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Abstract—Machine learning (ML) operations or MLOps advo-
cates for integration of DevOps-related practices into the ML
development and deployment process. Adoption of MLOps can be
hampered due to a lack of knowledge related to how development
tasks can be automated. A characterization of bot usage in ML
projects can help practitioners on the types of tasks that can be
automated with bots, and apply that knowledge into their ML
development and deployment process. To that end, we conduct
a preliminary empirical study with 135 issues reported mined
from 3 libraries related to deep learning: Keras, PyTorch, and
Tensorflow. From our empirical study we observe 9 categories
of tasks that are automated with bots. We conclude our work-
in-progress paper by providing a list of lessons that we learned
from our empirical study.

Index Terms—bots, deep learning, deployment, devops, empirical
study, machine learning, mlops

I. INTRODUCTION

Upon construction of machine learning (ML) models, practi-
tioners face challenges in deploying those models into pro-
duction efficiently and reliably [2]. To that end, the concept
of ML operations or MLOps has been set in motion in recent
years [2]. MLOps advocates for integration of DevOps-related
practices into the ML development and deployment process
so that ML models can be deployed in production reliably
and efficiently [2]. The MLOps market is projected to reach
$126 billion by 2025 1, which shows the interest amongst
practitioners in adopting MLOps. Information technology (IT)
organizations, such as NVIDIA [25] and TransLink [28]
has started the adoption of MLOps. Adoption of MLOps
has yielded benefits for IT organizations, e.g., with MLOps
TransLink was able to deploy 16,000 ML models in production
that were used for predicting departure and arrival times for a
Canada-based transportation system [28].

Despite growing interest, practitioners face challenges in
accomplishing automation-related objectives for MLOps 2.
These challenges are further aggravated by a lack of knowl-
edge on how to apply software engineering practices to
automate tasks that are related to ML development and de-
ployment [9]. As automation is pivotal for mature adoption of
MLOps [22], [30], mitigation of automation-related challenges

1https://neu.ro/2021-mlops-platforms-vendor-analysis-report/
2https://datatonic.com/insights/ai-automation-mlops/

for practitioners is necessary. One approach to mitigate ML-
related automation challenges is characterizing the use of
automated agents, such as bots in established ML projects.
Bots are used to automate development tasks in order to make
the entire software development process efficient [31], [27].
As practitioners prefer to learn from other practitioners in the
same domain [18], [23], a characterization study of bot usage
in established ML projects, such as the Keras [12] can help
practitioners gain knowledge on how established ML projects
are using bots, and apply that knowledge in their own ML
development process.

Accordingly, we answer the following research question: RQ:
What development tasks are automated with bots for deep
learning libraries?

We conduct an empirical study with 135 issue reports mined
from three deep learning libraries: Keras [12], PyTorch [20],
and Tensorflow [1], which are well-known software projects
that provide ML APIs for practitioners to use [13]. By applying
open coding [26] we identify a list of development tasks that
are automated with bots for these three libraries.

Our contribution is a list of development tasks that are
automated with bots in deep learning libraries.

We organize rest of the paper as follows: we provide method-
ology of our paper in Section II. We provide our findings
in Section III. In Section IV we summarize the lessons
learned from our empirical study. We discuss related work
in Section V. Finally, we conclude the paper in Section VI.

II. METHODOLOGY

We conduct our empirical study by mining issue reports from
three deep learning libraries: Keras, PyTorch, and TensorFlow.
We select these libraries as these are established and well-
known software projects that provide ML APIs for practition-
ers to use [13]. An overview of our methodology is presented
in Figure 1. We describe our methodology as follows:

A. Mining Issue Reports

Altogether, we mine 68,400 issue reports from the repositories
of Keras, PyTorch, and TensorFlow on Nov 15, 2021. After
collecting these repositories we apply a filtering criteria to
identify issues in which bots have been involved with. For
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Fig. 1: An overview of our research methodology.

filtering issues where bots are mentioned, we first apply a
keyword search where we inspect for the word ‘bot’ in the
titles, descriptions, and comments for all issues. Second, we
apply manual inspection to eliminate false positives so that
we can ensure that the search results from the first step are
actually bot-related.

By applying keyword search, we identify 254 issue reports, out
of which 135 are true positives. We use these 135 issue reports
to perform open coding as described in the next section.

B. Answer to RQ: What development tasks are automated with
bots for deep learning libraries?

We apply a qualitative analysis technique called open cod-
ing [26], which is used to derive categories from unstructured
text based on commonalities within text. The first author
is the rater who applies open coding for each issue report.
The rater inspects the content of each issue report to first,
identify if bots are mentioned in the issue, and second, identify
the development task that is being performed by the bot.
Upon completion, the rater groups all identified activities into
categories, and provides a mapping between each category and
the bot that performs the identified task.

Rater Verification: Our open coding approach is conducted
by the first author, which makes the open coding process
susceptible to bias. We mitigate this bias by allocating another
rater, who is the second author of the paper. The second
author is a PhD student in the department, with two years of
professional experience in software engineering. The second
author is provided the set of 135 issue reports, and asked to
map each issue to one or multiple categories identified by
the first author. The second author independently conducts
the process. Upon completion, the agreement rate between the

Fig. 2: Nine categories of development tasks automated with
bots in deep learning libraries.

first and second author is computed using Cohen’s Kappa [6].
For the 135 issue reports the Cohen’s Kappa between the two
raters is 0.87, which is ‘substantial’ according to Landis and
Koch [15].

III. RESULTS

In this section, we provide answer to RQ: What development
tasks are automated with bots for deep learning libraries?
With our open coding analysis we identify 9 categories of
development tasks that are automated with bots, as summa-
rized in Figure 2. A mapping of each development task and
the identified bots is presented in Table I. We also report the
proportion of issues in which a specific category of bot is
mentioned in the ‘Issue Proportion (%)’ column. For example,
in 2.2% of 136 issues we observe CI bots to be mentioned.
We describe these categories alphabetically as follows:

I. Code Coverage: This category refers to the calculation of
code coverage through static analysis. For example, in PyTorch
the codecov bot is used to calculate code coverage. Use of
bots, such as codecov eliminates involvement of developers,
but can be susceptible to bugs as mentioned in an issue [24].



TABLE I: Mapping of Development Tasks and Bots
Category Bot Names Deep Learning Library Issue Prop. (%)
Code Coverage code-coverage-bot PyTorch 0.7
Commit
Mapping

facebook-github-bot PyTorch 0.7

Continuous Inte-
gration

build-bot, ci-bot Keras, Tensorflow 2.2

Feedback tensorflow-bot, google-ml-butler,
facebook-github-bot

PyTorch 13.3

Issue Mgmt. pytorch-probot, zenhub-bot, pytorchbot,
tensorflow-butler, tensorflow-capybara,
tensorflow-bot, google-ml-butler,
facebook-github-bot

PyTorch , Tensorflow 39.4

License cla-bot PyTorch 0.7
Mention mention-bot PyTorch 0.7
Onboarding tensorflow-butler, tensorflow-capybara,

tensorflow-bot, google-ml-butler
Tensorflow 14.1

Stale tensorflow-butler, stale-bot,
google-ml-butler

Keras, Tensorflow 28.1

According to the issue, the bot is known to provide incorrect
code coverage, which motivated the contributor to abandon
the use of codecov for another project: “I dealt with this
[incorrect code coverage] for NumPy a while back and the
only robust solution was to ban the bot at the org level” [24].

II. Commit Mapping: This category refers to the task of
finding a commit that addresses a feature request or a bug
fix. Bots that belong to this category automatically maps
commits to issues in a project. The purpose is to reduce the
manual effort in mapping submitted code changes in forms
of commits and pull requests to open issues. Despite their
perceived benefits, they can be pose challenges for contributors
as observed in one issue [5]: “ I’m not able to make any sense
of that PR and the many bot statuses and info listed there”.

III. Continuous Integration: This category refers to tasks
used to build code changes using continuous integration (CI).
CI is the practice of integrating code changes by automatically
compiling, building, and executing test cases upon submission
of code changes [8]. We observe bots used for CI to trigger
builds in the CI server, and notify contributors about the status
of each build. In this manner, contributors and maintainers are
notified about the integration status of code changes automat-
ically. However, as discussed in a Keras-related issue [16], we
observe practitioners to face difficulties in obtaining accurate
build results from CI servers because of the bot being buggy.
In the issue a contributor commented “As we can see, PR
#12336 has been tackled by the abnormal CI bot for long
days. It means that the CI system of the TensorFlow repository
does not efficiently help reviewers that want to concentrate for
productive code review”.

IV. Feedback: This category refers to the task of obtaining
feedback from contributors. For example, in the case of
TensorFlow the google-ml-butler bot asks a two-item
question to obtain feedback from contributors related to issue
resolution [14].

V. Issue Management: This category refers to management-
related tasks for issues. We identify four categories of tasks

that are performed by issue management bots: issue assign-
ment, edits for issue descriptions, issue triaging, and issue
closing. Typically, the above-mentioned tasks are performed
by maintainers manually that results in significant development
and maintenance effort [3]. Issue management bots are used in
software projects to ease the effort in maintenance, but there
are examples where we find these bots to incorrectly close
issues or incorrectly assign issues. For example, in the case
of PyTorch, the facebook-github-bot incorrectly closed
an issue before adequate resolution of a documentation-related
concern [29].

VI. License: This category refers to the tasks that are related
with license usage. We identify one bot, the cla-bot, used
by PyTorch, which checks if contributors have signed licensing
agreements and add labels to pull requests 3.

VII. Mention: This category refers to the task of finding
potential reviewers for a pull request. The perceived benefit
of using mention bots is that it will reduce the turnaround
time for pull request acceptance. The TensorFlow project uses
the mention-bot to identify potential reviewers for pull
requests.

VIII. Onboarding: This category refers to tasks that help
newcomers on how to contribute to the code base and/or
report a bug or a feature request. Whether it is submitting
code changes or submitting issues for feature requests, a set
of tasks must be completed by the contributor. Bots that map
to this category inspects if these set of tasks are completed,
and if not then the contributor is notified. For example, for the
Tensorflow project, upon submission of a feature request, we
observe the TensorflowButler bot to remind a contrib-
utor that relevant information, such as ‘TensorFlow version’.
‘Bazel version’, ‘CUDA/cuDNN version’, ‘GPU model and
memory’ are missing [19]. In this manner, a newcomer is
automatically reminded of the necessary information that
needs to accompany a feature request or reporting of a bug.

3https://github.com/apps/cla-bot



Despite reported benefits, bots used for onboarding can cre-
ate negative impressions for contributors as they succumb
to parsing errors, and fail to address the root cause. For
example, in the case of reporting a documentation-related bug,
a contributor was asked to provide system-level details by the
tensorflowbutler bot. In response to the bot, the con-
tributor provides a negative response stating “Seriously? Read
it – it specified ALL SYSTEMS/SYSTEM INDEPENDENT. So
seriously: the issue I raised is about an obvious barrier
to helping you improve your documentation. Your response
inadvertently highlights another barrier ... Sorry to sound so
hostile, and it’s nothing personal, but I have found your ‘Quick
Start’ documentation among the slowest I have ever worked
through” [19].

IX. Stale: This category refers to the task of finding devel-
opment inactivity. Bots used for this category automatically
identify tasks or feature requests for which no development
activity has been recorded for a certain amount of days. For
example, Wessel et al. [32] reported projects to use a median
of 60 days to detect inactivity with stale bots. In the case
of Tensorflow, the tensorflowbutler bot notifies issue
participants when there is no activity for 14 days. In the
case of Keras, the google-ml-butler bot notifies issue
participants if there is no activity for 7 days, and automatically
closes the issue if there is no activity for 14 days. A threshold-
based approach used by stale bots can abruptly close issues,
which in turn can annoy contributors. A contributor for the
Tensorflow library remarks: “It’s so frustrating that such
important issue just got ignored and secretly closed ” [7].

Our categorization of development tasks have been reported in
existing work. Wessel et al. [31] conducted an empirical study
with 93 projects, and observed the collected set of projects to
use bots to automate tasks related to code coverage, CI, issue
management, and licensing. In another work, Wessel et al. [32]
investigated the use of stale bots in software development.
Peng et al. [21] investigated how mention bots are used.
Along with these task categories, we also observe bots in
deep learning libraries to automate tasks related to onboarding,
commit mapping, and detecting development inactivity.

IV. LESSONS LEARNED

We summarize our findings as follows:

1) Bots, such as the code-coverage-bot, which are used
in general purpose software projects are also used for deep
learning libraries.

2) For deep learning libraries, both self-developed bots,
such as tensorlfow-bot, and third-party bots (e.g.,
google-ml-butler) are used.

3) Bugs in code coverage and CI-related bots hamper produc-
tivity.

4) Documentation-related inadequacies can provide chal-
lenges for contributors who use bots for onboarding.

5) Use of bots for license, code coverage, commit mapping,
and developer feedback is not common across the three
deep learning libraries.

6) Negative human-bot interaction, such as frustrations about
onboarding-related bots is prevalent, which necessitates
integration of recommended design practices [4], [17] for
development of ML-related bots.

7) For determining inactivity with stale bots, project main-
tainers should use fine-grained thresholds so that stale
bots do not abruptly close issues. Liu et al. [17]’s guidelines
can be helpful in this regard.

V. RELATED WORK

Our paper is closely related to prior research that have focused
on bot usage in GitHub-based software development. Wessel
et al. [31] investigated bot usage on GitHub projects, classified
the bots, collected several metrics to compare the state of
the project before and after bot adoption, and interviewed
project maintainers. Brown and Parnin [4] explained that due
to poor bot design, human-bot interaction on GitHub can be
inconvenient, and result in negative feedback from maintainers
and contributors. Wessel et al. [32] investigated the stale
bot, which closes abandoned issues and pull requests on
GitHub, and examined the bots’ configuration settings and
changes over time. Peng et al. [21] analyzed mention-bot
that has been integrated into the pull request workflow to
perform the task of mentioning reviewers. Golzadeh et al. [10]
detected the automatic answer of the bot on GitHub from the
comments of pull requests and issue comments to prevent bias
in socio-technical studies related to software development. In
another work, Golzadeh et al. [11] proposed a classification
model to identify bots in GitHub pull request activity and
validated the model on a ground-truth dataset composed of
several thousands of GitHub accounts and their associated
repositories.

VI. CONCLUSION

As production-level machine learning development becomes
increasingly relevant, gaining an understanding of how bots
can be used to automate development tasks could be of
relevance to practitioners. A characterization of how bots are
used in deep learning libraries can help practitioners gain
an understanding on how bots could be used to automate
development tasks. To that end, we conduct a preliminary
empirical study where we systematically categorize the de-
velopment tasks that are automated with bots in three deep
learning libraries: Kears, PyTorch, and TensorFlow. From our
empirical study we observe bots are used to automated nine
categories of development tasks. We also find that bots to
not be a silver bullet for automating development tasks as
they can be buggy, create false alerts, and not adequately
address practitioner needs. Our work-in-progress paper lays
the groundwork for future bot-related research in the domain
of machine learning development.
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