
Distributed Computation of a Robust Estimator
Based on Cauchy Noises

Nathaniel Snyder†, Moshe Idan‡, and Jason L. Speyer†

Abstract—A real-time, recursive, multivariate estimation algorithm
for time-invariant and time-varying linear systems with modelled
Cauchy noises is developed. When previously compared to the Kalman
Filter, the Multivariate Cauchy Estimator was shown to be robust
against impulsive disturbances in the process or measurement func-
tions, but proved computationally intractable for real-time estimation
applications. Two significant insights allow for a reformulation of
the Multivariate Cauchy Estimator to possess a streamlined recursive
and computationally reduced characteristic function of the conditional
probability density function of the system state-vector given the mea-
surement sequence. This characteristic function is represented by a
sum of terms, expanding with each measurement. First, we show
that a cell-enumeration matrix can be computed for each hyperplane
arrangement embedded within each term of the characteristic function
of the Cauchy Estimator. We then show that functions used to formulate
the terms of this characteristic function can be expressed as a vector
of parameters operating on basis functions constructed from this
enumeration matrix. This vector is obtained by solving an under-
determined system of equations. We demonstrate that our reformulation
allows all terms with equal hyperplane arrangements to be reduced
into a unique set. Secondly, we take advantage of advances in parallel
processing to exploit the inherent parallelism found in the characteristic
function of the Cauchy Estimator. A three state time-invariant system
example is used to illustrate the performance of the Cauchy Estimator
against the Kalman Filter when subjected to Gaussian and Cauchy
noises. We report computational savings of over 99% when compared
to the previous formulation. Furthermore, we discuss the real-time
architecture of the Cauchy Estimator and report the execution speeds
for a three-state system implemented on a single NVIDIA GeForce GTX
1060 graphics processing unit (GPU).

Index Terms—control-systems, stochastic estimation, bayesian estima-
tion, CUDA-C programming, GPU linear programming, cell enumera-
tion, Cauchy pdfs

I. INTRODUCTION

State estimation schemes traditionally assume Gauss-Markov
models of the system’s underlying process and measurement noises,
leading to computationally efficient variants of the Kalman Filter
[1, 2]. In many applications, volatile and impulsive fluctuations in
the process or measurement functions can occur, which can be
better described (probabilistically) by heavier tailed distributions
[3, 4]. Such examples include replacing the Gaussian probability
density function (pdf) in a Kalman Filter with heavy tailed Students-
t distributions [5].

In [4], the Multivariate Cauchy Estimator was shown to ana-
lytically contain such robustness features against volatile process
and measurement noises. Although no physical process is explicitly
Cauchy distributed, since its tails over bound other realistic densi-
ties, estimators that are based on the Cauchy pdfs are hypothesized
to be robust to unknown physical densities. The Cauchy Estimator
demonstrated superior performance to that of the Kalman Filter in
the presence of heavy-tailed Cauchy noise, and behaved similarly to
the Kalman Filter in the presence of Gaussian noise [6]. However,

This work was supported in part by the National Science Foundation under
grant numbers NSF/ENG/ECCS-BSF 1607502 and 1934467 as well as the
NSF-BSF ECCS under Grant No. 2019639.

† N. Snyder and J. L. Speyer are with the Department of Mechanical and
Aerospace Engineering, UCLA. Email: natsnyder1@g.ucla.edu,
speyer@g.ucla.edu

‡ M. Idan is with the Faculty of Aerospace Engineering, Technion, Haifa,
Israel. Email: moshe.idan@technion.ac.il.

in the previous formulation of the Cauchy Estimator, two major
computational challenges existed when computing the conditional
mean and variance from the characteristic function of the conditional
pdf of the system state-vector given the measurement sequence, that
is the central entity of the Cauchy Estimator. First, since both the
conditional mean and variance are functions of the parameters of
the current and past characteristic functions, the entire history of
those parameters had to be stored. Second, at each estimation step,
the number of parameters which make up the characteristic function
grows factorially, without the ability to reduce the number of terms
in the estimator. This was seen to make the computational burden
of the estimator and its storage requirements intractable after only
several estimation steps.

Motivated by the aforementioned, a reformulation of the Cauchy
Estimator is developed in this paper to eliminate the need to
store past parameters and moreover to reduce the number of terms
that make up the characteristic function at each step. At its core,
the characteristic function is represented by many terms, where
each term i contains a central arrangement of m-hyperplanes in
dimension d, denoted Ai. These terms involve a complex valued
function that is constant in each cell of this hyperplane arrangement.
The key component in the reformulated Cauchy Estimator for
reducing the computational burden and memory of the estimator
is a GPU driven incremental enumeration algorithm based on [7],
to enumerate all the cells of hyperplane arrangements embedded
within the terms of the characteristic function.

The central idea of the reformulated Cauchy Estimator is to
quickly build an ‘enumeration’ matrix Bi for the hyperplane ar-
rangements of each term i ∈ [1, 2, . . . , Nt], where Nt is the
number of terms in the characteristic function. The matrix Bi is
the result of running an efficient cell enumeration algorithm for
enumeration of centralized hyperplane arrangements Ai. Each row
of the enumeration matrix Bi holds a sequence of ±1 sign values
(sign-vector) that indicate in which halfspace a point in space lies
with respect to each mi hyperplanes in the arrangement. We refer
the reader to [8] for a detailed introduction to cell enumeration.

The enumeration matrix Bi serves two purposes. Initially, it is
used to compute the complex values held constant in each cell
of the associated term i, of the related hyperplane arrangement.
More significantly, Bi can be used to parameterize the values
held constant in each cell through a linear system of equations,
detailed in Sections III-B and V. Parameterizing these constant cell
values is crucial in our reformulation, and is necessary to compute
the conditional moments. Furthermore, as shown in Section V, all
terms with identical hyperplane arrangements embedded within the
Cauchy Estimator’s characteristic function can be combined, thus
drastically reducing the number of terms and hence the computation
burden of the estimator. This reduction was not possible in the
original formulation of the estimator in [4]. Hints of this structure
were given in [6] for the two-dimensional system, but were not
established in general.

The main contribution of this paper is to reformulate the char-
acteristic function of the Multivariate Cauchy Estimator presented
in [4] into a computationally reduced structure that is applicable

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 6584

20
21

 6
0t

h
IE

EE
 C

on
fe

re
nc

e
on

 D
ec

is
io

n
an

d
C

on
tro

l (
C

D
C

) |
 9

78
-1

-6
65

4-
36

59
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
D

C
45

48
4.

20
21

.9
68

29
87

Authorized licensed use limited to: UCLA Library. Downloaded on August 20,2022 at 17:44:26 UTC from IEEE Xplore. Restrictions apply.

for real-time multivariate estimation problems. The estimator in
[4] is briefly reviewed in Section II. In Section III, we discuss
a new alternative representation of the terms of the characteristic
function that uses the notions of related hyperplane arrangements.
In Section IV we describe the ‘Incremental-Enumeration’ procedure
adopted from [7] to form the enumeration matrix Bi for the hyper-
plane arrangement Ai of each term of this characteristic function.
Also, a minor, but crucial change for parallelizing the Incremental-
Enumeration procedure allows our CUDA-C implementation of
the Multivariate Cauchy Estimator to achieve real-time rates. The
‘flattening’ algorithm is discussed in Section V, which eliminates the
recursive structure of the characteristic function in [4], commenting
also on an algorithm for combining terms in the characteristic func-
tion. Section VI validates that the reformulated estimator computes
the numerical linear time-invariant simulation results presented in
[4], but does so with a vastly reduced characteristic function and
at real-time rates. Additionally, we remark on how the real-time
rates for time-varying three state systems would be similar to the
time-invariant example provided. Concluding remarks are offered in
section VII.

II. THE MULTIVARIATE CAUCHY ESTIMATOR

As detailed in [4], the Cauchy Estimator uses a characteris-
tic function of the unnormalized conditional probability density
function (ucpdf) of the system state-vector given the measurement
history to generate the conditional mean and variance estimates of
the state. This paper omits the derivation of the Cauchy Estimator
and refers the reader to [4]. To make the presentation less mathe-
matically cumbersome, we provide a loose parsing of the rigorous
original notation in [4] and give a general overview of the structure
of this characteristic function. The parameters and equations derived
in [4] that are relevant to the reformulated estimator are re-presented
in this section.

Given a discrete-time linear system of equations

xk+1 = Φxk + Γwk, (1a)

zk = Hxk + vk, (1b)

with state xk ∈ Rd, dynamics matrix Φ ∈ Rd×d, process noise
input matrix Γ ∈ Rd×r , and process noise wk ∈ Rr . We let
zk model the measurement, with measurement matrix H ∈ R1×d

and additive measurement noise wk. Note that Φ, Γ, and H can
be time varying. We make the assumption that wk and vk are
independent, white Cauchy distributed random variables. It was
shown in [4] that the characteristic function of the ucpdf at any step
k given a scalar realization of the measurement sequence history
yk = {z1, z2, ..., zk} can be expressed as

φ̄Xk|Yk
(ν) =

N
k|k
t∑
i=1

g
k|k
i

(
y
k|k
gi (ν)

)
exp

(
y
k|k
ei (ν)

)
, (2)

where Xk and Yk denotes the random state vector and measurement
history, respectively, and ν ∈ Rd is the spectral vector. The
coefficients’ function gk|ki

(
y
k|k
gi (ν)

)
is given by

g
k|k
i

(
y
k|k
gi (ν)

)
=

1

2π

g
k−1|k−1
r
k|k
i

(
y
k|k
gi1(ν) + h

k|k
i

)
jc
k|k
i + d

k|k
i + y

k|k
gi2(ν)

−
g
k−1|k−1
r
k|k
i

(
y
k|k
gi1(ν)− hk|ki

)
jc
k|k
i − dk|ki + y

k|k
gi2(ν)

 , (3)

where

y
k|k
gi (ν) =

(
q
k|k
i

)T
λ
k|k
i (ν) ∈ R, (4a)

λ
k|k
il (ν) = sgn

(〈
a
k|k
il , ν

〉)
, l ∈ [1, ...,m

k|k
i], λ

k|k
i ∈ Rm

k|k
i ,

(4b)

y
k|k
ei (ν) = −

m
k|k
i∑
l=1

p
k|k
il

∣∣∣〈ak|kil , ν〉∣∣∣+ j
〈
b
k|k
i , ν

〉
∈ C. (4c)

These expressions must be unpacked for clarity. Throughout the
paper we refer to a ‘term’ of the characteristic function as any ma-
trix, vector or scalar with subscript (·)i, and i ∈

[
1, 2, . . . , N

k|k
t

]
,

with N
k|k
t defining the number of terms in the characteristic

function at step k, given measurement sequence yk. Formally, a
superscript (·)k|k−1 or (·)k|k indicates that the term was computed
before or after the most recent measurement zk was processed,
respectively.

As derived in [4], the characteristic function in (2) and its first
two derivatives are evaluated using (3) and (4) as ν → 0 and at
any point denoted by ν̄ (minor restriction on ν̄ apply: see [4] for
details) to generate the conditional mean x̂k and the error variance
Pk at each estimation step k, given by the expressions:

x̂k =
1

jfYk

N
k|k
t∑
i=1

g
k|k
i (ν̄)ȳ

k|k
ei (ν̄) ∈ Rd, (5)

Pk = − 1

fYk

N
k|k
t∑
i=1

g
k|k
i (ν̄)ȳ

k|k
ei (ν̄)

(
ȳ
k|k
ei (ν̄)

)T
− x̂kx̂Tk ∈ Rd×d,

(6)

where

fYk =

N
k|k
t∑
i=1

g
k|k
i (ν̄) ∈ R, (7)

ȳ
k|k
ei (ν̄) = −

m
k|k
i∑
l=1

p
k|k
il λ

k|k
il (ν̄)a

k|k
il + jb

k|k
i ∈ Cd. (8)

Equation (3), derived in [4], is a recursively growing function,
requiring all coefficients generated from terms at steps 1 though k.
Here, ck|ki ∈ R, d

k|k
i ∈ R, y

k|k
gi1 ∈ Rk−1, y

k|k
gi2 ∈ R, h

k|k
i ∈

Rk−1, q
k|k
i ∈ Rm

k|k
i , a

k|k
il ∈ Rd, b

k|k
i ∈ Rd, p

k|k
i ∈

Rm
k|k
i . The variables listed above represent all elements of a

single term i of the characteristic function at step k given the
measurement history yk. The elements ck|ki , d

k|k
i and qk|ki are used

to store all generated coefficients from step 1 to k, and are needed
when ‘tunneling’ back to step 1 in (3). Each term i has several
coefficient vectors ail that are needed when forming (4c) and (3),
where the number of coefficient vectors per term i is stored as
l ∈

[
1, . . . ,m

k|k
i

]
. The elements ail are used extensively in the

development of the reformulated estimator in section III. We note
that when a superscript is omitted (e.g., (·)i), the reader can assume
the term has been formed after the most current measurement (·)k|ki .

The formulation shown in (3) for computing gk|ki (ygi(ν)) (short-
hand gi(ν)) unfortunately must tunnel the new arguments at step k|k
recursively through each numerator function gk−1|k−1

r
k|k
i

(·) until they

have reached the first step, and then back up to step k. Effectively,
g
r
k−1|k−1
i

is composed of a hierarchy of divisions ending at k−1
with a divisor similar to that in (3) applied at k and going up to
k = 1. This is costly, however, as at each successive estimation
step the computation and memory requirements to compute a

6585

Authorized licensed use limited to: UCLA Library. Downloaded on August 20,2022 at 17:44:26 UTC from IEEE Xplore. Restrictions apply.

single gk|ki (ν) increases. In addition, the formulation presented in
this section does not possess a structure that is able to combine
terms with redundant parameterizations, as terms generated at past
estimation steps k were required in memory to evaluate the recursive
g
k|k
i (ν) expression. A reformulation of gk|ki (ν) in section III-B

resolves these issues.

III. REFORMULATED MULTIVARIATE CAUCHY ESTIMATOR

Many terms of the characteristic function contain arguments of
the exponential yei(ν) that are the same, but coefficients gi(ν)
that are different. If the construction of (3) could be formulated
such that terms were additive with one another, a large number
of terms of the characteristic function could be combined together.
An examination of the g-function in (3), (4a) and (4b) shows that
its values are constant within certain regions. Explicitly, (4b) is a
function of the spectral variable ν, which constructs sign values over
the inner-product of ail and ν. These sign values are the arguments
to (3) and remain constant for certain regions of ν. It is also noticed
that the ail coefficients operating on the spectral variable ν form
a central arrangement of hyperplanes in the spectral domain Rd.
The set of vectors ail, l ∈

[
1, . . . ,m

k|k
i

]
, grouped into a matrix

Ai ∈ Rm
k|k
i ×d, defines a central arrangement of hyperplanes in Rd,

where mk|k
i denotes the number of hyperplanes in the arrangement

of the term i.
Using this alternative viewpoint of the vectors ail, the sign values

sgn
(
aTilν

)
, l ∈

[
1, . . . ,m

k|k
i

]
can then be thought of as forming

a sign-vector, which uniquely describes a cell of the hyperplane
arrangement. A cell can be described by a sequence of ±1 values,
or sign-vector, where a ±1 indicates the point (e.g., ν) being tested
lies in the positive (or negative) halfspace of a particular hyperplane,
respectively. The cells of a central arrangement form separate,
unbounded, convex regions [9]. Due to the observations made
regarding (4b), the function gi(ν) evaluates to a constant in every
point of a cell. If one could find the set of sign-vectors that describe
all cells of an arrangement, then, as shown in [10], a basis can be
constructed using these sign-vectors associated with each cell, such
that the numerator of (3) can be represented as a linear combination
with the elements of this basis. In this section, we reformulate the
characteristic function of section II into a computationally reduced
form, by constructing the novel basis of [10].

A. Centralized Hyperplane Arrangements

As shown in [4], terms of the characteristic function are updated
twice per estimation step k: once in the ‘time-propagation’ (TP)
routine and again in the ‘measurement update’ (MU) routine. Of
all the elements per term i presented in section II, the centralized
hyperplane arrangement of the elements ail, grouped into Ai, is the
most crucial to the development of the reformulated estimator. The
time-propagation function is responsible for updating the hyperplane
arrangements Ai from k−1|k−1 to k|k−1 and is given by

A
k|k−1
i =

[
A
k−1|k−1
i ΦT

ΓT

]
∈ R(m

k−1|k−1
i +r)×d. (9)

Note that newly ‘propagated’ hyperplanes are a transformation of
the parent hyperplane arrangement by the dynamics matrix ΦT and
concatenated to ΓT . This forms a new arrangement of mk|k−1

i =

m
k−1|k−1
i + r hyperplanes for each term i, where r is equal to the

number of columns of Γ (minor restrictions apply, see section V-A).
Once a new measurement zk is obtained, the newly propagated

parent hyperplanes Ak|k−1i are updated by the measurement update

function. MU is responsible for generating child arrangements Ak|k(·) .

Given mk|k−1
i hyperplanes for arrangement Ak|k−1i , term i produces

m
k|k−1
i + 1 child hyperplane arrangements Ak|kj according to

µh = A
k|k−1
i HT ∈ Rm

k|k−1
i ,

µ
k|k−1
il =

{
A
k|k−1
il · 1

µhl
, if l ∈ [1, ...,m

k|k−1
i]

01×d, if l = m
k|k−1
i + 1

,

µi ∈ R(m
k|k−1
i +1)×d, (10)

A
k|k
jl = µ

k|k−1
il − µk|k−1ij , A

k|k
j ∈ Rm

k|k
i ×d,

j ∈ [1, ...,m
k|k
i + 1], l ∈ [i, ...,m

k|k
i + 1], j 6= l.

Note that Nk|k−1
t = N

k−1|k−1
t after TP and m

k|k
i = m

k|k−1
i

after MU. In total, N
k|k−1
t parent terms create N

k|k
t =∑N

k|k−1
t

i=1

(
m
k|k−1
i + 1

)
child terms after the measurement update.

The updated arrangements at k|k are formed by scaled differences
of the propagated hyperplanes. Due to the j 6= l exclusion in (10),
the new arrangements at k|k have the same number of hyperplanes
as step k|k−1. Note that the Ak|kjk hyperplanes becomes zero when
j = l, Once all child terms are generated, all children are re-
indexed continuously as i =

[
1, 2, . . . , N

k|k
t

]
. The propagated

parent arrangements Ak|k−1i and child arrangements Ak|ki are now
used to reformulate (3).

B. Reformulated g Coefficient-Functions

In [10], the authors show that if a function g(ν) ∈ C is
constant when evaluated at any point within a cell of a hyperplane
arrangement, then a relationship between the value of the function
at ν, i.e, g(ν) ∈ C, and a basis-vector S(λ(ν)) ∈ Rs(m,d) can be
formed as

g(ν) = ST (λ(ν))α, g(ν) ∈ C, α ∈ Cs(m,d), (11)

λ(ν)j = sgn (〈aj , ν〉) , j ∈ [1, ...,m], aj ∈ A, (12)

s(m, d) =

d∑
k=0

(
m

k

)
, (13)

where S(λ(ν)) : Rm → Rs(m,d) denotes the expansion to generate
a basis-vector from a sign-vector λ(ν) of a cell located at ν. m
denotes the number of hyperplanes in the arrangement and the
number of sign values in the sign-vector λ(ν). s(m, d) is the size
of the basis-vector S(·), aj ∈ Rd are the hyperplane coefficients of
the central hyperplane arrangement A ∈ Rm×d and α is a complex
valued vector, which parameterizes the relationship between the
value of g(·) that is constant in a cell and its corresponding basis-
vector S(·). λ(ν) denotes the sign-vector ({±1}m) of length m,
which is uniquely defined for each cell of a hyperplane arrangement.

As described in [10], the function S(λ(ν)) combinatorially
expands a sign-vector λ(ν) (defined at ν) up to products of
d combinations. For example, the sign-vector of a three hyper-
plane arrangement in three dimensions, symbolically, is λ(ν) =
[σ1, σ2, σ3] at any ν, where σ ∈ {−1, 1}. The basis-vector is
then formed by combinatorially expanding the sign-vector λ(ν) as
S(λ(ν)) = [1, σ1, σ2, σ3, σ1σ2, σ1σ3, σ2σ3, σ1σ2σ3], to length
s(3, 3) = 8. Note this operation will be performed row-wise for
matrix arguments to S(·) in the following paragraphs.

In order to determine α, one must compute the sign-vector λ(ν)
and constant value g(ν) for every cell of an arrangement. Explicitly,
we refer to the set of all sign-vectors that uniquely defines each

6586

Authorized licensed use limited to: UCLA Library. Downloaded on August 20,2022 at 17:44:26 UTC from IEEE Xplore. Restrictions apply.

cell of a hyperplane arrangement Ai ∈ Rmi×d as the enumeration
matrix Bi ∈ Rc(Ai)×mi , for term i, where mi denotes the number
of hyperplanes in term i and c(Ai) is the number of cells in Ai. That
is, Bi stores c(Ai) sign-vectors of length mi row-wise, where each
sign-vector uniquely locates a particular cell in the arrangement. In
section IV, we show explicitly how this matrix can be formed, but
here we assume the matrix Bi has already been determined for Ai.
The details for locating the constant value in every cell are given
in section V.

If one can compute the enumeration matrix Bi for the hyperplane
arrangement of each term, Ai, then the vector α can be computed by
solving an under-determined set of linear equations (i.e., a system
of c(Ai) equations (11)). A least squares solution to this system for
the measurement updated term i at k−1|k−1 is given by

α
k−1|k−1
i = S†(B

k−1|k−1
i)ḡ

k−1|k−1
i . (14)

Here, S(Bi) ∈ Rc(Ai)×s(mi,d), with c(Ai) ≤ s(mi, d), is the basis
matrix, which generates the c(Ai) basis-vectors of length s(mi, d)
(stored row-wise in S(Bi)) from a combinatorial expansion of the
c(Ai) sign-vectors of length mi that are stored row-wise in the
enumeration matrix Bi. The basis-vectors (rows) of S(Bi) define
a basis for αi over the c(Ai) cells of Ai. ḡi ∈ Rc(Ai) is a vector
container which stores all c(Ai) constant values of gi(ν) in (3).
In (14), S†(Bi) is the pseudo-inverse of ST (Bi). Note that all
the variables discussed above have the timing index (superscript)
k−1|k−1, omitted here for brevity. Consequently, following (11),
the numerator coefficient function g

k−1|k−1
i (ν) of (3) can now

equivalently be formed by using αk−1|k−1i with an appropriate basis
vector.

Next, we address the time propagation of αk|k−1i that will be used
to construct the time propagated g

k|k−1
i (ν). As shown in (9), the

hyperplanes of each term are rotated by ΦT and additional hyper-
planes, defined by ΓT , are added to the hyperplane arrangement. TP,
i.e., (9), changes the orientation of the halfspaces of the propagated
parent hyperplanes Ak|k−1i with respect to the parent arrangement
A
k−1|k−1
i . One must update αk−1|k−1i after the TP routine, based on

how the dynamics matrix ΦT has rotated the parent arrangement
A
k−1|k−1
i in TP, and thus, has changed the sign-vector defined at ν

for the propagated parent hyperplanes Ak|k−1i .

The relation between the parent αk−1|k−1i and the propagated
α
k|k−1
i can be expressed compactly by using the Hadamard product
◦, which denotes element-wise multiplication of two vectors. It is
given by

α
k|k−1
i = S

(
λ̂
k|k−1
i (ν)

)
◦ αk−1|k−1i , (15)

λ̂
k|k−1
i (ν) = sgn

(
A
k|k−1
i [1 : m

k|k−1
i − r, :] · ν

)
∈ Rmi−r. (16)

We use brackets [·, ·] to denote only the first mk|k−1
i − r rows

(or a ‘partition’) of the arrangement Ak|k−1i are accessed. The
hyperplane arrangement is partitioned because ΓT is appended to
the arrangements in the TP routine at step k and is unknown to the
parent arrangement formed at previous step k−1. In (16), sgn() is
an element-wise sign operation over each entry of its input vector.
In addition, the (̂·) symbol indicates that the variable was formed
through a partition of the hyperplanes.

Now we are ready to address the measurement update to de-
termine gk|ki (ν). Using the new representation introduced in this

section, (3) and (4) can be restated as

g
k|k
i (ν)=

1

2π

S+
ψi

(
λ̂
k|k
i (ν)

)T
α
k|k−1
i

jci + di + ygi
−
S−ψi

(
λ̂
k|k
i (ν)

)T
α
k|k−1
i

jci − di + ygi

 ,
(17)

where

g
k|k
i (ν) ∈ ḡk|ki , g

k|k
i ∈ C, ḡk|ki ∈ Cc(Ai), ci, di, ygi ∈ R,

S+
ψi

(
λ̂
k|k
i (ν)

)T
α
k|k−1
i = ḡ

k−1|k−1
r
k|k
i

(
y
k|k
gi1(v) + h

k|k
i

)
,

S−ψi

(
λ̂
k|k
i (ν)

)T
α
k|k−1
i = ḡ

k−1|k−1
r
k|k
i

(
y
k|k
gi1(v)− hk|ki

)
,

(18)

λ̂
k|k
i (ν) = sgn

(
A
k|k
i [1 : mi − r, :] · ν

)
∈ Rmi−r,

λ
k|k
i (ν) = sgn

(
A
k|k
i · ν

)
∈ Rmi ,

(19)

ygi = qTi · λ
k|k
i (ν) ∈ R, qi ∈ Rmi . (20)

The procedure to form the basis-vectors S±ψi

(
λ̂
k|k
i (ν)

)
is elab-

orated upon. Due to the j 6= l exclusion in (10), the sign values
stored in the child sign-vector λk|ki (ν) are not aligned correctly
with respect to the indexing used to store the sign values in the
parent sign-vector λk−1|k−1i (ν). In essence, the indexing scheme
used to store hyperplanes in the child arrangement during MU
(step k|k) is inconsistent with respect to how the parent term at
k−1|k−1 has stored its hyperplane arrangement, and thus its sign-
vector as well. This makes the process of correctly forming the
basis-vector to be used in (17) slightly involved. The notation S±ψi

(·)
is a useful syntax that denotes the procedure to re-index the sign-
vector with respect to its parent and form the appropriate basis-
vector for (17). The subscript (·)ψi informs the basis-vector that
either a ±1 should be inserted at the ψi-th index in the sign-vector
λ̂(ν) ∈ Rmi . The superscript (·)± informs the basis-vector whether
a ±1, respectively, should be inserted at this index. This is detailed
in the novel integration formula given in [4], where the authors
explain the left-side fraction of (3) assigns a +1 value to indices
in the sign-vector where the exclusion occurs, while the right-side
fraction assigns a −1 to this position. It should be noted that after
S±ψi

(·) inserts a ±1 at index ψi to the sign-vector, the mi-lengthed
vector would now be of temporary length mi + 1. The mi + 1-th
element is not required and is clipped to form a new mi-lengthed
vector. The clipped sign-vector is then combinatorially expanded to
length s(mi, d) as detailed previously, which generates the basis-
vectors for both numerators of (17).

It is important to note the following consequential aspects of
this new formulation. Firstly, the term qi ∈ Rmi no longer stores
all past steps q-values, but is now a vector of solely coefficients
generated at the current step. Second, the scalar elements ci and
di of past steps (e.g, k−1) are now unneeded. This is due to the
fact that new arguments no longer must ‘tunnel’ backwards to
previous steps through the numerators of (3). And finally, the form
of the g-function in (17) is now additive and terms with equivalent
arguments of the exponential yei can be combined, as is detailed in
section V-B.

IV. ENUMERATION OF CENTRAL ARRANGEMENTS

As illustrated in Figure 1, cell enumeration algorithms for hyper-
plane arrangements can be categorized into two classes: general
or central. While two arrangements (either general or central)
may contain the same number of hyperplanes, various geometrical
patterns can create degeneracies and reduce the total number of

6587

Authorized licensed use limited to: UCLA Library. Downloaded on August 20,2022 at 17:44:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Enumeration examples of 4 hyperplanes in 2 dimentions for
both general and central arrangements. Left: enumeration of a central
arrangement with illustrated hyperplane half-spaces and cell sign-vectors.
Top Right: Non-degenerate general arrangement with 11 cells. Bottom Right:
Degenerate general arrangement (tic-tac-toe board) with 9 cells.

cells in the arrangement. It becomes imperative then that a cell
enumeration algorithm can efficiently identify these degeneracies.
This is illustrated in the two dimensional example in Figure 1
(right), where we see a tic-tac-toe board has less cells than a general
arrangement with non-parallel hyperplanes.

We focus our attention to cell enumeration for central arrange-
ments, since they characterize the characteristic function of the
Cauchy Estimator. In the following sub-sections, we first provide
a high level overview of Incremental-Enumeration (Inc-Enu), an
efficient cell enumeration algorithm for hyperplane arrangements,
followed by how this algorithm is parallelized on the GPU for our
real-time Cauchy Estimator. We refer the reader to [8] for a detailed
discussion of cell enumeration and reverse-search methods.

A. Sequential Cell Enumeration

The goal of cell enumeration for hyperplane arrangements is to
compute the set of sign-vectors which uniquely defines every cell.
For central arrangements, these sign vectors can be found by solving
Phase-I feasibility linear programs (LPs) [9], explained in detail
by the authors of Inc-Enu in [7]. Naively, one could attempt 2m

feasibility LPs to test all permutations of sign-vectors {±1}m, given
an arrangement with m-hyperplanes. This strategy becomes highly
intractable, however, as m grows larger than 10. Cell enumeration
algorithms, instead, solve a sequence of LPs, gaining insight after
each successful solve into which cells can be found next. If the
LP is found infeasible, the sign-vector attempted is known not to
belong to any given cell in the arrangement.

Figure 2 depicts the enumeration scheme ‘Incremental-Enume–
ration’ (Inc-Enu) presented in [7]. Inc-Enu is a recursive, depth-first-
search algorithm. The algorithm starts at the root of the tree in fig. 2
with knowledge of the root-point (the first known feasible point)
and the symmetric-generator. The goal of Inc-Enu is to recursively
build up sign-vectors for each cell through sequentially solving
LPs. At each recursion level j, Inc-Enc must determine whether an
incrementally growing sign-sequence of length j remains a valid cell
identifier. If the sign-sequence is found valid at all recursion levels,
the sequence is deemed a sign-vector of a cell in the arrangement.
In cell enumeration, it is common to refer to the LP solver as an
oracle who answers queries.

If a given sign sequence is found infeasible (shown in red) by
the oracle, Inc-Enu will pop up a recursion level instead of recuring
down to depth m − 1 to form the new sign-vector. We note that

Fig. 2. Incremental enumeration (Inc-Enu) tree for cell enumeration of a
four hyperplane, three dimentional arrangement. Boxes in gray denote an
LP was solved to validate the current sign sequence. Boxes in green denote
no LP was needed to validate the sign sequence. Boxes in red denote the
LP was infeasible and the proposed sign sequence is invalid. RL denotes
the recursion level the sequence is formed at.

any sign sequences that are found infeasible by the oracle do not
have left and right children and therefore are leaves of the tree.
We see that ‘left’ child nodes (shown in green) of the parent are
found without querying the oracle, whereas ‘right’ children (shown
in red/black) denote where proposed sign sequences are assigned to
the the oracle for query.

We see that the enumeration in Figure 2 yields 7 feasible sign-
vectors in the positive halfspace of the symmetric generator, im-
plying there are 14 total cells in the (non-degenerate) arrangement.
Note that the maximum number of cells is 14 for a four hyperplane,
three dimensional central arrangement [8].

B. Parallel Incremental Enumeration

Here, we detail the minor but crucial changes made to the Inc-Enu
routine to parallelize the algorithm for real-time performance. As
our proposed strategy uses a combination of sequential and parallel
compute operations, we coin the method ‘Hybrid Inc-Enu’ (HIE).

While Inc-Enu conducts a depth-first search, HIE is a parallel
breadth-first search reformulation that operates on a forest (many
trees) of enumeration tasks, solving a grid of computation at
each sequential step. Figure 3 illustrates this parallel enumeration
process. To begin, HIE is given N arrangements of m-hyperplanes
to be enumerated in dimension d. That is, HIE takes the results
of the first grid at step 1 (denoted S1) as input to solve the next
grid, S2. Note that all enumeration tasks located within a given step
(or depth) of the forest are independent of one another and can be
solved in parallel. We see that at every step of parallel computation,
CUDA blocks are assigned to the active enumeration tasks of each
tree. Each block produces a left and right child (also CUDA blocks),
if and only if the block’s proposed sign-sequence is found valid. The
left child (seen in green) is provided with both the sign-sequence and
computed feasible point of its parent, and simply needs to append
which halfspace the known feasible point lies in with respect to the
next hyperplane to be enumerated. Left children are computationally
cheap, as these blocks do not need to solve an LP. Each right-child
block (seen in gray/red) is given the validated parent sign-sequence
concatenated to the opposite of the sign computed by the left child,
as input. The right-child is responsible then for solving a feasibility
LP to validate this proposed sign-sequence. This implies each block
must have its own queryable oracle to assert the validity of sign-
sequences.

Programatically, this translates to developing a parallel Phase-
I simplex method [9], where each CUDA block is responsible

6588

Authorized licensed use limited to: UCLA Library. Downloaded on August 20,2022 at 17:44:26 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Hybrid Inc-Enu example forest, with N arrangements of m-
hyperplanes in dimention d. Blocks (thread blocks) within the grid at each
step are solved in parallel. Red/Black boxes indicate a CUDA block solved
an LP. Green boxes indicate no LP was needed to validate the sign-sequence.

for computing a simplex tableau (LP) of a single, proposed sign-
sequence. Previous works on GPU linear programming [11] focus
their attention on using the GPU-compute resources to parallelize
tableau operations for individual large and/or sparse LPs. Instead,
we focus the GPU-compute resources on efficiently parallelizing
many small Phase-I LPs for throughput. The authors in [12] propose
a Phase I and Phase II simplex method for simultaneously solving
small batched LPs. Here, we develop HIE to streamline the inputs
and outputs of the batched Phase-I simplex algorithm proposed in
[12] explicitly for solving batched cell enumerations.

V. FLATTENING

Here we construct the vectors αi per term that are needed in
(14) and (17) and consequently show how the coefficient function
g
k|k
i (ν) is expressed using the new basis. This process is referred

to as flattening, as it eliminates the need to hierarchically store
terms of the characteristic function from past steps. As mentioned
in section III-B, the c(Ai) constant cell values gk|kij ∈ C, j ∈
[1, 2, . . . , c(Ai)] are stored in the vector ḡk|ki ∈ Cc(Ai), g

k|k
ij ∈

ḡ
k|k
i ∀j and are needed to determine α

k|k
i . The constant value

located in every cell of an arrangement can be explicitly calculated
by using each row of the enumeration matrix Bi, i.e, the sign-vector
of a particular cell, to generate the appropriate basis-vectors for all
c(Ai) cells.

We restate the expressions in (17) to (20), while replacing the
sign vector λ̂k|k(ν) by the first mk|k

i − r elements of each j−th
row of the enumeration matrix Bi, i.e.,

g
k|k
ij =

1

2π

S+
ψi

(
β̂j
)T

α
k|k−1
i

jci + di + ygi
−
S−ψi

(
β̂j
)T

α
k|k−1
i

jci − di + ygi

 , (21)

β̂j = Bi
[
j, 1 : m

k|k
i − r

]
, ygi = qTi Bij , j ∈ [1, 2, . . . , c(Ai)] .

Just as in (17), only the first mk−1|k−1
i = m

k|k
i − r elements of the

sign-vectors stored row-wise in Bi are given to S±ψi
(·). The vector

α
k|k
i is found by the least-square solution in (14).

A. Coaligning Hyperplanes

It was mentioned in section III-A that the relationship
m
k|k
i = mk|k−1 = mk−1|k−1 + r has a slight caveat, which directly

impacts the flattening routine. As noted in [4], it is possible for
the TP/MU routines to generate arrangements with redundant (or
coaligned) hyperplanes. We refer to the procedure of removing

hyperplanes from an arrangement whose normal vectors are parallel
as coalignment. Coalignment is presented in [4], where the authors
detail a procedure to handle all the elements of a term when
coaligned hyperplanes occur. Coalignment is necessary for two
reasons. First, HIE would fail to locate cells between two redundant
hyperplanes in an arrangement, or may falsely locate cells due to
numerical round-off error in the hyperplanes. Second, (10) used
by MU would create singular hyperplanes when forming the child
arrangements.

B. Combining Terms

Terms that have equal parameterizations of their exponential
argument yei can be combined by summation of the respective α(·)
vectors. Specifically, yei in (4c) is parameterized by ail, replaced
in the new formulation by Ai, pil and bi. If all the parameters
of terms i and j are equal within a small numerical ε value, i.e.,
|Ailk −Ajlk| ≤ ε, |pil − pjl| ≤ ε, and |bik − bjk| ≤ ε, for all
l ∈

[
1, . . . ,m

k|k
i

]
and k ∈ [1, . . . , d], these two (or more) terms

can be combined. To save computational effort, the comparisons
above can be restricted to the i < j condition. The process of
combining terms, although requiring additional processing, was em-
pirically shown to reduce the computational burden of the estimator
tremendously, as is shown in section VI.

VI. EXPERIMENTS, TIMING RESULTS, EXTENSIONS

In this section, we showcase the performance of the Cauchy Es-
timator against the Kalman Filter for a three-state linear system in a
Cauchy and Gaussian noise simulation. We discuss the significance
reducing terms has on the computational burden of the estimator.
We report the real-time execution rates for estimates conditioned
on six, seven and eight measurements, using an NVIDIA GeForce
GTX 1060 GPU for CUDA support to run the proposed estimation
scheme in parallel. This approach is motivated by our future work
to generalize the sliding, fixed measurement window technique
that was used previously in the two-state estimator [6] to any
dimension. This approach limits the computation of the estimator
at each sample time step by taking estimates only conditioned on
the last W measurements. By running this technique simultaneously
on W sliding windows, real-time performance can be achieved for
large time scales, with a single estimate conditioned on the last W
measurements provided at each step.

The performance results of the Cauchy Estimator presented in
this section, while insightful, are not our novel contribution, as
similar insights on the performance of the Cauchy Estimator when
compared to the Kalman Filter have previously been made in [6, 13]
for two-state problems. Our contribution here is that we show how
the reformulated Cauchy Estimator can achieve the same simulation
performance as in [4, 6, 13], but for multivariate systems and
with a remarkably reduced number of terms encompassing the
characteristic function at each step k. Furthermore, as all terms
are independent of one another, parallel programming is seen to be
highly advantageous.

We compare the performance of the two estimators in both a
Cauchy and Gaussian noise simulation using the system dynamics
proposed in [4]. We set the statistics of the Kalman Filter and our
reformulated Cauchy Estimator equal as proposed in [13], through
a non-linear least-squares parameter fit of the two pdfs. The Cauchy
Estimator was not explicitly compared to the Kalman Filter in [4]
and is presented here for multivariate systems.

Figure 4 (left column) illustrates the interesting properties of the
Cauchy Estimator in a Cauchy noise simulation. As given in (6),

6589

Authorized licensed use limited to: UCLA Library. Downloaded on August 20,2022 at 17:44:26 UTC from IEEE Xplore. Restrictions apply.

we see that the variance of the Cauchy Estimator is explicitly a
function of the measurement, and therefore the conditional variance
dynamically adjusts to the measurement history. This is not the case
in the Kalman Filter, where the filter’s posterior covariance can be
calculated a-priori. At k = 3, a pulse occurs in the process noise.
We see that the Cauchy Estimator tracks this jump in all three states
with ease, while the Kalman Filter mostly ignores this pulse in states
one and three, producing large state errors. At k = 4, a pulse occurs
in the measurement noise. We see the Cauchy Estimator ignores this
pulse while sharp jumps are seen in the Kalman Filter.

Figure 4 (right column) shows the performance of both estimators
in Gaussian noise simulation. We see clearly, in Gaussian noise, the
Kalman Filter is the superior estimation scheme. It is interesting
to note how the one-sigma values of the Cauchy Estimator upper-
bound those of the Kalman Filter and that in Gaussian noise, both
of the estimators one-sigma values bound the estimation error at
each step.

Reducing terms, while a computationally expensive procedure,
is seen to have a tremendous computational advantage over not
reducing terms at the end of each estimation step k. Table I
illustrates the savings. At step k = 8, the new estimation scheme
encompasses only one-percent of the former number of terms
required. Table II shows the performance of six, seven, and eight
measurement windows for the three-state problem given. Execution
times for three-state dynamic systems would follow those of Ta-
ble II for both time-varying and time-invariant systems. For the
windowing process suggested earlier for the time-invariant case,
each W -window will produce the same parameter sequence with
the same initial conditions. Storing these parameters yields dramatic
improvement in run time over that shown in Table II. The execution
speed and hertz-rates (hz-rates) of Table II indicate the applicability
of the Cauchy Estimator for engineering applications.

Fig. 4. Comparison of Cauchy Estimator to Kalman Filter in Gaussian and
Cauchy noise environments. Cauchy errors are primarily bounded by their
one-sigma values in Cauchy-noise, whereas both estimators are bounded by
their one-sigma values in Gaussian noise.

TABLE I
NUMBER OF TERMS ELIMINATED BY THE TERM REDUCTION ALGORITHM
AT EACH ESTIMATION STEP. DEPICTED ARE THE RESULTS OF REDUCING

TERMS FOR THE THREE-STATE EXAMPLE GIVEN.

TABLE II
REAL-TIME WINDOW PERFORMANCE ON NVIDIA GEFORCE 1060X

GPU, SINGLE-STREAMED

Window Size Total Execution Time (sec) Window Hz-Rate
6 0.015 66.67
7 0.053 18.87
8 0.352 2.84

VII. CONCLUSIONS

A reformulation of the Cauchy Estimator in [4] is presented in a
computationally reduced form. It was shown that enumerating the
cells of the central hyperplane arrangements of the characteristic
function ‘flattened’ the numerator of (3) by constructing the basis
of [10]. Moreover, the reformulated g-function is additive and terms
can combine. CUDA-support was shown to allow the estimator to
run at real-time rates. In future work, we aim to present several
applications to demonstrate the utility of the real-time estimator
in volatile noise environments. Extensions to nonlinear systems,
similar to the Extended Kalman Filter, will also be implemented.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and predic-
tion problems,” Transactions of the ASME–Journal of Basic
Engineering, vol. 82, no. Series D, pp. 35–45, 1960.

[2] D. Crisan and B. Rozovskii, Eds., The Oxford Handbook of
Nonlinear Filtering. Oxford University Press, 2011.

[3] N. N. Taleb, The Black Swan: The Impact of the Highly
Improbable, 1st ed. London: Random House, 2008.

[4] M. Idan and J. L. Speyer, “Multivariate Cauchy estimator with
scalar measurement and process noises,” SIAM Journal on
Control and Optimization, vol. 52, no. 2, pp. 1108–1141, 2014.

[5] A. Y. Aravkin, J. V. Burke, and G. Pillonetto, “Robust and
trend-following student’s t kalman smoothers,” SIAM Journal
on Control and Optimization, vol. 52, no. 5, pp. 2891–2916,
2014.

[6] J. Fernández, J. L. Speyer, and M. Idan, “Stochastic estimation
for two-state linear dynamic systems with additive Cauchy
noises,” IEEE Transactions on Automatic Control, vol. 60,
no. 12, 2015.

[7] M. Rada and M. Černý, “A new algorithm for enumeration
of cells of hyperplane arrangements and a comparison with
Avis and Fukuda’s reverse search,” SIAM Journal on Discrete
Mathematics, vol. 32, no. 1, pp. 455–473, 2018.

[8] D. Avis and K. Fukuda, “Reverse search for enumeration,”
Discrete Applied Mathematics, vol. 65, no. 1, pp. 21–46, 1996,
First International Colloquium on Graphs and Optimization.

[9] S. Boyd and L. Vandenberghe, Convex Optimization. USA:
Cambridge University Press, 2004.

[10] N. Duong, M. Idan, R. Pinchasi, and J. Speyer, “A note
on hyper-plane arrangements in Rd,” Discrete Mathematics
Letters, vol. 7, pp. 79–85, July 2021.

[11] N. Ploskas and N. Samaras, “Efficient GPU-based implemen-
tations of simplex type algorithms,” Applied Mathematics and
Computation, vol. 250, pp. 552–570, 2015.

[12] A. Gurung and R. Ray, “Simultaneous solving of batched
linear programs on a GPU,” in ICPE ’19: Proceedings of the
2019 ACM/SPEC International Conference on Performance
Engineering. Association for Computing Machinery, 2019.

[13] J. L. Speyer, M. Idan, and J. Fernández, “The two-state
estimator for linear systems with additive measurement and
process cauchy noise,” in 51st IEEE Conference on Decision
and Control (CDC), 2012, pp. 4107–4114.

6590

Authorized licensed use limited to: UCLA Library. Downloaded on August 20,2022 at 17:44:26 UTC from IEEE Xplore. Restrictions apply.

