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SUMMARY

In this paper, we address a problem: can we perform ancestry inference for par-
ents from one or more children’s DNA samples? That is, suppose the parents’ ge-
nomes consist of segments of different ancestry, and our goal is inferring
parental ancestry and at the same time, calling parental genotypes from given
children’s genetic data. Such ancestry inference may provide insights into recent
ancestors from children’s genomes, and potentially has applications in under-
standing genetic traits. At present, there exists no method for this inference
problem. We present parMix, a method based on hidden Markov model (HMM)
that can jointly infer parental ancestry and call parental genotypes from data of
a small number of children. Simulation results show that parMix performs well
in practice. It can provide reasonably accurate parental inference given data
from a small number (say three) of children. parMix becomes more accurate
when data from more children are used.

INTRODUCTION

Geneticists have envisioned using genetic tests to infer something about ancestors long ago (Doolittle
1981; Royal et al., 2010). Nowadays, DNA ancestry tests offered by companies such as Ancestry.com or
23andMe let people know not only something about themselves but also more about their ancestors. Ex-
isting ancestry tests often concern the genomic ancestry composition of the focal individual (i.e., who pro-
vides the DNA to test). It is widely believed that population admixture is widespread in human populations
(Pritchard et al., 2000; Price et al., 2007; Maples et al.) So focal individuals (and their recent ancestors) are
likely admixed. The admixture tests are often referred to as “chromosome painting” (Pritchard et al. 2000;
Alexander et al. 2009; Sankararaman et al., 2008; Price et al., 2009), where the genome of the focal individual
is broken into segments and these segments originate from different ancestral populations.

Existing chromosome painting methods usually implicitly assume that two parents have the same ancestry
composition (Pritchard et al. 2000). This is arguably unrealistic because it is possible that the two parents
may have different ancestry themselves. For example, suppose a focal individual has a DNA composition of
50% from population A and 50% from population B. Then the DNA composition of the two parents of this
individual may be (among other possibilities): (i) both are 50% from A and 50% from B, or (ii) one is 100%
from A and the other is 100% from B. Therefore, a natural research question is can we infer the genetic
ancestry composition of our recent ancestors, such as parents, from focal individuals’ DNA?

PedMix (Pei et al., 2020) is one of the first methods for recent ancestry inference. It can infer ancestry pro-
portions of parents or grandparents of the focal individual from a single individual’s genotypes. However, it
has a major drawback: it only provides an estimate of ancestry proportions but cannot perform more fine-
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Table 1. List of parameters and their default values in simulation

Symbol Default Description

Nk 400 Number of haplotypes

Ne 1 Number of chromosomes

Ne 10,000 Effective population size

L 2.59 x 108 Region length (bp)

n 1% 1077 Mutation rate (per generation per bp)

p 1% 1078 Recombination rate (per generation per bp)
t 0.125 Ancestral populations splitting time

g 10 Number of generations since admixture
n¢ 10 Number of families to infer

N 3 Number of kids per family

dr 0.1 Frequency-based pruning threshold

Po 2x107¢ Phasing error rate

methods for parental genotype calling are mainly developed for animal breeding, which usually involves a
large number of offspring. LSPH (Baruch et al., 2006) attempts to recover the missing data of parents’ hap-
lotypes from the offspring’s genotypes. However, LSPH assumes parents are not admixed and does not
perform inference of ancestry. Note that a single child may not provide sufficient information about two
parents. To develop a practical inference method, it may be useful to use genetic data from two or
more children. Genetic data from multiple children of the same two parents may together allow more
accurate inference. cnF2freq (Nettelblad 2012) uses hidden Markov models (HMMs) to reconstruct the ge-
notypes of individuals in a full sib-ships pedigree that contains a large number (say 20) of children. But it
does not consider the situation that parents are admixed.

In this paper, we develop methods for inferring both ancestry and genotypes of parents of a small number
of children. Our method is implemented in a computer program called “parMix”, which is available for
download at https://github.com/biotoolscoders/parmix. parMix takes genotypes from multiple children
and population genetic information (e.g., allele frequencies of ancestral populations) as input. parMix
can infer parental ancestry and call parental genotypes at each single nucleotide polymorphisms (SNPs).
That is, different from PedMix, parMix can perform chromosome painting of parents and call parental ge-
notypes from children’s genotypes, instead of just estimating the overall ancestry proportions. To the best
of our knowledge, there are no existing methods that infer both ancestry and genotypes of parents from a
small number (say two) of children’s genotypes. Simulation results show that parMix performs reasonably
well in parental ancestry inference and genotype calling.

RESULTS
Results on simulated data
Simulation

Table 1 shows the parameters (with explanation and the default values) that we use in the simulations. We
first simulate nj, haplotypes using macs (Chen et al. 2009) from two ancestral populations which diverged
from one ancestral population at 4Nt generations in the past. Then, an admixed population is formed by
merging the two ancestral populations and simulating forward in time the process of random mating, ge-
netic drift, and recombination using a diploid Wright-Fisher model for g additional generations. Finally, we
randomly select 4n¢ haplotypes to form n; families and do the simulation for one additional generation.
This leads to ny children per family. The recombination rate variation from the 1000 Genomes Project
(The 1000 Genomes Project Consortium, 2015) is used. The default length of the chromosome is 2.59%
108 bps, which is the length of the first chromosome of humans. Haplotypes are paired to create genotypes.
Phasing errors are then added stochastically by switching between two parental chromosomes according
to a Poisson process with a rate p,. The number of SNPs for one chromosome simulated by macsis ~ 0.13M
under the default settings. Processing data with this size can be slow. Thus, we perform a frequency-based
pruning method (Pei et al., 2020) to trim data. This frequency-based pruning approach removes SNPs with a
minor allele frequency difference in two ancestral populations less than the pruning threshold d;. This
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Table 2. Effect of data trimming on accuracy (parental ancestry and genotypes) and efficiency

Threshold SNPs Remained Running time (s) Accuracy rate (A) Accuracy rate (G)
0.05 41,918 ~ 35820 79.05% 87.68%
0.1 28,265 ~ 24070 80.16% 83.76%
0.2 15,049 ~ 12710 78.69% 80.59%
0.3 8354 ~ 7050 75.96% 77.08%
0.4 4525 ~ 3760 78.45% 79.29%
0.5 2293 ~ 1820 77.44% 77.08%

leaves ~ 28,200 SNPs after pruning under the default settings. We perform extensive simulations to eval-
uate the impact of values of parameters on the inference accuracy of parMix.

To evaluate inference accuracy, we compare the called parental genotypes (or ancestry) with the true simulated
genotypes (or ancestry) at each locus. Accuracy is measured as the ratio of the number of SNP sites with correct
inferred results and the total number of SNP sites. There is one technical issue for comparing inferred parental
ancestry and true parental ancestry. The inferred genotypes and ancestry by parMix are from two parental hap-
lotypes. But there is no information about which parent corresponds to a specific inferred result. We use a
"best-match” approach for performing the comparison. After the inference, there are four inferred ancestry
vectors, one per parental haplotypes; the four haplotypes are grouped for two parents; then the best match
results are used among all eight match-ups between the inferred parents and simulated ones.

Parental genotype calling and ancestry inference

We first evaluate the performance of parMix under various trimming settings. The results are shown in Table 2.
We test different trimming threshold values from 0.05 to 0.5. It can be seen that trimming threshold directly in-
fluences the accuracy. For the ancestry inference part, the accuracy usually increases when some non-informa-
tive SNPs were discarded with a smaller trimming threshold. When more SNPs are discarded by more aggressive
trimming, we start to lose informative SNPs, and accuracy decreases. Then, with more SNPs discarded, the ac-
curacy starts to swing, and the standard deviation increases. However, for the genotypes inference part, since we
use LD to infer genotypes, the fewer SNPs were trimmed, the higher the accuracy rate is. Table 2 also shows the
running time under different trimming thresholds, where less trimming leads to a longer running time. So, there
is a trade-off between inference accuracy and efficiency when choosing trimming threshold.

Furthermore, the number of children in a family has a strong influence on inference accuracy. The more chil-
dren in the family, the higher the accuracy of parMix. The Figure 1 shows this result. A family with only one
child leads to a low accuracy rate. We note that even with a single child, genotype/ancestry inference can
still be as high as 70% for the case of no phasing errors, which is much higher than random guess. Parental
inference accuracy steadily increases with the addition of more children. With three children, for example,
parental inference accuracy can have over 93% accuracy without phasing error. Even with phasing errors,
parMix still achieves close to 80% accuracy. This indicates that parMix can indeed be useful for parental
inference. Note that with more children, the computational time of parMix increases.

Comparison of parMix with other methods

To evaluate the performance of parMix, we compare it with PedMix. PedMix is used to estimate the parental
admixture proportions as the average of the admixture proportions inferred from haplotypes of each child inde-
pendently. We then run parMix to infer the parental ancestry, and calculate admixture proportion based on the
inferred ancestry. Note that parMix analyzes all children together which can extract more information about the
joint parental history. We run both PedMix and parMix on haplotypes from three children. For PedMix, we pre-
processed the haplotypes with trimming threshold as 0.3, and phasing errors with rate p, = 0.000002 per bp. In
addition, we use a single SNP calling method as the baseline of inference. This method uses given allele fre-
quencies of two ancestral populations and children’s genotypes at each SNP site. Then, it infers the genotypes
and ancestry information of parents. If the SNPs of children are all O (resp. 1) on the same locus, the parents’ ge-
notype at this position is setto 00 (resp. 11). If0and 1 are both present in children’s alleles, the parents’ genotype
is setto 01 or 10 arbitrarily. Then, the ancestries of parents are also inferred based on the called genotypes from
the previous step and allele frequencies of ancestral populations. The ancestral population with higher allele
frequency is chosen as the ancestry on this position.

iScience 25, 104768, August 19, 2022 3
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Figure 1. Accuracy of parental genotype calling and ancestry inference with one, two, or three children
The trimming threshold is set as 0.3 for all the cases. Two cases: (i) with phasing errors and (ii) without phasing error.

Figure 2 (i) shows the accuracy of parMix and the single site inference method (as explained above). As ex-
pected, parMix is clearly better than the above single site inference method. Note that single site inference
is not a random guess: a random guess is expected to have accuracy much lower than 50% for parental
genotype calling. Moreover, Figure 2 (i) shows that parMix outperforms PedMix in parental admixture pro-
portion estimate with three children. This is because parMix uses more information from data than PedMix.
Also note that PedMix can infer more distant ancestors, e.g., grandparents.

Phasing error

parMix requires the phasing error rate as an input. In practice, it may not be easy to know the exact phasing
error rate. To evaluate the impact of the misspecified phasing error parameter, we run the parMix by spec-
ifying data with a different phasing error parameter, which is ten times of the true phasing error rate. We
also investigate whether phasing error correction can improve the accuracy. For this, we use the phasing
errors correction method developed in PedMix.

As shown in Figure 3, with trimming threshold as 0.3, parental inference accuracy reduces when the phasing
error rate is mis-specified (to be 10 times as large as the true value). Inference accuracy increases (albeit
only slightly) after the correction of phasing errors. When the true phasing error parameter is known, infer-
ence accuracy is overall the best. Moreover, as shown in Figure 1 of main paper, without phasing error, ac-
curacy can reach 95%. Thus, phasing error significantly affects the accuracy of parMix. It is highly desirable
to run with data that has fewer phasing errors.

Results on real and semi-simulated data

We now show results on real genetic data from the HapMap Project. Here, we use the genotypes data from
the ASW population. We use the CEU and YRI populations from the HapMap Project as the ancestral pop-
ulations, and the genotypes of the reference panel come from the 1000 Genomes Project phase 3 reference
panel (http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/). We use twenty
ASW parental individuals (i.e., forty phased haplotypes) from 10 trio families in HapMap's ASW population
as the parents’ haplotypes. We use RFMix (Maples et al., 2013) to infer the ancestry of these parental hap-
lotypes and use the inferred ancestry as the ground truth for comparison.

Real data

The HapMap ASW trio family has one child. We use the single child from each of the 10 trio families. They
are NA19702, NA19705, NA19828, NA19836, NA19902, NA19919, NA19918, NA20129, NA19983, and
NA20128. The HapMap Project only provides the unphased haplotypes of these 10 individuals. Thus, we
apply Beagle 5.2 (Browning et al., 2021) to these haplotypes for phasing them. The reference panel used
for phasing is also the ASW population from the 1000 Genomes Project.
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Figure 2. Comparison of parMix with other methods
Two cases: (i) parMix vs. single site method. (ii) parMix vs. PedMix. parMix has much lower error rate than PedMix.

Semi-simulated data

We are not aware of public genetic data on families with multiple children from an admixed population. In
order to evaluate the performance of parMix on a family with multiple children, we simulate two additional
children for each ASW trio with recombination rate p = 10~8 per bp. We then combine these simulated
haplotypes to form (unphased) genotypes. This leads to unphased haplotypes from three children for
each family. We apply Beagle 5.2 (Browning et al., 2021) to phase these children using the same reference
panel as real data analysis. We thus obtain phased haplotypes from three children (one real and two simu-
lated) per family.

We run parMix on the phased children’s haplotypes from one real child data and three children (one real and
two semi-simulated). The phasing error rate is set as 0.0000002. As shown in Figure 4, the mean accuracy rate of
parMix reaches 74% even with one child, and the highest mean accuracy rate exceeds 80% for the genotype
inference with three children families after applying phasing error correction technique from PedMix (Pei
etal., 2020). Moreover, as shown in Figure 5, we compare parMix with PedMix and the single site method using
only one real child per family. Under the same settings, the accuracy of parMix is much higher than the single
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Figure 3. Impact of phasing error

(i) left bars: mis-specification of phasing error rate slightly reduces accuracy, (i) middle bars: correcting phasing errors can
improve accuracy, and (i) right bars: using the correct phasing error rate leads to more accurate inference.
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Figure 4. Ancestry and genotype inference results on real and semi-simulated data

site method when inferring parental genotype and ancestry on real data. For admixture proportion inference,
the mean error rate of parMix is slightly higher than PedMix for the one child data.

We now run parMix on the phased children’s haplotypes with different phasing error settings to call
parental genotypes and ancestry. The default phasing error rate is 0.00002. To evaluate the impact of
phasing error rate settings, we run parMix with phasing error rate varying from 0.01Xx default to 100x

default. Three children per family are used. We also apply the phasing error correction technique in
PedMix. As shown in Figure 6, as expected, the accuracy of parental genotype calling and ancestry infer-
ence are both ~ 80%, which are similar to that of simulated data.

Finally, as shown in Figure 7, we also compare parMix with PedMix and the single site method using three
semi-simulated children data. Under the same settings. The accuracy of parMix is still higher than that of
the single site method when calling parental genotype and parental ancestry. For admixture proportion
inference, the mean error rate of parMix is lower than PedMix.

Running time of parMix

The running time of parMix mainly contains the time consumption and the memory consumption when
running parMix. As shown in Figure 8, the time and memory consumption are influenced by the number
of SNPs and the number of children in the experiment. For example, when there are three children, the
stricter the phasing error rate is, the larger number of SNPs there is, which leads to higher running time
and memory consumption. The memory consumption is mainly due to the forward and backward algo-
rithm’s matrix, which increases fast when there are larger number of SNPs.

DISCUSSIONS AND CONCLUSION

In this paper, we present parMix, a method for joint inference of parental ancestry and genotypes from hap-
lotypes of multiple children. Ancestral inference is clearly an important subject in genetics. Our method,
parMix, is designed to work on a less-studied ancestral inference settings, where the members of a family
with a number of children are admixed. While there are many methods (e.g., Structure) that can infer the
ancestry of extant individuals (so-called chromosome painting). In some sense, the problem addressed
by this paper is chromosome painting of parents based on genetic data of children. We are not aware
of methods that infer ancestry of parents from genetic data of children. While this paper focuses on meth-
odology development, we believe our method will potentially be useful for real genetics problems. This is
partly because human beings are always interested in knowing something about ancestors.

Our results show that inference accuracy depends on the amount of genetic data available from children.
With more children’s haplotypes, inference becomes more accurate (but also slower). Our results show that
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Figure 5. Comparison of parMix with other methods on real data
Two cases: (i) parMix vs. single site method. (i) parMix vs. PedMix.

with three children, parMix can infer fairly accurate parental ancestry genotypes: even with phasing error,
ancestry inference accuracy is ~ 85%; without phasing error, it is ~ 94%. Even with fewer children (say two or
even one), parMix still can provide useful information about parents, although the variance of estimates is
usually larger than that with more children.

There are few existing methods for calling genotypes and inferring ancestry of parents from genetic data of
a small number of children. The closest existing method is PedMix (Pei et al., 2020) which only estimates
parental admixture proportion. The inferred pointwise ancestry by parMix can be used to obtain an esti-
mate of parental ancestry proportions. Compared to PedMix, the average mean error rate of parMix is
lower than PedMix’s. This is likely due to that parMix infers admixture proportions from combined chil-
dren’s genotypes, while PedMix processes each child's genotype individually. However, it is worth
mentioning that PedMix can trace back to more distant ancestors, such as grandparents. Also, the running
time of PedMix is much lower than that of parMix.

Our real data and semi-simulated data analyses illustrate that parMix remains reasonably accurate when it
is applied on the semi-simulated data. This indicates that parMix may be used to infer parental ancestry and
genotypes for a multi-children family using real data. However, the input data of parMix, such as recombi-
nation rate (genetic map) and phasing error rate, can significantly affect the results. Therefore, it is
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Figure 6. Impact of phasing error rates on the accuracy of ancestry inference and genotype calling for semi-
simulated data
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Figure 7. Comparison of parMix with other methods on semi-simulated data
Two cases: (i) parMix vs. single site method. (ii) parMix vs. PedMix.

important to use proper inputs when using parMix. However, different phasing methods may have different
phasing error rates. The more accurate the phasing error rate is, the more accurate the result is. For
example, when we use Beagle 3 (Browning and Browning, 2007) to phase the genotypes, the default
phasing error rate gives the highest accuracy rate. But when we use Beagle 5.2 (Browning et al., 2021) (which
produces more accurate haplotypes), we need to use a lower phasing error rate for getting the better
result. Thus, the user should choose the phasing error parameter properly based on the data.

Indeed, phasing error apparently is the main technical challenge for parental ancestry/genotype inference.
Our results show that without phasing error, the inference accuracy of parMix becomes very high. While
current genetic data are prone to phasing error, we expect future technology development (e.g., long
reads sequencing, and new phasing method) may greatly reduce phasing error in collected haplotypes
and may make parMix more applicable.

The running time of parMix depends on the number of SNPs and the number of children N. The most time-
consuming step is the inference of recombination and phasing vectors. There, the HMM enumerates con-
figurations at each site, each with a 3N +4 bits binary vector. This leads to 23N*# configurations per site.
When say N = 10, the number of configurations becomes too large to enumerate. We apply the fast-
computation algorithm for forward and backward algorithm, which is presented by PedMix (Pei et al.,
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Figure 8. Running time and memory consumption of parMix
One, two, and three children are used. Up to 40,000 SNPs are tested.
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2020), then the time complexity of parMix reduces to O(n(logn)). However, for families with large N,
different inference approaches need to be used.

Limitations of the study

The accuracy of parMix is significantly influenced by the phasing error in the given children’s haplotypes.
Haplotypes are still not directly obtained from experiments. However, newer technologies (e.g., long reads
sequencing) and tools are being developed. It is likely in the future, accurate haplotypes will be widely
available. Moreover, parMix tends to work better with more children from a family. Existing public genetic
data often only provide trio data, where there is only one child in the family. We expect genetic data from
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multiple children of a family will become available in the future.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Public data HapMap https://ftp.ncbi.nlm.nih.gov/hapmap

Software and algorithms

parMix This paper https://github.com/biotoolscoders/parmix

Beagle Brian Browning https://faculty.washington.
edu/browning/beagle

RFMix Brian K. Maples https://github.com/slowkoni/rfmix

PedMix Jingwen Pei https://github.com/yufengwudcs/PedMix

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and materials should be directed to and will be fulfilled by
the lead contact, Yufeng Wu (yufeng.wu@uconn.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability
® The data analysed in this paper are public published data, which can be downloaded from HapMap pro-
ject's website https://ftp.ncbi.nlm.nih.gov/hapmap.

® The code of parMix is released on GitHub, which can be downloaded from https://github.com/
biotoolscoders/parmix.

® Any additional information and tools used in this paper are available from the lead contact upon request.

METHOD DETAILS
The high-level approach

Suppose we have phased haplotypes from N children in a family. Due to recombination, different segments
of a child’s haplotype may originate from different haplotypes of a parent. Moreover, phasing error is often
non-negligible in current genetic data. Therefore, it is not easy to determine from which parental haplotype
a SNP allele of a child inherits from. The key observation is that heterozygous SNPs of a parent are very
informative when there are multiple children. This is illustrated in the below Figure. For the ease of expo-
sition, we first assume there is no phasing error. Then an entire child’s haplotype is from a single parent
(possibly with recombination between two haplotypes of this parent). Further, suppose we know which chil-
dren’s haplotypes are from the same parent (there are only a small number of such choices when Nis small).
In the below Figure, we consider a SNP site s3 where the three children have alleles O, 1 and O respectively.
Then one can infer that the parent is heterozygous at s3 (assuming the probability of genotyping errors is
small). Note at the next SNP site s4, children’s genotypes are 0, 1, and 1 respectively. Since the probability
of recombination within one generation is usually low, a child likely inherits from the same parental haplo-
type at s3 and sa. So with high probability, there is a recombination between s3 and ss when creating the

third child.

When there is phasing error, when moving along a haplotype of a child, from which of two parents this
haplotype inherits is no longer fixed. Assuming the phasing error rate is not too high, nearby parental het-
erozygous SNPs may still provide some hints about where recombination occurs since the probability of
recombination is still low. Consider the right part of the below Figure. There are six haplotypes within
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the region from s; to s9. Assuming no genotyping error and no recombination (both occur with a smaller
probability than phasing error), there must be a phasing error somewhere. Further note that if we switch
between the two haplotypes of child 1, we obtain two haplotypes that appear in the other two children.
This is a strong indication of a phasing error. In practice, however, there is uncertainty for clearly calling
phasing error and/or recombination due to factors such as genotyping errors, few numbers of children
in data, and lack of heterozygous sites.

S1 S S3:54 55:56 S7  Ss S1 S2 53|S4 Ss

iScience
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Child 1
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@ Phasingerror

High-level approach

Forward

(Left) No phasing error. Heterozygous SNP alleles of children provide hints on recombination (between s3 and s, of third child and ss and s4 of first child).

(Right) With phasing errors. Phasing error (at the first child) can sometimes be detected by looking at haplotypes from all children.

To address the inherent uncertainty, we use hidden Markov model (HMM) as the main underlying
probabilistic model. It is possible to use a single HMM to model all aspects of this inference problem:
(i) recombination in parents, (i) genotypes of parents, (iii) ancestry of parents, and (iv) phasing errors in
children. However, our experience indicates that such an HMM is too complex and also leads to not
very accurate inference. Instead, parMix takes a three-step procedure.

1. Infer (and then fix for later inference) locations of recombination and phasing errors from children’s
haplotypes first.

2. Infer (and then fix for later inference) parental ancestry from children’s haplotypes.

Call parental genotypes

By dividing the inference into three steps, each step becomes more manageable. More importantly, this
can lead to more accurate inference results because we first infer the aspects about which the data has
more information. As described above, children’s haplotypes provide a strong indication about where
recombination and phasing errors occur in children’s haplotypes. Thus, parMix infers recombination and
phasing errors first.
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Data and problem formulation

We consider a family of N > 1 children and two parents from an admixed population. Each individual in this
family has admixed with M > 2 ancestral populations. In this paper, we assume M = 2 (i.e., there are two
ancestral populations). parMix can be easily extended to allow more than two ancestral populations, but
will need more computational time. parMix takes the haplotypes H for k = {1, ..., N} of the diploid children
as input. Here, a haplotype is a binary vector of length m, and m is the number of SNPs (single nucleotide
polymorphisms) within the haplotypes. We assume the haplotypes of children are genotyped and phased
at SNP sites, possibly with phasing errors. Moreover, parMix takes population genetic information: (i) allele
frequencies in each ancestral population are known for all SNPs, (ii) recombination distance between
consecutive SNPs, and (iii) linkage disequilibrium (LD) in each ancestral population.

The primary goal of parMix is, for each SNP position, inferring the ancestry (which of two ancestral popu-
lations, say A and B) and genotypes of each parent. Since each parent is a diploid, there are four possible

parental ancestries: AA, AB, BA, and BB, and four parental genotypes: 00, 01, 10, and 11.

Below Table lists the notations and parameters used in this paper.

List of parameters and notations

Symbol Description

N The number of children

M The number of reference populations

T The number of SNPs

t SNP site index

dp The physical distance between two SNPs
de The genetic distance between two SNPs in

centimorgan

H; The haplotype vector of children

G The genotype vector of parent

R: The recombination vector of parent
Py The phasing vector of parent

Ce The ancestry vector of parent

Hidden markov models
General HMM structure

Our inference is based on several structurally similar hidden Markov models. See below Figure for an illus-
tration. All these HMMs have multiple states for each SNP site and there are transitions between any two
states at consecutive SNPs. At each SNP, there are 2 states, each corresponding to a distinct binary
sequence (called configuration) of length-k. The meaning of configuration depends on the purpose of
the inference and varies among HMMs. The key for these HMMs is the settings of transition and emission
probabilities, which we will explain in more detail. Briefly, transition and emission probabilities are fully
decided by the configurations involved and the provided population genetic information (e.g., allele fre-
quencies and recombination fractions) based on standard genetic laws. That is, we don't need to run
the Baum-Welch algorithm to perform parameter estimation for the HMM. So after HMM is constructed,
we can infer the states sequence using the standard posterior decoding algorithm from given data. The
states directly correspond to what we want to infer. For example, suppose we want to infer parental geno-
typesin an HMM. The configurations at a site s of the HMM have bits that correspond to parental genotypes
at s. To infer parental genotypes, we simply use posterior decoding to find the most likely configuration at
s. Inthe following, we focus on how an HMM is constructed: (i) the meaning of the configuration bits, and (ii)
transition and emission probabilities.
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The calling method of the posterior decoding algorithm

We start with the first fixed site t;, and selectt,’s vector as (010) since it is same as the previous site’s. Then, the same
strategy is used to site t3, and it continues until it reaches the next fixed site ts. In the situation that the first fixed site is not
the first site of the sequence, like tio. It will selectty’s vector as (001) because it is same as thetig's. It continues until it
reaches the first site t; of the sequence.

Inference of recombination and phasing errors

parMix first infers the locations of recombination events and phasing errors, which can then be used for later
inference. The phasing error rate can be especially a problem for inference because in current data it is usu-
ally much higher than the recombination rate. For example, in human data, the average recombination rate
is 1078 per base pair per generation, while the phasing error rate can be 2  10~> per base pair in current
data. Therefore, it is important to handle phasing errors in inference. We now describe an HMM model
for inferring recombination and phasing errors in children’s haplotypes in a probabilistic way.

In this model, the observable data are the children’s haplotypes, which are represented by a length-2 « N
binary haplotypes vector H; for each SNP site t. Let AC; denote a set containing all possible hidden states
(configurations) at SNP site t, and each configuration AC; = (Py, Ry, Gt) € AC; is a binary vector of length-
(3N +4). Here, P, is the phasing vector of length N bits. For each child i, P[i] = O (resp. 1) means child i's
allele is from paternal (resp. maternal) side at the SNP site t. R; is the recombination vector of length-
2N. For child i, R[i] (resp. Ri[i + N]) represents the first (resp. second) haplotype of child i is from which
haplotype of their parent at site t. For example, when N = 3, {0,0,0,1,1,0} represents that the first (resp.
second) allele of the first two children are from the first (resp. second) haplotype of the paternal (resp.
maternal) side at t, while both alleles of the third child are from the first allele of parents. G; is a binary vector
of 2x2 = 4 bits, and it represents the genotypes of two parents at site t.

Transition and emission probabilities

We denote p(AC{|AC;_1) as the transition probability from AC;_; at site t — 1 to AC; at site t. Recall that
AC; = (P, Ry, Gt). So p(AC{|ACi—1) consists three parts, one for each vector in AC;. (i) Recombination
vector. We define Tj as the transition probability of the recombination vector for ji;, child between sites t — 1
and t. Let d,, denote the number of base pairs between sites t — 1 and t. We define If = 1if R, = R._;, and
0 otherwise. Then, Tj = (dp-rb)1 "5(1 - dp-rb)’f, where ry, is the recombination rate between two base pairs
perindividual per generation. Ifthe given map is the centimorgan-based type, Tj can also be easily calculated. (i)
Phasing vector. We denote P; as the transition probability of phasing vector betweensites t — 1 and tfor the jiy,
child. Similar to the transition probability of recombination vector, since the number of base pairs dj, between

two sites is known, We define If = 1ifP, = P:_1,and O otherwise. Then, P; = (dp-pe)17’f(1 - dp-pe)’f,where

14 iScience 25, 104768, August 19, 2022
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Pe is the phasing error rate between two base pairs per individual per generation. Here, since the phasing error
rate pe is much larger than the recombination rate r,, the transition probability of phasing vector P; may be larger
than 1. If this happens, we set P; = 1_{iii) parental genotype vector. We denote G as the transition probability of
the parental genotypes vector between two sites. Since there is uncertainty in parental ancestry, we simply as-
sume any parental genotypes are of equal probability. We now combine all three parts to derive the overall tran-
sition probability between two configurations.

" (Equation 1)

N N
paciACy) = -G T P- T T+ II 7
1= 1=

N
j=1
where T]f (and ij) is the transition probability of recombination vector of the father (mother, respectively) for
the ji child, and Gf (and G™) is the transition probability of the paternal (resp. matemal) genotype vector.

For emission probability, we consider a configuration AC; = (Py, Ry, G;) where children’s haplotypes H; at
each site t are emitted. Note that P; and R; decides how alleles of parental alleles in G; are passed to
H:. Let ge be the genotyping error rate between children’s alleles. We define [;(AC,) = 1 if H, is equal to
the allele implies by AC; and 0 otherwise. Then the emission probability pe(AC;) of configuration AC; is:

N
pe(AC:) = H(1 - ge)"<AC‘)g1{I’(AC‘) (Equation 2)
j=1

Calling recombination and phasing vectors

After the construction of the first hidden Markov model, the posterior decoding algorithm is used to infer
the configuration vector AC; at each locus. The posterior decoding algorithm provides a vectors sequence
with the highest probability at each site, but there may be multiple maximum probability vectors at the
same site. For example, in the three children model without phasing errors, the probability of recombina-
tion vector Ry = (0,1,0) is same as the probability of vector R; = (1,0, 1) since the initial probability distri-
bution is equally distributed. Because recombination vector usually do not change greatly due to relatively
low recombination rate, we apply a trimming procedure to trim the inferred vectors sequence.

As shown in the below Figure, we first find the sites that have only one configuration with the highest prob-
ability (in this example, the sites t; and ts). Intuitively, the chosen recombination/phasing vectors at these
sites are more likely to be correct than other sites. Then, based on these sites’ positions, we begin with the
first fixed site (t7) and trim the next site’s vector (t;) with highest probability but in a different order until
the next fixed site (ts) is reached. Finally, we apply this method again for the first fixed site (t0) but with
the opposite direction until it reaches the first site of the sequence (ty).

The general hidden Markov model that is used in this paper

2k states at each column (SNP site). Each state has a distinct length-k binary string. States at two nearby sites are fully
connected.
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Example of the hidden Markov model

Below Figure shows an example of a family with two parents and three children. Each configuration consists
of the phasing vector (P1,P2,P3), the recombination vector (Ry,Rz,Rs,R1,R/2,R13), the genotype vector (Gg
G5, G, GJ), and the haplotype vector (Hf,HJ",Hb, Hy,H, HT). Suppose that (P1,Pz,P3) = (0,0,1), (Ri,Ra,Rs,
Rn,Rip,Ri3)=(0,1,0,1,0,1), and (Gf,G5,GP",G") = (0,0,0,0). Then the configuration at this site t, denoted
as AC;, can be presented as (P1P2P3, RiR2R3, RiiR;R13), (G';GEG;"GQ’)) = (001,010101,0000).

(001,010101,0000)

Example of configuration AC;: two parents’ genotypes are both 00

The arrows with different colors show the paths of inheritance, and the first and third child’'s genotypes can be traced to
the first haplotype of the father and the second haplotype of the mother, but the second child's genotype shows a
different inheritance pattern. There is a phasing switch at the third child, which is denoted by P3 = 1.

At two adjacent SNP sites, there are transitions between each pair of configurations. There are 2'3 possible
configurations at a site, and this leads to 2% possible transitions between two adjacent SNPs. That is, if
there are N configurations at a site, the computational complexity for computing the transition probability
is O(N2) at each site. In order to reduce the computational complexity, we use a divide and conquer algo-
rithm which reduced the computational complexity to O(Ni «logNy) for each site. Refer to Pei et al. (2020)
for more details about this algorithm.

Inference of ancestry vector of parents

We now use the inferred phasing and recombination vectors to infer the ancestry of parents. We also use an
HMM for this purpose. Here, the genotype vector Gf (G") is replaced by ancestry vector Cf (C", respec-
tively). Cf (C™) is a binary vector of 1 x 2 = 2 bits, and it represents the ancestral population of the parent.
Therefore, if there are two reference populations, then this vector could be (0,0), (0, 1), (1,0), or (1, 1) which
indicates that the parental ancestry can be both from population A, one of them came from population A
and the other one is from population B, or both are from population B. Because the recombination and
phasing vectors are fixed, the number of bits for the current model’s configuration is reduced to only
four bits. Thus, inference of ancestry vectors is very efficient.

In detail, the p(AC|,AC;_1) is the transition probability from AC;_; atsitt — 1to AC; atsite t. However, The
difference is that, in this model, AC; = (C;) without the vectors P; and R;. We define ItC =1dCi_y = C,,
and 0 otherwise. Then C; = (IS x S9) +f, x (1 — S9). £ is the admixture proportion for population x (A
or B) depending on the value of C;, and it can be set as 0.5 if the admixture proportion is unknown.
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Meanwhile, g is the number of generations since admixture, and we use g = 10 by default. To simplify the
notations, p(AC{|AC;_1) can be re-defined as follow.

C = p(C|Cizq) =05+ lf x 0.5 x §9 (Equation 3)

where ItC is1ifCi_1 = C;, and -1 otherwise. Moreover, Sis the non-recombination probability between two
sites:

Therefore, the transition probability of this model can be written as follow.

PACIAC: 1) = [] C'xCm (Equation 4)
parent
For the emission probability, let f;,(C;) be the allele frequency in the population specified by (C;) for the
allele observed at site t of jy, child’s haplotype, the emission probability of this hidden Markov model, de-
noted as Pey,, (AC), can be defined as follows.

Pe, (AC) = H H[(fH,(Ct) (1 - Qe)) + (1 - fH,(Ct)) 'ge} (Equation 5)

parent |

Inference of parental genotype vectors

Now that we have inferred recombination and phasing vectors as well as parental ancestry vectors, we can
now infer genotype vector using another HMM. Here, the observed data includes children’s genotype vec-
tors Hf and HP" at site t, along with parental ancestry vectors Cf and C". The hidden states to infer are
parental genotype vectors Gf and GJ". Because parental ancestries along with recombination/phasing vec-
tors are known, we can construct an HMM that incorporates both allele frequency and linkage disequilib-
rium in the transition probability. More specifically, consider two adjacent sites t — 1 and t. Suppose the
ancestry at t — 1 is the same as that of t (say both from population A). Then the probability of observing
a haplotype 00 in one parent is estimated to be the frequency of 00 with ancestral population A at these
two sites. If t — 1 has ancestry A but t has ancestry B, then the probability of having 00 is simply the allele
frequency of 0 of population B (i.e., independent from the genotype att — 1).

Note that we have already inferred parental ancestry and recombination and phasing sequences in the pre-
vious steps. To infer parental genotypes, the naive way is to find the SNPs with the highest allele fre-
quencies in the parents at each locus. However, this approach is not accurate because it only uses allele
frequencies and ignores the linkage disequilibrium, and is only based on noisy inferred parental ancestry.
Therefore we still need to use a hidden Markov model to infer the genotype vector, since the genotypes
information of children is also included in the HMM model.

The emission probability of the third hidden Markov model is the same as the emission probability of the
first hidden Markov model, which can be referred as Equation (2). But for the transition probabilities of the
third model, the transition probability of G;_1 to G; does not follow the equal distribution, and need to be
defined based on the inferred ancestry vectors, C;_1 and C;.

We define I° = 1if C;_1 = C;, and O otherwise. Let G denotes the transition probability of two adjacent
SNPs of one parent at site t. Then,

G
)t

G = p(GilGi-1) = [fu,(CO' ™ x [Idpygh, ) (CelCe-1)] (Equation 6)

where fy,(C;) is the allele frequency in the population specified by (C;) for the alleles configuration at site t
of one parent’s haplotype, and Idu, 4, _,)(Ct|Ci—1) is the linkage disequilibrium distribution in the popula-
tion specified by (C;_ 1) and (C;) for the alleles configurations atsites t — 1 and tof one parent’s haplotype.

The transition probabilities of the third hidden Markov model can be defined as:

P(ACJAC. 1) = [[ G'xG" (Equation 7)

parent
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