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Abstract

The Pareto-optimal frontier for a bi-objective search prob-
lem instance consists of all solutions that are not worse than
any other solution in both objectives. The size of the Pareto-
optimal frontier can be exponential in the size of the input
graph, and hence finding it can be hard. Some existing works
leverage a user-specified approximation factor ε to compute
an approximate Pareto-optimal frontier that can be signif-
icantly smaller than the Pareto-optimal frontier. In this pa-
per, we propose an anytime approximate bi-objective search
algorithm, called Anytime Bi-Objective A*-ε (A-BOA

∗

ε
).

A-BOA
∗

ε
is useful when deliberation time is limited. It first

finds an approximate Pareto-optimal frontier quickly, itera-
tively improves it while time allows, and eventually finds the
Pareto-optimal frontier. It efficiently reuses the search effort
from previous iterations and makes use of a novel pruning
technique. Our experimental results show that A-BOA

∗

ε
sub-

stantially outperforms baseline algorithms that do not reuse
previous search effort, both in terms of runtime and num-
ber of node expansions. In fact, the most advanced variant of
A-BOA

∗

ε
even slightly outperforms BOA

∗, a state-of-the-art
bi-objective search algorithm, for finding the Pareto-optimal
frontier. Moreover, given only a limited amount of delibera-
tion time, A-BOA

∗

ε
finds solutions that collectively approx-

imate the Pareto-optimal frontier much better than the solu-
tions found by BOA

∗.

1 Introduction and Related Work

Bi-objective search is a generalization of the single-
objective search used for shortest-path computations. We are
given a directed graph with two costs annotating each edge,
a start vertex, and a goal vertex. Given a solution path π, we
use c1(π) and c2(π) to denote the accumulated first and sec-
ond costs of the edges of π, respectively. A solution path π
is better than, i.e., dominates, another solution path π′ if
and only if (i) c1(π) ≤ c1(π

′) and c2(π) < c2(π
′) or

(ii) c1(π) < c1(π
′) and c2(π) ≤ c2(π

′). In bi-objective
search, a typical task is to find the Pareto-optimal frontier,
which consists of all those solution paths that are not domi-
nated by any other solution path.

Bi-objective search is important in many domains, such
as transportation and robotics (Bronfman et al. 2015; Bach-
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mann et al. 2018; Fu et al. 2019; Fu, Salzman, and Al-
terovitz 2021). In such domains, search problems often have
two objectives that cannot be optimized at the same time.
For example, in the hazardous material transportation prob-
lem (Bronfman et al. 2015), we are required to plan a route
for transporting hazardous material while considering the
travel distance as well as the risk of exposure for residents.

State-of-the-art bi-objective search algorithms, such as
BOA∗ (Hernandez et al. 2020), NAMOA* (Mandow and
De La Cruz 2010), and NAMOA*dr (Pulido, Mandow, and
PÂerez-de-la Cruz 2015), can be used to compute the Pareto-
optimal frontier. However, as the number of solution paths
in the Pareto-optimal frontier can be exponential in the size
of the input graph (Ehrgott 2005; Breugem, Dollevoet, and
van den Heuvel 2017), the problem of finding the Pareto-
optimal frontier is intrinsically hard. Therefore, exact ap-
proaches are often unacceptably slow. To this end, an al-
ternative approach calls for computing an approximation
of the Pareto-optimal frontier (Warburton 1987; Breugem,
Dollevoet, and van den Heuvel 2017; Tsaggouris and Zaro-
liagis 2009). Here, we are given a user-specified approxi-
mation factor ε ≥ 0. A path π ε-dominates another path
π′ if and only if each cost component of π is less than
or equal to (1 + ε) times the respective cost component
of π′. An ε-approximate Pareto-optimal frontier is a set
of solution paths Πε such that any Pareto-optimal solution
path is ε-dominated by some path in Πε. In structured real-
world problems, the ε-approximate Pareto-optimal frontier
can have substantially fewer solution paths than the Pareto-
optimal frontier even for small ε. Existing work (Goldin and
Salzman 2021) has already demonstrated that search algo-
rithms can find an ε-approximate Pareto-optimal frontier for
road networks much faster than the Pareto-optimal frontier.

Another dimension used to characterize search algorithms
is their anytime behavior. In anytime search, we are inter-
ested in quickly finding a ªgoodº solution and progressively
finding better solutions if time allows (Likhachev, Gordon,
and Thrun 2003; van den Berg et al. 2011; Stern et al. 2014;
Cohen et al. 2018). Ideally, an anytime search algorithm ex-
hibits the ªdiminishing returnsº property with regard to the
quality of the current solution against increasing time, even-
tually converging to an optimal solution. Such an algorithm
is useful when deliberation time is limited or unknown when
a search query is provided.



In this paper, we present an anytime approximate bi-
objective search algorithm, called Anytime Bi-Objective
A*-ε (A-BOA∗

ε). A-BOA∗
ε has the characteristics of an ap-

proximate bi-objective search algorithm as well as an any-
time search algorithm. It derives its anytime behavior from
progressively tightening the approximation factor.1 A-BOA∗

ε

starts by quickly finding an initial approximate Pareto-
optimal frontier, subsequently finds more solution paths to
improve the approximation factor, and eventually finds the
entire Pareto-optimal frontier.

Any approximate bi-objective search algorithm can be
naively converted into an anytime variant by invoking the
search algorithm for progressively smaller values of ε. How-
ever, this methodology is inefficient since search effort is du-
plicated across different values of ε. A-BOA∗

ε addresses this
inefficiency by reusing previous search effort. It does suf-
ficient bookkeeping to allow each invocation of the search
algorithm to build on the search effort of the previous invo-
cation. In doing so, it is significantly more efficient than the
naive approach. A-BOA∗

ε also employs a novel pruning tech-
nique to further improve its efficiency. This pruning tech-
nique is based on a heuristic function designed to estimate a
weighted sum of the two costs.

In later sections, we first provide proof sketches for the
correctness and convergence properties of A-BOA∗

ε . We
then compare it empirically against BOA∗ and two base-
line algorithms that are derived from existing approximate
bi-objective search algorithms and do not reuse previous
search efforts. Our experimental results show that A-BOA∗

ε

significantly outperforms the baseline algorithms, both in
terms of runtime and number of node expansions. In fact,
the most advanced variant of A-BOA∗

ε even slightly outper-
forms BOA∗ for finding the Pareto-optimal frontier. More-
over, with a limited amount of time, A-BOA∗

ε finds solution
sets that collectively approximate the Pareto-optimal frontier
much better than the solutions found by BOA∗.

2 Terminology

In this paper, we use boldface font for 2-tuples (i.e., pairs).
We use vi, i ∈ {1, 2}, to denote the i-th component of tu-
ple v. The addition of two 2-tuples v and v′ is defined as
v + v′ = (v1 + v′1, v2 + v′2). We define the following types
of domination:

1. v ⪯ v′ denotes that v1 ≤ v′1 ∧ v2 ≤ v′2. In this case, we
say that v weakly dominates v′.

2. v ≺ v′ denotes that v ⪯ v′ ∧ v ̸= v′. In this case, we
say that v (strictly) dominates v′.

3. An approximation factor ε is a non-negative real number.
v ⪯ϵ v

′ denotes that v1 ≤ (1+ε)v′1∧v2 ≤ (1+ε)v′2. In
this case, we say that v ε-dominates v′. Note that, when
ε = 0, ε-domination is equal to weak domination.

A (bi-objective) search graph is a tuple ⟨S,E, c⟩, where S
is a finite set of states and E ⊆ S×S is a finite set of edges.
Cost function c : E → R>0 × R>0 maps an edge to two
positive real numbers. We define ci : E → R>0, i ∈ {1, 2},

1Therefore, ε is controlled by the algorithm and not user-
specified.

as the function that maps an edge e to the i-th component
of c(e). A path is a sequence of states π = [s1, s2 . . . sℓ]
such that ⟨sj , sj+1⟩ ∈ E for all j ∈ {1, 2 . . . ℓ − 1}.

The cost of path π is c(π) =
∑ℓ−1

j=1 c(⟨sj , sj+1⟩). We

use s(π) to denote the ending state of π, i.e., sℓ. We use
succ(s) = {s′ ∈ S|⟨s, s′⟩ ∈ E} to denote the successors of
state s. By extending π with an edge ⟨sℓ, sℓ+1⟩, we obtain a
new path [s1, s2 . . . sℓ, sℓ+1]. We say that a path π′ extends
another path π if and only if π′ can be obtained by applying
a sequence of extend operations on π.

A (bi-objective search) problem instance is a tuple P =
⟨S,E, c, sstart, sgoal⟩, where ⟨S,E, c⟩ is a search graph,
sstart ∈ S is the start state, and sgoal ∈ S is the goal state. A
path is a solution for problem instance P if and only if it is a
path from sstart to sgoal. For problem instance P , a heuristic
function h : S → R≥0 × R≥0 is an estimation of the cost
of a path from a given state to sgoal. h is consistent if and
only if h(sgoal) = 0 and h(s) ⪯ c(⟨s, s′⟩) + h(s′). In this
paper, we limit our discussion to consistent heuristic func-
tions. For any path π from sstart to some ending state s(π),
its g-value is defined as c(π), and its f -value is defined as
f(π) = g(π) + h(s(π)).

Let π and π′ be two paths from state sstart. We say that π
dominates (resp. weakly dominates and ε-dominates) π′ if
and only if f(π) ≺ f(π′) (resp. f(π) ⪯ f(π′) and f(π) ⪯ϵ

f(π′)). For a problem instance P , a Pareto-optimal solu-
tion is a solution that is not dominated by any other solution
of P . The Pareto-optimal frontier Π∗ is the set of all Pareto-
optimal solutions, and a cost-unique Pareto-optimal frontier
is a maximal subset of the Pareto-optimal frontier such that
no two solutions in it have the same cost. Given approx-
imation factor ε, an ε-approximate Pareto-optimal frontier
Πε is a subset of the Pareto-optimal frontier such that , for
any Pareto-optimal solution π of P , there exists a solution
π′ ∈ Πε with π′ ⪯ϵ π. Note that any cost-unique Pareto-
optimal frontier is also an ε-approximate Pareto-optimal
frontier for ε = 0.

We define the domination factor of a path π′ over another
path π as

DF(π′, π) = max

{

f1(π
′)

f1(π)
− 1,

f2(π
′)

f2(π)
− 1, 0

}

,

which measures how ªgoodº f(π′) approximates f(π). It
is easy to verify that f(π′) ⪯ϵ f(π) if and only if ε ≥
DF(π′, π). For a set of solutions Π, we define its approxi-
mation factor as

ε(Π) = max
π∈Π∗

{

min
π′∈Π

DF(π′, π)

}

. (1)

We slightly abuse the ε notation and use it as a function here.
Roughly speaking, for each Pareto-optimal solution π, we
find a path π′ in Π that approximately dominates π the best,
compute the value of the domination factor, and then take
the maximum of these values over all Pareto-optimal solu-
tions. Π is an ε-approximate Pareto-optimal solution set if
and only if ε ≥ ε(Π).

Example 1. Fig. 1 shows a Pareto-optimal frontier with four
solutions, denoted as Π∗. Let Π = {π1, π2, π4} be a subset











3. It prunes path π on Line 26 of Alg. 3 after storing this
path in Πtmp. Then, the pruned path is stored as a to-
expand path for an interval and extracted again in the
future for expansion.

4. It prunes path π on Line 26 of Alg. 3 without storing
it in Πtmp. Then, path π satisfies g2(π) ≥ gmin

2 (s(π)) ∨
f2(π) ≥ gmin

2 (sgoal). This is the pruning condition of
BOA∗, and thus the proof of Lemma 7 of Hernandez et al.
(2020) applies.

Lemma 2. In A-BOA∗
ε , the top-left and bottom-right solu-

tions of any interval are Pareto-optimal solutions.

Proof. Assume that a solution πsol is the top-left or bottom-
right solution of an interval in ILIST but is dominated by
a solution π′. From Lemma 1, A-BOA∗

ε eventually finds
a solution π′′ that weakly dominates π′ (and hence domi-
nates πsol) to the solution set. Then, both πsol and π′′ are the
top-left or bottom-right solutions of some intervals in ILIST.
This contradicts Property 3 because πsol and π′′ cannot be
part of a sequence of solutions with increasing f1-values and
decreasing f2-values at the same time.

The following two theorems show that A-BOA∗
ε finds ap-

proximate Pareto-optimal frontiers with approximation fac-
tor guarantees and eventually finds a cost-unique Pareto-
optimal frontier.

Theorem 1. The set of solutions that A-BOA∗
ε finds af-

ter each iteration (namely, the set of top-left and bottom-
right solutions of all intervals in ILIST) is a max{ε̂(I)|I ∈
ILIST}-approximate Pareto-optimal frontier.

Proof. Let Π denote the set of solutions that A-BOA∗
ε finds

after an iteration and Π∗ denote the Pareto-optimal fron-
tier. From Lemma 1, for any π ∈ Π∗ \ Π, there exists a
to-expand path π̂ that can be extended to a solution πsol

that weakly dominates π. Because A-BOA∗
ε uses consis-

tent heuristic functions, we have f(π̂) ⪯ f(πsol) ⪯ f(π),
and hence DF(π′, π) ≤ DF(π′, π̂) for any path π′. Let
I = ⟨πtl, πbr,ΠI⟩ denote the interval with π̂ ∈ ΠI . From
Definition 1, we have f1(πtl) ≤ f1(π̂) ≤ f1(πbr) and
f2(πbr) ≤ f2(π̂) ≤ f2(πtl) and hence

DF(πtl, π̂) =
f2(πtl)

f2(π̂)
− 1 and DF(πbr, π̂) =

f1(πbr)

f1(π̂)
− 1.

From Property 3, for any solution π′ ∈ Π \ {πtl, πbr}, we ei-
ther have (1) f1(π

′) < f1(πtl) and f2(π
′) > f2(πtl), which

implies that DF(π′, π̂) = f2(π
′)

f2(π̂)
− 1 > DF(πtl, π̂), or (2)

f1(π
′) > f1(πbr) and f2(π

′) < f2(πbr), which implies

that DF(π′, π̂) = f1(π
′)

f1(π̂)
− 1 > DF(πbr, π̂). Therefore, we

have minπ′∈Π {DF(π′, π̂)} = min(DF(πtl, π̂),DF(πbr, π̂)).
From Definition 2, we have min(DF(πtl, π̂),DF(πbr, π̂)) ≤
ε̂(I) because π̂ ∈ ΠI . To summarize, minπ′∈Π {DF(π′, π)}
is upper-bounded by the approximation factor of some
interval in ILIST. Therefore, ε(Π) is upper-bounded by
max{ε̂(I)|I ∈ ILIST}.

Theorem 2. A-BOA∗
ε eventually finds a cost-unique Pareto-

optimal frontier.

Proof. In each iteration, Alg. 3 invokes Alg. 3 with an in-
terval I and an ε-value that is strictly smaller than the ap-
proximation factor of I . All intervals that are outputted by
Alg. 3 have approximation factors that are not larger than
the input ε-value because, for each one of them, the top-
left solution ε-dominates every path in set of to-expand
paths. From Thm. 1, the solution set found by A-BOA∗

ε is
a max{ε̂(I)|I ∈ ILIST}-approximate Pareto-optimal fron-
tier. Therefore, A-BOA∗

ε progressively reduces the approxi-
mation factor of the solution set by replacing an interval with
intervals that have smaller approximation factors. Since the
graph is finite, the number of distinctive costs of all paths
that are not dominated by any Pareto-optimal solution is fi-
nite. Eventually, the approximation factor of the solution set
is so small that none of the found solutions ε-dominates any
such path. No path is stored as a to-expand path, and hence
all intervals in ILIST have an approximation factor of zero
and Alg. 2 terminates.

7 Experimental Results

In this section, we evaluate A-BOA∗
ε experimentally by com-

paring it with the following algorithms:

1. BOA∗.

2. Basic-A-BOA∗
ε: Basic-A-BOA∗

ε iteratively invokes
BOA∗

ε , each time with the input approximation factor
divided by a constant d. Basic-A-BOA∗

ε is similar to
A-BOA∗

ε except that it does not reuse previous search ef-
fort.

3. Iterative-PP-A∗: Iterative-PP-A∗ is based on
PP-A∗ (Goldin and Salzman 2021), a state-of-the art ap-
proximate bi-objective search algorithm. Given problem
instance P and approximation factor ε, PP-A∗ finds a set
of solutions Π such that, for any solution π of P , there
exists a solution π′ ∈ Π that ε-dominates π, although
π′ is not necessarily a Pareto-optimal solution.2 PP-A∗

uses more complicated data structures than BOA∗, and
hence we do not know how to reuse the search effort of
PP-A∗. In our experiments, Iterative-PP-A∗ iteratively
invokes PP-A∗ with a decreasing sequence of ε-values,
namely 0.01, 0.001, 0.0001, and 0.

We evaluate two variants of A-BOA∗
ε , one with the

weighted-sum heuristic pruning technique (denoted as
A-BOA∗

ε-w) and one without this optimization (denoted as
A-BOA∗

ε). All algorithms were implemented in C++ and
shared the code base as much as possible.3

We use three road maps from the 9th DIMACS Implemen-
tation Challenge4, namely BAY (321,270 states, 794,830
edges), FLA (1,070,376 states, 2,712,798 edges), and NE
(1,524,453 states, 3,897,636 edges). For each road map, we

2This statement corrects a statement by Goldin and Salzman
(2021).

3https://github.com/HanZhang39/anytime BOA.git.
4http://users.diag.uniroma1.it/challenge9/download.shtml





ing to the runtime when each solution was found. BOA∗

finds solutions in a lexicographic order, while A-BOA∗
ε-w

first finds a set of solutions with diverse costs and then adds
more solutions to the solution set.

8 Conclusion

In this paper, we proposed an anytime approximate bi-
objective search algorithm, called A-BOA∗

ε . It efficiently
reuses its search effort from previous iterations and uses a
novel pruning technique. Our experimental results show that
it is substantially more efficient than an anytime approxi-
mate bi-objective search algorithm that does not reuse pre-
vious search effort. When given a limited amount of deliber-
ation time, A-BOA∗

ε often finds Pareto-optimal solution sets
with much smaller approximation factors than those found
by BOA∗.

There are several interesting directions for future work.
One direction is to develop anytime bi-objective search algo-
rithms which find solutions that are not necessarily Pareto-
optimal. PP-A∗ leverages this relaxed objective to find a
set of solutions with a small approximation factor quickly.
However, it is currently unclear how to reuse the search ef-
fort of PP-A∗ efficiently in this case. Another direction is
to generalize anytime approximate bi-objective search algo-
rithms to search problems with more than two objectives.
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