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1 | INTRODUCTION

Cyanobacterial blooms are a globally significant challenge in marine
and freshwater systems. A central theme to this body of work is
that blooms are caused by anthropogenic eutrophication (Dokulil &
Teubner, 2000; Lurling et al., 2018). While there is a wealth of evi-
dence that high nutrient loads promote cyanobacterial blooms, there
is also widespread evidence that blooms occur in oligotrophic sys-
tems (Callieri et al., 2014; Carey, Ewing, et al., 2012; Carey et al., 2014;
LeBlanc et al., 2008; Molot et al., 2021; Salmaso et al., 2015; Sterner
et al., 2020; Winter et al., 2011), and that they are not a recent phe-
nomenon (Ewing et al., 2020). Some metalimnetic bloom-forming cy-
anobacteria, such as Planktothrix rubescens in Lake Bourget France,
Switzerland, even appeared in a context of strong re-oligotrophication
because of increased light availability in the metalimnion (Jacquet
et al., 2005). Moreover, despite a worldwide trend towards eutrophi-
cation, there is a substantial number of lakes where successful res-
toration programmes have reduced nutrient levels to mesotrophic or
oligotrophic conditions, yet blooms persist (Pomati et al., 2012).

There are a number of reviews that describe the many adapta-
tions of cyanobacteria that allow them to thrive under a wide range
of environmental conditions, including low nutrient concentrations
(e.g. Carey, lbelings, et al., 2012). Despite this evidence, the high-
nutrient paradigm has persisted, and the conditions driving blooms
in low-nutrient systems are largely unexplored, resulting in a lack of
understanding of these events. Identifying mechanisms that trigger
and sustain blooms across trophic states is critical for a comprehen-
sive understanding of global increases in cyanobacterial dominance.
Overlooking cyanobacterial blooms in oligotrophic waters has re-
sulted in an incomplete understanding of bloom ecology and, subse-
quently, ineffective mitigation efforts.

Cyanobacterial blooms have been defined in several ways, but
here we define a freshwater pelagic cyanobacterial bloom as rapid
growth or aggregation of cyanobacterial biomass in some or all of the
water column, which may lead to the occurrence of surface scums
or metalimnetic chlorophyll maxima (following Smayda, 1997). The
“oligotrophic” definition also lacks a consensus. Here, we define oli-
gotrophic lake systems by Carlson's Trophic State Index (TSI), with
total phosphorus (TP) <12 ug/L, chlorophyll a (chl-a) <2.6 ug/L, or
Secchi depth >4 m (Carlson, 1977) during mid-summer in the epilim-
nion, given that blooms typically occur during mid- to late summer.

and manage them, we must expand our inquiries to consider systems along the
trophic gradient, and not solely focus on eutrophic systems, thus shifting the high-

nutrient paradigm to a trophic-gradient paradigm.

climate change, cyanobacterial blooms, HABs, nutrients, oligotrophic

We recognise, however, that categorising lakes by average state vari-
ables may not fully capture the variability of stochastic loading and
mixing events, and that intermittent nutrient pulses may be import-
ant mediators of bloom formation. Further, chl-a and TP samples col-
lected during a bloom event would most certainly put most lakes in
the mesotrophic or eutrophic categories; therefore, we should rely
on typical seasonal averages or baseline values for indices to classify
the trophic state of lakes.

Here, we provide an assessment of the current understanding of
oligotrophic cyanobacterial blooms and the abiotic and biotic fac-
tors that promote them. Our review suggests that while nutrients
contribute to bloom formation and maintenance, there are several
mechanisms that allow cyanobacteria to dominate across trophic
states, including oligotrophic systems. We provide further insight
into how these mechanisms are expected to interact under future
climate conditions to promote and sustain cyanobacterial blooms in

oligotrophic ecosystems.

2 | DOCUMENTED BLOOMS IN
OLIGOTROPHIC LAKES

The documentation of cyanobacterial blooms in oligotrophic lakes
is relatively limited compared to those in nutrient-rich lakes; how-
ever, evidence of blooms in oligotrophic lakes does exist. In addi-
tion to documented blooms, there is evidence that cyanobacteria
are also increasing in relative abundance in oligotrophic systems.
Freeman et al. (2020) identified 28 nutrient-poor Swedish lakes in
which the relative abundance of cyanobacteria increased in 21%
of the lakes that were sampled between 1998 and 2013. Genera
that were present in the subset of lakes that experienced increases
included Chroococcus, Dolichospermum (formerly Anabaena), and
Merismopedia. Similarly, Winter et al. (2011) noted cyanobacteria
were increasing in low-nutrient Ontario shield lakes sampled from
1994 to 2009. The primary genera observed in those lakes were
Aphanizomenon, Dolichospermum, Microcystis, and Gloeotrichia.
Sorichetti et al. (2014b) evaluated 25 oligotrophic lakes located
in Ontario, Canada and found that the dominating species were
Microcystis, Dolichospermum, and Aphanizomenon, and that the high-
est relative abundances of cyanobacteria occurred in lakes with the

lowest chl-a and TP concentrations and phytoplankton abundances.
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FIGURE 1 Map of locations for cyanobacterial blooms in oligotrophic systems reported in Table S1. Lakes are located in North America,
South America, Africa, Asia, and Europe. World map shapefile provided from https://thematicmapping.org/downloads/world_borders.php

We compiled a list of oligotrophic lakes with reports of cyanobac-
terial blooms (Figure 1 and Table S1) and found that these lakes are
geographically widespread with a wide range of lake morphometries.
However, many blooms are not documented in peer-reviewed jour-
nals and reports and are only discoverable through direct connections
to water resource managers. Further, some peer-reviewed journal
articles that note blooms in oligotrophic lakes do not provide infor-
mation for individual lakes (e.g. Sorichetti et al., 20144, b). We found
that ~12 genera of cyanobacteria from the orders Chroococcales,
Nostocales, Oscillatoriales, and Synechococcales tend to dominate
the phytoplankton community during the blooms and belong to a va-
riety of Morpho Functional Groups (MFGs, sensu Salmaso & Padisak,
2007), highlighting the diverse traits that help cyanobacteria to out-
compete eukaryotic algae in oligotrophic systems (Table 1).

3 | CYANOBACTERIAL TRAITS FAVORING
DOMINANCE IN LOW-NUTRIENT SYSTEMS

3.1 | Dormancy and specialised cells
Many cyanobacteria taxa can remain dormant under unfavourable

environmental conditions. Strategies for dormancy vary across

genera, ranging from slowed metabolism in a vegetative state

(Verspagen et al., 2005) to differentiation into spore-like cells pro-
duced by certain filamentous cyanobacteria called akinetes that
arise from vegetative cells (Wildon & Mercer, 1963). Larger than
vegetative cells and encased in thick glycolipid and polysaccharide-
rich cell walls, akinetes allow some cyanobacteria to suspend me-
tabolism and sink to the sediment for dormancy, typically under
unfavourable environmental conditions such as low temperature,
desiccation, or phosphate (POi’) limitation, with germination oc-
curring when more favourable conditions resume (Kaplan-Levy
et al., 2010; Reynolds, 2006). Phosphate limitation has been identified
as a trigger of akinete differentiation in oligotrophic systems (Callieri
et al., 2014; Kaplan-Levy et al., 2010). Akinetes, an important inter-
mediate phase between previous and future blooms, enable recurrent
cyanobacterial blooms through the recruitment of heterocystous taxa
from the sediment (Carey et al., 2008), especially in shallow embay-
ments of oligotrophic lakes (Cottingham et al., 2021).

For blooms to arise from dormant akinetes, conditions favourable
for germination and recruitment must occur, which are not yet fully
understood and vary among systems. Increased light, temperature,
nutrient enrichment, and sediment resuspension are all potential fac-
tors influencing germination (Barbiero & Welch, 1992; Kaplan-Levy
et al., 2010). Callieri et al. (2014) identified fluctuations in lake lev-
els and subsequent phosphorus (P) release from littoral sediments

as responsible for the germination of Dolichospermum lemmermannii
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TABLE 1 Summary of cyanobacteria genera, traits, and Morpho Functional Groups (MFGs)? for documented blooms in oligotrophic

systems in Table S1

Taxa Traits summary

Aphanizomenon gracile

Aphanocapsa sp.
surface

Aphanothece sp.
surface

Chroococcus limneticus
surface

Dolichospermum sp.
(formerly Anabaena
sp.)

Gloeotrichia echinulata

Thick filaments, produce akinetes, can regulate buoyancy

Large non-vacuolated colonies, large surface area:volume allows slower sinking from

Large non-vacuolated colonies, large surface area:volume allows slower sinking from

Large non-vacuolated colonies, large surface area:volume allows slower sinking from

Thick filaments, produce akinetes, can regulate buoyancy

Thick filaments, forms large colonies, produce akinetes, can regulate buoyancy

MFG (from Salmaso &
Padisak, 2007)

Nostocales (5€)
OtherChroo (5c¢)

OtherChroo (5c)

OtherChroo (5c)

Nostocales (5e)

Nostocales (5e)

LargeVacC (5b)

FilaCyano (5a)

Microcystis sp. Large vacuolated colonies, can regulate buoyancy, large surface area:volume allows slower
sinking from surface, over-wintering dormant cells

Planktothrix agardhii Thin filaments, can regulate buoyancy, over-wintering dormant cells

Rivularia sp. Thick filaments, large surface area: volume allows slower sinking from surface

Synechococcus sp.
surface

Synechocystis sp.
surface

Woronichinia sp.
sinking from surface

Large non-vacuolated colonies, large surface area:volume allows slower sinking from

Small non-vacuolated colonies, large surface area:volume allows slower sinking from

Large vacuolated colonies, can regulate buoyancy, large surface area:volume allows slower

Nostocales (5¢e)

OtherChroo (5c)

SmallChroo (5d)

LargeVacC (5b)

dCyanobacterial MFGs presented in this table represent 1 of 11 MFG categories that include all phytoplankton as per Salmaso and Padisak (2007).
Cyanobacteria have two MFGs within the MFG framework: MFG 4 for unicellular cyanobacteria and MFG 5 for cyanobacteria that can form colonies.
Observed blooms of cyanobacteria in oligotrophic systems were all within MFG 5, indicating colony formation is an important trait for bloom

formation.

akinetes and the blooms that followed. Carey et al. (2008) also found
that P additions positively influenced Gloeotrichia echinulata akinete
germination in an oligotrophic lake, demonstrating the adaptive value
of the akinetes for a cyanobacterial population to re-establish after
P-limitation. While a thick outer envelope over the cell wall enables
akinetes to withstand environmental stresses, this envelope either
develops a pore or dissolves altogether before germination (Miller &
Lang, 1968). Further, akinetes maintain a low level of respiration, indi-
cating that some materials must be able to pass through the cell wall
(Fogg et al., 1973). Light has also been identified as an important fac-
tor in germination, but its relative importance varies both among spe-
cies and systems (Barbiero & Welch, 1992; Kaplan-Levy et al., 2010).
Oligotrophic systems have deeper light penetration than mesotro-
phic and eutrophic systems (Carlson, 1977), which may increase the
area and intensity of light exposure at the sediment surface, resulting

in a higher akinete germination rate than in eutrophic systems.

3.2 | Buoyancy regulation

Lake surface water temperatures are increasing globally, result-
ing in longer and more stable periods of stratification (Woolway &

Merchant, 2019), providing an advantage to cyanobacteria that can

regulate their buoyancy and remain in the illuminated surface mixed
layer (Reynolds, 2006). Buoyancy is mediated by gas-vesicles, which
are hollow protein structures filled with air that have evolved to with-
stand both turgor and hydrostatic pressure (Walsby, 1994). Storage
of dense carbohydrates from photosynthesis decreases buoyancy,
resulting in diel cycles of sinking and floating as cells lose buoyancy
during daylight through photosynthesis and regain buoyancy in the
dark through respiration (lbelings et al., 1991). Under prolonged pe-
riods of low light, cyanobacteria upregulate the expression of genes
that encode for gas-vesicle proteins, enhancing their buoyancy
(Walsby et al., 1991). Walsby et al. (1991) examined the buoyancy
of Dolichospermum. lemmermannii blooms in Lake Windermere (U.K.)
and found that D. lemmermannii stimulated the production of new
gas-vesicles during a period of deep mixing. When mixing subsided
and filaments floated up, cells were unable to produce sufficient
ballast to overcome buoyancy, resulting in persistent surface water
blooms. Further, D. lemmermannii possessed stronger gas vesicles
than other species of the same genus, allowing the cyanobacteria to
descend deeper in the water column without collapse, providing bet-
ter access to hypolimnetic nutrients, which could provide an impor-
tant advantage in nutrient-poor surface waters of oligotrophic lakes.

In the absence of mixing, buoyant cyanobacteria float upwards,

forming surface blooms. These can accumulate on the shore, forming
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scums, even in oligotrophic lakes with low overall cyanobacterial
biomass (Carey, lbelings, et al., 2012; Sterner et al., 2020). Surface
bloom formation may enhance access to carbon dioxide (COZ) from
the atmosphere (Paerl & Ustach, 1982; Visser et al., 2016); how-
ever, complete inorganic carbon (C) depletion in scums can still
occur, caused by the high biomass and local C demand (Ibelings &
Maberly, 1998). Other advantages of buoyancy control include bet-
ter access to nutrients by descending into the relatively nutrient-rich
hypolimnion (Cottingham et al., 2015, but see Bormans et al., 1999),
and the ability to remain in the warmer water of the epilimnion.
Thus, buoyancy may allow cyanobacteria in oligotrophic systems
enhanced access to nutrients and favourable temperatures and
light throughout the water column, and is probably why there are
well-documented blooms of cyanobacterial genera that can regu-
late buoyancy in multiple oligotrophic lakes in North America, South
America, Europe, Africa, and Asia (Figure 1 and Table S1).

In addition to epilimnetic blooms, buoyancy regulation is essen-
tial for the formation of deep chlorophyll maxima of species such as
Planktothrix rubescens, Cyanobium sp., and Aphanizomenon flos-aquae
in the metalimnion of deep, oligo-mesotrophic lakes (Selmeczy
et al., 2016). Having a filamentous morphology and maintaining near-
neutral buoyancy, these cyanobacteria oscillate around their posi-
tion in the metalimnion, where they thrive on having access to both
light—through efficient light harvesting mechanisms—and nutrients
in the hypolimnion (Walsby & Schanz, 2002).

3.3 | Nutrient uptake

The evolution of cyanobacteria in low-nutrient systems (Bjerrum &
Canfield, 2002) has provided them with the ability to efficiently take
up and store nutrients in various forms (Cottingham et al., 2015). They
can store both excess P (as polyphosphates) as well as excess nitro-
gen (N; as cyanophycin), allowing them to sustain populations under
nutrient-deprived conditions (Kromkamp, 1987). Cyanobacteria
have a relatively high Poi‘ uptake affinity compared to eukaryotic
taxa, enabling them to sustain high growth rates under P-limitation
(Dignum et al., 2005). Many cyanobacteria also have either internal
or external (via their microbiome) phosphatases, allowing them to
utilise organic P in addition to inorganic forms (Carey, Ibelings, et al.,
2012). Whitton et al. (1991) evaluated the role of phosphatases in
P uptake and storage in 50 cyanobacteria strains using six different
sources of organic P and one inorganic P source. In the absence of
a P source, 10 strains (including one Dolichospermum) were able to
grow for several days, demonstrating their ability to store P. Despite
species-specific variability in the ability to use sources of organic P,
Whitton et al. (1991) demonstrate that some cyanobacteria can ac-
cess a P pool less available to other phytoplankton taxa, providing an
advantage under P-limited conditions.

De Nobel et al. (1997) evaluated competition for P between two
N-fixing cyanobacteria, Dolichospermum and Aphanizomenon. During
N-fixation and under P-limited conditions, Dolichospermum outcom-

peted Aphanizomenon through adjustments in its maximal growth

rate and greater P uptake. The ability to fix atmospheric N, provides
cyanobacteria with a pool of N not available to eukaryotic algae, thus
providing a substantial resource advantage. N-fixation can support
up to 91% of the N demand for an oligotrophic bloom and as much
as 81% of a lake's annual N inputs (e.g. Nodularia sp. blooms in oli-
gotrophic Pyramid Lake, NV, U.S.A.; Horne & Galat, 1985). Although
several species of cyanobacteria can fix N,, P and iron (Fe) limitation
can constrain N,-fixation because Fe is a cofactor in the nitrogenase
enzyme complex (Mills et al., 2004), and due to the high energy re-
quirement of N,-fixation, low light conditions may make this path-
way for nutrient uptake less desirable.

Access to reduced Fe may promote cyanobacterial dominance
in oligotrophic systems (Molot et al., 2014; Sorichetti et al., 2014a,
b; Verschoor et al., 2017). Fe is made bioavailable geochemically
through internal loading from anoxic eutrophic sediments, catch-
ment runoff, or aeolian dust. While anoxia drives the release of Fe--
POj" bound in the sediment by modification of the redox potential,
cyanobacteria can also mediate this process under oxic conditions
via siderophore production and scavenging of bound Fe (Wilhelm
& Trick, 1994), alleviating Fe limitation. Eichner et al. (2020) showed
plausible molecular evidence that colonies of Trichodesmium (marine
cyanobacterium) can mediate Fe leaching. Fe leaching is a funda-
mental bacterial process for decoupling POZ" from Fe (Smolders
et al., 2006), and may provide cyanobacteria with an increased ben-
efit when competing with eukaryotes in oligotrophic systems.

Nutrient contributions from the food web via recycling from
grazers and consumers may also be important for blooms in oli-
gotrophic systems, which is highly relevant in determining phyto-
plankton dynamics in oligotrophic systems (Domaizon et al., 2003;
Gutiérrez-Rodriguez et al., 2011; Jackson, 1980; Jiang et al., 2021;
Livanou et al., 2019; Teira et al., 2019). Jackson (1980) found that
zooplankton abundance and their filtration rate were unable to ex-
ceed phytoplankton growth rates. Further, an experimental study
(Carrillo et al., 1995) showed that in a low-nutrient environment,
nutrient release from higher trophic levels can be better utilised by
cyanobacteria (Cyanarcus sp.) than other species of phytoplankton
(Chromulina nevadensis and Amphidinium sp.), resulting in dominance
in oligotrophic systems. The top-down or bottom-up control effects
on cyanobacterial dynamics should be given more attention in oligo-
trophic bloom formation (Billen et al., 1990), especially under climate
change pressures where grazers can respond at different rates than
phytoplankton (Velthuis et al., 2017).

34 | Light

Cyanobacteria are well adapted to thrive under a wide range of light
conditions (Dokulil & Teubner, 2000). Exoplasmic phycobilisomes, a
component of the cyanobacterial photosynthetic apparatus (Reuter
& Miiller, 1993), probably play a role in this adaptation. These an-
tennae are capable of absorbing light wavelengths in the green to
orange part of the light spectrum (phycoerythrin and phycocyanin,
respectively) that cannot be used by the chlorophyll-protein light
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harvesting complexes of most eukaryotic algae (Kirk 1994). In ad-
dition to efficient absorption in the visible light spectrum, cyano-
bacteria have a protein structure that allows them to use light in the
far-red spectrum, giving them a further advantage for growth under
severe light extinction (Kirk 1994). The capacity to effectively adapt
to low irradiance at depth (often far <1% of incident light; Hamre
et al., 2018) demonstrates that cyanobacteria are well adapted to
not only the low light conditions of eutrophic lakes, but also the deep
chlorophyll maxima that are often present in meso- and oligotrophic
lakes (e.g. Planktothrix rubescens, Cyanobium sp., and Aphanizomenon
flos-aquae; Scofield et al., 2017, Reinl et al. 2020).

At times of high solar irradiance, cyanobacteria are well equipped
to handle high visible and ultraviolet (UV) conditions via photopro-
tective accessory pigments, extracellular polysaccharides produced
by colonies and filaments (Ehling-Schulz & Scherer, 1999), and the
production of UV-absorbing compounds (Carreto & Carignan, 2011).
High irradiance results in a decrease in the size and number of phy-
cobilisomes compared to low light conditions (Reuter & Miiller, 1993),
but the degree of photoacclimation of cyanobacteria varies among
species. In eight Dolichospermum strains, a wide range of irradiance for
optimal growth was observed, with the lowest being 80 umol m2s?
for D. mendotae and the highest being 360 umol m™2 s for D. circinalis
(Zapomélova et al., 2010). Cyanobacteria also demonstrate chromatic
adaptations, meaning that they are able to change their pigment com-
position in response to ambient light colours, and fill wavelength gaps
using accessory pigments and phycobilisomes to capture light that
can then be used to excite chl-a (Duxbury et al., 2009). These changes
in pigmentation occur alongside adjustments in RuBisCO and light-
saturated photosynthetic rates to achieve efficient light harvesting
under low light conditions and efficient C assimilation under high
irradiance (Dubinsky & Stambler, 2009). Moreover, buoyancy regu-
lation enables cyanobacteria to migrate downwards and limit their
exposure to visible and UV light when photo-inhibited (Deacon &
Walsby, 1990; Ibelings & Maberly, 1998). The combination of buoy-
ancy traits and adaptations to a wide range of light conditions give cy-
anobacteria enhanced flexibility to deal with changes in light amount
and wavelength type relative to their eukaryotic counterparts.

3.5 | Carbon concentrating mechanisms

Many phytoplankton species can actively take up inorganic C from
the water column, but the cyanobacterial carbon concentrating
mechanism (CCM) is among the most efficient (Price et al., 2008).
Cyanobacteria have evolved five different uptake pathways for CO,
and bicarbonate (HCO;), providing a competitive advantage over
phytoplankton not using CCMs (Raven et al., 2008; Shapiro, 1997). In
contrast to eukaryotic algae, cyanobacteria store RuBisCO in carbox-
ysomes, so that the activation of cyanobacterial CCMs allows for the
concentration of inorganic C near RuBisCO (Price et al., 2008). This
decreases leakage and facilitates the conversion of HCO; to CO, via
carbonic anhydrase, resulting in efficient C-fixation (Price et al., 2008)

relative to phytoplankton taxa not utilising CCMs. In eutrophic lakes,

Freshwater Biology =AW LEYJﬂ

thismechanismis triggered in cyanobacteria when water column pCO,,
falls below atmospheric equilibrium (Morales-Williams et al., 2017),
and could occur in oligotrophic surface blooms where high produc-
tion depletes available inorganic C (Ibelings & Maberly, 1998). While
CCM inorganic C transport systems are less diverse in oligotrophic
systems, laboratory studies suggest that a greater diversity of trans-
porters have been acquired through horizontal gene transfer as cy-
anobacteria have transitioned from the oligotrophic ocean to coastal
and freshwater ecosystems (Rae et al., 2011). Variation in low and high
affinity inorganic C uptake systems in Microcystis spp. may provide
them with an advantage to adapt to future changes in C availability in
the aquatic environment (Sandrini et al., 2014).

Plasticity in cyanobacterial CCM regulation reflects the evolution
of CCMs over geological timescales in response to the variability in
atmospheric CO, and oxygen (O,) over several billion years (Van de
Waal et al., 2019). The importance of active inorganic C uptake by
freshwater cyanobacteria in oligotrophic lakes should depend on the
availability of CO, and the relative proportions of available ambient
CO, and HCO,. These conditions vary with buffering capacity, in-
fluenced by lake morphometry, sediment, bedrock composition, and
catchment inputs. In marine systems, including the high nitrate, low
chl-a regions of the Southern Ocean analogous to large oligotrophic
freshwater lakes, HCO; is the dominant inorganic C species and phy-
toplankton communities rely primarily on CCMs for C-fixation (Cassar
et al., 2004). Under elevated CO, conditions, dominant cyanobacte-
ria strains are predicted to shift to those utilising bicA Ci transporter
genes, which have a low affinity for HCO; but facilitate high fluxes
(Sandrini et al., 2016), demonstrating plasticity across a wide range of
inorganic C conditions. Under experimental low dissolved inorganic
C conditions, CCM utilisation has been shown to inhibit nutrient up-
take in eukaryotic marine algae, demonstrating metabolic trade-offs
between C-fixation and nutrient uptake (Huertas et al., 2000). Lakes
in northern latitudes are also experiencing an increase in dissolved
organic matter (DOM) inputs from the catchment, which is predicted
to cause a community shift toward cyanobacteria in oligotrophic
lakes due to their ability to access nutrients bound to DOM (Creed
et al.,, 2018). Few studies have directly investigated cyanobacteria
CCMs in oligotrophic lakes, although Vuorio et al. (2006) reported el-
evated 5'3C values for Gloeotrichia echinulata in Finnish lakes, which
is consistent with the range of isotopic signatures for CCM utilisa-
tion in eutrophic lake phytoplankton (Morales-Williams et al., 2017).
More work is needed to determine the importance of cyanobacterial
CCMs in triggering and maintaining oligotrophic blooms.

4 | ABIOTIC CONDITIONS THAT
PROMOTE CYANOBACTERIA IN
OLIGOTROPHIC SYSTEMS

4.1 | Temperature

Cyanobacteria are well adapted to grow at a wide range of water

temperatures. Although the mean optimal growth temperature for



REINL ET AL.

ﬂl—Wl |G [reshwater Biology

cyanobacteria and eukaryotic green algae is similar, approximately
29°C (Lurling et al., 2013), the positive slope of growth rate as a func-
tion of temperature is steeper for cyanobacteria (Visser et al., 2016).
In a phytoplankton community consisting of cyanobacteria, diatoms,
and green algae, De Senerpont Domis et al. (2007) demonstrated that
cyanobacteria had higher growth rates relative to eukaryotic phyto-
plankton in experimental warming conditions. Kosten et al. (2012)
also showed a strong correlation between cyanobacterial biomass
and temperature, where overall algal biomass did not change signifi-
cantly with temperature, but the relative abundance of cyanobacteria
increased with warmer water temperatures. A positive relationship
between cyanobacterial blooms and temperature, which may need
further support, also appears to be self-propagating; intense light
absorption by cyanobacteria's photosynthetic and photoprotective
pigments can increase surface water temperatures within blooms
relative to surrounding surface waters (Ibelings et al., 2003; Jones
et al., 2005). Additionally, while lakes across the trophic gradient are
warming as a result of anthropogenic climate change, oligotrophic
lakes may be more sensitive to biogeochemical changes than eutrophic
lakes. A modelling study of a eu- and oligotrophic lake demonstrated
that oligotrophic lakes may have a lower threshold for nutrient cycling
responses to temperature, particularly for N, but the precise reason
for increased sensitivity is still an open question (Farrell et al., 2020).
Although correlations between blooms and warming surface
waters, some cyanobacterial species can bloom under ice (Dokulil
et al., 2014). For example, blooms of Aphanizomenon flos-aquae have
been reported under the ice in oligo-mesotrophic lakes (Uveges
et al., 2012), demonstrating that low temperatures do not prevent
the proliferation of cyanobacteria. Cyanobacteria are commonly
found under the ice and in other extreme environments, so it is not
surprising that they may dominate in dark, cold, low-nutrient envi-
ronments (Quesada & Vincent, 2012), although more work is needed

to understand cyanobacterial physiology in these conditions.

4.2 | Upwelling events and wind mixing

By definition, macronutrients such as N and P limit phytoplankton
growth in oligotrophic lakes. In some deeper stratified oligotrophic
lakes, however, nutrient concentrations may be elevated in the
hypolimnion during stratification (Cottingham et al., 2015). This is
a result of reduced nutrient uptake below the thermocline due to
light limitation and low temperatures, the physical density barrier
to non-buoyant phytoplankton, nutrient accumulation from sedi-
ment release, and decomposition of plankton sinking losses from the
epilimnion (Matzinger et al., 2007). These nutrients can enter the
epilimnion during upwelling events caused by wind mixing or con-
vective cooling (Crockford et al., 2015) and during seasonal over-
turn. Although a nutrient pulse driven by an upwelling event would
be beneficial for eukaryotic algae as well as cyanobacteria, some
cyanobacteria have higher uptake rates relative to their biomass
(Litchman et al., 2016) as well as a greater storage capacity for nu-

trients (Kromkamp, 1987), which would allow them to outcompete

their eukaryotic counterparts. This may be particularly true for oli-
gotrophic systems where cyanobacteria with an ability for luxury
uptake can sustain during poor nutrient conditions until an upwelling
event occurs, replenishing the nutrients available in the epilimnion.
Furthermore, due to the otherwise strong nutrient limitation during
the growing season in the epilimnion, nutrient upwelling may be an
important driver of bloom formation in oligotrophic lakes by bringing
biomass from the meta- into the epilimnion. For example, in oligo-
trophic Lake Stechlin (Germany), mixing events can bring up a deep
chlorophyll maximum (mainly Dolichospermum sp.) from the metalim-
nion to form surface blooms (Kasprzak et al., 2017).

In addition to the positive effect of mixing on nutrient availabil-
ity, mixing can also stimulate cyanobacterial recruitment from the
sediments to the water column, thereby further promoting blooms.
Experimental work in laboratory mesocosms (Karlsson-Elfgren &
Brunberg, 2004) as well as measurements of recruitment from oligo-
trophic Lake Sunapee (U.S.A.; Carey et al., 2014) showed that gentle
mixing at the sediment-water interface can increase surface cya-
nobacterial densities. During 8 years of cyanobacterial recruitment
monitoring at multiple sites in Lake Sunapee, Carey et al. (2014)
observed that: higher Gloeotrichia echinulata recruitment was as-
sociated with greater lake mixing during late summer (as indicated
by deeper thermoclines), lower Schmidt stability (a measure of
the stratification strength), lower minimum air temperatures, and

greater daily changes in water temperature.

5 | TRAJECTORIES OF FUTURE BLOOMS
IN LOW-NUTRIENT SYSTEMS

5.1 | Increasing temperatures

Climate-induced changes in summer stratification and subsequent
mixing regimes will be likely to increase hypolimnetic anoxia (Jane
et al., 2021; Jenny et al., 2016) and rates of internal nutrient loading
(North et al., 2014). In the stratified summer months, the epilimnion
of deep oligotrophic lakes will probably become more nutrient defi-
cientdueto an earlier onset of stratification, with nutrientsisolated in
the hypolimnion for extended periods (Shimoda et al., 2011). With a
shift from holomixis (full mixing once per year) to oligomixis (full mix-
ing rarely), nutrients may be isolated from the epilimnion for multiple
years (Mesman et al., 2021). Hence, although climate warming may
lead to anoxia and enhanced release of nutrients from the sediment,
nutrient availability in the productive upper zones of the lake may ac-
tually decrease and become available only in years with full overturn
(see O'Reilly et al., 2003; Yankova et al., 2017). Because overturn
is often characterised by low light and temperature conditions, not
all cyanobacterial species would be equipped to thrive under these
conditions, but several species have a wide range of adaptability to
light conditions and temperatures (e.g. Dolichospermum spp. Dokulil
& Teubner, 2000 and Zapomélova et al., 2010). This oligotrophica-
tion of the epilimnion of deep lakes could be advantageous for small

cyanobacteria with efficient nutrient uptake and N-fixing capacity.
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Winters without ice cover are also increasing in temperate re-
gions, leading to a shift in mixing regime from dimictic to warm mo-
nomictic (Gerten & Adrian, 2002). Increasing reports of late-season
(October-December) cyanobacterial blooms have been reported for
lakes in Canada, including oligotrophic and mesotrophic lakes, and
have been attributed to a delayed onset of ice cover and longer pe-
riods of stratification (Winter et al., 2011). A long-term study in a
dimictic lake reported an increase in winter algal biomass during mild
winters (Adrian et al., 1995). Following these mild winters, the maxi-
mum phytoplankton biomass occurred 1 month earlier and was dom-
inated by cyanobacteria (Adrian et al., 1995, 1999). In Scandinavian
lakes, cyanobacterial biomass has also increased in spring and early
summer due to warmer winters (Weyhenmeyer, 2001). This may be
particularly important for oligotrophic lakes, as many are found in
higher latitudes with colder climates (Alin & Johnson, 2007) where

loss of ice cover is expected to increase (Sharma et al., 2015).

5.2 | Precipitation events

While most lakes are sensitive to nutrient pulses, oligotrophic lakes
are especially susceptible due to their more severe nutrient limi-
tation. Rigosi et al. (2014) analysed more than 1,000 lakes in the
contiguous U.S.A. and found that oligotrophic lakes were more
susceptible to increases in the relative abundance of cyanobacte-
ria from increased nutrients alone, while mesotrophic lakes were
more impacted by temperature, and eutrophic lakes were most af-
fected by the concomitant effects of nutrients and temperature. An
increased frequency in major precipitation events and associated
run-off events provides sporadic inputs of limiting nutrients to oli-
gotrophic systems (Jeppesen et al., 2009; Sterner et al., 2020), which
may be used directly or stored by cyanobacteria for later use. Noges
et al. (2011) found that chlorophyll increased in an oligotrophic lake
following a rainy winter period, while cyanobacterial blooms were
disrupted in a nearby eutrophic lake due a change in phytoplank-
ton community composition toward a higher abundance of diatoms,
chlorophytes, and chrysophytes. Pulses of limiting nutrients are ca-
pable of modifying seasonal phytoplankton succession, re-selecting
for fast-growing phytoplankton and organisms capable of storing
nutrients (Piovia-Scott et al., 2017; Stockwell et al., 2020). While
high discharge can affect cyanobacterial biomass in both positive
(higher nutrient input) and negative (flushing, destratification) ways,
the more severe nutrient limitation in oligotrophic lakes may favour
positive effects on cyanobacteria. These effects of increased nutri-
ent pulses delivered during high-intensity precipitation events may
be amplified by higher temperatures, thus increasing cyanobacterial
growth (Lirling et al., 2018).

5.3 | Catchment land-use and nutrients

Future changes in land use in conjunction with more frequent in-

tense precipitation events are expected to have profound impacts
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on the timing and rates of in-lake processes. The conversion of
catchment forests to agricultural or urban land-use practices
can ultimately lead to increased cyanobacterial blooms in lakes
(Brookes & Carey, 2011). The proportion of catchment cropland is
positively correlated with cyanobacterial biomass, while propor-
tions of catchment forest tend to be negatively correlated with
cyanobacterial blooms and cyanotoxin concentrations at regional
and continental scales (Beaver et al., 2018; Doubek et al., 2015).
Deforestation within oligotrophic lake catchments promotes nu-
trient loading and sedimentation into lakes (Stoddard et al., 2016).
Moreover, increased use of glyphosate-based herbicides or other
nutrient-containing chemicals in the basin leads to increased
organic nutrient forms in downstream water bodies, which are
preferentially utilised by cyanobacteria compared to eukaryotic
algae (Harris & Smith, 2016). A combination of deforestation and
increases in urban and agricultural land use may ultimately cause
increases in potentially growth-limiting labile nutrients or metal
forms (e.g. Fe) that promote cyanobacterial blooms in macronutri-
ent and trace metal limited oligotrophic systems.

5.4 | Multiple factors affecting Fe

Additional knock-on effects from changes to climate, precipitation
patterns, catchment land-use, and nutrients include several factors
that are likely to increase access to reduced Fe (Molot et al., 2021),
which can promote cyanobacterial growth. While increased water
temperatures alone are probably insufficient to lead to cyano-
bacterial dominance in most lakes, the combination of warm wa-
ters and anoxic sediments that release Fe are sufficient even in
oligotrophic lakes (Verschoor et al., 2017). Higher water tempera-
tures increase microbial activity that increases the risk and dura-
tion of anoxia at the sediment-water interface and thus increases
the likelihood of Fe release into the water column. Long ice-free
seasons (Sharma et al., 2019) allow for longer periods of oxygen
loss and thus increased risk of anoxia in the hypolimnion. This is
particularly true in autumn when surface waters are still warm (Li
et al., 2018). Higher air temperatures, longer ice-free seasons, and
increased low-wind periods permit shallow polymictic lakes to de-
velop thermal and oxygen gradients more often and thus increase
reduced Fe flux from sediments to the water (Jabbari et al., 2019).
Wetter springs and the large nutrient loads they bring result in
larger blooms that persist for longer periods (e.g. Lake Erie, Stumpf
et al., 2016). Increased hydrologic connectivity in wetter springs
also leads to increased bloom activity (e.g. Lake Winnipeg, Ali &
English, 2019).

6 | MANAGEMENT AND FUTURE
DIRECTIONS

Managing the risk of cyanobacterial blooms in oligotrophic lakes

requires a tailored approach. Strategies for nutrient reduction in
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already oligotrophic environments are unlikely to effectively miti-
gate nuisance blooms; however, maintaining low nutrient concen-
trations in inflows should remain a priority, and more attention
should be paid to climate-driven nutrient pulses (e.g. precipitation,
Morabito et al.,, 2018 and wind, Thyssen et al., 2014) releasing
systems from nutrient-depleted conditions in the short term and
potentially leading to undesired phytoplankton blooms. Advising
the public of risks, adjusting water withdrawal depth away from
surface and metalimnetic accumulations, and increasing monitor-
ing of surface blooms through manual sampling/visualisation or re-
mote sensing is a prudent response. Most management methods
have been developed based on single or dual nutrient abatement
applied externally (e.g. land-use management) and internally (e.g.
application of P-locking agents that precipitate P and block P in
the sediments from releasing, Lirling et al., 2016) to counteract
eutrophication-fuelled blooms, but some other in-lake approaches
that do not directly target nutrients but rather target the nuisance
algae could be more effective in oligotrophic systems such as al-
gaecides (e.g. hydrogen peroxide), flocculation and coagulation of
algae cells (Liu et al., 2013), artificial mixing to reduce light avail-
able for phytoplankton growth (Visser et al., 2016), or application
of ultrasound (Wu et al., 2011) that leads to rupture of gas vesicles
and inhibit the growth of cyanobacteria. However, some of these
techniques have been shown ineffective for controlling cyanobac-
teria (e.g. ultrasound in Lurling & Tolman, 2014 and mixing in Lurling
et al., 2016, Visser et al., 2016) and restoration techniques that
work well in the current climate may not be effective in the future
(Jeppesen et al., 2009). It is important that we continue to develop
and evaluate new management techniques that work efficiently in
oligotrophic systems and under future climate scenarios.

We recommend that future work include more consideration of
biological traits and abiotic processes that give rise to cyanobacterial
blooms that are not directly linked to nutrients in the water column.
For instance, information on dormant cells (akinetes, vegetative cells)
is very limited, and the conditions that lead to encystment and ger-
mination are poorly described in the literature. These processes may
be critical in seeding blooms in low-nutrient systems where bloom
forming conditions may not be present annually (Callieri et al., 2014).
Additional work is also needed to describe hydrodynamic processes
(e.g. currents, wave action including internal waves, and upwelling
events) that give rise to blooms, as they may be particularly import-
ant in oligotrophic systems where the overall biomass concentra-
tion may be low, but abiotic conditions result in the concentration
of biomass, and subsequent surface scums. Further, hydrodynamic
processes may interplay with biological processes, such as suspend-
ing vegetative or resting stage cells in the sediments and initiating
growth through exposure to nutrients and warmer temperatures in
the water column. These are just a few examples of bloom ecology
in oligotrophic lakes where knowledge is lacking because of the his-
torical focus on eutrophic lakes. By shifting the high-nutrient para-
digm to improve our understanding of cyanobacteria in low-nutrient
lakes, we may be able to better manage and prevent blooms in oli-

gotrophic systems.

7 | CONCLUSION

Cyanobacteria evolved in low-nutrient systems (Bjerrum &
Canfield, 2002) and continue to thrive in oligotrophic systems. This
has been largely overlooked as the spectacular blooms in eutrophic
systems have grabbed headlines. To fully understand cyanobacterial
ecology and effectively inform management strategies, we need to
explore mechanisms that facilitate cyanobacterial growth, maintain
biomass, and cause blooms to senesce across multiple trophic states.
Cyanobacterial growth requires four factors: an inoculum, adequate
light, temperature, and nutrients (Reynolds, 2006). If vegetative cells
persist in the water column or germinate from akinetes then there is
always a potential for growth. Light can limit the rate of growth, but
not until large populations exist and shading, deep mixing (Ibelings &
Maberly, 1998), or light reduction due to dissolved organic C or sus-
pended sediment occurs. Nutrients can limit both the rate of growth
and the total biomass (Carey, Ewing, et al., 2012). Oligotrophic lakes
may have low nutrient concentrations but can still support sufficient
standing cyanobacterial biomass to create scums through the vari-
ous mechanisms described above.

Ultimately, physiological adaptations and lake physics create
the conditions under which surface aggregations and metalimnetic
maxima can occur in oligotrophic systems (Lofton et al., 2020).
Specialised cells allow cyanobacteria to utilise nutrient pools that
are unavailable to other phytoplankton, as well as take up and utilise
nutrients more efficiently. Buoyancy provided by gas vesicles en-
courages surface bloom formation. While nutrient-limited cyano-
bacteria contain fewer gas vesicles and may have more ballast than
their nutrient replete counterparts (Kromkamp, 1987), they can
still be sufficiently buoyant to reach the water surface and become
trapped there by surface tension (Hutchinson & Webster, 1994), or
remain in the metalimnion near hypolimnetic nutrients. Although
cyanobacteria may have a low average biomass, the accumulation
of cells in a surface bloom or scum and the concomitant concentra-
tion of toxins and taste and odour compounds are of concern for
recreation and water supply. As the intensity and duration of ther-
mal stratification are expected to continue to increase (Woolway
et al., 2020), the physical conditions supporting cyanobacterial
blooms in oligotrophic lakes may also become more prevalent, re-
sulting in more oligotrophic blooms in the future.

In summary, we propose that climate change processes includ-
ing lake warming, increased water column stability, and increased
frequency and intensity of storm events will probably favour cy-
anobacterial blooms in both oligotrophic and eutrophic lakes.
Cyanobacteria have numerous physiological adaptations that allow
them to outcompete other primary producers across a wide range
of physicochemical conditions. Our working model for mitigating
blooms, however, is to reduce eutrophication and as such, we have
largely overlooked cyanobacterial blooms in oligotrophic lakes.
Here, we show that physical, biological, and chemical mechanisms
driving cyanobacterial growth and biomass maintenance are shared
across trophic states. Effective management and mitigation of cya-

nobacterial blooms thus require shifting our high-nutrient paradigm
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toward a trophic-gradient paradigm that includes a comprehensive
understanding of how traits and physicochemical conditions interact

to sustain blooms in a rapidly changing global climate.
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