv 833
preprint arXiv:1707.08052. 834

[14] Wang, H., 2020. Revisiting challenges in data-to-text generation with fact grounding. arXiv preprint 835
arXiv:2001.03830. 836

[15] Garrett Jr, J.H. and Hakim, M.M. 1992. “Object-oriented model of engineering design standards.” J. 837
Comput. Civil. Eng., 6(3), 323-347. 838

[16] Ozkaya, I., and Akin, Ö. 2006. “Requirement-driven design: assistance for information traceability in 839
design computing.” Design Studies, 27(3), 381-398. 840

[17] Yurchyshyna, A., and Zarli, A. 2009. “An ontology-based approach for formalisation and semantic 841
organisation of conformance requirements in construction.” Autom. Construct., 18(8), 1084-1098. 842

[18] Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van de Walle, R. and Van 843
Campenhout, J., 2011. A semantic rule checking environment for building performance checking. 844
Automation in construction, 20(5), pp.506-518. 845

[19] Lee, J.K., Eastman, C.M. and Lee, Y.C. 2015. “Implementation of a BIM domain-specific language for the 846
building environment rule and analysis.” Journal of Intelligent & Robotic Systems, 79(3-4), 507-522. 847

[20] Uhm, M., Lee, G., Park, Y., Kim, S., Jung, J. and Lee, J.K., 2015. Requirements for computational rule 848
checking of requests for proposals (RFPs) for building designs in South Korea. Advanced Engineering 849
Informatics, 29(3), pp.602-615. 850

[21] Dimyadi, J., Pauwels, P. and Amor, R., 2016. Modelling and accessing regulatory knowledge for computer-851
assisted compliance audit. Journal of Information Technology in Construction, 21, pp.317-336. 852

[22] Weise, M., Liebich, T., Nisbet, N. and Benghi, C. 2017. “IFC model checking based on mvdXML 1.1.” 853
eWork and eBusiness in Architecture, Engineering and Construction: ECPPM 2016, 19-26. 854

[23] Hjelseth, E., and Nisbet, N. 2010. “Exploring semantic based model checking.” 855
http://itc.scix.net/data/works/att/w78-2010-54.pdf (Dec 15, 2020). 856

[24] LeCun, Y., Bengio, Y. and Hinton, G., 2015. Deep learning. Nature. 521(7553), pp. 436. 857
https://doi.org/10.1038/nature14539. 858

[25] Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H. and Xu, B., 2016. Text classification improved by integrating 859
bidirectional LSTM with two-dimensional max pooling. arXiv preprint arXiv:1611.06639. 860

[26] Huang, Z., Xu, W. and Yu, K., 2015. Bidirectional LSTM-CRF models for sequence tagging. arXiv 861
preprint arXiv:1508.01991. 862

[27] Dong, L. and Lapata, M., 2018. Coarse-to-fine decoding for neural semantic parsing. arXiv preprint 863
arXiv:1805.04793. 864

[28] Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine translation by jointly learning to align and 865
translate. arXiv preprint arXiv:1409.0473. 866

[29] Pan, Y. and Zhang, L., 2020. BIM log mining: Learning and predicting design commands. Automation in 867
Construction, 112, p.103107. 868

[30] Zhong, B., Xing, X., Luo, H., Zhou, Q., Li, H., Rose, T. and Fang, W. 2020. “Deep learning-based 869
extraction of construction procedural constraints from construction regulations.” Advanced Engineering 870
Informatics, 43, p.101003. 871

41

[31] Zhang, R. and El-Gohary, N., 2021. A deep neural network-based method for deep information extraction 872
using transfer learning strategies to support automated compliance checking. Automation in Construction, 873
132, p.103834. 874

[32] Gatt, A. and Krahmer, E. 2018. “Survey of the state of the art in natural language generation: Core tasks, 875
applications and evaluation.” Journal of Artificial Intelligence Research, 61, 65-170. 876

[33] Wen, T.H., Gasic, M., Mrksic, N., Su, P.H., Vandyke, D. and Young, S. (2015). “Semantically conditioned 877
lstm-based natural language generation for spoken dialogue systems.” arXiv preprint arXiv:1508.01745. 878

[34] You, Q., Jin, H., Wang, Z., Fang, C. and Luo, J. 2016. “Image captioning with semantic attention.” Proc. 879
CVPR IEEE. 4651–4659. 880

[35] Zhang, H., Xu, J. and Wang, J. 2019. “Pretraining-based natural language generation for text 881
summarization.” arXiv preprint arXiv:1902.09243. 882

[36] Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li, I., Yao, Q., Roman, S. and Zhang, 883
Z. (2018). “Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing 884
and text-to-sql task.” arXiv preprint arXiv:1809.08887. 885

[37] Puduppully, R., Dong, L. and Lapata, M. 2019. “Data-to-text generation with content selection and 886
planning.” In Proceedings of the AAAI Conference on Artificial Intelligence. 33, 6908-6915. 887

[38] Gu, J., Lu, Z., Li, H. and Li, V.O. 2016. “Incorporating copying mechanism in sequence-to-sequence 888
learning.” arXiv preprint arXiv:1603.06393. 889

[39] Nie, F., Wang, J., Yao, J.G., Pan, R. and Lin, C.Y. 2018. “Operations guided neural networks for high 890
fidelity data-to-text generation.” arXiv preprint arXiv:1809.02735. 891

[40] See, A., Liu, P.J. and Manning, C.D. 2017. “Get to the point: Summarization with pointer-generator 892
networks.” arXiv preprint arXiv:1704.04368. 893

[41] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I. 894
2017. “Attention is all you need.” In Advances in neural information processing systems. 5998-6008. 895

[42] Mager, M., Astudillo, R.F., Naseem, T., Sultan, M.A., Lee, Y.S., Florian, R. and Roukos, S. 2020. “GPT-896
too: A language-model-first approach for AMR-to-text generation.” arXiv preprint arXiv:2005.09123. 897

[43] Ye, R., Shi, W., Zhou, H., Wei, Z. and Li, L. 2020. “Variational Template Machine for Data-to-Text 898
Generation.” arXiv preprint arXiv:2002.01127. 899

[44] Thewalt, C. and Moskowitz, D. 1990. “Automated text generation for building standards.” J. Comput. Civ. 900
Eng., 4(1), 20-36. 901

[45] Ryoo, B.Y., Skibniewski, M.J. and Kwak, Y.H. 2010. “Web-based construction project specification 902
system.” J. Comput. Civ. Eng. 24(2), 212–221. 903

[46] Avitru. (2020). Spec Editor, https://avitru.com/software/spec-editor. (Dec 15, 2020) 904
[47] Digicon. 2020. BIMdrive Specification Management Software, http://www.digicon.ab.ca/services.aspx. 905

(Dec 15, 2020). 906
[48] ISO. 2021. “ISO/DIS 29481-3(en) Building information models — Information delivery manual — Part 3: 907

Data schema and code.” https://www.iso.org/obp/ui/#iso:std:iso:29481:-3:dis:ed-1:v1:en. 908
[49] Ferreira, T.C., van der Lee, C., Van Miltenburg, E. and Krahmer, E., 2019. Neural data-to-text generation: 909

A comparison between pipeline and end-to-end architectures. arXiv preprint arXiv:1908.09022. 910
[50] Schmitt, M., Sharifzadeh, S., Tresp, V. and Schütze, H., 2019. An unsupervised joint system for text 911

generation from knowledge graphs and semantic parsing. arXiv preprint arXiv:1904.09447. 912
[51] Sutskever, I., Vinyals, O. and Le, Q.V. 2014. “Sequence to sequence learning with neural networks.” Adv. 913

Neur. In. 3104-3112. 914
[52] ICC (International Code Council). 2018. 2018 International Building Code. ICC. Washington, D.C. 915

42

[53] Zhang, R., and El-Gohary, N., 2020. Clustering-based Approach for Building Code Computability Analysis. 916
Journal of Computing in Civil Engineering. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000967. 917

[54] Zhang, R., and El-Gohary, N., 2021. Hierarchical representation and deep learning-based method for 918
automatically transforming textual building codes into semantic computable requirements. Journal of 919
Computing in Civil Engineering. 920

[55] Clark, V., and Creswell, J. 2008. The mixed methods readers, Sage Publications, Thousand Oaks, CA. 921
[56] Pestian, J.P., Deleger, L., Savova, G.K., Dexheimer, J.W., Solti, I. 2012. Natural language processing—the 922

basics. Pediatric Biomedical Informatics: Computer Applications in Pediatric Research, Springer, 923
Netherlands, Dordrecht, pp. 149-172 924

[57] Luong, M.T., Pham, H. and Manning, C.D., 2015. Effective approaches to attention-based neural machine 925
translation. arXiv preprint arXiv:1508.04025. 926

[58] Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R. and Schmidhuber, J. 2016. “LSTM: A search 927
space odyssey.” IEEE transactions on neural networks and learning systems, 28(10), 2222-2232. 928

[59] Graves, A., Mohamed, A.R. and Hinton, G. 2013. Speech recognition with deep recurrent neural networks. 929
In 2013 IEEE international conference on acoustics, speech and signal processing (pp. 6645-6649). IEEE. 930

[60] Jurafsky, D. and Martin, J.H. 2014. Speech and language processing (Vol. 3). US: Prentice Hall. 931
[61] Wiseman, S. and Rush, A.M., 2016. Sequence-to-sequence learning as beam-search optimization. arXiv 932

preprint arXiv:1606.02960. 933
[62] Le, Q.V., Jaitly, N. and Hinton, G.E., 2015. A simple way to initialize recurrent networks of rectified linear 934

units. arXiv preprint arXiv:1504.00941. 935
[63] Papineni, K., Roukos, S., Ward, T. and Zhu, W.J. 2002. BLEU: a method for automatic evaluation of 936

machine translation. Proc. 40th Annual Meeting on ACL. pp. 311–318. 937
[64] Madotto, A., Wu, C.S. and Fung, P., 2018. Mem2seq: Effectively incorporating knowledge bases into end-938

to-end task-oriented dialog systems. arXiv preprint arXiv:1804.08217. 939
[65] Wu, C.S., Socher, R. and Xiong, C., 2019. Global-to-local memory pointer networks for task-oriented 940

dialogue. arXiv preprint arXiv:1901.04713. 941
[66] Dušek, O. and Kasner, Z., 2020. Evaluating semantic accuracy of data-to-text generation with natural 942

language inference. arXiv preprint arXiv:2011.10819. 943
[67] Lin, C.Y. 2004. Rouge: a package for automatic evaluation of summaries. Proc. of ACL-04 Workshop. 8, 944

pp. 74–81. 945
[68] Chen, W., Su, Y., Yan, X. and Wang, W.Y., 2020. KGPT: Knowledge-Grounded Pre-Training for Data-to-946

Text Generation. arXiv preprint arXiv:2010.02307. 947
[69] Bauer, A., Hoedoro, N. and Schneider, A., 2015. Rule-based Approach to Text Generation in Natural 948

Language-Automated Text Markup Language (ATML3). In Challenge+ DC@ RuleML. 949
[70] U.S. Department of Justice. 2010. 2010 ADA Standards for Accessible Design. 950

https://www.ada.gov/2010ADAstandards_index.htm (Dec 15, 2020) 951
[71] ICC (International Code Council). 2018. 2018 International Energy Conservation Code. ICC. Washington, 952

D.C. 953

	Abstract
	1 Introduction
	2 Background
	2.1 Semantic representations of natural-language requirements for automated compliance checking
	2.2 Deep learning for text analytics
	2.3 Data-to-text natural language generation

	3 State of the art and knowledge gaps in regulatory text generation
	4 Research methodology
	5 Proposed representation: requirement hierarchy and intelligent code
	5.1 Multi-form semantic requirement hierarchy representation
	5.2 Intelligent code representation

	6 Semantic NLG- and deep learning-based method for generating intelligent code
	6.1 Data preparation
	6.1.1 Corpus preparation
	6.1.2 Sentence selection
	6.1.3 Data annotation

	6.2 Deep learning-based requirement unit-to-text generation model development
	6.2.1 Model design
	6.2.2 Model training

	6.3 Intelligent building-code requirement generation
	6.3.1 Requirement sentence segment generation
	6.3.2 Semantic linking
	6.3.3 Requirement configuration

	7 Experimental results and analysis
	7.1 Evaluation metrics
	7.1.1 Evaluation of generated natural-language requirements
	7.1.2 Evaluation of semantic links between natural language and semantic representation

	7.2 Hyperparameter optimization
	7.3 Ablation analysis
	7.3.1 Impact of semantic representation
	7.3.2 Impact of semantic correspondence measurement and copying mechanism

	7.4 Flexibility analysis
	7.4.1 Performance across different types of codes and standards
	7.4.2 Performance across different levels of computability

	7.5 Comparison to a rule-based method
	7.6 Error analysis

	8 Limitations
	9 Contribution to the body of knowledge
	10 Conclusions and future work
	11 Data Availability Statement
	12 Acknowledgements
	13 References

