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Robot-Assisted Disassembly Sequence Planning
with Real-Time Human Motion Prediction
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Abstract—This paper presents a disassembly task planning
algorithm considering human-robot collaboration (HRC) and
human behavior prediction (HBP). Unlike assembly procedures,
the disassembly of end-of-life (EOL) products has been a
labor-intensive process with uncertainties difficult to cope with.
Meanwhile, it is usually challenging to obtain an optimal se-
quence efficiently without excessive computational cost. Also,
the conventional human-centered task planning, in which the
robot has to halt frequently due to unsafe interruptions by
human motions, may decrease the efficiency of the disassembly
process. In this paper, a sequence planner is proposed to assign
tasks in real-time between a human operator and a robot
to overcome the aforementioned challenges. The cost function
includes the effort of the human and the robot in terms of both
movement distance and time spent on the tasks. The constraints
include the disassembly rules and safety of human operation.
The optimal sequence is generated by solving an optimization
problem in a receding-horizon way. In particular, at each step,
the proposed disassembly sequence planner locates the workers
(a human operator and a robot) and the to-be-disassembled
components, predicts human movement for the next several
steps, and obtains the optimal disassembly sequence for the next
several steps following disassembly rules and safety constraints.
Experiments have been extensively conducted on the disassembly
of a wooden toybox and a used hard disk drive (HDD) to validate
the proposed disassembly sequence planner. The planner has
successfully generated the disassembly sequence in a human-
robot collaboration setting explicitly considering real-time human
motion prediction and assigned the human operator and the robot
to collaboratively complete disassembly tasks without violating
disassembly rules and safety constraints.

Index Terms—Human-Robot Collaboration, Disassembly Se-
quence Planning, Human Behavior Prediction, Receding Horizon.

I. INTRODUCTION

nvironmentally conscious manufacturing (ECM) has

drawn attention due to the increased legislation of
recycling end-of-life (EOL) products, which is usually achieved
through manual disassembly. The disassembly process has been
traditionally time-consuming and labor-intensive [1]. In order
to improve the process, human-robot collaboration (HRC) is
developed to exploit the complementary advantages of both
humans and robots, as humans have experience and flexibility
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to react to uncertainties in assignments, while robots could offer
accuracy and efficiency in assigned tasks and the capability of
handling unsafe tasks that may cause human injuries [2].

Disassembly sequence planning plays a major role in achiev-
ing efficiency and cost-effectiveness in disassembly process.
Disassembly sequences consist of actions of removing compo-
nents one after another [3]. The action of an EOL product disas-
sembly is usually determined from an engineering point of view.
For example, desktops and monitors are usually dismantled into
sub-assemblies [4] of recyclable mechanical and electrical part-
s. Disassembly sequence planning is known to be an NP-hard
combinatorial optimization problem [4]-[7]; as a large number
of feasible disassembly sequences may exist for a set of EOL
products and the number grows quickly as the complexity of the
product increases. Since it is difficult to obtain the optimal dis-
assembly sequence considering various disassembly constraints,
such as disassembly rules, disassembly cost and human safety, it
is needed to explore a systematic and efficient approach to find-
ing an optimal sequence.

Itis worth noting that the disassembly sequence has its unique
characteristics and it should not be stereotyped as the reverse
of the assembly [8]. An assembly line is typically conducted in
a work-cell format with multiple workstations, customized fix-
tures [9] and robots programmed for repetitive tasks [10], [11].
Also, the assembly process does not possess many attributes that
can be found in the disassembly line. For example, the same com-
ponent with different conditions, multiple workers available for
the same disassembly task, and even variants among differen-
t brands in the same disassembly line. In addition, the human
worker’s position after performing a task cannot be determined at
the beginning of the disassembly sequence, causing the difficulty
of obtaining the optimal disassembly sequence. Evidently, the
decisions of assigning workers to the disassembly tasks would
be more complex with both the human operator and the robot
being available [12]. Thus, the disassembly process is more chal-
lenging for several reasons: (a) distinctive EOL products may be
loaded to the same disassembly line with arbitrary orientations
instead of building separate disassembly lines; (b) it is common
to disassemble highly valuable components without completely
dismantling the whole set of EOL products [4]; (c) the to-be-
disassembled products may contain components with hazardous
substances that need to be handled cautiously. There are several
methods to represent feasible disassembly sequences including
incidence matrix [13], AND/OR graphs [14], directed graphs
[15], and precedence relationships [16]. And several optimiza-
tion methods have been developed to find the optimal disassem-
bly sequence among feasible sequences [17], [18]. However, ex-
isting methods are elaborated based on the assumption of the
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disassembly process usually being conducted manually.

Collaborative manufacturing systems have been studied in
various assembly line applications. The desire of improving
manufacturing productivity and flexibility is a crucial motiva-
tion for research in HRC assembly systems [19]. For instance,
in [20], an augmented reality (AR) system is used to support
the human operator in automotive assembly line with HRC. The
AR system is used to visualize necessary information from the
assembly line without interrupting the human operator. In [21], a
framework for an electronics assembly system considering HRC
is presented consisting of product characteristics and safety con-
siderations. In [22], a dynamic task allocation and classification
for mechanical assemblies is proposed to determine whether the
assembly activities can be performed by the human and/or the
robot. In [23], a simulation-based multi-objective optimization
method is presented for assigning the assembly tasks to both the
human operator and the robot. In [24], the complexity of the as-
sembly processes is evaluated, which includes geometrical and
physical properties of the assembly components alongside the
safety issues in the assembly tasks. In [25], ameasured cycle time
is used to evaluate the skill index of a human operator, which
helps effectively predict the assembly process and balances the
workloads of the human operator and the robot. Also, a mixed-
integer linear programming (MILP) model integrated with bee
algorithm (BA) and artificial bee colony (ABC) algorithms is
presented in [26] to solve a large-scale assembly line balancing
problem with HRC. Most assembly frameworks aim to define the
task assignments appropriately in a human-robot collaborative
assembly line. Still, unlike the disassembly line, the uncertainty
regarding the quality of the components is not taken into account.

A systematic framework for the implementation of HRC dis-
assembly was presented for sustainable manufacturing [27].
Deep learning techniques, such as incremental learning, deep re-
inforcement learning, and transfer learning, have been proposed
to tackle with HRC disassembly problem [27]. Although HRC
has been widely applied in the industry, it is still difficult to per-
ceive the status of human intention, robot motion and disassem-
bly products. In [28], with HRC disassembly, the performance of
human operators and robots is assessed in the aspects of quality,
cost, time, and safety, but the uncertainties in the movement of
the human operator are not included. [29] gives a solution to
the HRC disassembly line balancing problem, but the potentially
hazardous condition of the disassembly parts is not considered.
In addition, an HRC disassembly sequence planning is carried
out through a hybrid resource assignment and scheduling prob-
lem using MILP [30], and an HRC disassembly cell based on
touch-sensing and position control [31] is conducted to distribute
the disassembly tasks. Our previous work [32] introduces a par-
allel disassembly sequence planning considering human safety
using MILP. However, those studies do not particularly focus
on the human motion prediction and do not consider the hu-
man worker’s position associated with the unfinished disassem-
bly tasks.

In this paper, we introduce HRC to the disassembly process
and propose a real-time sequence planning algorithm that can
distribute tasks between human operators and robots. There are
multiple factors to be considered. The first consideration lies in
the human movement that is changing in real-time. A shared task

needs robots and human workers to share the working environ-
ment and collaborate closely, so HRC should take into accoun-
t human movement intention and possible future movements.
Researchers have proposed different human motion prediction
methods that focus on either the trajectory generation level [33]-
[35] or the task planning level. For example, depth images are
used in [36] to train a conditional variational auto-encoder that
has the ability to predict human action. In [37], human poses are
used as inputs for training a recurrent neural network to predict
time-dependent human motions. In [38], the multiple-predictor
system is employed to predict human motion over both short-
and long-term horizons. The short-term prediction helps colli-
sion avoidance, while the long-term one enables efficient goal-
reaching. In [39], human motion at each time step is encoded as a
multivariate Gaussian distribution and predicted as the reaching
target by Bayesian classification, which is also integrated in the
prediction to adjust the robots next action. In [40], human adapta-
tion to the partners motion is captured during an assembly task
to learn a cost function, which is used as the input of stochas-
tic trajectory optimizer for motion planning to predict human’s
reaching motion to a goal region in the task-space. In [41], a sup-
port vector machine based on human gaze patterns is trained to
predict human intention that enables robots to respond and com-
plete tasks faster. In [42], the hidden Markov model is applied to
generate a motion transition probability matrix, where predicted
human intention is used to assist in robot task sequence planning
in an assembly task. In [43], assembly tasks are modeled as a
Bayes network with optimal robot actions to minimize the time
cost of human motion prediction.

The second consideration is how to quantify the “disassembly
cost” of the human operator and the robot. In this paper, the dis-
tance from one disassembly task to another [44] and the working
time at each disassembly task [45] are studied to quantify the dis-
assembly cost. For instance, a pick and place action performed
by a robot or by a human operator could take different lengths
of trajectories and time. Additionally, the geometric complexity
of the to-be-disassembled components should be considered, s-
ince both the complexity of task execution and the traveling time
between each disassembly task may not remain constant if the
disassembly task features a diverse set of orientations and unsafe
conditions for human operation. Moreover, the human opera-
tor may be prohibited from either an unsafe work environment
[16] or hazardous materials. Thus, a decision-making framework
should be developed for distributing disassembly tasks between
robots and human operators following safety constraints.

The third consideration lies in multiple possible starting tasks
and disassembly rules. Multiple hierarchical graph models [46]
may be used to represent the precedence relation of disassembly
tasks. About disassembly rules, take Fig. 1b for example, tasks
v1, V2 and vs must be complete ahead of task v4; meanwhile, task
v4 must be planned prior to tasks vs, vg and vy. The task vy is
also known as the “common task” [45], while vy, v2 and v3 are
“parallel tasks” [45], so are vs, vg and v7. Either v1, v2 or v3 can
be the starting task, and the last task can be vs, vg or v7.

The fourth consideration lies in the computational cost for
real-time planning. An EOL product may consist of a significant
number of components, leading to a high computational cost.
For example, if there is an HRC disassembly with 7" tasks which
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are all parallel tasks, the number of feasible sequences would
be 27 x T, where 27 is produced by the collaboration of one
robot and one human operator, and 7'! is defined by the number
of parallel tasks. To solve the problem with reasonable computa-
tional cost, the receding-horizon control (RHC) technique [47]
could be adapted. In comparison, if we use the RHC approach
with the receding-horizon length ¢ where ¢ < T, the number of
feasible sequences at each disassembly step would drop to 2¢ x ¢!,
yielding computational cost reduction.

It is noted that, the above-mentioned considerations are not
independent. For example, human behavior during the disassem-
bly process could result in time-varying costs and affect the op-
timization of disassembly sequence in real-time. After a disas-
sembly task, the human operator may move to a nearby position
[48]. This human activity could increase or reduce the disassem-
bly cost. Hence, it is beneficial to incorporate human behavior
prediction (HBP) [49] to assure efficiency. Approaches using hu-
man activity prediction [50] and user intention prediction [51]
have been studied to forecast the human operator’s next-step ac-
tions. However, these studies are not proposed in the disassembly
sequence planning setting.

— OO
o- ®

— GO0
Em OO
R OG0

(c) Components

(a) Toybox

(b) Directed graph
Fig. 1: To-be-disassembled wooden toybox

This paper presents a disassembly task planning algorithm
considering HRC and HBP. The sequence planner distributes
tasks between the human operator and the robot in real-time.
The main contributions of this paper are: (1) the disassembly
task sequence planning is conducted as an optimization prob-
lem and solved online in a receding-horizon fashion, (2) safety
conditions for human operation, positions of the workers and the
components to be disassembled, and disassembly rules are con-
sidered explicitly, (3) HBP is integrated into the task planner to
improve the disassembly efficiency, (4) the cost of disassembly
operations with the robot and the human operator is quantified,
and (5) the distribution of the disassembly tasks between the hu-
man operator and the robot is optimized in a human-robot col-
laborative setting. The proposed disassembly sequence planning
framework is illustrated in Fig. 2 with a wooden toybox as in
Fig. la. It is noted that this paper is an in-depth extension of
our previous conference papers [44], [48], in which the human
motion prediction is not considered. To the best of our knowl-
edge, this is the first extensive study on HRC disassembly se-
quence planning considering the cost, real-time computational
efficiency, as well as HBP. Additionally, the study focuses on
complete disassembly [52] in the scope of the disassembly of a
wooden toybox (see Fig. 1a) and a used hard disk drive (HDD)
(see Fig. 12a), and it is possible to adapt the proposed problem
formulation to disassembly processes with larger scales.

The rest of the paper is constructed as follows. Section II de-
scribes the disassembly scenario and several considerations in
the disassembly process. Section Il describes the real-time HBP.
Section IV presents the proposed sequence planner considering
disassembly rules, safety constraints and HBP. Section V intro-
duces the experimental platform and the evaluation of the pro-
posed algorithm. Section VI concludes this paper.
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Fig. 2: Proposed framework of disassembly task planning
II. DISASSEMBLY SCENARIO

Before searching for the optimal disassembly sequence, it
is crucial to acquire the information of the to-be-disassembled
components, including the positions and conditions of the com-
ponents. If they are not collected correctly, the robot cannot lo-
cate the to-be-disassembled components properly and the hu-
man operator may be assigned to the unsafe tasks by accident.
A wooden toybox (see Fig. 1a) is constructed for demonstration
purpose, in which the to-be-disassembled components are Screw
1,2, ..., 7 and rectangular parts V, X, Y, Z, as shown in Fig. lc.

1) Disassembly rules: The directed graph model corre-
sponding to the wooden toybox is illustrated in Fig. 1b, in which
v1, 3, ..., vy are denoted as the disassembly tasks of Screw
1,2,...,7. We define R, as the action of “Removing” a com-
ponent x, where x denotes any of the screws or the rectangular
parts. Also, the notation of “A” denotes that the tasks on both
sides of “A” are parallel tasks. And the notation of “—” indicates
that the left-hand side task of “—" has the higher priority to be
disassembled. According to Fig. 1b, the preliminary disassembly
rules are (i) Ry A Ro N R3 — Ry, (i) Ry A Ry — Ry, (iii)
Ry ANRs — Rx,(iv) Rw ARs — Ry, V) Ry ARy — Rz. In
brief, the wooden toybox disassembly can start with either one
of Screw 1, 2, 3 since there are not any objects stacked on top of
them. Also, Screw 5, 6 and 7 are the last ones to be removed as
they hold the weight of all the other components. In the remain-
der of this paper, the rectangular parts are taken away right after
dismantling the adjacent screws so that the disassembly rules can

be simplified as:
e RuleI: R1 /\Rg /\R3 —>R4

e RuleIl: Ry — R5 A RG A R7
where Rule I indicates that Task 1, Task 2, and Task 3 must be

processed before Task 4; Rule IT shows that Task 4 must be com-
pleted before working on Task 5, Task 6, and Task 7.

2) Cost of operations with human operator and robot: For
obtaining the optimal disassembly sequence, each disassembly
action needs to be parameterized. It is reasonable to quantify
the disassembly cost as the combination of the travel distances
between the robot/human operator and the to-be-disassembled
components, as well as time spent on the tasks.
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3) Safety of human operator: There is an assumption that
removing hazardous materials would appear in the disassembly
process. To prevent human injuries, the task planner in this in-
stance should assign the robot to disassemble the component in-
stead of the human operator. Therefore, safety constraints should
be addressed regardless of the disassembly cost. We also assign
disassembly tasks to the human operator and the robot sequen-
tially [53] to avoid accidental collisions between the robot and
the human operator. By explicitly considering the human opera-
tor’s safety regarding hazardous materials in sequence planning,
we expect that existing related hazard analysis and risk assess-
ment requirements can be released such that HRC can be applied
to broader industrial applications.

4) Computational cost: We refer to a previous study [44] in
which an optimal disassembly sequence is conducted to mini-
mize the total disassembly cost from the initial point to the last
point. This strategy is only feasible in the situation of a small
quantity of components to be disassembled. As the number of
disassembly tasks grows, so does the time to search for the op-
timal sequence.

5) Human behavior: The disassembly efficiency would be
significantly degraded if the human operator is frequently in-
terfered in the planned trajectories. Hence, robots should be
able to understand human’s movement and such “understand-
ing” should be considered in the sequence planning.

III. REAL-TIME HBP

In this section, we focus on how to quantify human motion
intention and how to leverage deep learning techniques for HBP.

A. Human movement intention

Many studies show that (1) the human operator would keep a
comfortable distance from the robot [54], [55] and (2) the human
operator tends to move toward the unfinished tasks after com-
pleting a task. In this paper, we adopt the behaviors for human
intention prediction. These human behaviors result in varying
traveling time after performing a task and would affect the hu-
man operator’s real-time operation cost, thus they should be con-
sidered accordingly in solving the optimization problem.

We illustrate such movement intentions using two cases
shown in Fig. 3 and Fig. 4, where the black circles, the gray-
scaled circles, and the gray-scaled human icons denote the tasks
to be performed, finished tasks and the previous positions of
the human operator, respectively.
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Fig. 3: Human behavior in dis- Fig. 4: Human behavior in dis-
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In Case I, the initial positions of the human operator and the
robot are near tasks v; and v respectively and then the human
operator is assigned to task v, (see Fig. 3a). After vy is per-
formed, considering that the human operator is uncomfortable
about the close proximity to the robot, the human operator would

move in the direction away from the robot (see Fig. 3b). Such
human behavior is quantified as below:

Z Predicted direction after disassembling task 7
~(Angle between robot and positive real axis) + 7

where ~ means “related to”, and the addition of 7 indicates that
the human operator would move in the opposite direction from
the robot. In Case II, the initial positions of the human operator
and the robot locate near tasks vo and v; respectively and the
human operator is assigned to task vs (see Fig. 4a). After task vs
is finished, the human operator tends to prepare for the remaining
tasks vy, v5, vg and vy (see Fig. 4b) and move toward the average
direction of the four tasks. The average direction is estimated
below:

Z Predicted direction after disassembling task ¢

> (Angles between unfinished tasks and task 7)

number of unfinished tasks
Noting that ¢ is denoted as the task number, which is “3” in this

example. Furthermore, the detailed illustration of calculating the
average direction from task vs is shown in Fig. 5(a), where the
blue human icon indicates the estimated position of the human

operator. The predicted human position g% after performing task
v is calculated as: Zq§ = (042 + 042 + 042 + 042)/4, where
0,2, 0,2, 0,2 and 0% are denoted as the angles between task v3

and tasks vy, vs, vg, V7, TESpectively.

B. Deep learning based human behavior predictor

Itis challenging to predict human motion purely based on the
above movement pattern since there are considerable uncertain-
ties, and the disassembly scenarios are numerous according to
the combination of the positions of the tasks, the human operator,
and the robot. It is needed to find a way to predict human motion
reasonably and efficiently. Inrecent years, the convolutional neu-
ral network (CNN) technique has been widely applied in image-
based industrial tasks [S6]-[58] since it can efficiently extract
the significant features of the image without any human super-
vision [59]. More importantly, compared to other deep learning
techniques, i.e., recurrent neural network, the convolution op-
eration of the CNN filter enables the spatial information of the
disassembly scene to be effectively captured [60]. The captured
spatial information, i.e., the relative positions of the workers and
the to-be-disassembled components also assist the network to
make a more reasonable decision for the hand moving directions.
Hence, we leverage the CNN technique and train a deep learning
network model for HBP.

To train such a neural network, we divide the human operator’s
directions into eight after finishing the task v, where z € Z*,
as illustrated in Fig. 5(b). It is noted that the number of human
operator’s directions can be infinite but it is reduced to eight to
simplify and speed up the deep learning training process in this
paper. We create the task planning scenarios for training the neu-
ral network model. The scenarios are saved as images, as illus-
trated in Fig. 6, containing the information of positions of the
finished tasks (gray dots), the unfinished tasks (black dots), the
robot (red dot) and the task to be assigned to the human operator
(blue dot). We use these scenario images to represent various
cases and stages of the disassembly.
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Fig. 6: Two examples of the scenario images

These scenario images are the inputs (denoted as wu) of the
CNN-based human behavior predictor. Fig. 7 illustrates the
structure of the CNN. Each image is composed of three digi-
tal channels that are represented by matrices. A learning kernel
convolves over the scenario images with a certain stride value to
capture the important feature of the scenario images by getting
dot product in the convolutional layer with the equation:

a—10b—1

M(z,y) = ZZk(u,v)](x—I—u,y—i—v)

u=0v=0
where M is the extracted feature map, k is an a xb kernel, and
I is the scenario image. The Relu layer employs an activation
function to set all negative values to be zero, which guarantees
that not all neurons can be activated and further improves the
computational efficiency. To reduce the computational costin the
training process, the pooling layer is implemented to decrease
the dimension of feature maps. Pooling separates the feature
map into spatially continuous matrices with the same dimension.
Each matrix is replaced by its maximum element or the average
value of elements.

To utilize the extracted feature more straightforwardly, the
fully-connected part uses the Softmax function to transfer the
feature map in Eq. (III-B) to 8 x 1 score vector which is cor-
responding to the 8 hand moving directions. The ground truth
hand moving direction and the network prediction are labeled as

D and D, respectively. The training loss is defined as below:

Q k
Loss = 1 Z Z B,.i{D # D}log (P, ;)
Q n=11i=1

where () is the observation number of training sample, k is the
number of hand moving directions, B,, ; is the binary indicator
for the hand moving direction ¢ regarding the training scenario
image n, and P, ; indicates the probability score. After the whole
training process, the well-trained network as human behavior
predictor g(u) has the capability to provide an anticipatory mov-
ing direction y with the highest possible score according to an
image of a task sequence scenario.

To generalize human movement scenarios, the manipulators
position is randomly given in the training set, a number of pos-
sible scenarios of the disassembly are generated as training im-
ages. A total of 10584 scenario images have been labeled with
eight possible moving directions. Approximately 70% of images
are in the training dataset (around 7408 images), and 15% are in
the validation dataset (about 1588 images). The remaining 15%
images constitute the test dataset. After the training process, the
test data accuracy is 78.4%.

IV. SEQUENCE PLANNER

This section introduces details of the sequence planner. The
planner incorporates real-time human motion detection and pre-
diction as well as safety constraints and disassembly rules. The
planning problem is formulated into an optimization problem
and solved in a receding-horizon way. The parameters and nota-
tions are listed in Table I, including parameters related to disas-
sembly scenarios, disassembly cost, disassembly rules and de-
cision variables. Two sets of decision variables are presented in
Eq. (1): a;; determines if task v; is assigned to the human op-
erator or the robot, and ¢;; determines if task v; is conducted
before task v;. Next, the sequence planner is formulated into the
following optimization problem, of which the cost function is
defined as the disassembly cost.

Optimization problem:

T T
: 1—aj;
min ZZ [hij 73] { ,O,é J} bij (D
aij,Pij =0 =0 Qij
Constraints:
Qij € {0, 1} 2)
¢i; € {0,1} 3)
T [T T
> i =Y bri| =0 4)
i=0 | j=0 k=0
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T T
>N =T &)

i=0 j=0
a;; = 1 when task v; is not safe for human operator  (6)

S biit+ > bk =0 (7)

jevy keVe
hij = |qi" = P(vy)] + 78" (v;) (8)
rij = |af — P(v;)| + 75" (v)) )

The constraints are explained in detail as follows. Constraint (2)
guarantees that each task can be done by one human operator
or one robot. Constraints (3) and (4) prevent each disassembly
task from being performed more than once. In particular, the
two summation terms inside the bracket of Constraint (4) en-
sure (i) the same number of workflow entering/exiting the same
task excluding the starting task and the ending task, and (ii) the
same number of workflow exiting/entering the starting/ending
task. Constraint (5) makes sure that all tasks (vq, vo, ..., vT) are
executed.

Next, we conduct Constraint (6) to ensure human safety in the
disassembly process: if task v; is labeled as unsafe for human
operation, the decision variable o; is set to 1, forcing the robot
to perform task v;. In addition, Constraint (7) guarantees the
obedience of the precedence relations among disassembly parts,
following the disassembly rules. Take the toybox disassembly
from Fig. 1b as an example, if tasks v1, v2, v3 must be performed
before task 4 followed by tasks v, vg, v7, then j € {1,2,3} and
k€ {5,6,7}, suchthat 3 -, (1 5 33 @ja + X peqs.6.7p Parx = 0.

Also, we explicitly consider the HRC setting by defining the
cost function in Eq. (1), where h;; and r;; denote the cost of
operation with the human operator and the robot respectively,
which are presumably defined in Constraints (8) and (9). There
are two terms in each of the aforementioned constraints: the first
term represents the distance between task v; and the worker after
leaving task v;, and the second term indicates the worker’s effort
spent on task v;. The two terms are summed using the weighting
factor 7.

— | — . Feasible
Past Future | L Sequence my

Disassembly | Disassembly - Teasible
Cost Cost,. +% Sequence m,

. N
s Feasible

Sequence m,
(optimal)

Fig. 8: Receding horizon of sequence planning

Despite the non-dynamic feature in sequence planning, we in-
troduce the concept of state-feedback control law (referring to
Fig. 8) into the optimization problem and solve it in a receding-
horizon way; (i) the “performance index” in Eq. (10), which is
minimized at each step, explicitly considers the distances be-
tween disassembly tasks and the positions of the human operator
or the robot; (ii) the “constraints” of the RHC correspond to safe-

6

(a) Disassembly Scenarios

Symbol | Definition
T The number of total disassembly tasks, 7" € VAR
V5 The index of disassembly tasks.
P(v;) | Position of the task v;.
(b) Disassembly Cost
hij Human operator’s disassembly cost from v; to v;.
Tij Robot’s disassembly cost from v; to v;.
q,L.h Position of the human operator after completing v;.
q; Position of the robot after completing v, .
SP(v;)| Human operator’s labor effort spent on task ;.
S7(v;) | Robot’s labor effort spent on task v;.
T Weighting factor in the disassembly cost quantification.
(c) Disassembly Rules
Vib Task set that must be done before v;.
Ve Task set that needs to be done after v;.
(d) Decision Variables
®ij “1” if v; is conducted immediately after v;;
“0” Otherwise.
Qij “1” if v; is assigned to the robot;
“0” if v; is assigned to the human operator.

TABLE I: Parameters related to the disassembly: (a) scenarios,
(b) cost, (c) rules and (d) decision variables

ty conditions for human operation and disassembly rules; (iii) the
“states” of the disassembly sequence contain the set of remaining
disassembly tasks V'(¢) and the positions of the human operator
q7 and the robot ¢]'. The parameters related to the receding hori-

zon and states of the task sequence are shown in Table II.
(a) Receding Horizon

Symbol| Definition
t Current step of performing a disassembly task, t < 7'
N Length of the preview horizon.
(b) States
V (k) | Remaining task(s) at step k.
v(k) Task completed at step k.
(jl})l (k) | Predicted human position after task p at step k

TABLE II: Parameters related to (a) receding horizon, (b) states

Receding-Horizon Strategies:

| tN- 1= apm

,min ;; [Ppm () pm ()] [ . } dpm (10)
S.t.

Gpms Apm € {0,1} an

pev(k) k=t,..,t+N-1 (12)

m € V(k) (13)

hpm (k) = |dy (k) = P(om)| + 78" (0m) — (14)

Tom (k) = |ap (k) = P(vm)| + 78" (0m) (15)

qg (k) is predicted by the deep learning model ~ (16)

V(k+1) = FAV(k),v(k), opm (k), apm (k) } (17)

P+ 1) = Fu(gh (), dpm (B), apm (B) (18)

Cj;(k‘Fl) :Fr(qg(k)v%m(k)’%m(k)) (19)

We exploit the resemblance between RHC and the proposed lo-
cal optimal sequence planner in this paper. After executing a
disassembly task at each step, the set V'(¢) is updated and the
human operator may move to a different position, yielding a new
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position ¢/'. The optimal disassembly sequence over N steps is
derived but only the first control action is applied: {@pm, Cpm }
where p = wv(k) is the task done at step k and m € V(k)
where V' (k) is the index of the remaining task set, as shown in
Constraints (11) to (13). Meanwhile, Constraints (14) and (15)
are similar to Constraints (8) and (9) except for the estimated
states ¢ (k) and g/,(k), which indicate the predicted positions of
the human operator and the robot respectively after performing
task m at step k. At step k+1, the new remaining task set V' (k+1)
is updated as shown in Constraint (17) and the optimization is re-
peated. Also, F,, F, and F;. in Constraints (17) to (19) denote the
“Functions” of the corresponding states and decision variables
to predict the remaining tasks and the positions of the human
operator and the robot, respectively. By using RHC, the real-time
human motion can be explicitly included and the optimization
problem can be solved at each step without excessive computa-
tional cost. Fig. 9 depicts the overview of the proposed receding-
horizon disassembly planner.

___________________ E=t41 [

V(t’z =  Human Robot V1)
Gt =+ Behavior Position Update states = Q£r+1
qi —| Prediction Prediction t = gl

a?u[d-N q{....th’ "
Pick the first task from the
optimal sequence and assign

Determine |

hpman and Tm it to worker and robot

Solve optimization for Sequence generator:
next NV steps:
] iy and a;;

,
™ [ (k) w..,,(m][] O |
Cpm

Fig. 9: Sequence generation and optimization of the proposed N-
step disassembly sequence planner

V. EXPERIMENTAL VALIDATION

This section presents the validation of the proposed HRC
disassembly sequence planner. The test equipment is shown in
Fig. 10, consisting of (i) requisite cameras used to identify the
positions of to-be-disassembled objects, the robot and the human
operator, (ii) a universal robot (UR) collaborating with the hu-
man operator, and (iii) a Linux Operating System with an Intel
Corei7 CPU and an Nvidia GTX 1050 Ti GPU. Itis expected that
the human operator would stay alongside the robot to inspect and
accomplish the disassembly tasks collaboratively. In addition,
all the to-be-disassembled objects are assumed to be reachable
by the robot and the human operator with two variables given:
the orientation and components unsafe for human operation.

UR-5e

Human
Robot

Operator

Requisite
Cameras

S

~~~~~~

Fig. 10: Experimental test setup

Case Study I: Toybox with Screw 7 as the Unsafe Condition

At the beginning of the experiment, the toybox is randomly
placed on the table and the positions of the robot, the human oper-
ator and the to-be-disassembled components are identified by the
camera and sent to the computer for sequence planning. Faster
recurrent-CNN (Faster R-CNN) [61], a mature multi-target de-
tection algorithm based on deep learning [62] is used to generate
a series of bounding boxes to classify and locate the objects si-
multaneously. The deep learning model is trained with 220 im-
ages of 660 manually labeled objects.

Next, the positions of the screws (P(v;,.. 7)), the robot (¢),
the human operator (g}), and the remaining screws to be disas-
sembled (V}) are used as the initial states of RHC at each step
t(t=1,2,...,7, see Fig. 1b and Table II(a)). The task planner
searches for the next [V-step feasible sequences, and the control
action is obtained by solving the optimal sequence problem at
each step instantly online. Then, the first task of the optimal con-
trol sequence is executed by the human operator or the robot as
assigned. The procedure repeats for the next steps until all the
screws are disassembled. Noting that Screw 7 is painted in red
to emulate the unsafe condition in this study.

In the first disassembly round, the position data of the wooden
screws, the human operator and the robot is processed to find
the optimal disassembly sequence, as illustrated in Fig. 11a(ii).
Afterward, the planner generates the next three-step optimal con-
trol sequence as shown in Fig. 11a(iii), where (1) the blue arrow
indicates the first disassembly task and the corresponding worker
(the robot), (2) the long gray arrow denotes the second optimal
sequence and the corresponding worker, the human operator in
this step, (3) the blue hand icon depicts the predicted position of
the human hand after disassembling Screw 2, (4) the two short
gray arrows indicate the movements of the human hand after
Screw 2 and toward Screw 1 respectively. The round is complete
by the robot removing Screw 3, as shown in Fig. 11a(iv).

In the second round, the optimization process repeats by
firstly acquiring the position information (see Fig. 11b(i) and
Fig. 11b(ii)), followed by generating the optimal sequence in
Fig. 11b(iii) and then predicting the human hand’s position for
the next round. Also, the first part of the optimal control se-
quence is applied such that the disassembly of Screw 1 is as-
signed and executed by the human operator as in Fig. 11b(iii)
and Fig. 11b(iv). Next, the third disassembly task and the corre-
sponding worker are determined (see Fig. 11c) by the following
three-step optimal disassembly sequence: the human operator
removing Screw 2, followed by the robot dismantling Screw 4,
and then the human operator disassembling Screw 6. It is worth
noting that the sequence planner only sends out the first task with
the corresponding worker from the optimal sequence for execu-
tion. In round 4, the following optimal sequence is found: the
robot removes Screw 4 (the blue one) and then Screw 5, followed
by the human operator removing Screw 6, as shown in Fig. 11d.
Consequently, Screw 4 and the robot in the first optimal sequence
are determined as the disassembly task and the corresponding
worker.

In round 5, the optimal sequence is obtained with the human
operator disassembling Screw 6, followed by the robot disman-
tling Screw 7 and Screw 5 sequentially, as illustrated in Fig. 11e.
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Fig. 11: Case I (a) round 1: robot is assigned to Screw 3, (b) round 2: human is assigned to Screw 1, (c) round 3: human is assigned
to Screw 2, (d) round 4: robot is assigned to Screw 4, (e) round 5: human is assigned to Screw 6, (f) round 6: robot is assigned to

Screw 5, (g) round 7: robot is assigned to Screw 7

Screw 6 is then chosen and disassembled by the robot. Noting
that there are only two remaining tasks in the following disas-
sembly rounds. The optimal sequence at round 6 is Screw 5 and
Screw 7 being executed by the robot in sequence (see Fig. 11f).
The round is complete after assigning the disassembly of Screw
5 to the robot.

In the final task, because Screw 7 is labeled as unsafe for hu-
man operation, it is assigned to the robot disregarding that the
robot’s disassembly cost is higher than that of the human op-
erator. In other words “1” is forcibly assigned to the decision
variable a;7 used in Fig. 11g, where ¢ = 1, 2, ...6.

Case Study II: HDD with Task 2 as the Unsafe Condition

A simplified HDD disassembly is used to validate the pro-
posed HRC disassembly sequence planner. The experiment set-
up is similar to Case Study I (see Fig. 10) with a used HDD (see
Fig. 12a) and a hand tracking feature from Google Mediapipe
[63], a powerful finger tracking solution that tracks 21 joints on
a human hand from just one video frame. Also, the precedence
relationships of the 15 sub-assemblies are shown in Fig. 12b,
in which tasks with bidirectional arrows indicate no precedence
relationships among the linked tasks. Itis assumed that the work-
ers tend to finish one disassembly module (see Table III) before
moving to the next. The whole disassembly comes to the end
when Components 1 to 14 are all removed from the HDD base
(see Component 15 in Fig. 12b). In this case study, the hand
tracking function is used to measure the distances between the
to-be-disassembled components. Additionally, it is assumed that
the positions of all the 14 components (see Fig. 12b) are given,

and Task 2 is marked as unsafe for human operation and high-
lighted in red, as shown in Fig. 13a(ii).

Module Task No. Disassembly Task
Task-1 Top Actuator
Task-2 Actuator Arm
Actuator Task-3 Bottom Actuator Screw-1
Task-4 Bottom Actuator Screw-2
Task-5 Bottom Actuator Screw-3
Task-6 Bottom Actuator
Task-7 Spindle Screw-1
Task-8 Spindle Screw-2
Platter Task-9 Spindle Screw-3
Task-10 Spindle
Task-11 Platter
Task-12 Chip Screw-1
Chip Task-13 Chip Screw-2
Task-14 Chip

TABLE III: Disassembly modules, disassembly task numbering
and names of the used HDD (see Fig. 12)

Initially, the used HDD is placed on the desk as shown in
Fig. 13a(i). Then, the positions of the human operator, the robot
and the 14 to-be-disassembled components are collected for se-
quence planning, as depicted in Fig. 13a(ii). Afterward, the plan-
ner generates the optimal control sequence for the next three
steps as shown in Fig. 13a(iii), where (1) the blue arrow indicates
the first disassembly task and the corresponding worker (the hu-
man operator) obtained from the optimal control sequence, (2)
the long gray arrow denotes the second optimal sequence and
the corresponding worker, the robot in this step; (3) the blue
hand icon depicts the predicted position of the human hand after
performing Task 1; (4) the two short gray arrows indicate the
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human operator’s movement after Task 1 and the robot’s next
task (Task 4) after performing Task 2, sequentially. Then, the se-
quence planner completes the first round by assigning the human
operator to Task 1 as demonstrated in Fig. 13a(iv). The finished
task is labeled with a red cross sign as shown in Fig. 13b(ii).

In round 2, the sequence planner firstly updates the 13 remain-
ing tasks and the positions of the robot and the human operator
shown in Fig. 13b(i) and Fig. 13b(ii), and then it generates the
optimal sequence in Fig. 13b(iii) and predicts the human hand’s
position for the next round. The first part of the optimal control
sequence is applied so that the robot is assigned to perform Task
2, the unsafe task. Even though the human’s position is closer to
Task 2, the robot is sent to finish the task because of the unsafe
condition. In other words, the decision variables ;5 in this sit-
uation are set to “1” (see Eq. (10)), forcing the robot to execute
Task 2. Next, similar to previous rounds, the sequence planner
firstly locates the workers’ positions and the 12 remaining tasks.
Fig. 13c shows the process of determining the task and the work-
er for round 3. The following optimal sequence is found: Task 4,
followed with Task 5, and then Task 3 all by the human operator.
The robot remains at the same position as in round 2. Lastly, the
sequence planner extracts the first of these three tasks from the
optimal sequence and then executes it with the human operator.
For the optimal sequence at round 4, Task 3 is performed by the
human operator, followed by Task 5 and then Task 6, as shown in
Fig. 13d(iii). The human operator is determined to perform the
current and the future tasks because of both the shorter distances
between Task 3, Task 5 and Task 6, and the lower labor efforts
in these three tasks.

Atround 5, we intend to move the human operator away from
the predicted position from round 4 to observe the change of
the predicted disassembly sequence. The following optimal se-
quence is obtained: the robot being assigned to Task 5, followed
by the human operator being assigned to Task 6 and Task 9 se-
quentially, as shown in Fig. 13e. Compared to the prediction
fromround 4, the robot is assigned to Task 5 instead of the human
operator, as the actual human movement is different from the
prediction. The fifth disassembly round ends by assigning the
robot to Task 5, as picked from the first sequence of the optimal
sequence. In round 6, the human operator moves slightly to the
right near Task 8. The following optimal sequence is obtained
and depicted in Fig. 13f: the human operator executes Task 6,
Task 8 and Task 7 in sequence. This round is complete after as-
signing Task 6 to the human operator.

There are two remaining disassembly modules (Task 7 to Task
11 for platter module and Task 12 to Task 14 for chip module, see
Table IIT) left at disassembly round 7. The human operator in this

(b)
Fig. 12: (a) A used HDD and (b) the components’ precedence relationships with their disassembly task numbers

round does not move to the lastly predicted direction, generating
the optimal sequence as follows: Task 9 followed with Task 8 and
then Task 7 all to be performed by the human operator, as shown
in Fig. 13g. After round 7, the human operator stays closer to
direction 3 instead of direction 6 (see Fig. 5(b) and Fig. 13h(ii))
from the previous prediction. Despite the prediction error, the
task planner updates the new position of the human operator and
generates the new optimal sequence for round 8: the robot for
Task 8, followed by the human operator for Task 7 and Task 10
as illustrated in Fig. 13h.

The optimal sequence at round 9 is Task 7 to be performed
by the human operator, followed by Task 10 to be executed by
the robot, and then Task 11 disassembled by the human oper-
ator (see Fig. 13i). Even though both the human operator and
the robot are close to Task 7 with similar distance measures, s-
ince the disassembly cost with the human operator is lower than
that with the robot, the task is assigned to the human operator.
It is worth mentioning that instead of moving to the predicted
direction 5 (see Fig. 13i(ii)), after performing Task 7, the human
operator moves to direction 4 (see Fig. 13j(ii)), which is one-
direction different (see Fig. 5(b)) from the prediction. Despite
the prediction error, the human operator’s position is still close
to the expected position. In round 10, the robot executes Task 10
as in Fig. 13j(iii), which is accurately predicted in round 9 (see
Fig. 13i(iii)). Then the human operator moves slightly to the right
after Task 10. Since the distances between the remaining tasks
have not changed significantly, the human operator is assigned
to Task 11 in round 11, as predicted in round 10.

At round 12, the human moves closer to the remaining tasks.
Although the robot has a lower labor effort than the human oper-
ator on Task 13 (see Fig. 131), the human operator is assigned to
the task because of the shorter travel distance that contributes to
the lower disassembly cost. In round 13, because Task 12 must
precede before Task 14 and the disassembly cost is lower with
the robot than the human operator, Task 12 is assigned to the
robot. The optimal sequence at disassembly round 13 is depicted
in Fig. 13m(iii). Noting that the disassembly cost includes not
only the distance between the worker and the to-be-disassembled
object but also the labor effort of the disassembly Task. The last
task is to perform Task 14. Because the human operator (see
Fig. 13n(i) and Fig. 13n(ii)) remains at the same position as at
round 13, the disassembly cost does not change. Since the hu-
man operator’s disassembly cost is lower, the human operator is
assigned to the last task.

In summary, two case studies have been conducted for the val-
idation. The first case study shows that the proposed sequence
planner effectively predicts the human operator’s standby po-
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Fig. 13: Case II (a) Round 1: human operator for Task 1, (b) Round 2: robot for unsafe Task 2, (¢) Round 3: human operator for
Task 4, (d) Round 4: human operator for Task 3, (e) Round 5: robot for Task 5, (f) Round 6: human operator for Task 6, (g) Round
7: human operator for Task 9, (h) Round 8: robot for Task 8, (i) Round 9: human operator for Task 7, (j) Round 10: robot for Task

10, (k) Round 11: human operator for Task 11, (I) Round 12: human operator for Task 13, (m) Round 13: robot for Task 12, (n)
Round 14: human operator for Task 14
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sitions after finishing a disassembly task, which has been used
as a factor in the disassembly cost in Constraint (14). Also, the
planner assigns the unsafe tasks to the robot while minimizing
the disassembly completion time. The second case study demon-
strates the disassembly of the simplified HDD using the pro-
posed HRC sequence planner, in which the human operator tends
to move more randomly because of the narrow spaces between
the smaller to-be-disassembled components. Despite the more
unpredictable movements of the human operator, the proposed
sequence planner reacts to the position change and generates new
HRC task sequences to continue and finish the whole disassem-
bly process successfully.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a disassembly sequence planning in a
human-robot collaboration setting with real-time human mo-
tion prediction. Multiple factors in the disassembly process have
been considered, including real-time positions of the workers
and the to-be-disassembled components, varying disassembly
cost, human behavior prediction, and safety for human opera-
tion. The optimization problem is approached from a receding-
horizon perspective considering real-time human motion. The
disassembly of a wooden toybox and a used HDD are demon-
strated to validate the proposed algorithm. The experiments
show that the robot collaborates with the human operator and
they efficiently complete the disassembly tasks together without
breaking safety constraints and disassembly rules. It is to be not-
ed that the disassembly objects used in this paper are prototype
implementations with simple structures and small numbers of
components. As part of future work, the algorithm will be made
more efficient for the human operator with constraints related to
ergonomics for instance. Also, extra experiments could be done
with different operators to compare whether the algorithm makes
the disassembly procedure convenient and user-friendly for wide
industrial applications.
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