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Splitting Brauer classes using the universal Albanese

Wei Ho and Max LiesLICcH

Abstract. We prove that every Brauer class over a field splits over a torsor under an abelian
variety. If the index of the class is not congruent to 2 modulo 4, we show that the Albanese
variety of any smooth curve of positive genus that splits the class also splits the class, and there
exist many such curves splitting the class. We show that this can be false when the index is
congruent to 2 modulo 4, but adding a single genus 1 factor to the Albanese suffices to split the
class.
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1. Introduction

Our main goal in this note is to construct principal homogeneous spaces (often
called torsors) for abelian varieties that split Brauer classes over fields. Before formu-
lating the main theorem, we recall some relevant definitions.

The Brauer group Br(K) of a field K is a classical invariant that may be described
in any of the following equivalent ways:

(1) the set of isomorphism classes of central division algebras over K

(2) the group of Morita-equivalence classes of central simple K-algebras (i.e., Azu-
maya algebras over K), under the tensor product operation

(3) the Galois cohomology group H2(Gal(K*/K), (K*)*), where K* is the separable
closure of K

(4) the set of isomorphism classes of Brauer—Severi varieties over K (a K-variety is
Brauer—Severi if it is isomorphic to some projective space over K).

The equivalence between these four interpretations is nontrivial, see, e.g., [9] for more
details. Generalizing the perspective in (2), Grothendieck defined the Brauer group
Br(X) of a scheme X as the group of Morita-equivalence classes of Azumaya algebras
over X; there are analogues of (3) and (4) in this setting as well. In particular, for
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a quasi-projective variety X over a field K, one can identify Br(X) as the torsion
subgroup of the etale cohomology group H(X, G,,), and if X is smooth, then in
fact Br(X) = H2(X, G,,) since H*(X, G,,) is torsion. See [10—12] for a thorough
treatment of Brauer groups of schemes.

For a variety X over a field K and a Brauer class « € Br(K), we let ey € Br(X)
denote the pullback of « to Br(X) via the structure map X — Spec K. In particular,
note that Br(—) is a contravariant functor via pullback of Azumaya algebras (or in the
quasi-projective case, via pullback of cohomology classes). We say that X splits o if
ay is trivial. If X is regular, then this is equivalent to the existence of a rational map
from X to any Brauer—Severi variety with cohomology class «.

Note that a K-variety with a rational K-point does not split any nontrivial Brauer
class. In particular, since an abelian variety over K has at least one K-point, it cannot
split nontrivial Brauer classes; however, a nontrivial torsor (i.e., a principal homoge-
neous space) under an abelian variety does not have rational points.! We thus may ask
whether torsors under abelian varieties split a given Brauer class. Our main theorem is
to answer this question in the affirmative:

Theorem 1.0.1. Given a field K and a Brauer class a € Br(K), there exists a torsor
T under an abelian variety over K such that ar = 0. Equivalently, the torsor T admits
a rational map to any Brauer—Severi variety V associated to «.

In fact, we show that there are many such torsors splitting a given Brauer class by
studying Albanese torsors. In general, the existence of the Albanese (variety, torsor, and
morphism) of a geometrically integral variety X over any field K is due to Wittenberg
[25, Appendix A] extending Serre’s results [22] for algebraically closed fields (and thus
by Galois descent, perfect fields). For the purposes of this paper, however, we need only
the Albanese torsor and morphisms for nice curves. For a smooth proper geometrically
connected curve C over K, let C — Albc = Piclc /K denote the Albanese morphism
for C (taking a point on C to the corresponding degree 1 divisor), so the Albanese
torsor Albc is clearly a torsor under the Jacobian variety Jacc := Picoc /K-

In the following theorem, we split into cases based on the index of the Brauer class;
recall that the index of o € Br(K) is the degree of a division algebra that represents
the class.

1Recall that a rorsor T over K for a group variety A4 is a K-variety T with an A-action that is simply
transitive over K. For example, a proper smooth geometrically connected genus one curve C is a torsor under
its Jacobian elliptic curve. If T has a K’-point for any field K’ 2 K, then it is isomorphic to A over K’ via
the A-action on such a point.
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Theorem 1.0.2. Let K be a field and o € Br(K). Write ind(«) for the index of a.

(1) Ifind(«) # 2 (mod 4), then for any smooth proper geometrically connected curve
C over K of positive genus such that ac = 0, we have that o s = 0.

(2) Ifind() =2 (mod 4), then for any smooth proper geometrically connected curve
C over K of positive genus such that ac = 0, there exists a genus 1 curve C' over
K such that acrxawe = 0.

Note that there are many curves splitting any given Brauer class « of index m. For
example, for m > 3, any complete intersections of m — 2 sections of the anticanonical
sheaf of an associated (m — 1)-dimensional Brauer—Severi variety will split the class,
and a general such complete intersection is a smooth proper geometrically connected
curve by Bertini’s theorem. (This argument needs to be slightly tweaked if K is finite,
but in that case the theorems above are trivial since Br(K) = 0.) Thus, Theorem 1.0.1
follows immediately from Theorem 1.0.2.

This result grew out of considering the following well-known question.

Question 1.0.3. Given a field K and a Brauer class « € Br(K), is there a genus 1
curve C over K such that ¢ = 0?

This question was asked explicitly by Pete L. Clark on his website and in [21], and
an affirmative answer was given when « has index 3 by Swets [24], index at most 5
in [5], and index 6 under some assumptions on K by Auel [2]. The techniques in [2, 5]
are unlikely to generalize to higher index, however, and the general question seems
quite difficult. The question has garnered much interest lately, partly because of the
simplicity; understanding which fields or varieties split Brauer classes is fundamental to
understanding Brauer groups, and genus one curves are perhaps the simplest nontrivial
positive-dimensional cases to consider.

To prove Theorem 1.0.2, we use the basic theory of big monodromy to deform a
curve splitting the class « to a curve whose Jacobian has minimal Néron—Severi group.
When the Néron—Severi group is minimal, it is relatively easy to compare obstruction
classes for sections of the Picard scheme of the curve with sections of the Picard
scheme of its Albanese, giving the result for the general curve. Specializing back to
the Albanese of the original curve finishes the proof.

Assumption 1.0.4. Since the Brauer group of a finite field is trivial, we assume from
now on that K is an infinite field.
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2. The Jacobian of the general curve

Our overarching goal in this section is to describe a proof of the following folk
theorem. Write M, for the stack of smooth proper geometrically connected curves of
genus g > 2. This is a finite type separated smooth Deligned—Mumford algebraic stack
over Spec Z with irreducible geometric fibers (see, e.g., [6]).

Proposition 2.0.1. Suppose C is a smooth proper geometrically connected curve of
genus g > 2 over an algebraically closed field k such that the induced map Spec k —
Mg sends the point of Speck to the generic point of a fiber of My — Spec Z. Then
we have that NS(Jacc) = Z0O, where © is the class of the ®-divisor on Jacc.

The proof can be achieved using the theory of big monodromy in the Hodge or
{£-adic context. Since we assume that the reader may not be intimately familiar with the
theory, we briefly sketch both arguments. The £-adic proof (Corollary 2.3.3) applies in
all characteristics, while the Hodge-theoretic proof (Corollary 2.4.3) only applies in
characteristic 0. (For Theorem 1.0.2, the characteristic O case suffices.) We also refer
the reader to another exposition via £-adic methods by Moonen in the appendix to [3].
There is also a direct proof using results of Zarhin [26,27] (building on earlier work of
Mori); see Section 2.5.

2.1. Representation theory and notation. We will use the following notation and
results in this section.

(1) Given aring R, we write Sp(2g, R) for the symplectic group associated to the
standard symplectic form of dimension 2g. We write GL(n, R) for the algebraic
general linear group over R (not just the R-points). Given a field L and an L-vector
space V', we will write GL(V) for the algebraic group of automorphisms of V' (not
just the L-points). This is non-canonically isomorphic to GL(dimy, V, L).

(2) Given an abstract group 7 and a representation p: w — GL(n, L) over a field L,
we will write G(p) C GL(n, L) for the connected component of the identity of the
Zariski closure of the image of p. If V — B is a local system of L-vector spaces on
a topological space, we will write G(V) for G(p), where p: 71 (B,b) — GL(V)
is the monodromy representation attached to Vand V = V.

(3) Let V be a vector space over a field L of dimension 2g equipped with the standard
symplectic form. The pairing defines an Sp(2g, L)-invariant map /\2 V — L.The
kernel V, C /\2 V of the pairing map is an absolutely irreducible representation
of Sp(2g, L); see [8, Theorem 17.5].

2.2. The Néron-Severi sheaf. Suppose X — Speck is a smooth proper geometrically
connected variety over a field k. (The theory we describe here generalizes, but we
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avoid such a digression.) Let Picy,x be the Picard scheme of X over k and Pic?( Jk the
connected component of the identity. When X is a curve, the Jacobian variety Jacy is
identified with Pic)o( [k

Definition 2.2.1. The Néron—Severi sheaf of X is the fppf quotient sheaf
NSy« = Picy,x /PiC?(/k .

The sheaf NSy, is representable by an étale group scheme over k. Indeed, it
suffices to prove this when k is algebraically closed. The sheaves Picyx and Pic?( /k
are representable (see, e.g., [ 14, Corollary 4.18.3]), so the quotient is also representable.
Moreover, the tangent space to the quotient sheaf at the identity section is trivial, since
Pic)o( /k — Picx/k gives an isomorphism of tangent spaces at the identity. It follows
that NSy« is an étale group scheme. The classical Néron—Severi group NS(X) is
defined as Pic(X)/ Pic®(X). With this notation, we see that NS(X) = NSy (k) if k
is algebraically closed.

Observation 2.2.2. Since NSy is étale, we have that for any extension L C L’ of
separably closed extension fields of k, the induced map NSy x (L) — NSx/x(L’) is
an isomorphism. In particular, given a separable closure k° contained in an algebraic
closure k of k, we have NSy /k (k%) = NSy, « (k). In particular, any Néron—Severi
class on X is defined over some finite separable extension of k. Under the additional
assumption that Picgf /& is smooth (e.g., for X' a curve or an abelian variety), we have that
any Néron—Severi class defined over k* is induced by an invertible sheaf on X ®j k*.
(Indeed, in this case the fppf and étale cohomology of Pic?( /K agree by Grothendieck’s
theorem [12, Théoréeme 11.7], so we have that H}ppf(Spec kS, Pic?( / ) =0)

2.3. Big monodromy: £-adic realization. We first show that the Néron—Severi group
of the Jacobian of the geometric generic fiber for a curve is generated by the class of
the ®-divisor if the relevant Galois representation has large image. We then use results
of Katz—Sarnak to find families of curves over finite fields with large monodromy.

Proposition 2.3.1. Let k be any field. Fix a prime £ invertible in k and assume k
contains all L-power roots of unity, and fix an isomorphism Q; = Q(1) of Galois
modules. Let C over k be a smooth proper geometrically connected curve of genus
g such that the identity component of the Zariski closure of the image of the Galois
representation

po : Gal(k®/k) — Sp(2g,Qy)

induced by the Galois action on H' (Cy, Qy) is all of Sp(2g, Qq). Then the base change
C := Cys (and hence also the geometric fiber) has the property that NS(J acg) = Z.0.
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Proof. The first Chern class defines a morphism
¢ : NS(Jacg) — H2(Ja05, Q).

which is injective (modulo torsion, but the Néron—Severi group for abelian varieties
is torsion-free). (Note that we may ignore Tate twists in this proof since we fixed an
isomorphism Q; = Q,(1) above.) Because any class of NS(Jacg) is defined over a
finite separable extension of k by Observation 2.2.2, the image of ¢ is contained in the
union of all the subspaces H>(J acg, Q)" where I ranges over open subgroups of the
absolute Galois group Gy := Gal(k®/ k).

By assumption G(pg) = Sp(2g, Q,), but also for any open subgroup I' C Gy, the
group G(po|r) is Sp(2g, Qy), since passage to finite index subgroups does not change
the identity component of the Zariski closure.

The cup product pairing defines a Galois-invariant map

p i H2(ace. Q) = N\ H'0ace. Q) = /\“H'(C. Q) — Q,

with kernel V. For an open subgroup I' C Gy, the space HZ(Jan, Q) nVisa
subspace stable under I, hence under G(po|r) = Sp(2g. Qy). Since V is an irreducible
representation of Sp(2g, Q) by Section 2.1(3), the intersection must be 0.

We thus find that the composition map

NS(Jacg) ® Q N U H2(Ja05, Q) — Hz(JaC@ Q) N Q,
I'cGy

is an isomorphism (since NS(Jacg) is not 0).

As a consequence, we have an injection NS(Jacz) < NS (C). It is well known that
the pullback of the ®-divisor class to C has degree g (see, e.g., [20, Theorem 17.4]),
and since O is a principal polarization, it is indivisible in NS(Jacg). We therefore have
NS(Jacg) = ZO; furthermore, the injection NS(Jacg) < NS(C) is identified with
7 — g7 — 7. |

In [13, Chapter 10], Katz and Sarnak produce families of curves over finite fields
with large monodromy groups. Recall that, given a family of curves f: C — B over a
finite field F, with £ an invertible prime, the geometric monodromy group Ggeom of f
is the Q,-algebraic group G(p) associated to the representation

p: 71 (B ®r, Fg) — Sp(2g.Qy)

attached to the lisse sheaf R! f*ag (as in Section 2.1(2)). The following theorem is a
summary of [13, Theorem 10.1.16 and Theorem 10.2.2].
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Theorem 2.3.2 (Katz—Sarnak). For any genus g and any finite field F, with { an
invertible prime, there is an open subset U C A%q and a family € — U of smooth
proper geometrically connected genus g curves such that Ggom = Sp(2g, 64).

Corollary 2.3.3. Let € — U be a family as in Theorem 2.3.2. The geometric generic
fiber C := € xy SpecF,(t) has the property that NS(Jacg) = Z6.

Proof. Letk = F,(t). Theorem 2.3.2 gives that Geeom = G(p) = Sp(2g, Qy), and the
natural surjection G = m1(Speck) — 71(U ®p, F,) implies that the composition
map po : Gy — m1(U ®p, E) — Sp(2g. Q) also has the property that G(pg) =
Sp(2g, Q;). We thus apply Proposition 2.3.1 to obtain the desired result. |

2.4. Big monodromy: Hodge realization. We give a briefer sketch of the Hodge
version of the argument, as it seems to be more widespread in the literature. For example,
[4, Theorem 17.5.2] and the discussion leading up to it are a valuable source.

Let V be a local system on a connected space B with monodromy representation
p:m1(B,b) — GL(V), where V' = V,,. Recall that V is said to have big monodromy
if G(V) acts irreducibly on V.

Given a family of principally polarized abelian varieties g: A — B, the polarization
defines a quotient sheaf R?g,Q = /\2 R'g.Q — Q. The kernel of this map is a local
system V,(A). Fiberwise, it is invariant under the symplectic group and is itself
an irreducible representation (Section 2.1(3)). We will say that g: A — B has big
monodromy for H if V,(A) has big monodromy.

Lemma 2.4.1. Let B be a smooth C-scheme. If : X — B is a family of smooth proper
curves with G(R! £,Q) = Sp(2g, Q), then the Jacobian family g:Jacy = Pic?(/B — B
has big monodromy for both H* and H2.

Proof. Recall that R! g, Q = R! £,Q as local systems, so we can identify R?g,Q with
/\2 R! £, Q. The rest follows from the definitions. ]

Corollary 2.4.2. Suppose B is a smooth C-scheme. If : X — B is a smooth proper
family of curves with G(R! £, Q) = Sp(2g, Q), then for any very general b € B(C), the
Néron—Severi group NS(Jacy, ) is isomorphic to Z and generated by the theta divisor
®.

Proof. As the Néron—Severi group for abelian varieties is torsion-free, it is enough to
show the result after tensoring with Q. For any point b € B(C), the Néron-Severi group
NS(Jacy,) ® Q is a trivial Q-Hodge structure contained in the Q-Hodge structure
H2(J acy, , Q). (In fact, by the Lefschetz (1,1) theorem, it is the maximal such structure.)
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By [19, Theorem 10.20], for a very general point b, the sub-Hodge structure (V) C
H2(J acy, , Q) has no rational Hodge substructures. By the exact sequence

0 — (V2)p > H*(Jacy,. Q) —> Q — 0,
it follows that NS(Jacy, ) ® Q is one-dimensional. ]

Corollary 2.4.3. Let k be a field of characteristic 0 and X — Speck be a smooth proper
geometrically connected curve such that the image of the induced map Speck — M,
is the generic point. Then we have that NS(Jacx,) = ZO.

Proof. The statement is invariant under extension of k. It is well known that for the
universal curve over M the geometric monodromy group attached to H! is Sp(2g);
see, e.g., [6, §5] or [7, Theorem 6.4]. Thus, if m is a very general complex point of Mg
corresponding to a curve C, then by Corollary 2.4.2 we have that NS(Jacc) = Z0O.
Since Néron—Severi groups can only grow under specialization, it follows that the
geometric generic point must have the same property, giving the desired result. ]

2.5. Appeal to example. Since Néron—Severi rank can only increase under special-
ization, another proof of Proposition 2.0.1 follows from showing that there exists
a single curve of every genus at least 2, in any characteristic, whose Jacobian has
Néron—Severi rank exactly 1. Results of Zarhin [26,27] on endomorphism rings of
hyperelliptic Jacobians imply that many such curves exist over most characteristics;
in fact, Zarhin shows that for any hyperelliptic curve C : y? = f(x), where f(x) is
an irreducible separable degree n > 5 polynomial with Galois group either S, or 4,,
in any characteristic p > 3, the endomorphism ring over the algebraic closure is Z,
implying that NS(Jac¢) also has rank 1. These results themselves are quite subtle and
rely on very different techniques than those sketched in this paper.

2.6. General deformations of smoothable curves. In this section we describe how
to put any smoothable curve in a family with the generic curve. This will be useful for
studying the splitting of Brauer classes, as we explain in Section 3. (We will only apply
this to smooth curves, but we suspect that the full statement for smoothable curves
may be useful in the future, so we record it here.)

Corollary 2.6.1. Suppose C is a smoothable proper geometrically connected curve
over a field K such that Ext>(Lc¢ 1k Oc) = 0 (for example, a proper nodal curve). Let
W be a complete dvr with residue field K. There is a proper flat family € — Spec W
such that

(1) €®w K = C, and
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(2) if n — Spec W is a geometric generic point, then we have NS(Jace, ) = Z0O, where
O is the usual theta-divisor class associated to €.

Proof. Write Q for the fraction field of W. The assumptions on C ensure that the
universal formal deformation of C is represented by a proper morphism of schemes
€ — Spec W|[xq,...,x,] with a smooth fiber. Since the stack of proper curves is an
Artin stack locally of finite presentation, Artin’s algebraization theorem tells us that
there is a pair (X, x) with X a smooth W-scheme and x € X(K) and a family € — X
such that the restriction of € — X to 6;(, » 1s isomorphic to the universal deformation.
Let X° denote the locus over which € is smooth and let F be the prime field of Q.
There is an induced map p: X° — M, y, and by the openness of versality we know
that this map is dominant.

By Proposition 2.0.1, it suffices to show that there is a map Spec W — X whose
closed point lands at x and whose generic point maps to the generic point of Mg .
Since F is countable, M, ¢ has only countably many closed substacks. Consider the
polycylinder B” = {(ao,...,an) | a; € Q, |a;| < 1} parametrizing all W -points of
/@X, x- Since p is dominant, no closed subscheme of M, g contains all of B”. Since O
is uncountable it follows (e.g., by induction on #n) that there is a point of B” not in the
pullback of any closed substack of M r. This gives a W-point of X with the desired
properties. ]

3. Proof of Theorem 1.0.2

Lemma 3.0.1. Suppose C is a smooth proper geometrically connected curve of genus
g over a field K and C — X is an Albanese morphism. Suppose further that the
morphism NS(X%) — NS(CF) is injective with image g NS(Cg). If o € Br(K) isa
class of order prime to g such that ac = 0, then oy = 0.

Proof. By the Leray spectral sequence, we have ac = 0 if and only if « is the obstruc-
tion class for a global section of Picc, k. Consider the diagram

0 —— Picy,x — Picx/x —— NSx/g —— 0

oo

0—— PiC%/K — PiCC/K — NSC/K — 0

of sheaves on Spec K. The Snake Lemma applied to the diagram yields an exact
sequence of sheaves

0 — Picy,x — Picc;x — Z/gZ — 0.
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Thus, the map on global sections
Picy,x (K) — Picc/x (K)

is injective with cokernel annihilated by g. Since g is prime to the order of @ and the
obstruction map for sections of the Picard scheme is a group homomorphism, we see
that axy = 0 if and only if gax = 0. If s € Picc/x (K) is a section with obstruction
«, then the preimage of gs in Picy,x (K) is a section with obstruction ga, and the
desired result follows. ]

Proof of Theorem 1.0.2. Suppose C is a smooth proper geometrically connected curve
over K of genus g > 1 such thatac = 0.If g = 1, the desired conclusion holds because
Albc = C. Thus, we assume g > 2. We now show that to prove the theorem, it suffices
to prove that Albc splits @ under the additional assumption that g is relatively prime
to ind(«) — and therefore relatively prime to the order of «, which is also known as
the period of « (since the period and the index of o have the same prime factors [18,
Lemma 2.1.1.3]).

Observe that ind(«) divides 2g — 2 = 2(g — 1), since the canonical divisor of
C has degree 2g — 2. As a result, all odd divisors of ind(«) visibly cannot divide
g, and if 4| ind(«), then g is odd. Hence, if ind(«) % 2 (mod 4), we find that g is
relatively prime to ind(). If ind(«) = 2 (mod 4), then we can write & = ap + o
with a5 of index 2 and &’ of odd order. Since o5 is split by a conic (namely, the Brauer—
Severi variety of the associated division algebra) and any conic admits a cover by a
genus 1 curve (namely, the branched cover over a general divisor of degree 4), we see
upon taking products that it suffices to prove that Alb¢ splits o’ (which has odd index
relatively prime to g).

Let W be a complete dvr with residue field K. By [10, Theorem 6.1], since W is
Henselian (being complete), the natural restriction map induces a bijection from the set
of isomorphism classes of Azumaya algebras of degree r over W to the corresponding
set over K. It follows that there is a unique Brauer class @ € Br(W) lifting o, and that
« has the same period and index as «.

By Corollary 2.6.1, there is a family € — Spec W such that the generic fiber €,
of € satisfies NSJacfn /n = LO (as étale sheaves). Since ©® is ample (and thus any
descent datum must act trivially on the Néron—Severi sheaf, as it must preserve ample
classes), the Jace, -torsor structure on Albg, yields a canonical identification of sheaves
€ NS, /n = ZO. By [20, Theorem 17.4], we see that €y, satisfies the conditions of
Lemma 3.0.1.
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Since ac = 0, we have by [12, Theorem 3.1] that '&%n = 0. By Lemma 3.0.1,
we have that aAlbgn = 0. Since Albg,w is regular, it follows (see, for example, [11,
Corollary 1.10]) that & ajp, = 0. Thus, o = 0 by specialization.? [

Proof of Theorem 1.0.1. For any Brauer class o € Br(K) of index m > 3, as explained
in the introduction, there are many smooth proper geometrically connected positive
genus curves C over K such that «¢ = 0in Br(C). Applying Theorem 1.0.2 to such a
curve C gives the desired torsor, either Albc itself or a product of Albc with a genus
one curve. The case where « has index 2 is covered by the construction of a genus one
curve splitting such an «, as in [5]. |

Antieau and Auel’s proof of Theorem 1.0.2. A different proof of Theorem 1.0.2, due
to Benjamin Antieau and Asher Auel [1], uses results on the stable birational geometry
of symmetric powers of Brauer—Severi varieties to show that an appropriate symmetric
power of a curve splitting a Brauer class also splits the class. Here is a sketch of their
proof; more details may appear elsewhere in the future.

Suppose C is a smooth proper geometrically connected curve over K of genus
g > 1 such that ¢ = 0. As in the first proof, we may reduce to showing that Alb¢
splits & under the assumptions that « is nontrivial and that g is relatively prime to
ind ().

The image of C in a Brauer—Severi variety V' associated to o cannot be a point, so
the image of the induced map Sym?6~! C — Sym?¢~! V intersects the smooth locus
of Syng_1 V.By[15, Theorem 1.1 (4)] (see also [16]), the space Syng_1 V is stably
birational to Sym™ V', where m = gcd(2g — 1, ind(«)); here, we have m = 1 since
ind(e) divides 2g — 2. Thus, the smooth locus U of Sym?8 ! V' is stably birational to
V and splits o, which implies that Sym?¢~! C also splits «.

By the Riemann—Roch theorem, we have that o: Sym?*6~! C — Piczc‘g;(1 =~ Albc
is a Brauer—Severi scheme of relative dimension g — 1. Since 0 *ap, = 0, the class
QAlbe 1S g-torsion. But aap,. is also killed by ind(«), so the assumption that g is
relatively prime to ind(«) implies that cap, = 0, as desired. u

4. The conditions of Theorem 1.0.2 are necessary

In this section, we show that there are many examples of Brauer classes o with
index congruent to 2 modulo 4 that split on a curve C but not on Albc. These examples

2Instead of using a very general W -point of the universal deformation ring of C over K, we could just
use the universal deformation directly. Our approach avoids enlarging the fraction field of W at the expense
of a small amount of extra work.
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are easily constructed over local fields (and hence over many finitely generated fields,
by standard approximation techniques), and we suspect one could also make similar
examples over number fields.

Given a smooth proper geometrically connected curve C over a field K, recall that
the index of C is the smallest degree of a divisor on C, and the period of C is the
smallest degree of a divisor class. (Equivalently, the period of C is the order of the
Albanese variety Albc = Piclc /K in H!(Spec K, Jacc).)

Lemma 4.0.1. Suppose C is a curve over a field K and o € Br(K) is a class of order
2. 1If Upicl, = 0, then Upicin = 0 for any odd number m.

Proof. The mth power map on the Picard stack descends to a morphism
Am:Pict — Picl

that is an étale form of the multiplication by m on Jac¢ . In particular, A, is finite flat of
degree m?2&, where g is the genus of C. By assumption, the class Otpic/ vanishes upon
pullback along the morphism A,, of odd degree. By standard calculations in Galois
cohomology (see, for example, [18, Proposition 4.1.1.1]), this implies that Opicn = 0,
as desired. ]

Proposition 4.0.2. Let m be an odd positive integer and suppose C is a smooth proper
geometrically connected curve over a local field K of index 2m, period m, and genus
m + 1. Then the unique non-zero Brauer class q € Br(K)[2] is killed by C but not by
Albc. Thus, there are Brauer classes o of all even indices dividing 2m that are killed
by C but not by Albc.

Proof. Since m is odd, any class « in Br(K)[2m] can be written as ¢ + & with h €
Br(K)[m]. The relative Brauer group Br(C/K) is precisely Br(K)[2m] by the theorem
of Roquette—Lichtenbaum [17, Theorem 3]. In addition, period and index are equal
over a local field. Thus, to prove the full statement, it suffices to prove the first part.
From Roquette-Lichtenbaum, we have that gc = 0. If gap. = 0 also, then
qpicn = 0 by Lemma 4.0.1. Since C has period m, there is a K-point of Pic{, and
restricting to that point would imply that ¢ = 0, which is a contradiction. ]

By a result of Sharif [23, Theorem 2], for a local field K of characteristic not 2 and
for any odd m, there exists a curve C over K of index 2m, period m, and genus m + 1.
Proposition 4.0.2 then shows that the Albanese of C cannot kill numerous classes in
Br(C/K), implying that the conditions of Theorem 1.0.2 are sharp.
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5. Some observations

5.1. Products of genus one curves. One might attempt to answer Question 1.0.3 by
first splitting the class on a family of Albanese varieties with a member that splits as a
product of genus 1 curves, and hoping that this decomposition will have implications
for splitting the class over a factor. As we briefly explain, there are two reasons that
this is unlikely to work.

First, the results of Section 4 show that one cannot hope to use only Albanese
varieties of curves from the beginning, because there are examples where the decisive
role is played by a genus 1 factor added after the fact, whose presence is necessary to
split a single quaternion factor of the Brauer class.

Second, we make a simple observation about products: suppose 7" and 7"’ are genus
1 curves over K, with T of index 2 and 7" of index 3. Any Brauer class « killed by T
has order 2 and any Brauer class &’ killed by 7’ has order 3. The natural tensoring map
Pict x Picyr — Picrx7- is additive on obstruction classes (since it is equivariant for
the multiplication map G, X G, — G, of bands for the Picard stacks). Thus, o + o’
is killed by T x T", which is a torsor under Jacy x Jacy~, but & + ' is not killed by
either T or T"’. (With these choices of indices, under mild hypotheses, Auel’s result [2]
would contruct a genus one curve that splits & + o, though it would have no relation
to T or T'.) In general, if & and o’ are any Brauer classes split by genus one curves, it
is not known if o + o is split by a genus one curve.

Examples of both types are easily constructed over local fields.

5.2. The universal Albanese does not do anything on its own. In light of the method
used here — that is, splitting Brauer classes by splitting them on particular base changes
of the Albanese map of the universal curve — one might be tempted to ask the following
question.

Question 5.2.1. Given a field K and a positive integer g > 2, let C — Spec k(Mg k)
be the universal curve of genus g over the function field of the stack of all curves of
genus g. What is the kernel of the map

Br(K) — Br(C)?
Proposition 5.2.2. The kernel of the map of Question 5.2.1 is 0.

Proof. Over any field K, there is a curve Cy of genus g with a K-point. Since the
universal curve is regular, any class that is trivialized over C is trivialized over any
specialization, such as Cy. Further specializing to the K-point shows that the class
itself is 0. ]
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6. Some questions

Some natural questions arise from the results we describe here. As mentioned in
the introduction, one way to produce curves splitting Brauer classes is as complete
intersections of sections of the anticanonical sheaf in a Brauer—Severi variety. On
the other hand, if we restrict to a single anticanonical divisor, we obtain Calabi—Yau
varieties that split the class. This observation leads to several directions for further
exploration.

Question 6.0.1. Is there a fixed positive integer n such that every Brauer class over
a field is split by a torsor under an abelian variety of dimension 7, independent of
the index of the class? (Note that Theorem 1.0.2 applied to complete intersections of
anti-canonical divisors gives a torsor of dimension 1 + %mm_l (m — 3) for classes of
index m, but this depends on m.)

Question 6.0.2. Is there a fixed positive integer n such that every Brauer class over a
field is split by a Calabi—Yau variety of dimension n?

Question 6.0.3. Is every Brauer class over a field split by a K3 surface?

Question 6.0.4. Is every Brauer class over a field split by a curve sitting in a K3 surface?
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