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Road profile information can be utilized to enhance vehicle con-
trol performance, passenger ride comfort, and route planning and
optimization. Existing road-profile estimation algorithms are
mainly based on one single vehicle, which are usually susceptible
to modeling uncertainties and measurement noises. This technical
brief proposes a new cascaded learning framework that utilizes
multiple heterogeneous vehicles to achieve enhanced estimation.
In this framework, each individual vehicle first performs a local
estimation via a standard disturbance observer (DOB) while tra-
versing a considered road segment. Then learning filters are
designed to dynamically connect the vehicles, and the preliminary
estimates from one vehicle are utilized to generate the learning
signal for another. For each vehicle, a heterogeneous learning
signal is produced and added to its estimation loop for estimating
enhancement, through which the estimations are improved over
multiple iterations. Extensive numerical studies are carried out to
validate the effectiveness of the proposed method with promising
results demonstrated. [DOI: 10.1115/1.4055041]

Introduction

Road profile is an important road feature that affects road
vehicles” performance concerning passenger comfort and safety.
Road profile information has been frequently used in intelligent
automotive systems such as suspension control [1] and comfort-
based route planning [2]. Road profile in early days was mainly
measured using contact-based profile analyzer (e.g., Refs. [3] and
[4]) in which a specially equipped trailer was designed to contact
the road surface and provide profile measurements. Noncontact
measurements such as laser sensors [5,6] have also been
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developed later. Those specially designed road profilers are
generally expensive to build and maintain, and thus the measuring
coverage is limited. Recently, with built-in accelerometers, gyro-
scopes, and global position system, smartphones have also been
used in road profile estimation due to its wide availability and low
cost [7,8]. However, insufficient accuracy is a major setback with
smartphone-based methods.

Meanwhile, modern automobiles are equipped with a variety of
sensors and communication modules, and can therefore be
employed as mobile sensors to crowdsource enormous road profile
data sets [9,10]. As a result, vehicle response-based estimating
methodologies have been widely studied in order to recover road
profile by leveraging on-board sensors as well as the underlying
vehicle-road interaction dynamics [11-16]. Most vehicle
response-based estimating methods employ a single vehicle for
the road profile estimation by leveraging quarter-car model (e.g.,
Ref. [14]), half-car model (e.g., Ref. [7]), or full car model (e.g.,
Ref. [15]). To handle the perturbation and uncertainties during the
estimation, advanced methods including supertwisting algorithm
(STA) (e.g., Ref. [11]), adaptive control and sliding mode control-
based estimation have been proposed (e.g., Refs. [17] and [18]).
However, STA is limited to systems with relative degree one, and
those mentioned methods usually require the bounds of the input
disturbance, which is not always accessible. Besides, those
advanced methods are generally used in the disturbance observer
(DOB)-based control framework by leveraging the feedback con-
trol theory, which requires expertise knowledge. On the other
hand, to reduce the dependency of the dynamic model informa-
tion, data-driven methods such as neural network-based methods
(e.g., Refs. [19-21]) have been designed for road profile
estimation.

Another line of work is to use multiple estimation iterations or
multiple vehicles/systems to improve the estimation robustness
(e.g., Refs. [22-24], a collaborative estimation with networked
and connected vehicles is studied with a privacy-preservation
mechanism, and this study preliminary showed that the estimation
with multiple vehicles outperforms that with a single vehicle in
terms of the estimation error. In Knowledge transfer has been
studied for performance enhancement but applications are limited
in areas such as controller design (e.g., Refs. [25] and [26]). Itera-
tive learning identification (e.g., Ref. [27]) has been used for
unknown parameter identification. However, iterative learning
identification aims to have an optimal estimation of the dynamic
model using multiple iterations instead of estimating the input
disturbance.

In general, single-vehicle-based estimation highly relies on an
accurate model, measurements, and sophisticated algorithms, and
the estimation results are thus susceptible to uncertainties. As
such, using multiple vehicles for a centralized road profile estima-
tion has great potential since it can increase the estimation reli-
ability by including multiple estimation iterations rather than
depending on just one. In order to make the estimation less sus-
ceptible to uncertainties while reducing the algorithm complexity,
this brief utilizes multiple vehicles and a cascaded learning frame-
work for road profile estimation. In the learning framework, multi-
ple vehicles are employed as learning (estimating) agents, and
each learning agent equips a standard DOB to perform a basic
estimation of the road profile. The estimation from one agent is
recorded and utilized by another subsequent agent for estimation
improvement, and by repeating this pattern, the estimation per-
formance is iteratively enhanced. The necessary conditions are
derived to guarantee suitable convergence of the learning filter.
Numerical studies have been carried out to validate the proposed
method where sinusoidal and type-C road profiles [15] are
tested.

The main contributions of this paper are listed as follows: (1)
the cascaded learning framework offers great flexibility of DOB
design, that is, a high-performance DOB design is not required,
and the estimation using the basic DOB will be improved through
learning iterations. (2) The proposed method is easy to implement;
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unlike other advanced designs such as robust DOBs, it is unneces-
sary to incorporate a sophisticated feedback controller into the
estimation scheme. This allows that vehicles with passive suspen-
sion systems can be readily employed in this framework. (3) A
weight mechanism is designed to control the error convergence
rate in the sense of 2-norm. This can serve as a method to have a
smooth learning over the learning axis and avoid aggressive learn-
ing scenarios.

The remainder of this paper is organized as follows: Sec. 2
describes the road profile estimation basics, and the problem asso-
ciated with the single vehicle-based estimation is stated. Section 3
presents the cascaded learning framework including the detailed
design of the learning signal, learning filters, and DOB parame-
ters. Section 4 shows the numerical studies and results. Finally,
Sec. 5 concludes the paper.

Road Profile Estimation Basics

This brief deals with road profile estimation with vehicle
response-based method. The estimation scenario is given in
Fig. 1, where it shows a road segment of interest, and /-4 is the
lateral-horizontal plane, and v—/ is the vertical-horizontal plane.
Suppose the road profile has pitfalls and bumps and the road infor-
mation in the vertical direction is our interest. We denote this road
profile as v(h), and by considering the road distance in the hori-
zontal direction, the vehicle speed, v(h), can be represented by a
time-dependent variable w(z), that is w(r) = v(h), where ¢ means
the time.

To obtain the road profile information, usually a road vehicle
equipped with sensors is used to traverse the road, and an
observer-based algorithm is designed to have the estimation. The
basic idea of the observer-based estimation is that we treat the
road profile w = w(t) as the disturbance input to the vehicle sus-
pension system G,; the output of G, goes to the designed observer
G, and outputs an estimate W, which approximates w, as shown in
Fig. 2. More details about the observer design can be referred to
Ref. [14]. Anideal G, is expected to correctly invert G,. However,
a highly accurate G, may not be possible in real case due to sev-
eral reasons: (1) the modeling uncertainties naturally exist in G,
and it is challenging to obtain G, = G, I (2) a noncausal G, can
result in a causal G,, which might be not suitable in real-time esti-
mation; and (3) a low-pass filter is usually incorporated into G, in
order to filtrate high-frequency noises, which will introduce delay
to the system. Therefore, the single vehicle-based estimation is
subject to uncertainties and high-frequency signals. Furthermore,
the single vehicle-based design usually depends on an accurate
model, sophisticated algorithms, and sometimes includes feed-
back controller design (e.g., in the DOB-based control frame-
work), and these require extensive tuning and design labors.

Fig.1 Aroad profile to be estimated using a vehicle
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Fig.2 Observer-based estimation scheme
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To make the estimation less easily subject to uncertainties and
noises, while reducing the algorithm complexity, this paper pro-
poses a cascaded learning framework which leverages multiple
vehicles and basic DOB designs to enhance the estimating per-
formance through a learning mechanism.

Learning-Based Road Profile Estimation

In this section, the cascaded learning framework, which
includes multiple vehicles, is first introduced. Then the learning
filter and DOB designs are presented, and the learning conver-
gence is demonstrated.

Learning Framework. This subsection presents the proposed
learning framework. Specifically, each vehicle is used as an indi-
vidual estimating (learning) agent by equipping a standard DOB,
and the agents are placed on the learning axis. The learning filters
dynamically connect two adjacent agents, and the estimation from
the previous agent is used to generate a learning signal to enhance
the estimation by its adjacent agent.

Denote j as the index of the agent. Consider a specific road seg-
ment w (w = v(h)) where multiple agents drive though it for col-
laborative estimations. The learning framework is shown in
Fig. 3, where the variables are defined as follows. For agent j,
denote P; and 15], as its actual and nominal models, respectively;
D; is the standard DOB equipped in the agent; L ; and L, ; denote
two learning filters to be designed which are associated with the
agent j. Agent P; drives through the road profile w to have a mea-
surement y;, and y; goes through the D; to generate an estimation
W}’; the learning filters take the estimation knowledge from agent
(j— 1) and generate a learning signal 143; to compensate W}; the
compensated estimation w; goes through the nominal model P ; to
have an output y;; the difference between y; and y; is defined as
the measurement error e;, and the difference between w; and w; is
defined as the disturbance estimation error.

To reduce the disturbance estimation error, we first consider
reducing the measurement error ¢; through the learning iterations.
To this end, e; is first related to e; ;. Since there are two inputs
(W; and w) to the system, we define S; as the dynamics from the

learning signal W’; to e;, and denote T; as the dynamics from w to
e;. For compactness purposes, the frequency domain operator ‘s’
of the transfer functions is omitted in the contexts. For example,
S; represents S;(s). Then we have

SJ_?D-P—P M
PR
and
ej= S} +Ti{w} @
Design the learning signal as
W= k(L1 W} + Log{ei}) 3
where
- (V!

and n (0 < 1 < 1) is a constant scalar. The purpose of k; is to con-
trol the convergence rate of the error ¢;, and different forms of &;
will result in different convergence rates. More details regarding
this are illustrated in later contexts. From Eq. (2), it follows that

Wy =S e — T {w)} ®)
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Plugging Eq. (3) into Eq. (2) yields
& =Si{ki(Li W), +Lajej1)} + Ti{w} ©)
and plug Eq. (5) into Eq. (6), we have

¢j = ki(SiLaj + SiL1;S; ) {ej1}

. )

H(T) = kSiL S Ti){w}
From now on ¢; is related to ¢;_;. In order to make e; decrease iter-
atively, one possible method is to transfer the problem into the
following optimization problem:

Step 1 : min||7; — kiSiLy S T ||
1j

. . 3
Step 2= min [[k;(S;L2, + SiLagS)I|
2.j

Equation (8) shows that L; ; and L, ; can be obtained step by step,
and the sufficient condition to make ||¢j|| < ||¢j—1]| is to guarantee
[[ki(SiLaj + S;L1,;S;7))[] < 1. However, this sufficient condition
(constraint) can be extremely demanding which can result in no
solutions for the optimization problem in Eq. (8).

Learning Filter Design and Convergence Analysis. Rather
than solving the optimization problem in Eq. (8), this section first
presents a simple learning filter design as

Lij=1

_ ©
L2;f == —Sle

Shared database

Data from agent P;_;

that is, we keep L fixed and vary L, iteratively. Design D; as
A—1
Dj = Cde Qd (10)

where ¢, (0 < ¢y < 1) is a weighting scalar to lower the sensitiv-
ity of the DOB, and Q, is a low-pass filter to reduce the noise.
Define

eo = Ti{w} = (P;D;P; — P;){w} (1

as the measurement error recorded with the first agent which
means there is no learning signal applied.

Next the learning convergence is analyzed. The heterogeneous
agents have different system dynamics, that is, S; # S;—; and
T; # T;—. With Eq. (10), we have

D;P; =D; P, (12)

Then we have P; = P;(1+A) in which A is bounded stable
unknown dynamics to capture the modeling mismatch between
the actual model and nominal model. Since this brief does not
explicitly investigate modeling uncertainties, we reasonably
assume A is small and for derivation purposes, it is rational to
treat

P =P; (13)

Though we did not quantify the modeling uncertainties, the model
mismatch is not ignored and is explicitly considered in the numer-
ical studies to show that the proposed method has some robustness
to the modeling uncertainties, that is, different model mismatch is

Estimation & learning data

Data from agent P;

Learning
algorithm
~f
owj ]
e+l s i ;
DOB: N.—L= J, Nominal
Dy -~ model: P; +—i
t
19

Estimating agent: P;

I

w = v(h)

Road profile
estimation

Pj-1,

Road profile
estimation

h
Road profile
estimation

a

Fig. 3 Cascaded learning framework: agent j learns from agent j—1 for estimation

enhancement
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added to each different vehicle to simulate the practical scenarios.
Then with Egs. (1), (12), and (13), we have

TT\ = Py(DiPj — 1)(Dj1 Py — )P = PP (14)
and with Egs. (1), (12), (13), and (14), we have
Tj = kiSiLa S Tjt
= PPN — kiPiLyP ,:11 Tja

. - . (15)
= (Pj = kiPjL1jP; Pj1)(Dj—1Pj—y — 1)
=Pj(1 = kiL1j)(D;P; — 1)
Plug Egs. (9) and (15) into Eq. (7), and we have
ej = (T — kiSiL1 ;S Tj-1){w}
= (lik/)(PfD]'Pjipj){W} (16)
= (1 = kj){eo}
=¢€j—-1—Neo

Equation (16) indicates that the design with Eqgs. (3), (4), and (9)
guarantees the learning convergence since k; < 1. During this
learning process, variable j can also be treated as the iteration
index, and Eq. (16) implies that for the first several iterations
while k; < 1, the error ¢; is reduced equally by 7eq in each learn-
ing iteration since 1 in Eq. (4) is a constant. The convergence rate
of e; depends on the design of k;. For example, k; can be set to be
a quadratic or exponential function of the variable j, and based on
Eq. (16), the convergence rate of e; would be different. It is worth
mentioning that the learning filters can be noncausal systems since
the learning signals are generated offline, and this avoids introduc-
ing more delays in the learning signals; D; is expected to have a
basic estimation and therefore, extensive parameter design efforts
for D; are not needed. The inaccuracy from those basic estima-
tions with D; will be reduced through the learning iterations, and
thus, the proposed learning method provides large design flexibil-
ity for D;.

Numerical Validation

In this section, 20 heterogeneous agents are involved in the
learning framework. A quarter-car dynamical model is used to
generate the heterogeneous agents, while sinusoidal and type-C
road profiles are used for estimation.

Quarter-Car Dynamical Model. A quarter-car model can be
used to illustrate the road—vehicle interaction dynamics [14,22],
as given in Fig. 4, where M, and M, denote the sprung mass
(vehicle body) and the unsprung mass (vehicle wheel), respec-
tively; &, and k,, denote the spring stiffness, and ¢, and ¢, denote
the damping coefficients. The vehicle suspension is modeled as a

Zs

h

Fig.4 Quarter-car dynamic model
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Table 1 Dynamic parameter settings for the 20 agents (P): the
parameter value of each agent is a function of the agent index
variable j; for each agent, model mismatch is introduced by
generating a corresponding nominal model.

Parameter Actual model P; Nominal model fA’j
M, (kg) 245+0.1j (2.4540.1))f
M, (kg) 1+0.1j 1+0.15

kg (N/m) 950+ 107 950+ 107

ks (N/m) 1250 + 107 1250 + 10/

¢y (N s/m) 7.5+0.15 7.540.1j

Cys (N s/m) 5+0.1j 5+0.15

spring—damper system with k, as its spring stiffness and ¢ as its
damping coefficient; the tire is modeled as another spring—damper
system with &, as its spring stiffness and ¢, as its damping coeffi-
cient. z, denotes the vertical displacement of the contact point ¢,
between the wheel and the road, and therefore z, can be equally
treated as the road profile; z,, and zg denote the vertical displace-
ments of M, and M, from their equilibrium points, respectively.
When the vehicle travels through the road profile z,, the system
states z,; and z,; and their derivatives can be collected through sen-
sors or estimation. The dynamic model from the road profile z, to
the displacement deflection z,—z,; can be represented in the state-
space form which can be referred to Ref. [14].

To generate 20 heterogeneous agents, we set different values
for the dynamic parameters My, M, ks, kys, Cs, Cus shown in
Fig. 4, and each set of those dynamic parameters will generate a
linear time-invariant (LTI) system to represent agent P;
(j=1,2,...,20). The dynamic parameter values for each agent
are given in Table 1, where j is the agent index number. For an
individual agent, the value of the dynamic parameters all changes
when a different j index is used. This is natural in practice since
the road vehicles can have different values for each of the
dynamic parameters. Also, for each agent P;, a nominal model P,
is generated, where f,, is a scalar which will be assigned a random
value within the range [0.96, 1.04] to add the model mismatch
between P; and P;. The model mismatch within each agent could
be different since the f,, value is randomly generated. We can also
introduce model mismatch by varying all the dynamic parameters
instead of just varying M, but consider that model mismatch can
come from several factors, including but not limited to the mass
of the vehicle due to different numbers of passengers, the stiffness
and damping coefficient of different tires, as well as modeling
uncertainties from the nonlinearity, we choose to vary the vehicle
mass as it is the most common and frequently changed parameter

50

-50

Magnitude (dB)

360 T T
270 1

[*)
(=]
T
1

Phase (deg)
3

S
T
1

Frequency (rad/s)

107 10° 10

o
S
‘

2

Fig.5 Bode plots of the dynamics of 20 actual models
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Fig. 6 Scenario 1: estimated disturbance (estimates from
agent #11 to agent #20 are similar to that of agent #10, and are
hidden for clear visual purposes)

for a vehicle. The bode plots of the dynamics of the 20 agents (P i)
are given in Fig. 5, and each Bode plot represents a transfer func-
tion, which is generated by using the dynamic parameter values in
Table 1, and the method to generate those transfer functions can
be referred to Ref. [14]. Figure 5 shows that the dynamic differ-
ence among different agents lies in a wide frequency range, and
satisfactory disturbance estimation is challenging to obtain with
traditional DOB, which uses low-pass or bandpass filters to deal
with uncertainties. This also motivates us to consider the proposed
cascaded learning framework to enhance the estimation.

Estimation Scenarios. Estimation with the sinusoidal road pro-
file input is defined as scenario 1, and the one with a type-C road
profile is defined as scenario 2. The parameter ¢, of all the DOBs
is set to be 0.7, and the # is set as a constant value 1/7. The numer-
ical studies of the two scenarios are as follows:

Scenario 1: The 20 agents travel through the same sinusoidal
road profile as shown in the black dashed line labeled as “AD” in
Fig. 6. The learning signal for each agent is provided in Fig. 7,
where there is no learning signal for the initial learning iteration
(agent #1). With the learning signals added to each corresponding
agent’s estimating loop, the disturbance estimation from each
agent is given in Fig. 6. The estimation from agent #11 to #20 is
not shown for clear visual purposes since those curves are similar
to that of agent #10 and they are overlapped. The disturbance esti-
mation error and its 2-norm are given in Figs. 8 and 9. Note that
Fig. 9 indicates that the estimation from a latter agent (agent j) is
closer to the actual road profile than its previous agent (agent
Jj— 1) until the error eventually converges. The 2-norm of the dis-
turbance estimation error decreases for the first eight iterations,
and the error is reduced by a near fixed amount for each estima-
tion in the sense of 2-norm, which is consistent with Eq. (16). If
we roughly connect the first eight dots in a line, we can treat that
the 2-norm of the error decreases near linearly, and we refer it as
a linear convergence. A different # would have led to a different
line slope in Fig. 9. Therefore, the value 7 just changes the line
slope (error convergence transient) but will not affect the steady-
state error. By setting k; as different functions (e.g., quadratic
function of the index variable j), based on Eq. (16), the conver-
gence rate of the 2-norm would be different and relative study
results are omitted due to page limit. The 2-norm of the error
varies and is bounded eventually, and this small variations are
caused by the random model mismatch within each agent (the dif-
ference between P; and its corresponding P;). The error would

Journal of Dynamic Systems, Measurement, and Control
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Fig. 7 Scenario 1: learning signal

converge smoothly to a constant value if this model mismatch is
removed, as shown in Fig. 10. Figure 7 shows that the learning
signal’s magnitude also gradually increases and remains within a
bounded region as to handle this random model mismatch.
Scenario 2: The same 20 agents travel through a type-C road
profile, as given in the black dashed line labeled as AD in Fig. 11.
This type-C road profile contains noisy and rough corners com-
pared to the smooth sinusoidal profile used in scenario 1. The esti-
mated disturbance from each agent is also given is Fig. 11;
similarly, the estimation with agent #11 to agent #20 is not shown.
The disturbance estimation error and its 2-norm with each agent
are given in Figs. 12 and 13, and the learning signal for each agent
is provided in Fig. 14. The results show that with the learning
scheme, the disturbance estimation error is reduced over the learn-
ing iterations. To further show the effectiveness of the proposed
learning framework, the estimation using only the same standard
DOB without adding the learning signal to each agent is also car-
ried out. The disturbance estimation is given in Fig. 15. The
2-norm of the estimation error is given in Fig. 16, and this

i %1073
#1 #6 #11 #16
# #7 #12 #17
) #8 #13 #18
#4 #9 #14 #19
s 115 #10 #15 #0

DEE

0 5 10 15 20 25 30
Time (s)

Fig.8 Scenario 1: disturbance estimation error
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Fig. 9 Scenario 1: 2-norm of disturbance estimation error
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Fig. 10 Scenario 1: 2-norm of the disturbance estimation error
(the model mismatch is removed)

indicates that without adding the learning signal, each agent can
only have a basic estimation which can be undesired, and this
unsatisfactory performance can be caused by the several factors
(such as an “inferior” DOB design, single vehicle-based estima-
tion is subject to uncertainties) as stated in Sec. 2. Similar compar-
isons can be observed from scenario 1 and the results are omitted
here due to page limit.

To provide some insights statistically, we analyze the reduction
of the estimation error in the sense of 2-norm for each scenarios:
in Fig. 9, the initial error is 0.182, and the error with agent #10 is
0.009; in Fig. 13, the initial error is 1.846, and the error with agent
#10 is 0.192. It is clear to see that the proposed method has
reduced the error to a large extend for both scenarios. Note that
the time steps in scenario 2 are larger than that in scenario 1, and
this could result in a larger initial estimation error in the sense of
2-norm. And since the parameter k; in Eq. (4) is designed as the
same for the 2 scenarios, the convergence pattern would be simi-
lar. Though the modeling uncertainty is not quantified, the results
show that the learning is effective with model mismatch pre-
sented. The advantages of the proposed method over the other

104501-6 / Vol. 144, OCTOBER 2022
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Fig. 12 Scenario 2: disturbance estimation error

single vehicle-based methods are that the proposed one does not
need to design an accurate DOB or include a sophisticated feed-
back controller. Instead a basic DOB design is enough to have sat-
isfactory performance by leveraging multiple vehicles. Moreover,
the proposed method does not particularly aim to compete with
other DOBs, but to provide a collaborative estimating method to
(1) reduce the design efforts which can be demanding in other
DOB designs; and (2) make the estimation less susceptible to
uncertainties.

Conclusions

Concerning the road profile estimation scenario and improving
from the single vehicle-based estimation, a cascaded learning
framework was designed to achieve satisfactory performance by
utilizing multiple heterogeneous vehicles. Through the learning
mechanism, the estimation was iteratively pushed toward the
actual one. A simple learning algorithm was presented and the
learning convergence was analyzed. Sinusoidal and type-C road
profiles were tested in the numerical studies to validate the effec-
tiveness of the proposed method. In our future work, we plan to
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signal is added to the agents
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when no learning signal is added to the agents

explicitly analyze the proposed method’s robustness to modeling
uncertainties, and validate the method exhaustively via experi-
mental tests.
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