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Abstract

Lake ecosystems, as integrators of watershed and climate stressors, are sentinels of change. However, there is an inherent
time-lag between stressors and whole-lake response. Aquatic metabolism, including gross primary production (GPP) and
respiration (R), of stream—lake transitional zones may bridge the time-lag of lake response to allochthonous inputs. In this
study, we used high-frequency dissolved oxygen data and inverse modeling to estimate daily rates of summer epilimnetic
GPP and R in a nutrient-limited oligotrophic lake at two littoral sites located near different major inflows and at a pelagic site.
We examined the relative importance of stream variables in comparison to meteorological and in-lake predictors of GPP and
R. One of the inflow streams was substantially warmer than the other and primarily entered the lake’s epilimnion, whereas
the colder stream primarily mixed into the metalimnion or hypolimnion. Maximum GPP and R rates were 0.2-2.5 mg O,
L~ day™! (9-670%) higher at littoral sites than the pelagic site. Ensemble machine learning analyses revealed that >30%
of variability in daily littoral zone GPP and R was attributable to stream depth and stream-lake transitional zone mixing
metrics. The warm-stream inflow likely stimulated littoral GPP and R, while the cold-stream inflow only stimulated littoral
zone GPP and R when mixing with the epilimnion. The higher GPP and R observed near inflows in our study may provide
a sentinel-of-the-sentinel signal, bridging the time-lag between stream inputs and in-lake processing, enabling an earlier
indication of whole-lake response to upstream stressors.
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Introduction

Lake ecosystems are sentinels of change in the landscape,
since they integrate watershed and climate stressors (Adrian
et al. 2009; Williamson et al. 2009). However, teasing out
the complex ways in which lakes integrate landscape and
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et al. 2018). Since lake metabolism is an integrated metric
of ecosystem state, as increasing upstream stressors drive a
nutrient-limited lake toward a trophic state change, increases
in-lake metabolism may be detected before more commonly
measured variables such as phosphorus (Richardson et al.
2017). As such, lake metabolism near stream-lake transi-
tional zones may provide a sentinel-of-the-sentinel signal,
serving as an intermediary indication of the time-lagged
whole-lake response to shorter-term stream inflow stress-
ors. Specifically, lake metabolism near stream—lake transi-
tional zones may help identify how different inflow streams
contribute to in-lake response and provide key insights into
freshwater cross-ecosystem connections (Hotchkiss et al.
2018; Hanson et al. 2015).

Previous lake metabolism work has focused on pelagic
metabolism to represent whole-lake conditions or on spatial
variability in metabolism to improve accuracy of whole-lake
estimates. Pelagic lake metabolism is generally considered
to be representative of whole-lake processing that depends
on lake water residence times, typically on the scale of years
to decades (Hotchkiss et al. 2018). In addition, pelagic lake
carbon is often autochthonous (Hotchkiss et al. 2018), and
thus, patterns in GPP and R are generally driven by water-
column conditions (Hoellein et al. 2013). As a result, the
magnitude of pelagic GPP and R can be an indicator of
overall lake trophic state (Solomon et al. 2013) and the ini-
tiation of eutrophication in oligotrophic lakes (Richardson
et al. 2017).

Littoral zone GPP and R is generally higher in compari-
son to pelagic sites (Sadro et al. 2011; Van de Bogert et al.
2012; Cavalcanti et al. 2016; Tonetta et al. 2016). Higher
rates of GPP and R in the littoral zone are often attributed
to greater substrate-surface water interactions, resulting in
the sediment release of nutrients and carbon, and other lit-
toral conditions, such as macrophytes and greater light avail-
ability (Vadeboncoeur et al. 2006; Sim¢i¢ & Germ 2009;
Cavalcanti et al. 2016; Tonetta et al. 2016). However, littoral
sites near the mouths of inflow streams may have localized
water residence times much shorter than the lake epilimnetic
pelagic zone and are likely more indicative of lake connec-
tions with the upstream landscape than pelagic sites (Chmiel
et al. 2020). Thus, another mechanism for higher GPP and R
in littoral areas may be due to river water stimulation (Johen-
gen et al. 2008).

While stream inflows may provide key nutrient subsidies
in nutrient-limited oligotrophic lake epilimnia (Maclntyre
et al. 2006), the capacity for inflow streams to increase littoral
GPP and R will also be dependent on the characteristics of
the stream—lake transitional zone. We define the stream—lake
transitional zone to be a hypothesized “activated ecosystem
control point” (following Bernhardt et al. 2017), requiring the
combination of appropriate abiotic conditions and delivery of
limiting nutrients to stimulate disproportionately high rates
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of biogeochemical processing. First, density-based physical
mixing in the stream-lake transitional zone will determine if
inflowing stream water mixes with the lake surface water or
plunges into deeper layers. In stream—lake transitional zones
where water density differences are primarily temperature-
driven, mixing is determined by the inflowing stream water
temperature and the temperature profile in the littoral zones,
with warmer stream water mixing with the epilimnion and
colder stream water sinking to deeper layers as underflow or
entering the metalimnion as interflow (Imberger and Hamb-
lin 1982; Vincent et al. 1991; Maclntyre et al. 2006; Rueda
and Maclntyre 2010; Cortés et al. 2014). Second, the nutrient
(e.g., nitrogen and phosphorus) and carbon concentrations and
stoichiometry in the inflowing streams relative to the lake will
determine if the inflowing water provides a subsidy to GPP
and R in the littoral zone (Maclntyre et al. 2006). The inflow-
ing stream could serve as a subsidy if it has higher nutrient and
carbon concentrations than the littoral epilimnion, and if the
epilimnion is nutrient or carbon limited. Conversely, metabo-
lism may decrease via a dilution effect if the inflowing streams
have lower nutrient concentrations or via decreased light pen-
etration if the stream increases turbidity in the lake. Accord-
ingly, the spatial and temporal extent of the stream—lake tran-
sitional zone will vary depending on the stream—lake mixing
conditions as will the magnitude of biogeochemical response.
In this study, we examined if the magnitude of littoral
GPP and R response was related to stream-lake mixing
conditions at two littoral sites located near major inflows to
a nutrient-limited oligotrophic lake. In particular, we were
interested in comparing the relative importance of stream-
related predictor variables to meteorological and in-lake
predictor variables of GPP and R. We compared volumetric
metabolism in the epilimnion at two littoral sites to estimates
at a pelagic site to test if the commonly observed pattern
of higher littoral zone GPP and R was also observed in our
study lake. The overall aim of our study was to determine if
GPP and R near stream—lake transitional zones was impacted
by the water temperature and biogeochemistry of the inflow
streams. Altered GPP and R at transitional zones may indi-
cate lake integration of stream inflows in ways that bridge
the time-lag between upstream stressors and whole-lake
response. New insights on stream-lake transitional zones
may inform monitoring protocols for identifying sources
of nutrient pollution in catchments and advance our overall
understanding of in-lake responses to upstream stressors.

Methods
Study area description

Lake Sunapee (New Hampshire, USA; 43° 24" N, 72° 3’
W) is an oligotrophic, dimictic lake. Lake Sunapee has a
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surface area of 16.55 km?, a mean water residence time of
3.1 years, volume of 1.88 x 108 m?, mean depth of 10 m,
maximum depth of 33 m, mean June—August thermo-
cline depth of 7 m (Carey et al. 2014a; Richardson et al.
2017), and ice cover generally from December—January
to March—April (Bruesewitz et al. 2015). The glacially
formed lake is irregularly shaped with high shoreline com-
plexity (shoreline development index of 3.6 due to the
multiple coves or bays adjacent to the main basin). Each
of the two focal coves in our study have two inflowing
streams, though the primary inflow to each cove (subwa-
tersheds highlighted in Fig. 1) provide the large majority
of surface flow to the cove. The watershed is experiencing
increasing conversion of forest to cleared land for housing
and urban development (Ward et al. 2020).

Lake Sunapee is classified as oligotrophic using trophic
state indices based on pelagic chlorophyll-a, Secchi depth,
and total phosphorus concentrations, but daily rates of
pelagic R and GPP have been increasing since 2007, indi-
cating potential trophic state change (Carey et al. 2014a;
Richardson et al. 2017). Although there have been no
detectable changes in pelagic total phosphorus concen-
trations over the past 3 decades (Steele et al. 2021), lit-
toral zone total phosphorus concentrations are increasing
(Richardson et al. 2017). Lake Sunapee is nutrient limited
with co-limitation of nitrogen and phosphorus (Ward et al.
2020; Carey et al. 2014b).
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Fig.1 Study area map: Lake Sunapee watershed and metabolism
sample sites, New Hampshire, USA; upper bound of lake depth is
inclusive

Study design overview

We deployed dissolved oxygen (DO) and water tempera-
ture sensors in three different oligotrophic lake sites—one
site in the lake pelagic zone and two littoral sites near dif-
ferent inflow streams. From these data, we quantified site-
specific metabolism and compared daily metabolism esti-
mates among sites. We used an ensemble machine learning
approach to quantify the relative contribution of meteorolog-
ical, lake, and stream-related predictors to GPP and R esti-
mates at the two littoral sites. In addition, we conducted the
same machine learning predictor analysis on the pelagic site
GPP and R to identify if relationships between the streams
and in-lake metabolism were unique to the littoral sites.
Ensemble machine learning approaches are well-designed
for datasets with high noise and predictor variable co-line-
arities (Crisci et al. 2012; Boehmke and Greenwell 2020),
common features of ecological data which often complicate
ecosystem metabolism analyses (Coloso et al. 2011; Rose
et al. 2014; Dormann et al. 2013). We specifically focused
on predictor variables that are commonly measured by fresh-
water monitoring programs.

Littoral site characterization and field data
collection

From three in-lake buoy sites (Table 1; Fig. 1), we collected
epilimnetic dissolved oxygen (1-1.75 m below the surface)
and water profile temperature measurements during the
summer stratified period in 2018 (June through Septem-
ber). The pelagic site buoy was established in 2007 and is
monitored by the Lake Sunapee Protective Association. It
is located near the deepest part of the lake, at a site which
is 12.5 m deep and 1150 m from the closest shore. The two
littoral sites were established for this study and strategically
located near major inflow streams that flow into coves of
the lake (Fig. 1), with the expectation that those coves are
likely largely influenced by the inflow streams entering them
and less influenced by dynamics at the deepest part of the
lake. Both of the coves included in this study have simi-
lar morphometry, sediment substrate, very low macrophyte
cover, and maximum depths close to the average thermo-
cline depth. Moreover, the depths at the opening of both
coves to the main basin were generally shallower than the
thermocline.

The sub-catchments of the two inflow sites differ substan-
tially in size and hydrology, but both are primarily forested
and have no agricultural land (Ward et al. 2020). The northern
sub-catchment has increasing housing development pressure
and is the largest sub-catchment (32.6 km?) to the lake, flows
through two lentic ecosystems (Little Lake Sunapee and Otter
Pond) before entering Lake Sunapee, and provides ~50% of the
lake’s stream inflow volume (Schloss 1990). The north inflow
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Table 1 Sampling site characteristics in Lake Sunapee, NH, USA

Site Description Buoy deploy- Buoy site  Depth of Distance to DO sensor type Thermistor depths
ment duration depth (m) DO sensor  nearest inflow (m)
(2018) (m) (m)
Pelagic Near deepest loca- 24 May-21 Sept  12.5 1.0 1150 Onset HOBO U26 0.5-9.5by I m
tion of lake increments
Warm-stream Northwest cove of 3 Jun-21 Sept 7.5 1.75 160 PME miniDOT 0.1, 0.5-3.0 by
littoral lake, near warm- 0.5m, 3.0-7.0
inflow stream by 1 m
Cold-stream lit- Northeast cove of 1Jun-21Sept 7.0 1.75 220 PME miniDOT 0.1, 0.5-6.5 by
toral lake, near cold 0.5m
inflow stream
DO dissolved oxygen

is warmer than the other inflows (Ewing et al. 2021) because of
its long residence time in the two upstream lakes and flow over
a dam spillway before entering Lake Sunapee. Consequently,
we refer to the littoral site adjacent to the north inflow hereafter
as the “warm-stream littoral site.” The warm-stream littoral
site was in the northwest cove of the lake in 7.5 m depth and
160 m from the warm-inflow stream (Fig. 1). In contrast, the
sub-catchment on the northeast side of the lake is much smaller
(1.7 km?), contributing ~3% of the lake’s stream inflow volume
and is characterized by cooler water temperatures and more
variable stream discharge (Ewing et al. 2021). Consequently,
we refer to the littoral site adjacent to the northeast inflow
hereafter as the “cold-stream littoral site.” The cold-stream
littoral site was in the northeast cove of the lake at 7 m depth
and 220 m from the cold inflow stream (Fig. 1). Due to the
large water temperature differences between the two inflow
streams, we assumed the density differences were primarily
due to temperature. However, future study to fully resolve dif-
ferences between the inflow streams should include density
differences due to suspended sediments.

‘We monitored stream water temperature, depth, total nitro-
gen (TN), total phosphorus (TP), and dissolved organic carbon
(DOC) in the warm stream 200 m upstream of where it entered
the lake and the cold stream 50 m upstream of where it entered
the lake during the study period. The locations of stream sam-
pling were determined by where we were logistically able to
access the stream. Water temperature and depth were measured
with in-stream HOBO Water Level Loggers (Onset Corpora-
tion, Bourne, Massachusetts) and recorded at 15-min intervals
(Ewing et al. 2021). For the water chemistry data, grab samples
were collected weekly June through July and once every two
weeks August through September. When flows were elevated
(i.e., reaching approximately halfway between baseflow stage
and bank-full stage) due to precipitation, automated ISCO sam-
plers were triggered to collect hourly samples. We analyzed the
water chemistry samples following the methods of Murphy and
Riley (1962), Brenton and Arnett (1993), EPA (1993), Patton
and Kryskalla (2003), and APHA (2005) (Supplemental Text 1).
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All three lake buoys were equipped with a surface
(1-1.75 m) DO sensor, underwater light sensor (HOBO pen-
dant loggers; Onset Corporation, Bourne, Massachusetts) and
a thermistor chain with temperature sensors (HOBO pen-
dant loggers; Onset Corporation, Bourne, Massachusetts) at
0.5-1 m intervals from the surface to the bottom (Table 1;
littoral buoy data available at Ward et al. 2021; pelagic buoy
data available at LSPA 2020b). The DO sensors at the litto-
ral sites were PME miniDOTs collecting data every 10 min
(Precision Measurement Engineering, Vista, California) and
the pelagic site DO sensor was a HOBO U26 collecting data
every 15 min (Onset Corporation, Bourne, Massachusetts).
To facilitate comparison across sites, we standardized DO
sensor values using calibrated manual YSI ProDSS ODO/CT
(YSI corp., Yellow Springs, Ohio) measurements collected
weekly to monthly throughout the sampling period (Figs. S1,
S2). Manual YSI versus high-frequency sensor temperature
measurements were very close to 1:1, indicating similarly
estimated DO concentrations at saturation between the YSI
and high-frequency sensor (Fig. S2d—f), but comparisons of
DO concentrations were offset from the 1:1 line (Fig. S2a—c).
To enable comparisons across sites, we corrected the high-
frequency sensor DO concentrations using the corresponding
YSI comparison DO measurements (Fig. S2a, b, c). At each
buoy, we also collected weekly grab samples during June and
July, and monthly samples during August and September using
a Van Dorn water sampler (Wildco, Yulee, Florida) for TN,
TP, and DOC at the depth of the DO sensor, following the
same methods of analysis as the stream grab samples described
in Supplemental Text 1.

Data analysis
Littoral site characterization
We used the field data to calculate a variety of water physi-

cal indices to compare the two littoral sites. For both littoral
sites, we calculated three metrics of stream—lake mixing:
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nominal intrusion depth, inflow Froude number, and transi-
tion Richardson number. Each metric required water density,
which we calculated using observed water temperature, an
assumed salinity of zero, and the “water.density()” function
in the rLakeAnalyzer R package (Winslow et al. 2019). The
nominal intrusion depth was calculated as the lake depth of
minimum density difference between stream inflow water
and epilimnetic lake water based on littoral buoy water tem-
perature profiles (sensu Cortés et al. 2014). On days when
inflow stream water was denser than epilimnion water at
each littoral site, we also characterized the plunging inflows,
i.e., inflows with greater density due to cooler temperatures
than the surface layer of the lake, to determine potential for
interflow incorporation into the epilimnion using the dimen-
sionless Froude number and transition Richardson number
(Ri;,) (sensu Cortés et al. 2014). All three of these metrics
(nominal intrusion depth, inflow Froude number, and tran-
sition Richardson number) were calculated from lake water
temperature profiles and stream water temperature measure-
ments, and the inflow Froude number also used estimated
stream velocity (Table S1).

We used non-parametric Mann—Whitney U tests to com-
pare nominal intrusion depth at the two littoral sites and to
examine stream—lake differences in water density, TN, TP,
and DOC concentrations at each littoral site to determine
the potential for stream inflows to supplement lake nutrient
concentrations. To supplement the site comparison of water
density differences, a comparison of inflow Froude number
and transition Richardson number is presented in the sup-
plement, though patterns follow established site differences
due to water density. All analyses were conducted in R (R
Core Team, 2021; Version 4.0.4).

GPP and R estimates

We estimated metabolism metrics using inverse modeling
with maximum likelihood to fit gross primary production
(GPP) and respiration (R) as model parameters to predict
observed DO concentrations (“metab.mle()” function from
the LakeMetabolizer R package in Winslow et al. 2016;
sensu Van de Bogert et al. 2007; Hanson et al. 2008; Solo-
mon et al. 2013; Richardson et al. 2017). We estimated daily
GPP and R rates in the summer stratified period, from when
sensors were deployed in late May—early June (Table 1) until
22 September, as fall turnover occurred on 23 September
(defined by a density difference between 2 m from the sur-
face and 2 m above the sediments less than 0.1 kg m™3, sensu
Andersen et al. 2017).

We used the methods of Richardson et al. (2017) and
Brentrup et al. (2021) to estimate metabolism at the three
sites (Supplemental Text 2). All metabolism estimates are
published in the EDI repository (Ward et al. 2022) and we
did not quantify model process errors. Daily rates of R and

GPP at all sites were generally low (often 0.2-0.5 mg O, Lt
Day~') and did not exhibit temporal autocorrelation (Figs.
S4, S5), as determined by the autocorrelation “acf()” and
partial autocorrelation “pacf()” function in the stats R pack-
age, enabling us to conduct metabolism site comparisons
without needing to take autocorrelation into account.

We examined two aspects of site-specific GPP and R
(detailed below). First, we determined if differences among
the pelagic and littoral sites in our study followed previously
established patterns; specifically, higher littoral zone GPP
and R in comparison to pelagic epilimnetic GPP and R (e.g.,
Sadro et al. 2011; Cavalcanti et al. 2016; Tonetta et al. 2016;
Van de Bogert et al. 2012). Second, we used an ensemble
machine learning approach to identify potential predictors of
GPP and R, and how those predictors might differ between
sites. We included water temperature as a potential predictor
variable, so did not apply temperature-scaling corrections to
GPP and R estimates.

Site-to-site differences in GPP and R

To test for differences in daily GPP and R among the three
sample locations in the lake, we used non-parametric paired
Mann-Whitney U tests due to non-normal distributions of
GPP and R. The paired Mann—Whitney U tests with Bon-
ferroni-corrected a for multiple comparisons identified pair-
wise differences among littoral and pelagic site epilimnetic
GPP and R.

Littoral site GPP and R predictor analysis

To determine if littoral GPP and R were related to stream-
related drivers, we first grouped all potential predictor vari-
ables (n=17) into three categories (Table S1, Figs. S6-S9).
The predictor variables included: (1) meteorological pre-
dictors (n="7): wind speed and direction, air temperature,
degree day, cumulative degree day, surface photosyntheti-
cally active radiation (PAR) (LSPA et al. 2020a), and pre-
cipitation from the North American Land Data Assimilation
System (Xia et al. 2012); (2) lake predictors (n=35) were
pelagic site Schmidt stability and littoral site epilimnion
water temperature, seiche period, underwater light, and
littoral site Schmidt stability. Schmidt stability and seiche
period were calculated using MATLAB Lake Analyzer
(Read et al. 2011), derived from water temperature profiles
at the Pelagic Site (LSPA et al. 2020b) and the two littoral
sites. Water temperature and underwater light data are avail-
able in Ward et al. (2021); and (3) stream-related predictors
(n=75): stream water temperature difference from littoral site
epilimnion, stream depth as a proxy for discharge, nominal
intrusion depth, inflow Froude number, and transition Rich-
ardson number (derived from Ewing et al. 2021; Ward et al.
2021). As is common in analyzing the outputs of simulation
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models (Snortheim et al. 2017), some predictor variables
used in our machine learning analysis were also used as
input variables to the metabolism model. For example,
wind speed is included in the metabolism model to estimate
changes in DO through atmospheric gas exchange, so that
those changes in DO are not attributed to GPP or R rates.
However, wind speed also drives mixing in the lake, which
can directly affect GPP and R, and thus warrants investiga-
tion as a predictor, thereby meeting criteria for inclusion
(Prairie and Bird 1989). We were careful in our interpreta-
tion to not weight too heavily the influence of these poten-
tially confounded predictors.

We aggregated all variables to the daily scale and added a
lag-1 predictor variable for precipitation and stream predic-
tors to account for a one-day lag between stream conditions
and delivery to the littoral zone of the lake (Table S1). We
did not include grab samples and stream depth-based ISCO
samples of TN, TP, and DOC due to the coarse timescale of
those observations relative to the high-frequency data.

There are several challenging aspects of identifying and
quantifying relationships between a suite of potential pre-
dictors and daily metabolism estimates. Metabolism sig-
nals tend to have high noise (Coloso et al. 2011; Rose et al.
2014), and ecological predictors tend to have co-linearities
that make it difficult to discern their effects (Dormann et al.
2013). Issues of high noise and predictor co-linearities have
been confronted by ensemble machine learning approaches
(Crisci et al. 2012; Boehmke and Greenwell 2020), which
give careful consideration to the model fitting process and
validation methods (Vabalas et al. 2019).

Ensemble machine learning models are composed of mul-
tiple machine learning models, which are each referred to as
base learners. The base learners of our ensemble machine
learning model were: (1) random forest, due to its ability to
work well with outliers, noisy data, and when one or two pre-
dictors may overwhelm the model prediction (Boehmke and
Greenwell 2020); (2) regularized regression, due to its ability
to address multicollinearity (Dormann et al. 2013) and smaller
datasets with many predictor variables; and (3) eXtreme gra-
dient boosting (XGB), due to its ability to overcome over-
fitting issues (Boehmke and Greenwell 2020). Base learners
need to be tuned, trained, validated, and summarized before
their predictions are used to evaluate the potential importance
of predictors of lake metabolism. To assess the tuning process
itself, we conducted a nested cross-validation model fitting
assessment to compensate for biased fit assessments com-
mon with smaller sample sizes (n=~50-100; Vabalas et al.
2019). A full description of our base-learner tuning method
and nested cross-validation process is in Supplemental Text
3. Final ensemble and base-learner model hyperparameters
and model performance are in Tables S2, S3, and Fig. S10.

To quantify and visualize the predictor—response vari-
able relationships in the final ensemble model for GPP and
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for R at each littoral site, we examined variable importance
for the top 10 predictor variables in each final ensemble
model using a permutation method. Since variables that
contribute to the overall model prediction in variable impor-
tance plots may not correspond to changes in magnitude of
the response variable, we also examined specific predic-
tor-response relationships for top predictors. For this step,
we generated partial prediction and individual conditional
expectation (ICE) plots for the top stream-related driver
and top non-stream-related driver identified in the variable
importance analysis, following Boehmke and Greenwell
(2020) (additional information in Supplemental Text 3).
Importantly, the magnitudes of metabolism metric response
to predictor variables were discerned through the partial
prediction and ICE plots to identify if variables identified
in the variable importance plots contributed to ecologi-
cally meaningful relationships. We specifically focused the
machine learning analysis on predictors of littoral metabo-
lism to identify if littoral site GPP and R was associated
with stream-related variables. In addition, we conducted
the same machine learning analysis for the pelagic site to
confirm that relationships between the streams and in-lake
metabolism were unique to the littoral sites. All analyses
were run in R (R Core Team, 2021; version 4.0.4) and the
code is available in Zenodo (Ward 2021).

Results
Littoral sites

The littoral sites had contrasting stream—lake transitional
zone characteristics. The water density of the warm stream
was equal to or less than the density of the surface layer
(0-2 m) at the warm-stream littoral site on 95 out of 112
(85%) days (Fig. 2b; Mann—Whitney U=5100, p=0.9),
indicating direct mixing of the inflow stream with the surface
mixed layer in the receiving littoral zone on those days. Con-
versely, the water density of the cold stream was greater than
the surface layer at the cold-stream littoral site on 111 of
112 (99%) days (Fig. 2b; U=12,058, p <0.001). As a result,
the nominal intrusion depth, or the lake depth of minimum
density difference between inflow and lake water (sensu Cor-
tés et al. 2014), at the warm-stream littoral site was signifi-
cantly shallower than at the cold-stream littoral site (Fig. 2a;
U=925, p<0.001). Throughout the study, the thermocline
was generally at or near the bottom of the thermistor chain
at the littoral sites (Fig. S3). Surface water (0-2.5 m) tem-
peratures were very similar at the warm-stream littoral site,
cold-stream littoral site, and the pelagic site (mean=22.8,
23.2, and 22.7 °C, respectively; maximum =26.6, 27.2, and
26.2 °C, respectively; minimum=16.8, 17.2, and 16.9 °C,
respectively).
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Fig.2 Comparison of a the cold-stream littoral site vs. warm-stream
littoral site a nominal intrusion depth, b the water density in the
warm-inflow stream to warm-stream littoral site and comparison of
the water density in the cold inflow stream to cold-stream littoral
site, ¢ comparison of total phosphorus (TP) in both streams and lit-
toral sites, d total nitrogen (TN) in both streams and littoral sites, and
e dissolved organic carbon (DOC) in both streams and littoral sites.
*Indicates p value <0.05; ns indicates not significant Mann—Whitney
U test. Note that the y-axis in panel a is reversed to show the water’s
surface at the top of the plot, and sediments at the bottom; solid white
line indicates median, dashed white line indicates interquartile range

Altogether, the stream-lake transitional zone physical
metrics indicated the warm stream was more often mix-
ing with the surface water of the littoral zone, while the
cold stream was more often entering the lake as interflow or
underflow. Since the inflow Froude number and transition
Richardson number primarily quantify mixing potential for
colder inflow streams entering warmer water, we present
the metrics here for days when each inflow stream was more
dense than the receiving littoral surface water. For the days
when the water density in the warm stream was greater than
the littoral surface layer, the mean inflow Froude number was
11.9 (SD=4.84, maximum =29.0, minimum = 6.6, n=20)
and the mean transition Richardson number (Ri,,) was 5.0
(SD=7.2, maximum = 31.4, minimum = — 0.04, n=20).

The mean inflow Froude number for the cold stream was
1.3 (SD=0.20, maximum=1.75, minimum = 0.84, n=83),
indicating a quickly plunging flow (~4 m of stream-lake
interface, Johnson and Stefan 1988). The mean Ri,, for the
cold stream was 0.54 (SD =0.34, maximum = 1.83, mini-
mum =0, n=83), suggesting potential for distinct under-
flow on most days (when Ri;, << 1) and incorporation of
the interflow into the epilimnion on other days (Ri;, >1;
Cortés et al. 2014).

Nutrient and DOC concentrations in the inflow streams in
comparison to the littoral sites in the lake indicate potential
for delivery of nutrient and carbon subsidies (Fig. 2c—e). The
mean TP, TN, and DOC concentrations in the inflow streams
were all significantly greater than the surface water at the
corresponding warm-stream littoral site and cold-stream lit-
toral site (Mann—Whitney U TP: U=269.5 and 863, both
p<0.001, TN: U=237.5 and 872, p=0.01 and <0.001,
DOC: U=242 and 288, both p <0.001; Fig. 2c—e). Sur-
face water TP, TN, and DOC was not significantly different
between the warm-stream littoral site, cold-stream littoral
site, and pelagic site (Mann—Whitney U all p>0.05). A
higher n value is likely needed to differentiate any existing
site-to-site differences in this oligotrophic lake with rela-
tively low nutrient and carbon concentrations in pelagic and
littoral zones (n < 15 at each lake site).

Site-to-site differences in GPP and R

Metabolism estimates of GPP and R at the littoral sites
were greater than at the pelagic site (Figs. 3, 4). GPP
estimates at the warm-stream littoral site (median=0.22,
maximum =2.89 mg O, L™' day™!, coefficient of vari-
ation (CV)=132%) and at the cold-stream littoral site
(median=0.22, maximum=0.63 mg O, L~! day_l,
CV =49%) were significantly greater than at the pelagic
site (median=0.18, maximum=0.43 mg O, L! day_l,
CV =39%; both Mann—Whitney U > 3494, both p <0.004;
Figs. 3, 4, Table 2). The highest daily rates of GPP were
estimated at the warm-stream littoral site (Figs. 3, 4,
Table 2), but overall, GPP at the warm-stream littoral
site was not significantly greater than the cold-stream lit-
toral site (U=2884, p=0.22; Figs. 3, 4, Table 2). The R
estimates at the warm-stream littoral site (median=0.22,
maximum=2.65 mg O, L™ day™!, CV=126%) were sig-
nificantly greater than at the pelagic site (median=0.17,
maximum =0.56 mg O, L! day_l, CV=57%; U=4185,
p<0.001; Figs. 3, 4, Table 2), but not significantly greater
than at the cold-stream littoral site (median=0.19, maxi-
mum=0.61 mg O, L™ day~!, CV=58%; U=3159,
p=0.03, greater than Bonferroni-corrected a of 0.02 for
three comparisons). The cold-stream littoral site R estimates
were not significantly greater than the pelagic site R esti-
mates (U=3165, p=0.07).
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0.03 Though meteorological variables contributed most to
b) GPP at the warm-stream littoral site (62% + 16%, 1 S.D.
A _B AB of the ensemble model), stream-related variables also
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s . dictor of warm-stream littoral site GPP was wind direction
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g 0.10 B than when wind was from any other direction (Fig. 5¢). The
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Fig.4 Comparison of metabolism estimates among the pelagic
site, cold-stream littoral site, and warm-stream littoral site in Lake
Sunapee, NH, USA. Estimates of a gross primary production (GPP)
and b respiration (R) are displayed on a log,, y-axis for easier vis-
ual comparison with boxplots denoting median and quartile ranges.
Unique letters above boxplots indicate significant Mann—Whitney U
comparisons (p <0.02, Bonferroni-corrected a for 3 comparisons; see
Table 2)
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day~! (126%) increase in GPP (Fig. Se).

Similar to warm-stream littoral site GPP, the warm-
stream littoral site R was modulated by both meteorological
variables (66% + 11% of the model) and stream-related vari-
ables (26% +7%; Fig. 5). The variable importance analysis
identified that the most important predictor of warm-stream
littoral R was the previous day’s precipitation (precipitation
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Table 2 Mann—Whitney

. ) . Metabolism Site (n) Site (n) U p value
U site-to-site comparisons metric
of metabolic rates in Lake
Sunapee, NH, USA GPP Pelagic (81) Warm-stream littoral (79) 2273 0.0008
Pelagic (81) Cold-stream littoral (67) 2024 0.004
Cold-stream littoral (67) Warm-stream littoral (79) 2447 0.22
R Pelagic (81) Warm-stream littoral (79) 2253 0.0006
Pelagic (81) Cold-stream littoral (67) 2324 0.07
Cold-stream littoral (67) Warm-stream littoral (79) 2192 0.03

P values < 0.02 (Bonferroni-corrected a for 3 comparisons) are bolded

GPP gross primary production, R respiration, n sample size, U Mann—Whitney U test statistic

lag-1; 33% + 5% of the model; Fig. 5b). When total daily
precipitation was greater than 2 cm, R on subsequent days
was 0.30 mg O, L~ day~! higher (104% increase) than after
days with no precipitation (Fig. 5d). The most important
stream-related predictor for R at this site was the water
temperature difference between the stream and littoral zone
epilimnion (stream minus epilimnion T; 13% +3% of the
model; Fig. 5b). The partial prediction analysis for R showed
a smaller response to stream minus epilimnion temperature
than GPP: the warmer stream water in comparison to littoral
zone epilimnion water resulted in a 0.17 mg O, L™! day™!
(56%) increase in R (Fig. 5f).

At the cold-stream littoral site, stream variables contrib-
uted 49% (+8%) for GPP and 69% (x£21%) for R to the
overall ensemble machine learning predictor-response
model for each metabolism metric (Fig. 6a, b). Similar to
the warm-stream littoral site, the variable importance analy-
sis identified that the top predictor for cold-stream littoral
GPP was wind direction, which contributed 23% (+5%) to
the overall predictor variable—response relationship in the
ensemble machine learning model (Fig. 6a). In contrast to
the wind direction patterns at the warm-stream littoral site
(Fig. 5¢), the highest magnitude GPP at the cold-stream lit-
toral site was associated with wind out of the south (Fig. 6¢),
though the increase of the GPP in response to wind direction
was small (0.02 mg 0, L™! day™!, 7% increase; Fig. 6¢). The
most important stream-related predictor for GPP was the
dimensionless inflow Froude number, which contributed
18% (+2%) to the overall predictor variable-response rela-
tionship (Fig. 6a). The inflow Froude number resulted in an
increase in GPP of 0.03 mg O, L™' day™' (11% increase)
when the inflow Froude number was greater than 1.75,
indicating greater stream mixing with the surface water
(Fig. 6e).

In contrast to all other GPP and R responses, the cold-
stream littoral R was driven by both stream variables
(69% +21% of the model) and lake variables (21% + 5%;
Fig. 6b). The variable importance analysis identified that the
top predictor for R at this site was a stream-related variable:
the inflow Froude number, which contributed 47% (+ 14%)

to the overall predictor variable-response relationship in
the ensemble machine learning model (Fig. 6b). As the
inflow Froude number increased from 0.8 to 1.8, indicating
more mixing potential with littoral zone surface water, R
increased by 0.07 mg O, L' day~! (43% increase; Fig. 6d).
The top non-stream-related driver was pelagic Schmidt sta-
bility, though the associated change in R was quite small
(<0.01 mg O, L~ day™, 3% change; Fig. 6f).

The warm-stream and cold-stream littoral sites exhibited
similar top predictor variables for GPP, but the strength of
the predictors varied, as indicated by the partial prediction
and ICE plots. Wind direction was the top predictor variable
for GPP at both littoral sites (Figs. 5a, 6a); however, there
was a much larger predictive range in the warm-stream lit-
toral GPP response (0.41 mg O, L~! day~!, Fig. 5¢) com-
pared to the cold-stream littoral GPP response (0.02 mg O,
L~! day~!, Fig. 6¢). Similarly, the temperature difference
between the stream and littoral surface water was the sec-
ond-most important predictor of GPP at both sites (Figs. Sa,
6a); however, the predictive ranges and patterns were very
different. At the warm-stream littoral site, increases in the
stream-epilimnion temperature difference caused an increase
in the GPP of 0.43 mg O, L™ day~! (126% increase), espe-
cially when stream temperatures were 3 °C warmer than
the littoral lake temperature (Fig. 5e). Conversely, the tem-
perature difference was negatively related to GPP (0.02 mg
0, L! day_], 7% decrease) at the cold-stream littoral site,
though the stream water temperature was always cooler than
the cold-stream littoral site (Fig. 6e).

In contrast to GPP, the top predictor variables for R
were different between the two littoral sites (Figs. 5b, 6b),
in which the top two predictors for warm-stream littoral
R were meteorological variables, but the top two pre-
dictors for cold-stream littoral R were stream variables.
Similar to cross-site patterns in GPP, the predictive range
in the warm-stream littoral R response was larger than
the cold-stream littoral site. For example, the top stream-
related predictor for warm-stream littoral R (but third-
most important predictor overall in variable importance
analysis, Fig. 5b), stream minus epilimnion temperature,
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Fig.5 Predictor analysis results for the warm-stream littoral site in
Lake Sunapee, NH, USA. Predictor variable importance plots, shown
as percent contribution to ensemble machine learning model for GPP
a and R b; partial prediction (thick line) and individual conditional
expectation (ICE; thin lines) plots indicate presence of predictor—
response relationships for the top non-stream-related predictor for

corresponded to an increase of 0.18 mg 0, L™' day™" (70%
increase; Fig. 5f). The top predictor for cold-stream littoral
R, which was the stream-related variable of inflow Froude
number, corresponded to a 0.07 mg 0, L~! day~! (43%)
increase (Fig. 6d).
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combination of other predictor variables observed. Partial depend-
ence line is the average of ICE lines. Grey vertical dashes on x-axis
indicate predictor variable observations

In sum, stream variables affected daily rates of litto-
ral lake metabolism, but were largely disconnected from
pelagic metabolism response. Though both meteorological
and stream variables were identified as important predic-
tors of GPP and R from the variable importance analysis at
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Fig.6 Predictor analysis results for the cold-stream littoral site in
Lake Sunapee, NH. Predictor variable importance plots, shown as
percent contribution to ensemble machine learning model for GPP
(a) and R (b); partial prediction (thick line) and individual condi-
tional expectation (ICE; thin lines) plots indicate presence of predic-
tor—-response relationships for the top non-stream-related predictor for
GPP (c); categorical variable shown with box plot) and top predic-

all three sites, the partial prediction and ICE analysis shows
that stream variables contributed to ecologically meaning-
ful responses in littoral GPP and R (Figs. 5, 6). In contrast,
only meteorological variables contributed to ecologically
meaningful responses in pelagic GPP and R (Fig. 7).

b) Cold-stream littoral R: Variable importance
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tor for R (d) and the top stream-related predictor for GPP (e) and top
non-stream-related predictor for R (f). Each ICE line represents the
focal predictor variable varying along the x-axis for each combination
of other predictor variables observed. Partial dependence line is the
average of ICE lines. Grey vertical dashes on x-axis indicate predictor
variable observations

Discussion
The higher rates of littoral epilimnetic GPP and R observed

with increased epilimnetic mixing at the stream—lake inter-
face provides evidence that the stream—lake transitional zone
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Fig. 7 Predictor analysis results for the pelagic site in Lake Sunapee,
NH. Predictor variable importance plots, shown as percent contri-
bution to ensemble machine learning model for GPP (a) and R (b);
partial prediction (thick line) and individual conditional expectation
(ICE; thin lines) plots are indicate presence of predictor—response
relationships for the top non-stream-related predictor for GPP (c)

may function as an activated ecosystem control point (sensu
Bernhardt et al. 2017). Accordingly, omitting these zones in
whole-lake estimates may underestimate overall lake metab-
olism and leave an important aspect of lake metabolism spa-
tial variability unaccounted for. The connection of higher
near-stream littoral rates of GPP and R to inflow stream
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conditions bridges the inherent time-lag between upstream
stressors and whole-lake response. Thus, the stream-lake
transitional zone may provide a sentinel-of-the-sentinel sig-
nal in this nutrient-limited lake (Ward et al. 2020; Carey
et al. 2014b) showing increasing productivity and the poten-
tial for future eutrophication (Richardson et al. 2017).
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Littoral GPP and R indicate activated ecosystem
control points

Activated ecosystem control points require the combina-
tion of favorable abiotic conditions and delivery of limiting
nutrients to stimulate disproportionately high rates of bio-
geochemical processing (Bernhardt et al. 2017). The dispro-
portionately high littoral GPP and R rates we observed in
Lake Sunapee were dependent on greater stream—epilimnion
mixing (favorable abiotic conditions) and stream nutrient
subsidies (delivery of limiting nutrients), suggesting the
stream—lake transitional zone functions as an activated eco-
system control point. Important context for interpretation of
the stream-lake transitional zone as an activated ecosystem
control point is that the lake is nutrient limited (Ward et al.
2020; Carey et al. 2014b), and the inflow streams have sig-
nificantly higher nutrient concentrations than the receiving
lake waters (Fig. 2).

While inputs from both warm and cold streams were
shown to increase littoral metabolism, the mechanisms
appear to differ. The physical mixing metrics indicated the
warm-stream inputs entered into the surface mixed layer of
the lake (sensu Vincent et al. 1991) and cold-stream inputs
may have partially been entrained into the surface waters,
creating conditions in which both streams likely provided
nutrient subsidies (following MaclIntyre et al. 2006). Though
we were unable to measure daily stream and littoral zone
nutrients and did not observe consistent patterns between
our intermittent stream nutrient observations and estimated
GPP and R (Figs. S11, S12), the GPP and R increases with
greater stream mixing potentially support a nutrient-subsidy
effect, following previous studies (Imberger and Hamblin
1982; Rueda and MaclIntyre 2010; Cortés et al. 2014). Since
the warm-stream inflow had lower nutrient concentrations
than the cold-stream inflow, it is likely that a stronger signal
of GPP and R stimulation would be found in a warm-inflow
stream with higher nutrient concentrations. In addition, the
different stream inflows may contribute different types of
organic matter, resulting in different metabolic responses
(Marcarelli et al. 2011).

Common pelagic epilimnetic metabolism predictors, such
as water temperature and PAR, did not significantly con-
tribute to the littoral GPP and R responses, highlighting the
unique dependence of the littoral sites on the stream—lake
mixing conditions. If the study were extended to include
seasons of lake thermal mixing and ice cover, the more com-
monly considered in-lake and meteorological predictors may
become more important for littoral GPP and R response.
The significance of wind as a predictor of GPP response at
both littoral sites (Figs. 5c, e, 6¢, e) is likely a function of
the cove and subbasin morphometry of the lake (Fig. 1). The
warm-stream littoral site is most protected from wind expo-
sure when wind is out of the northwest and the cold-stream

littoral site is most protected from wind out of the south or
southeast, corresponding to the wind direction associated
with the highest rates of GPP at each littoral site. With mini-
mal wind-induced mixing and surface disturbance, the water
column may be more favorable for or decrease the horizon-
tal variability of phytoplankton (Stockwell et al. 2020; Cyr
2017). Lower wind-induced mixing may enable the stream
to affect littoral conditions more directly through nutrient
subsidy or transport of DO from the stream to the littoral
site. Similarly, precipitation effects could increase DO trans-
port from the stream to the littoral zone, and depending on
the timescale of influence relative to 24-h metabolism rates
derived from diel DO curves, the estimated GPP and R rates
may be affected. A more thorough consideration of hydrody-
namic interactions would require detailed lake physics mod-
eling of the spatial and temporal extent of the stream—lake
transitional zone under different wind exposures and stream
discharge.

Further research is needed to resolve the extent to which
stream—lake transitional zones function as activated ecosys-
tem control points. For example, a more detailed horizontal
and vertical spatial analysis of metabolism in the lake would
inform if the GPP and R rates observed in this study contrib-
ute “disproportionately” to whole-lake metabolism (Sadro
et al. 2011). Both stream-lake transitional zone littoral sites
were selected based on their similar depth, substrate, and
lack of macrophytes to control for littoral zone influences
on metabolism, however, including non-stream littoral sites
could help clarify understanding of the unique influence of
the streams on littoral GPP and R. In addition, a detailed
physical tracking of the stream plumes (Rueda and MacIn-
tyre 2009; Vincent et al. 1991) and GPP and R response in
the lake would be required to identify the spatial and tem-
poral dynamics of the stream—lake transitional zone as an
ecosystem control point (Krause et al. 2017).

Linking lake metabolism to upstream stressors
through the stream-lake transitional zone

The partial dependence of littoral GPP and R on stream-
related predictors supports previous studies finding water
residence time as a controlling variable (e.g., Catalan et al.
2016; Casas-Ruiz et al. 2017; Hotchkiss et al. 2018). Littoral
metabolism near inflowing streams may provide a key inter-
mediary measure linking small stream and large lake resi-
dence times. Pelagic metabolism estimates, which are more
representative of water-column conditions in lakes with
multi-year residence times (Hoellein et al. 2013; Hotchkiss
et al. 2018), may not detect near-real time tributary effects
on water quality in lakes like Lake Sunapee. Following the
scaling of dominant metabolism behavior across water resi-
dence times (Hotchkiss et al. 2018), summer seasonal aver-
age chlorophyll-a in Lake Sunapee is more dependent on
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climate-related variables (long-term response to climate)
whereas summer maximum chlorophyll-a is more dependent
on external nutrient load (short-term response to streams)
(Ward et al. 2020).

Though it is well documented that metabolism can have
high spatial variability in lakes (Sadro et al. 2011; Van de
Bogert et al. 2012; Cavalcanti et al. 2016; Tonetta et al.
2016), some of the variability may be due to upstream stress-
ors. Assessing variability in GPP and R at littoral sites near
inflows may more accurately reflect land use changes hap-
pening in different sub-catchments. The contribution of indi-
vidual streams to pelagic GPP and R is also likely dependent
on water residence time near the inflow. Major storm events
increase stream—lake connectivity, lowering water residence
time in sub-basins, and delivering nutrients and DOC to the
pelagic zone (Gallardo et al. 2012; Vachon and del Giorgio
2014; Zwart et al. 2017).

The littoral zone response to stream stressors is likely
highly variable and context dependent. Though stream nutri-
ent subsidies can stimulate littoral GPP and R, increased
DOC or suspended solids may limit GPP by reducing water
clarity (Kelly et al. 2018; Olson et al. 2020). High inflow
DOC can cause light limitation and decrease GPP, but the
median cold-stream inflow DOC concentration of 8.6 mg
L~!is at the lower end of concentrations where DOC-
induced light limitation could be expected (Finstad et al.
2014; Thrane et al. 2014; Seekell et al. 2015). Therefore,
there is continued potential for GPP stimulation with greater
inflow DOC concentrations (Kelly et al. 2018) at the cold-
stream littoral site. Elevated DOC and TP concentrations
at our littoral sites may be particularly acute following pre-
cipitation events. The disproportionately high amount of
dissolved organic and particulate matter transport that can
occur during high stream flow events (Newbold et al. 1997)
may create optimum conditions for the stream—lake transi-
tional zone to function as an activated ecosystem control
point (Bernhardt et al. 2017). Given the likely short water
residence times in the littoral sites we selected, further work
characterizing the dynamic nutrient, DOC, suspended sedi-
ment, and light conditions at these sites may be key in link-
ing landscape drivers to lake responses in space and time.

Machine learning provides new insights
on ecosystem metabolism

The identification of covariate relationships between litto-
ral zone metabolism metrics and stream-related predictor
variables was uniquely enabled by our ensemble machine
learning approach. Metabolism datasets are typically noisy
(Coloso et al. 2011), especially in oligotrophic lakes, since
they capture multiple processes including photosynthesis,
autotrophic and heterotrophic respiration, and integrate
from a volume of water surrounding the sensor (Staehr et al.
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2010). Further, many predictor variables for metabolism are
collinear (Giling et al. 2017), for example, wind and water-
column stability. Our ensemble machine learning approach
used regularized regression as a base-learner model, which
includes a penalty function to reduce conflated signals of
collinear predictor variables (Boehmke and Greenwell
2020), with improvements over commonly used statisti-
cal methods, such as multiple regression in differentiating
the effects of multiple collinear predictor variables (Lucas
2020).

The ensemble machine learning model exhibited system-
atic bias, resulting in a smaller range of GPP and R predic-
tions than the range of metabolism model estimated GPP
and R (Fig. S10). If the machine learning model were used
in a predictive capacity, bias correction techniques should be
applied to improve estimation of the tails of the distribution
(Belitz and Stackelberg, 2021). In addition, unmeasured pre-
dictor variables may contribute to the observed variability
in metabolism metrics. For example, both the concentra-
tions and forms of nitrogen and phosphorus entering the
stream—lake transitional zone are likely important, especially
in oligotrophic lakes where co-limitation is common (Lewis
et al. 2020). Since water temperature and season are known
to affect metabolism, the lower range in machine learning
predicted GPP and R may also be due to the comparatively
narrow range of predictor and response variable magnitudes
observed during the summer stratified period only (e.g.,
less than 10 °C range in epilimnetic water temperature, in
comparison to the 25 °C range across the entire year; see
Brentrup et al. 2021). Lake Sunapee’s epilimnion is auto-
trophic in the summer and heterotrophic in the winter, where
the dominant environmental predictors of GPP and R may
vary with season (Brentrup et al. 2021). Similarly, the rela-
tive importance of stream-related drivers likely varies with
season. The loss of thermal stratification in the lake would
increase surface mixing with the cold stream; however, this
effect may be dampened by the greater volume of receiving
lake water and may be less relevant to nutrient availability
than the vertical mixing within the lake. Further, food web
processes, ranging from microbial community dynamics
(Warnecke et al. 2005) and associated internal recycling of
nutrients (Fenchel 2008) to fish consumer effects on nutri-
ent processing (Vanni et al. 2013), likely also affect Lake
Sunapee’s GPP and R (Stewart et al. 2018).

Overall, the machine learning approach enabled us to
conduct our exploratory analysis with novel predictor vari-
ables for highly noisy littoral metabolism, including col-
linear variables with no prior assumptions about the shape
of the predictor-response relationship and existence of
interactive effects. The machine learning approach would
only be strengthened with the addition of predictor vari-
ables discussed above and extension of the study through
space and time.
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Implications for Lake Sunapee

The results of this study provide insight into how
stream—lake connections may affect Lake Sunapee in the
future. As of 2020, the Lake Sunapee region has already
experienced a 1.4 °C increase in mean annual air tempera-
ture over pre-1970 annual averages (Ward et al. 2020) and
is facing increasing development pressure (LSPA et al.
2020c). Cold-stream inflows to Lake Sunapee may warm
through both a decreased canopy cover resulting in more
direct warming of the stream from sunlight (Nelson et al.
2009; Kaushal et al. 2010) and an increase in the relative
contribution of surface versus groundwater to streamflow
(LeBlanc et al. 1997). As cold-stream inflows warm, they
will mix more directly with the lake epilimnion, stimulat-
ing higher GPP and R near the stream—lake transitional
zone. Though groundwater-based streams may be less sen-
sitive to climate and land use effects than surface water
streams (Luce et al. 2014), storm events have the poten-
tial to create short periods when cold, groundwater-based
streams are dominated by surface flow (Shanley and Peters
1988). If cold streams warm faster than the lake epilim-
nion and enter the lake more as surface flow, the stream
water and associated solutes will have a higher potential
to stimulate surface littoral GPP and R. In particular, if the
cold stream in our study warms faster than the lake epilim-
nion, the significantly higher stream nutrient and DOC
concentrations (Fig. 2c—e) will further stimulate GPP and
R. The increased productivity will potentially contribute
to declines in localized water quality in the cove.

While changes in the depth of stream—lake mixing will
change the location of peak GPP and R due to the nutrient-
subsidy effect, the implications of different depths of mix-
ing on whole-lake metabolism are complex. For example,
stream water entering a lake at different depths results in
different mixing of organic matter quality and may ini-
tiate a “priming effect,” increasing the total availability
of organic matter at the depth of mixing (Bouffard and
Perga 2016). In addition, stratified lakes may have an auto-
trophic epilimnion and a heterotrophic hypolimnion dur-
ing the summer (Staehr et al. 2012) and, thus, changes in
the depth of stream—lake mixing during the summer may
alter the relative contributions of each zone to overall lake
metabolism.

Conclusions

Our study, examining epilimnetic GPP and R in two lit-
toral and one pelagic location of a lake, demonstrates
that metabolism near stream-lake transitional zones are
uniquely related to stream variables. Therefore, GPP and R
signals from the stream—lake transitional zones, within the

context of this nutrient-limited lake showing early indi-
cations of eutrophication (Ward et al. 2020; Richardson
et al. 2017), may provide a sentinel-of-the-sentinel signal.
While littoral metabolism is generally higher than pelagic
metabolism, directly linking these disproportionately
high GPP and R rates in stream—lake transitional zones to
stream-related drivers through time may bridge the inher-
ent time-lag between upstream stressors and whole-lake
responses. Estimates of whole-lake metabolism, particu-
larly in nutrient-limited lakes should specifically include
littoral locations near stream-lake transitional zones
where GPP and R may be disproportionately high. Use
of high-frequency dissolved oxygen sensors for examin-
ing sensitive ecosystem function metrics such as metabo-
lism is developing quickly for management applications
(Jankowski et al. 2021). As such, for lakes approaching
a trophic state change, where mitigation of nutrient pol-
lution is a key management goal (Jeppesen et al. 2010),
monitoring lake water quality with more sensitive metrics
of change (i.e., GPP, R) will be particularly helpful. Stra-
tegically estimating these metabolism metrics near inflows
may help reveal the connection between upstream inputs
and downstream lake processing, providing key insights
into how lakes act as sentinels to changes in the surround-
ing catchment and informing strategic monitoring to pre-
vent future declines in water quality.
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