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Abstract
Branched polymers stress relaxation is at the center to their function as viscosity modifiers, though the fundamentals that 
underlie the correlation between the polymer topology and their impact on viscosity remains an open question. Here, the 
stress relaxation of short, branched polyethylene comb polymer melts is studied by molecular dynamics simulations. A coarse-
grained model where four methylene groups constitute one bead is used, and the results are transposed to the atomistic level. 
For arms of length comparable to entanglement length ne of the linear polymer, we show that while increasing the number of 
branches with the same arm length decreases the plateau modulus, the terminal diffusive time does not change significantly. 
Increasing the arm length decreases the plateau modulus and increases the terminal time. As arms shorter than ne relax by 
the entanglement time, both the chain mobility and stress relaxation can be described by reptation of the backbone with an 
increased tube diameter and an increased friction coefficient; or in other words, the branches act as a solvent.

Graphic Abstract

Keywords  Comb Polymers · Stress relaxation · Molecular dynamics simulations

1  Introduction

The addition of a small number of side branches to flexible, 
linear polymer chains have dramatic effects on the viscos-
ity and shear response of melts [1–3]. Varying the number 

and length of the branches tethered to the backbone of these 
comb polymers provides a pathway to control their rheo-
logical properties. The immense impact of polymers topol-
ogy on processing of macromolecules has driven numerous 
experimental studies, all demonstrating significant effects of 
the branches on the flow characteristics of the melts [4–15]. 
These studies show that the dependence of the stress relaxa-
tion and shear viscosity on the number and length of the 
branches is rather convoluted. For example, the storage 
and loss moduli for combs with short branches measured 
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at different temperatures could be superimposed onto a uni-
versal curve with a simple shift, however, long-chain branch-
ing results in thermo-rheological complexity in which the 
data cannot be superimposed by a simple temperature shift 
[7, 9, 10].

On time scales longer than that for the branches to relax, 
the motion of well entangled comb polymers follow the rep-
tation model [16, 17], in which the polymer chain confined 
in a tube of neighboring chains, moves cooperatively along 
the tube axis, commonly referred to as the primitive path. 
After the branches relax, the branches act as an effective 
solvent for the backbone while concurrently providing a 
drag on the motion of the backbone [1, 2, 18]. For comb 
polymers with short branches, comparable to the entangle-
ment molecular weight of the linear backbone, the dominant 
contribution to the chain mobility and stress relaxation is 
from the entangled backbone. In this case, comb polymers 
behave as reptating chains with increased tube diameter dT. 
For longer arms, the stress relaxation is more complex as 
the branch segments near the branch point relax on a time 
scale which depends exponentially on the arm length. This 
gives rise to an effective tube diameter which grows as the 
side branches relax. Only after the arms fully relax, does the 
backbone relax [6, 11, 18] and the backbone entanglements 
ultimately control the chain mobility and stress relaxation.

While there have been numerous experimental studies 
of stress relaxation of comb polymers, the local dynamics 
that governs the macroscopic motion of the polymers has 
not been realized. Limited number of numerical simulations 
have recently probed the local motion of comb polymers. 
Bačová et al. [19, 20] showed that in asymmetric stars and 
combs with two branches, the branch point movements can 
be described as the motion over a network of traps. Zhou 
and Larson [21] simulated asymmetric star polymers using 
a coarse grained model and showed that for time scales less 
than the short-arm relaxation time, the branch point remains 
anchored within a length scale of a tube diameter. Once the 
short arm relaxes, the branch point takes a random hop 
along the confining tube. Wijesinghe et al. [22] carried out 
molecular dynamics simulations for a coarse grained model 
for entangled polyethylene comb polymers. They showed 
that as the branch length increases, the combination of arm 
retraction and backbone mobility leads to a wide spectrum 
of arm relaxation times and that the motion of the polymer 
backbone is well described by repetition over intermediate 
time scales. They also showed that the tube diameter and the 
entanglement time, directly measured from the crossover 
from the early time Rouse to reptation regime, both increase 
linearly with the length of the branches. However, none of 
these numerical studies have been able to resolve the stress 
relaxation of comb polymers, critical to the understanding 
of the mechanism in which topology of polymers affect their 
stress release.

Here, we probe the effects of branching on the dynamics 
of melts of loosely branched comb polymers with branches 
of length comparable to the entanglement molecular 
weight Me using molecular dynamics (MD) simulations. 
The branches are sparsely distributed along the backbone, 
so that they do not affect the end-to-end distance of the 
polymer. We study the stress relaxation of melts of entan-
gled comb polymers with multiple short branches. MD 
simulations allow us to visualize and study the micro-
scopic behavior that underlies macroscopic experimen-
tal observations. Given the broad time and length scales 
associated with the polymeric motion, we adopt a coarse 
grained (CG) model for polyethylene, where 4 methylene 
groups are represented by one bead, to capture the mobil-
ity and stress relaxation of loosely branched polyethylene 
melts on multiple time and length scales. This model cap-
tures well the diffusion, plateau modulus and viscosity of 
entangled, linear polyethylene melts [23, 24]. The results 
presented here add an important facet to our previous 
results on the mobility of comb polymers. The molecular 
motion of these branched polymers is captured through 
reptation model with a tube diameter that increases as the 
length of the branches increases, illustrated by the chain 
snapshots shown in Fig. 1.

Fig. 1   Visualization of a coarse grained model of a polyethylene 
chain with backbone of n = 480 carbons (120 CG beads) plotted five 
times (different colors), each separated by 62  ns. The chains have 
nb = 4 randomly placed branches of length ns = 0, 40, and 80 carbon 
atoms (0, 10, 20 and 40 CG beads). Backbone is plotted in dark color 
while side chains are translucent
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2 � Model and Methodology

A CG model for polyethylene with four methylene groups 
per CG bead (coarse graining degree λc = 4) previously 
derived by Salerno et al. was used for the current study 
[23, 25, 26]. The interaction potential between CG beads 
was derived from an atomistic simulation for a linear chain 
melt of C96H194 at density ρ = 0.76 g/cm3 and temperature 
T = 500 K using an iterative Boltzmann procedure. The 
atomistic simulations used the optimized potentials for liq-
uid simulations (OPLS) force fields of Jorgensen et al. [27, 
28] with modified dihedral coefficients to better reproduce 
the properties of long alkanes [29]. In the CG model non-
bonded interactions are truncated at 1.0 nm. All simula-
tions were run at constant volume using a velocity-Verlet 
integrator with a time step of 20 fs. A Langevin thermostat 
[30, 31] with damping time constant of 20 ps maintains the 
temperature at 500 K. Periodic boundary conditions were 
used in all three directions. All simulations use the large 
atomic molecular massive parallel simulator (LAMMPS) 
molecular dynamics code [32]. Detailed descriptions of 
the CG development is given by Salerno et al. [23, 25] 
and Peters et al. [26].

As coarse graining reduces the number of degrees of 
freedom, the free-energy landscape is much smoother 
compared to fully atomistic simulations. This results in 
an increase in the mobility of the chains in the CG models 
compared to the fully atomistic model [25]. For λc = 4 at 
500 K, Salerno et al. [25] showed that the mean squared 
displacement in the atomistic and CG model for melts of 
linear chains with n = 96 and 480 carbons overlapped if 
time in the CG model is scaled by a dynamic scaling factor 
α = 6.2. We use this value of α to scale time for the comb 
polymers.

The PE comb polymer melts were prepared as described 
in Wijesinghe et al. [22]. Our previous study was able 
to resolve mobility and viscosity for melts of chains 
with n = 480 backbone carbons (120 CG beads) and 
n = 1920 backbone carbons (480 CG beads) with nb = 4 
to 16 randomly placed branches of length ns = 0–160 car-
bons (0–40 CG beads). Here we probe the stress relaxa-
tion of the longer chain melts with 800 chains of length 
n = 1920 backbone carbons with nb = 16 randomly placed 
branches of length ns = 0, 40, and 80 and nb = 16, 32 and 
64 branches of length ns = 40. For all values of ns and nb 
studied here, these chains are in the comb regime where 
the branches do not affect the polymer backbone rigidity, 
as reflected in a nearly constant mean squared radius of 
gyration < Rg

2 > [22]. For linear polyethylene chains, this 
CG models reproduces quite well the single chain statistics 
including the mean squared end-to-end distance < R2 > /
Mw = 1.29 ± 0.02 Å2/(g/mol) which is in good agreement 

with the experimental value of 1.21 Å2/(g/mol) obtained 
from small-angle neutron scattering at 443 K and packing 
length p = (ρchain < R2 >) = 1.8 Å compared to the experi-
mental value of p = 1.69 Å at 413 K [33]. For reference, 
the experimentally [34, 35] measured entanglement molec-
ular weight Me of linear polyethylene without branches is 
1.1 − 1.2 kg/mol or about ne = 80 (20 CG beads). Hence, 
the comb polymers studied here are well entangled with 
Z = n/ne = 24 while the length of the side branches are rela-
tively short, ns = 0, ne/2 and ne. Here ne is the entanglement 
strand length for linear polymers, the effective ne for the 
backbone of the comb polymers is larger as suggested by 
the lower plateau modulus.

The stress relaxation modulus was measured for each sys-
tem using the Green–Kubo relation where σαβ(t) are the off-
diagonal components xy, xz and yz of the stress, V is the vol-
ume of the system and t is time. Results for G(t) presented 
here are an average of the three components. We also meas-
ured the normal stress decay after deforming polymer chains 
in a melt by a small step strain [36, 37]. This was done by 
applying a uniaxial elongation to deform the simulation cell 
in the x-direction Lx = �L while shrinking the simulation 
cell in the other two directions Ly = LZ = L∕

√

� to keep 
the density of the system constant. Using the stress–strain 
description for classical rubber elasticity [38], the stress 
relaxation modulus is given by

Here, we use λ = 1.1 and 1.2 following Hsu and Kremer 
[36] who applied this method to determine G(t) for the 
standard bead spring model [39].

3 � Results

To distinguish the relevant time scales and different scal-
ing regimes, we first consider the effect adding multiple 
branches on the chain mobility. Previously we considered 
the effect of increasing the branch length ns, here we pre-
sent new results for increasing number of branches nb. The 
mean squared displacement (MSD) of chains in equilibrated 
melts was calculated for the center six beads, g1(t) =  < (ri(t)
−ri(0))2 > to suppress the fluctuations caused by chain ends 
and for the center of mass (cm) of the chains, g3(t) =  < (rcm
(t)−rcm(0))2 > , where ri(t) is the position of atom i at time t, 
and rcm(t) is the position of the center of mass of the chains. 
Figure 2 shows results for the MSD of chains of n = 1920 
carbon atoms (480 CG beads) with a different number of 
branches nb each with branch length ns = 40. These data 
show that the number of branches has only a small effect 
on chain mobility in the comb regime. They also show the 

(1)G(t) =
�xx(t) −

1

2

(

�yy(t) + �zz(t)
)

�2 − 1∕�
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distinctive t1/4 scaling regime in g1(t) at intermediate times, 
which arises from the relaxation dynamics of the backbone 
confined in the tube. At later times the MSD increases as t1 
in the diffusive regime. The diffusive time τd, determined 
from the time that the inner beads have moved a distance 
comparable to the size of the chain g1(τd) = 3 < Rgb

2 > , 
increases only slightly with increasing nb. Here, < Rgb

2 > is 
the mean squared radius of gyration of the backbone.

The effect of increasing the length of the branches is much 
stronger than that of increasing the number of branches. We 
previously showed [22] that the extent of the t1/4 scaling 
regime increases with increasing branch length ns. The tube 
diameter dT and entanglement time τe, extracted from the 
crossover from the early time t1/2 Rouse regime to the t1/4 
scaling regime in g1(t) both increase linearly with increas-
ing branch length ns, while the diffusive time τd, increased 
exponentially with increasing branch length [22]. Figure 1 
illustrates this increase in dT with increasing chain length of 
the branches ns. For illustration we show results for n = 480, 
though all the results in this paper are longer chains with 
n = 1920 backbone carbons.

In the reptation mode, the polymer chain confined in a 
tube moves coherently along the primitive path, after all 
internal dynamic modes have been relaxed. The primi-
tive path length scales with the entanglement length as 
Lpp ∼

1∕n1∕2e
 . The friction coefficient ζ of the chain scales 

linearly with the number of monomers in the chain. The 
reptation time τd is the time for the chain to diffuse a distance 
Lpp, and scales as �d ∼ L2

pp
� ∼ ζ∕ne . In the approximation of 

a comb polymer with short branches as an effective linear 
polymer, both ζ and ne are increased by the addition of side 
branches. Since short branches undergo Rouse dynamics, 

the overall chain friction coefficient ζ is nevertheless pro-
portional to the number of monomers, which is increased 
by the additional monomers of the branches.

The relaxation time of the branches compared to the back-
bone has a strong effect on both the chain mobility and stress 
relaxation. We measured the autocorrelation function of the 
end-to-end vector of the branches and extracted the branch 
relaxation times τa [22]. For ns = 40, the time for the arms 
to relax τa ~ 13 ns, is much shorter than the time τe ~ 50 ns 
to reach the reptation regime, while for ns = 80, τa ~ 100 ns, 
which is comparable to τe [22] for ns = 80. That the arm 
relaxation times are comparable to or shorter than τe sup-
ports our finding that these comb polymers with short arms 
behave as reptating chains with increased tube diameter.

The stress response function after a small perturbation 
G(t) is an important experimental measure of polymer rheol-
ogy. For long entangled linear polymers, at short times G(t) 
decays as the chains locally relax in response to the perturba-
tion like any fluid. However, for intermediate times G(t) pla-
teaus at Go

N
=

4

5
�RT∕Me This plateau region in G(t) occurs 

for intermediate times where the chains are assumed to 
move in a tube due to entanglements from the other chains. 
Only after the chains have reached the diffusive regime, 
does G(t) relax to zero at a time τd. For short branches, the 
relaxation time is shorter than the time τd for the backbone 
to feel the effect of entanglements from other chains. In this 
case, the branches only affect the very early decay of G(t). 
Short branches increase the effective tube diameter dT and 
entanglement time τd, and thus allow more internal dynam-
ics modes to relax without being affected by the tube. The 
dominant contribution to the stress relaxation in this case of 
short branches is from the entangled backbone. For branches 
longer than ne, the stress relaxation is more complex as the 
branch segments near the branch point relax on time scale 
which depends exponentially on the branch length. This 
gives rise to an effective tube diameter which grows as the 
side branches relax. Only after the branches fully relax, does 
the backbone relax [6, 11, 18].

The relaxation modulus was measured from equilib-
rium stress autocorrelations and from stress relaxation after 
small strain. Figure 3a shows G(t) measured from the stress 
autocorrelation function for comb polymers nb = 16, 32 and 
64 branches of length ns = 40 and Fig. 3b shows G(t) for 
branch lengths ns = 0, 40, and 80 with nb = 16 branches. 
As the number of branches nb increases the plateau modu-
lus Go

N
 decreases while terminal time τd is approximately 

unchanged. Increasing the length of the side branches ns 
leads to a decrease in Go

N
 and an increase in τd. To quan-

tify the changes in the plateau modulus, G(t) for the short 
branched comb polymers studied here was fit to a modified 
Likhtman-McLeish (LM) expression [40], which combines 
self-consistent theories for contour length fluctuations and 
constraint release with reptation theory,

Fig. 2   Mean-squared displacement (MSD) of the center six CG beads 
g1(t) (open symbols) and of the center of mass g3(t) (full symbols) for 
chains of n = 1920 carbon atoms for the indicated number of branches 
nb of lengths ns = 40. The solid lines represent the scaling predictions 
t1 for the diffusive regime and t1/4 for the reptation regime
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Here, μ(t) and R(t) account for single- and multi-chain 
relaxation processes of the tube model and n is the total 
number of CH2 monomers in the system. The key quantity 
in this expression is the single-chain memory function μ(t) 
for the fraction of the primitive chain which has not escaped 
from its original tube after a time t. For μ(t), we use the Doi-
Edwards reptation stress relaxation function [17]

For R(t), we use the double-reptation expression for con-
straint release R(t) = μ(t) [41, 42]. The three fitting param-
eters are the number of entanglements per chain Z, the termi-
nal relaxation time τd, and the Rouse time τR. As Z is related 
to the mode index and has to be an integer. In the fitting, Z 
is varied over integer values to obtain the best fit. The vol-
ume of a CH2 monomer is v = 0.031 nm3 for ρ = 0.76 g/cm3. 
Equations 2 and 3are appropriate for the systems studied 
here since the arms relax on a time scale shorter than that 
for the backbone of feel mutual entanglements from other 
chains. For branches longer than ne, one has to include the 
fact that the tube diameter dT increases and the effective 
entanglement length ne increases as the branches relax so 
that the total primitive path length becomes dependent on 
the current extent of relaxation of the branches [6, 11, 18].

As the number of branches increase from 16 to 64, the 
plateau modulus Go

N
 decreases approximately linearly, Go

N
= 

(2)

G(t) =
kBT

nv

[

1

5

Z
∑

p=1

(

4�(t)R(t) + e−tp
2∕�R

)

+

N
∑

p=Z+1

e−2tp
2∕�R

]

(3)�(t) =
8

�2

∞
∑

q=1,odd

1

q2
exp

(

−
q2t

�d

)

1.13 MPa, 0.66 MPa and 0.38 MPa for nb = 16, 32 and 64, 
respectively. For comparison, Go

N
= 2.45MPa for linear poly-

mers. The entanglement time τe increases with increasing nb, 
τe = 40 ns, 101 ns and 265 ns for nb = 16, 32 and 64, respec-
tively. From the fit to eqs. 2 and 3, the longest relaxation times 
τd ~ 1.5 × 105 ns are independent of the number of branches 
within the error of our measurements. The diffusive time 
τd ~ 5 × 105 ns extracted from the MSD of the center backbone 
beads (Fig. 2) agrees very well with that found from the stress 
relaxation. These results show that as the number of branches 
increases, the ratio ζ∕ne and thus τd remains almost unchanged.

As the length of the branches increases, the plateau modulus 
Go

N
 also decreases linearly with increasing ns, Go

N
= 2.45 MPa, 

1.22 MPa and 0.66 MPa for branch length ns = 0, 40 and 80, 
respectively. As seen in Fig. 4, the relaxation times describ-
ing the stress relaxation are in excellent agreement with those 
extracted from the MSD, supporting the idea that for these 
short comb polymers can be treated as linear chains with a 
larger tube diameter. The Rouse time does not change much 
with increasing branch length, as it is the relaxation time of 
the internal dynamic modes along the backbone, which are not 
affected by the branches.

Fetters et al. [33, 34] have shown that for a wide range of 
flexible linear Gaussian chains, the entanglement molecular 
weight Me can be expressed as a universal power law of the 
packing length p,

where NA is the Avogadro number. Fetters et al. [34] found 
that the coefficient nt is insensitive to temperature and equal 
to 19.1 ± 1.4 (assuming Me =

4

5
�RT∕Go

N
 ). As seen in Fig. 5, 

the backbone entanglement length Me scales with p3 as 

(4)Me = n2
t
NA�p

3

Fig. 3   Stress relaxation function G(t) for comb polymers with backbone of n = 1920 carbons for melts with a) nb = 16, 32 and 64 branches of 
length ns = 40 and b) branch lengths ns = 0, 40, and 80 with nb = 16 branches. Solid lines are fit to eqs. 2 and 3
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predicted for flexible linear chains. The best fit to the coeffi-
cient nt = 16.4 ± 0.1. Combs with nb = 32, ns = 16 and nb = 16, 
ns = 40 have the same packing length p and the same plateau 
modulus from the best fits to G(t) as predicted by Eq. 4. This 
further supports the idea that the combs with short chains 
behave as reptating chains with increased tube diameter.

Determination of the stress relaxation function G(t) from 
fluctuations in the off-diagonal components of the stress ten-
sor requires long simulations, usually several times longer 
than the longest relaxation time, to obtain reliable results. An 
alternative method is to follow the experimental procedure 

and apply a small strain and measure stress relaxation. 
Although computationally more efficient, the challenge is 
to apply a strain large enough to reliably measure the stress 
yet remain in the linear response regime [36, 37]. As seen 
in Fig. 6, the results for the two methods agree nicely for 
the two methods when the step strain is small (λ = 1.1). For 
larger strain, as shown in the inset of Fig. 5, application of a 
strain of 20% overestimates G(t) for nb = 16 and 32, though 
not for nb = 64.

4 � Conclusions

The effect of the number of branches and branch length on 
the chain mobility and stress relaxation of short-branched 
polyethylene comb polymer melts with short branches has 
been studied. We find that the presence of sparsely placed 
branches greatly reduces the chain mobility of comb poly-
mers compared to their linear analogs. The short branches 
act as an effective solvent for the backbone and increase the 
tube diameter and the entanglement time. While increas-
ing the number of branches has only a small effect on the 
chain mobility and the terminal relaxation time, the plateau 
modulus decreases linearly with the number of branches. 
Increasing the branch length significantly reduces the chain 
mobility and plateau modulus. The entanglement time τe 
and terminal relaxation times td extracted from the chain 
mobility and from the stress relaxation are in very good 
agreement.

Fig. 4   Entanglement time τe (blue triangles) Rouse time, τR (black 
square) and diffusive time τd (red circles) as a function of length of 
the branches extracted from the MSD (open) and from G(t) (filled). 
Length of the backbone n = 1920 carbons with nb = 16 branches. Error 
bars are size of symbols

Fig. 5   Entanglement molecular weight Me of the backbone as a func-
tion of the packing length p 

Fig. 6   Comparison of stress relaxation function G(t) measured from 
the Green–Kubo relationship (filled symbols) and from step strain 
with λ = 1.1 (Eq. 1) (open symbols) for comb polymers with nb = 16, 
32 and 64 branches of length ns = 40. Inset compares results for 
λ = 1.1 (open symbols) and 1.2 (filled symbols)
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