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Abstract—Human motion prediction is the foundation stone of
human-robot collaboration (HRC) in intelligent manufacturing.
The non-linear and stochastic nature of human motion has
made it challenging to predict the motion accurately. Many
recent deep-learning-based approaches, e.g., convolutional neural
networks or recurrent neural networks (RNNs) have been applied
to address this challenge. On the other hand, existing works
tend to ignore the importance of human dynamics in motion
prediction, especially, the effect of muscle force on the motion.
This paper proposes a novel dynamic model informed motion
prediction method. It utilizes an unscented Kalman filter (UKF)
to predict the state of the future arm dynamic model such
that the future motion of the human arm can be obtained.
In particular, the arm dynamic model is developed based on
Lagrangian mechanics and represented by differential equations.
Embracing the future muscle force predicted by RNN into
the differential equations, such a dynamic model is capable of
explicitly establishing the intrinsic relation between the future
muscle force and the corresponding future arm motion. UKF is
leveraged to predict the future joint position and velocity of the
human arm based on the dynamic model. Experiments on three
motion datasets validate that the proposed prediction method,
compared to the traditional RNN-based prediction using skeleton
vectors, significantly improves the prediction accuracy regarding
elbow and wrist positions.

Index Terms—Human motion prediction, Human-robot collab-
oration, Unscented Kalman filter

I. INTRODUCTION

N the past decade, great attention has been paid to HRC

[1]-[3]. In a seamless and safe collaboration, (e.g., a
robot arm delivers tools to a human worker when doing
an assembly task), the collaborators need to recognize each
other’s motion and take possible future motion into account
such that the efficiency and safety can be guaranteed in a
confined workspace. Therefore, to promote efficient and safe
HRC, extensive efforts have been made on human motion
prediction.

Early tracking-based approaches rely on probabilistic mod-
els to track and predict human motion using particle filter (PF)
[4], [5]. Another type of methods formulates the human motion
prediction as an optimization problem with respect to certain
metrics [6], [7]. In addition, human motions are encoded
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into some latent-variable models, e.g., Gaussian processes
[8], restricted Boltzmann machine [9], and hidden Markov
models [10], in another category of approaches. More recently,
neural networks have shown the great capability of handling
complicated motion prediction [11]-[13]. Among the various
neural networks, RNN with different architectures, e.g., long
short-term memory (LSTM) [14] and gated recurrent units
(GRU) [15], is widely applied to capture the dependencies in
the motion data since the RNN hidden states can store the past
motion characteristics [16]. Moreover, different RNN-based
works were developed to improve the prediction performance.
For example, Liu et al. [17] first used RNN with LSTM to
predict the wrist motion, and then leveraged inverse kinematics
to obtain the whole arm’s future motion. Using LSTM as
the recurrent layer, an encoder-recurrent-decoder network was
applied to learn and forecast human kinematics in videos [18].
A sequence-to-sequence residual architecture utilizing GRU
showed the effectiveness in both short-term and long-term
motion predictions [19].

Despite RNN having the advantage of learning motion
contexts, it still has several drawbacks. First, RNN is difficult
to train since the long-term components grow exponentially
or convert to norm O easily [20]. Moreover, existing works,
e.g., [17], [18], applied N-to-1 structure to predict the motion
of the next step iteratively, which tends to accumulate errors
throughout the entire predicted sequence. The last critical
problem is that most RNN-based works fail to build the
intrinsic connection between motion and the human physical
body.

To incorporate the physical information of the human body
into network training, several approaches utilize Lie algebra
to represent separate kinematic chains of the human body,
such that anatomical constraints during the motion are encoded
naturally [21]. For example, a special Euclidean group SE(3)
was used to indicate the relative translation and rotation of
each skeleton in [21]. In addition, to handle the inconsistent
bone length issue caused by bringing the relative translation
into training (e.g., [22] and [23]), with the bone length fixed,
the relative rotation of each skeleton was represented using a
special orthogonal group SO(3). In brief, instead of using the
traditional Euclidean training loss, the mentioned Lie-algebra-
based approaches inherently use the geodesic training loss
such that the relative geometric structure of the human skeleton
is enhanced during the network training.

Even though the approaches using SO(3) or SE(3) obtain
impressive performances in human motion prediction, the Lie-
algebra-based approaches still ignore the dynamics of human
motion, especially the muscle force which serves as the most



Bone length

x
Captured motion S}‘/I v " LSTMS S /:/‘/‘ ([ 0"/
Inverse dynamics F& R | F* 4 Y I
ofa?r/m 23 g i) LSTM" ,,_/:,,f

Arm dynamic
model

State-space
model

1. Motion transition model
2. Motion measurement model

7
)

Process and
measurement noises

Fig. 1: Overview of proposed prediction approach: green arrows indicate the muscle forces, purple dots represents the joints of the observed poses, blue dots
stands for the joints of the predicted poses, and red dots are the predicted joints after UKF.

significant motivation of the human motion. Considering that
electromyography (EMG) is capable of directly measuring
muscle response [24], the relationship between the motion and
muscle force has been extensively explored in EMG-based
approaches, e.g., [25]-[27]. However, as discussed in [28],
[29], EMG signals contain lots of fuzziness and are easily
affected by environmental conditions.

Therefore, using the Lagrangian approach to develop the
inverse dynamics of the human body is leveraged as an
alternative way to map the human motion to the corresponding
muscle forces explicitly. For example, Li et al. [30] used
Lagrangian dynamic equations to describe the full-body move-
ment of the person in video frames and to estimate the force of
person-object interactions actuated by the human. Lv et al. [31]
proposed a data-driven inverse dynamics approach to estimate
human joint torques, and the effectiveness of the proposed
approach was validated in various human movements. Cao and
Nevatia [32] applied inverse dynamics and direct dynamics,
respectively, to calculate forces and re-construct occluded or
non-captured human poses.

On the other hand, integrating the Lagrangian-mechanics-
based dynamic model into human motion prediction remains
an ongoing challenge considering that future motion and
force are both unknown at the current time instant. To
overcome this challenge, this paper proposes a dynamic model
informed motion prediction approach, which uses UKF to
predict the human motion based on future human dynamics.
Specifically, we focus on human arm motion, and apply RNN
and Lagrangian mechanics to obtain the future arm dynamic
model. Considering that such a dynamic model is highly non-
linear, UFK is leveraged to predict the model state, which
is the joint position and velocity. In addition, since it is
impossible to use sensors to measure the future arm motion
at the current time instant, the predicted motion using RNN
is utilized as the measurement motion data in UKF.

UKEF is a model-based filtering approach, that has com-
monly been implemented to track and predict human motion,
e.g., [33]-[36]. Compared to the traditional UKF-based predic-
tion studies obtaining the real-time measurement data by sen-

sors, the proposed method utilizes neural networks to estimate
the measurement data for a certain future horizon, and thus
is beneficial for long-term motion prediction. Furthermore,
different from [35], [36], the motion equations of the proposed
method are derived using the Lagrangian approach, which
directly connects the muscle force and human motion. In
general, the main contributions of this work are summarized as
follows. (1) An intrinsic connection between the future motion
and the future muscle forces is explicitly established based
on a Lagrangian-mechanics-based arm dynamic model. (2) A
novel dynamic model informed prediction method is proposed.
By incorporating the predicted muscle forces, UKF is capable
of further improving the preliminary arm motion prediction
obtained from the traditional RNN. (3) The effectiveness of
the proposed dynamic model informed prediction method has
been experimentally validated using three motion datasets.

The remainder of this paper is organized as follows. Section
2 presents an overview of the proposed approach. Section 3
describes the arm motion prediction using skeleton vectors.
Section 4 introduces the proposed dynamic model informed
arm motion prediction method. Section 5 presents the valida-
tion of the proposed prediction methods based on three motion
datasets. Section 6 concludes this paper.

II. OVERVIEW OF THE PROPOSED DYNAMIC INFORMED
PREDICTION APPROACH

This section introduces the overview of the proposed novel
prediction approach. This method aims to utilize the dynamic
model including future muscle forces to predict the future arm
motion. The needed notations and definitions are presented
as follows. The arm skeleton pose is denoted as S =
[v4;vf] € RS, where v* € R? and v/ € R3 are unit
bone-vectors representing the directions of the upper-arm and
forearm respectively. The observed skeleton pose sequence
is S = [S_ni1,---,50] € RO*N and the predicted pose
sequence is S* = [SF,..., S5, ..., 5% € RO*M where m
is the index of the prediction, and N and M are the time steps
of the observation and prediction respectively. The observed
and predicted muscle force sequences are denoted as F and



F*, respectively. LSTM?® and LSTM?" indicate two well-
trained RNNs with LSTM structure, which are used to predict
skeleton pose sequence S* and force sequence F*. In addition,
x stands for the predicted arm motion sequence after UKF.

Fig. 1 illustrates the overview of the proposed prediction
approach. Firstly, captured motions are converted to the
observed motion sequence S, and S is utilized to obtain
the predicted motion sequence S*, which is regarded as the
measurement motion data in UKF. Secondly, to calculate
the observed force sequence F, the arm dynamic model
is developed using Lagrangian mechanics and the inverse
dynamics of the arm is formulated.

Thirdly, the arm dynamic model is converted to the motion
transition and measurement models. Embracing the predicted
force sequence F* allows the motion transition model to
calculate the future motion of arm joints. Eventually, UKF
is leveraged to obtain the final predicted arm motion sequence
X.

III. ARM MOTION PREDICTION USING SKELETON VECTORS

This section presents how the human arm motion sequence
S* is predicted using skeleton vectors. We choose recurrent
neural network with LSTM to capture temporal dependences
of human arm’s motion [37] and predict the future arm motion
effectively. More precisely, the gates of LSTM assist the
network to learn arm motion’s characteristics, and the well-
trained network utilizes the observed skeleton poses S to
predict the future skeleton poses S*.
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Fig. 2: The LSTM structure: purple dots indicate the observed arm joints, two

red arrows are the directions of bones, FCL stands for the fully connected

layer, the last hidden state hp is the input of FCL, and blue dots represents
the predicted arm joints.

We choose unit vectors of bones instead of 3D position
data of arm joints to train a network. The advantage of
such a choice is that by multiplying the unit vector with the
corresponding bone length, the distance between two joints
is always fixed when we re-construct the future arm motion.
Fig. 2 presents the LSTM architecture, where c;_; is the
cell state memorizing the arm motion information from the
previous iteration, h;_ is the hidden state from the previous
iteration, S is the current arm pose input, and o and tanh are
the sigmoid and tanh activation functions. o is first applied

as a forget gate to determine what motion characteristics from
ct—1 need to be ignored using the following equation:

fo =01 (wy - [he—1, 5] + by)

where f; is the output of the forget gate, and wy and by are
the learning weights and bias of the forget gate layer. Next,
o9 is applied as an input gate to determine what new motion
characteristics need to be added into c;_; using the following
equation:

it = 09 (wi . [ht—last] + bz)

where i; is the output of the input gate, and w; and b; are
the learning weights and bias of the input gate layer. After
that, the cell state ¢, is updated to ¢, using the following
equation:

ct = fr © ci—1 + iy © tanh (we - [he—1, S| + be)

where ® denotes the Hadamard product, and w. and b, are
the learning weights and bias to update the cell state. Finally,
os is applied as an output gate to output crucial motion
characteristics using the following equations:

or = 03 (Wo - [hy—1,S¢] + bo)
hy = o4 ® tanh (¢;)

where o; is the output of the output gate, and w, and b, are
the learning weights and bias of the output gate layer. The last
hidden state h is connected with a fully connected layer to
provide the prediction S*. The prediction process is denoted
as:

S* = LSTM*(S) (1)

IV. DYNAMIC MODEL INFORMED ARM MOTION
PREDICTION

Although the skeleton vector-based LSTM effectively han-
dles the stochastic nature of arm motion and successfully
predicts arm motion, this purely data-driven model ignores the
critical arm motion dynamics, which may cause motionless
or occasional unrealistic predictions. Therefore, this section
presents that we (1) implement Lagrangian mechanics to build
the intrinsic connection between the arm motion and the joint’s
muscle force, and predict the future forces, and (2) incorporate
the predicted force into the arm motion dynamic model and
leverage UKF to obtain more accurate arm motion prediction.

A. Prediction of arm joints’ muscle forces using dynamic
model and RNN

This section describes the details on using Lagrangian
mechanics to develop the arm dynamic model to compute
the observed muscle forces acting on the shoulder and elbow
joints, and applying LSTM to predict the future joint’s muscle
forces. Fig. 3 demonstrates the arm geometric model and two
reference frames. To simplify the problem, we assume the
shoulder is fixed on position O. The spherical shoulder frame
I uses 61 and ¢ to track the rotation of the shoulder joint
based on the upper-arm motion. The spherical elbow frame F
uses 0 and ¢4 to track the rotation of the elbow joint based
on the forearm motion.
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Fig. 3: Human arm geometric model and reference frame definition: the black
dots represents joints, ¢1 is the angle between b3 and v, ¢2 is the angle
between es and v/, 61 is the angle between b1 and 0%, where 0" is the
projection vector from v* to by-bz plane, and 02 is the angle between e; and
of , where f is the projection vector from vf to ej-eg plane.

The Lagrangian mechanics is applied to derive the dynamic
equations of arm motions. The arm Lagrangian L is defined
using the total arm kinetic energy 7' to minus the total arm
potential energy U with the following representation:

L=T-U

the Euler-Lagrangian equation [38] based on the derived
Lagrangian function describes the arm motion dynamics and

is given by:
d (0L oL
— = ]|—-—=—=F 2
dt (6‘4) dq )

where g = [01; 02; ¢1; ¢2] are the generalized coordinates and
the non-conserved muscle forces F' are the only considered
generalized forces in this study. Eq. (2) are the second order
ordinary differential equations and can be represented as the
inverse dynamics matrix form

F = D(q)j+ Clq,9)q + G(q) )

where D(q) denotes a 4x4 symmetric and positive definite
inertia matrix, C(q,q) is a 4x4 velocity coupling matrix,
G(q) represents a 4x 1 gravitational force vector, and D(q) -
2C(q, q) is a 4x4 skew-symmetric matrix [39].

The intrinsic relationship between the arm’s motion and the
muscle forces acting on the shoulder and elbow joints has
been established based on Eq. (3). The observed generalized
coordinate sequence q = [¢_N1,---,q0] € RN as well
as its first and second derivatives are used to generate the ob-
served muscle force sequence F = [F_n41,..., Fp] € RAXN
We apply recurrent neural network with LSTM to predict the
future muscle force sequence F* = [Fy, ..., F} . ..., Fy] €
R4*M ysing the following equation:

F* = LSTMF (F) “4)

The dynamic model integrating F* can be used to predict
the arm motion, and the details are illustrated in the next
subsection.

B. Arm motion prediction using UKF

This subsection introduces the details of using UKF to
predict the arm motion. The direct dynamics of the arm is
represented with the following equation:

i=D(q)""(F —C(q,4)§ — G(q)) (5)

The state of the arm dynamic model is denoted as x = [g; ¢] €
R® and regarded as the temporal arm motion, the continuous
nonlinear motion transition function based on Eq. (5) is
represented with the following equation:

z :gc(:ch) (6)

By plugging the future muscle forces into Eq. (5), the future
arm dynamics is obtained and used to estimate the future arm
motion. Furthermore, Eq. (6) is converted to the following
discrete-time motion transition function:

Ty = Tm—1+ gc(xmfly F;;Lfl)Ts + 6m

7
:g(xmflaF;mfl)_*_(sm 2

where 0,,~(0,Qy,) is process noise with Gaussian distri-
bution. The motion measurement model is defined as the
following equation:

Ym = h(xm) + Cm

where h is a mapping function from estimation space to
measurement space, and (,,~(0, R,,) is measurement noise
with Gaussian distribution.

Kalman filter has been widely applied to estimate the state
of a system based on Gaussian distribution. However, the
traditional Kalman filter is difficult to estimate the state of
non-linear models. For example, to predict the arm motion
for the next M time steps, the arm motion of the M time
steps are assumed to be in the form of Gaussian distribu-
tion. However, the temporal arm motion x,, can not remain
Gaussian since 2,1 passed the nonlinear function g(-). To
deal with non-linear models, existing works, e.g., [40]-[42]
leveraged extended Kalman filter (EKF) to first linearize the
dynamic model, and then approximate the state distribution
based on the linearized model. Despite the extended Kalman
filter is capable of estimating the mean and covariance in many
cases, the variables only propagate the first-order or second-
order approximation of the true non-linear model, which brings
large errors and is computational expensive in the estimation
of highly non-linear systems [43].

To better estimate the arm motion, instead of propagating
the linearized arm dynamic model like the way in extended
Kalman filter, UKF applies the unscented transformation
method [44] to enable the variables to propagate the true arm
dynamic model, and approximate a new Gaussian. Assume the
mean and covariance based on all estimated arm motions from
the previous iteration are f,,—1 and P> ;. And 2L+1 sigma
point vectors X! _; is generated to construct a sigma matrix
X,n—1 representing the current whole distribution, where L is
the number of features describing the temporal arm motion
and i = 0,1,...,2L. X! _, is developed use the following
equations [45]:
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Fig. 4: Predicted muscle forces in motion A: (a) and (c) are the muscle forces

the elbow joint.
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where X is a scaling parameter, and (\/(L + X)Py,_,), is the
i-th column of the matrix root. The mean and covariance for
the approximated new Gaussian are:

2L
Um = Z Wig(X;, 1, Fr1)
=0 9)

2L
]5;1 = Z Wil + Q.

i=0
where a = g(X! |, F* _ 1) — Um, and Wy = \/(n + \)
and W; = 1/[2(n + A)] are assigned weights. Algorithm 1
describes the details of the proposed dynamic model informed
arm motion prediction. To calculate the Kalman gain K,,, the
mean and covariance of the measurement are calculated using
the similar way shown in step 5. Importantly, considering
we cannot measure the future arm motion at the current
time instant, we utilize the predicted motion sequence S*
based on Eq. (1) to substitute for the sensor-based measure-
ment data in UKF. In addition, S* is converted to y* =
(s sy Uiy ooy yhy) € RM where y, = [¢*;¢*] € RS.
Eventually, v, integrating the updated Kalman gain K,, is
applied to predict the arm motion z,, shown in step 9.

V. EXPERIMENTAL TESTS AND RESULTS

This section describes the experimental validation of the
proposed arm motion prediction methods, we (1) setup an
experimental platform to collect the arm motion data used for
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acting on the shoulder joint, and (b) and (d) are the muscle force acting on

training, (2) train LSTM?® and LST MY to predict the skele-
ton pose sequence and muscle force sequence separately, and
(3) predict the arm motion based on the future dynamic model
and compare the results of the pure data-driven prediction and
the dynamic model informed prediction.

A. Data acquisition

Experimental tests have been conducted to collect the
motion data. The experiment platform is illustrated in Fig. 7.
The human worker is doing grasping tasks. The Vicon camera
system captures the arm motion based on the attached markers
at a frequency of 25H z and provides the arm’s trajectory. The
motion of the human arm has three types which are shown
in Fig. 8. In motion A, the human worker arm first moves
forward to grasp screwdrivers in the front side, then moves
back to the original position. In motion B, the procedure of
the arm movement is similar with the procedure in motion A.
Nevertheless, the screwdrivers’ location is on the left side of
the human worker, which requires more rotation of shoulder
and elbow joints. Moreover, in motion C, the human worker
first grasps a screwdriver located on the left side. Next, the
screwdriver needs to be dropped into the screwdriver box
located on the right side. Eventually, the human hand moves
back to its original position. Thus, the trajectories of arm are
totally different in three motions.

B. Network training

We collected 132 trajectories for arm motion A, 144 trajec-
tories for arm motion B, and 153 trajectories for arm motion C.
For trajectories of each motion type, 70% is used for training,
15% is used for validation, and the remaining is used for
testing. All trajectories are converted to skeleton vectors and
muscle forces, separately. What’s more, the anthropometric
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Fig. 7: Experiment platform

data [46], e.g., bone length, masses and inertia moments
of upper-arm and forearm, could be diverse based on the
different human workers. We apply the common values of the
anthropometric data to calculate the joint muscle forces based
on the derived dynamic equations. We set the observation
horizon N and prediction horizon M both to be 50, which
indicates that the times of observation and prediction are both
2s. We train the neural network for motion A, motion B,
and motion C separately. For all well-trained networks, e.g.,
LSTM?S and LSTMF, the training loss function is the mean
absolute error.

C. Prediction results and discussion

1) Muscle force prediction: The predicted and true muscle
forces in motion A are demonstrated in Fig. 4. The four
subplots correspond to the four generalized coordinates of g,
separately. The predicted forces are obtained by a well-trained
LSTMY, and the ground-truth forces are calculated based on
the inverse dynamics of the arm. Considering the Vicon system
captures the arm motion at a high frequency, which introduces
noise to the first and second derivatives of ¢, the calculated
forces contain more noises than the predicted forces. Since
we have the future muscle forces, a straightforward way to

Motion B:

®-@-0

(b)

Motion C:

Fig. 8: Three types of arm motion: the numbers in the figure, e.g., 1, 2, and 3,
represent the hand’s position, screwdrivers are in front of the human worker
in motion A, screwdrivers are on the left side of the human worker in motion
B, and one screwdriver is on the left side and the remaining screwdrivers are
on the right side in motion C.

obtain the future arm motion would be solving Eq. (5) using
integration. However, this approach integrates the future-force-
based differential equation iteratively, and the calculated arm
motion in the current iteration highly relies on the motion from
the previous iteration. Although the predicted forces are very
close to the true forces as shown in Fig. 4, the small error
would accumulate throughout the whole integration, which
leads to inaccurate or unrealistic predictions. Therefore, we
leverage UKF to enable the prediction at each iteration to
depend on the whole state distribution instead of only the
prediction from the previous iteration, such that we could
obtain a more accurate prediction.



Algorithm 1 Dynamic Model Informed Arm Motion
Prediction

e Input: Observed arm motion S and q

o Input: Well-trained networks LSTM* and LSTM¥

e Input: Arm dynamic model, T's, R, and Q)

1. Use q and its first and second derivatives to calculate F
based on Eq. (3).

2. Obtain F* based on Eq. (4).

for m=1,2,..., M do

3. Compute sigma points based on Eq. (8).

4. Calculate mean and covariance for the motion estimation
based on Eq. (9).

5. Calculate mean and covariance for the measurement:

mo1 Fon1))

2L
:gm = Z Wth(g(
=0

2L
Py, = W,B8" + Ry

i=0
where 8= h(g(X},_1, Fly 1)) = iin-

m—1
6. Calculate cross co-relation matrix PYY between the
estimation and measurement:

2L
Py = " Wiap"
=0

7. Update the Kalman gain K,,:
Ky = PrY(Py)~!

8. Obtain S* based on Eq. (1), and convert S* to y*.
9. Predict the arm motion and update the covariance:

Ty = Tm—1 + Km(y:n - Z)m)
P = P* — K, PYKT

m m m

end
e QOutput: The arm motion sequence for the next M time steps
X=[T1, oy Ty ey Tar)

2) Comparison: This paper also uses EKF and PF to predict
arm motion as comparisons for UKF. EKF approximates the
state distribution based on the linearized arm model instead
of the true non-linear arm model like UKF and PF. In
addition, the difference between UKF and PF is that instead
of randomly choosing samples like PF, UKF employs the
unscented transformation method to select sigma points to
propagate the non-linear arm model.

To better illustrate our prediction results, the motion pre-
diction method using skeleton vectors is denoted as SV, the
dynamic model informed motion prediction methods using
UKEF, EKF, and PF with 4000 samples are denoted as SV-
UKEF, SV-EKF, and SV-PF, respectively. Furthermore, motion
A, motion B, and motion C are represented as A, B, and C,
respectively. The process noise is defined to be larger than the
measurement noise considering the network prediction error
and the anthropometric error, e.g., bone length, masses and
inertia moments of upper-arm and forearm, both contribute to
the process noise. The process noise for all motions is defined

Motion B
(0.0300, 0.0310)m

Motion A
(0.0060, 0.0221)m

Motion C
© (0.0163, 0.0166)m

(a) SV-A (b) SV-B (c) SV-C
Motion A

(0.0044, 0.0134)m

Motion C
- (0.0133,0.0151)m

Motion B
(0.0198, 0.0281)m

((?);V—UKF—A
Fig. 9: Visualization of prediction: green, blue, and red trajectories indicate
the ground-truth trajectory, the prediction using SV, and the prediction using
SV-UKEF respectively, and the average prediction error of the next 50 steps is
labeled as (elbow error, wrist error)m

(e) SV-UKF-B (f) SV-UKF-C

as 0.1. We tuned the measurement noises based on different
motions. The measurement noises for motion A, B, and C are
defined as (0.005,0.005,0.005,0.05), (0.05,0.003,0.06,0.003),
and (0.02,0.005,0.01,0.005). For each kind of motion, SV-
UKF, SV-EKF, and SV-PF all have the same measurement
noise.

To qualify the motion prediction results, the prediction error
plots of elbow and wrist at one-time instance are shown in
Fig. 5 and Fig. 6, respectively. We use three kinds of lines to
stand for three kinds of motions. The results from the proposed
SV are represented with black color. The results from SV-UKF,
SV-EKF, and SV-PF are represented using red, green, and pink
colors. The comparison of the prediction errors indicates a few
points. First, the SV-UKF’s performance is close but slightly
better than the SV-EKF’s performance, especially in motion
A and C. The other point is that, in motion C, despite SV-PF
having the best performance in predicting the elbow’s position,
the prediction of the wrist’s position is worst compared to other
methods. In general, the predictions on the elbow and wrist
using SV-UKF are more accurate and robust, thus, outperforms
other methods.

To visualize the motion prediction results, the predicted arm
trajectories and the average prediction errors are demonstrated
in Fig. 9. The trajectories of the elbow and wrist in the next 50
steps are drawn manually. The ground-truth trajectories of the
elbow and wrist are represented using green color, and the blue
and red trajectories stand for the predicted trajectories using
SV and SV-UKE, respectively. The average prediction errors
of the elbow and wrist are shown in the top-left corner of each
sub-figure. What’s more, the percentage of the error reduction
from SV to SV-UKEF is shown in Table. I. By integrating the
arm dynamic model, the average prediction error has been
significantly reduced. Fig. 10 shows the effectiveness of SV-
UKF in terms of the arm motion range. The prediction error
over the motion range, most of the time, maintains below 5%
in motion A. And for motion B and motion C, the maximum
percentages are both below 15%.



Motion | Elbow Error Reduction | Wrist Error Reduction

A 26% 39%
B 34% 9%
C 18% 9%

TABLE I: Reduction percentage of average prediction error
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(=}

Elbow-A ===Elbow-B ====Elbow-C
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&
:

Error/Motion(%)
w o

(=)

Steps
Fig. 10: SV-UKF prediction error related to motion range

VI. CONCLUSIONS AND FUTURE WORK

This study has presented a novel arm dynamic model
informed motion prediction method that aims to improve
safety in HRC. We implement Lagrangian mechanics to
develop the arm dynamic model that builds the connection
between the arm motion and the corresponding muscle force.
The past muscle forces are calculated based on the inverse
dynamics of the arm, and the predicted muscle forces are
obtained based on RNN. UKF is applied to handle the non-
linear arm dynamic model and predict the future motion of
the human arm. The proposed approach has been validated
using three motion datasets, and the prediction results show
that integrating the arm dynamic model indeed improves the
prediction accuracy. Compared to the prediction error using
the traditional RNN, the prediction error using the hybrid
prediction method has been reduced significantly.

Considering the experimental tests only contain three kinds
of motion, future studies can focus on making the proposed
method to be generalized to different kinds of arm motions.
Some generalization techniques, e.g., transfer learning, could
be implemented to only use small sets of training data and
networks that have promising prediction accuracy. Additional
studies such as predicting the whole human body motion
could also be achieved as long as the body dynamic model
is constructed. Another area for future studies is to apply the
proposed method based on a camera-based monitoring system
since camera-based systems have been widely used in real
industrial applications. The positional information of the hu-
man could be extracted and predicted from the captured RGB
or RGB-depth images using some learning-based techniques,
e.g., neural networks. Finally, the proposed method could
also be beneficial for human-robot collaboration. For example,
robot motion planning could take future human motion into
account, such that human safety could be guaranteed when
doing collaborative tasks.
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