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Abstract. We consider the complexity of special α-limit sets, a kind of backward limit set
for non-invertible dynamical systems. We show that these sets are always analytic, but not
necessarily Borel, even in the case of a surjective map on the unit square. This answers a
question posed by Kolyada, Misiurewicz, and Snoha.

A topological dynamical system is a pair (X, f) where X is a compact metric space and
f ∈ C(X,X) is a continuous map of X to itself. Limit sets and backward limit sets provide
some of the most important tools in understanding the behavior of a topological dynamical
system, since they provide information about the long-term behavior of the orbits of the
system. One notion, in particular, of a backward limit set is the notion of a special α-limit
set, which has played an important role in one-dimensional dynamics (the notion is defined
and discussed below).

Descriptive set theory provides a means for calibrating the complexity of sets in Polish
spaces, and this in turn is important for understanding the impact of possible theorems about
the objects under consideration. To give an example of this phenomenon, consider the case
of normal numbers for some base b ≥ 2. Let Nb denote the set of real numbers which have a
normal base-b expansion. Let N⊥b denote the set of real numbers γ such that γ + Nb ⊆ Nb,
that is, they preserve base-b normality under addition. By its definition, this set does not
at first even appear to be a Borel set as it involves a universal quatification over Nb (the
definition shows it to be a coanalytic, or Π1

1 set; see [18] for the definition). However, a deep
theorem of Rauzy characterizes the normality-preserving numbers as those with zero upper
noise [20]. Since the upper noise of γ is defined by taking limits (and lim sup’s) of sequences
of continuous functions of γ, it follows immediately that N⊥b is Borel, in fact a Π0

3 set. In

fact, in [1] it was shown that N⊥b is a Π0
3-complete set, which shows that it is no simpler than

this.
The present paper shows that the special α-limit set of a point in a topological dynamical

system, in fact even for the case of the unit square in R2, can be a Σ1
1-complete set, and thus

not Borel. The significance of this is that it tells us that there are no such “hidden theorems”
for special α-limit sets, even in compact metric spaces. Thus, the definition involving an
existential quantification over all backward orbits cannot be simplified.

We remark that it is unusual in our experience for a dynamically-defined set to be non-
Borel. In fact, most of the important sets studied in a topological dynamical system occur
at the lowest few levels of the Borel hierarchy. Examples we can think of include the basin
of an attracting cycle (an open set), the non-wandering set (a closed set), the set of periodic
points (an Fσ set), or the set of points with a dense orbit (a Gδ set). The reader can surely
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think of many more examples. On the other hand, a result of Foreman, Rudolph, and Weiss
[10] says that the set of invertible, ergodic, measure preserving transformations (on the unit
interval with Lebesgue measure) which are isomorphic to their inverses is a complete analytic
set. In particular, the isomorphism relation between invertible, ergodic, measure preserving
transformations is not Borel. G. Hjorth [16] had previously shown the the isomorphism
relation is not Borel for the larger class of invertible measure preserving transformations.

The authors have recently shown that special α-limit sets can in fact occur at any level in
the Borel hierarchy, but this will be part of a forthcoming paper.

We now discuss these notions more precisely. Throughout this paper N = {0, 1, . . . } will
denote the set of natural numbers. The ω-limit set of a point x ∈ X under a map f , denoted
ω(x) or ω(x, f), consists of all accumulation points of the forward orbit (fn(x))n∈N of the
point x. These sets are always closed, and their topological properties are well understood,
see eg. [2, 3, 5, 6, 17, 21].

The backward limit sets of a point x play a dual role to the ω-limit set. The idea is
that to describe the “source” of a trajectory, we should reverse the direction of time. For
invertible dynamical systems (homeomorphisms) this leads to a well-defined α-limit set α(x) =
ω(x, f−1). This idea came into discrete dynamics from the study of flows, where α-limit sets
are fundamental in defining such objects as unstable manifolds, homoclinic and heteroclinic
trajectories, and the Morse decompositions at the heart of Conley theory [7, 12].

For non-invertible mappings f : X → X, the situation is more complicated, since a point
may have several preimages (or none at all). There are several ways to define backward limit
sets in this setting:

(1) The α-limit set of a point, denoted α(x), consists of all accumulation points of all preim-
age sequences (xn)n∈N, where xn ∈ f−n({x}) for all n. These sets are especially useful in
dimension one. Coven and Nitecki proved that a point is non-wandering for an interval map
if and only if it belongs to its own α-limit set [9], and Cui and Ding related the α-limit sets
of a unimodal interval map to its renormalizations [8].
(2) The α-limit set of a backward orbit, denoted α((xn)∞n=0), consists of all accumulation
points of a single backward orbit, i.e. a sequence (xn)n∈N, where f(xn+1) = xn for all n. Hirsch
et al. showed that the α-limit set of a backward orbit is always internally chain transitive [15].
A converse result holds when f is expansive and has the shadowing property [11]. For maps
on the interval, the α-limit set of a backward orbit satisfies a local transportation condition
which makes it simultaneously an ω-limit set of f [4].
(3) The special α-limit set of a point, denoted sα(x), is the union

⋃
α((xn)∞n=0) taken over

all backward orbits of x, i.e. sequences (xn)n∈N such that f(xn+1) = xn for all n and x0 = x.
These sets were defined by Hero, who showed that for interval maps, a point is in the attracting
center if and only if it belongs to its own special α-limit set [14]. Generalizations of this result
to other one-dimensional spaces were given in [22, 23].

Kolyada et al. pointed out that special α-limit sets need not be closed, and asked whether
they are necessarily Borel or at least analytic [19]. The difficulty arises when x has uncountably
many backward orbit branches, since we are then taking an uncountable union of their (closed)
accumulation sets.

The complexity of special α-limit sets (or sα-limit sets, for short) for maps of the interval
I = [0, 1] will be addressed in a forthcoming paper, where it will be shown that sα(x) is
always Borel, and in fact both Fσ and Gδ [13].

This paper is concerned with the complexity of sα-limit sets in other compact metric spaces.
We start in Section 1 by showing that sα-limit sets are always analytic. The proof is short
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and uses the fact that backward orbits occur in a well-known compact metric space related
to (X, f), namely, the natural extension.

The main construction in this paper gives a map on the unit square I2 = [0, 1]2 with a sα-
limit set which is Σ1

1-complete, i.e. analytic but not Borel. Our construction starts in Section 2
at the symbolic level with a one-sided shift space X ⊂ {0, 1, 2, 3, 4}N, in which the set of all ill-
founded trees on a countable set have been suitably encoded into the backward orbit branches
of a given point x. We show that sα(x) ⊂ X is not Borel. Then in Section 3 we embed this
shift space as a totally invariant subsystem for a map on the square F : I2 → I2, and show
that the sα-limit set of the corresponding point is not a Borel subset of I2. We remark that
the map F in our counterexample is surjective, piecewise monotone, and triangular, i.e. a
skew product map of the form F (x, y) = (f(x), gx(y)).

1. Special α-limit sets are analytic

A Polish space is any separable, completely metrizable topological space. A subset B of a
Polish space Y is called analytic (or a Σ1

1 set) if there exist a Polish space X, a Borel subset
A ⊆ X, and a continuous map f : X → Y such that B = f(A). The class of analytic sets in an
uncountable Polish space strictly contains the class of Borel sets. A set is called Σ1

1-complete
if it is analytic but not Borel, or equivalently, if it is analytic but its complement is not.

Recall that a topological dynamical system is a pair (X, f) where X is a compact metric
space and f : X → X is continuous. In this section we show that sα-limit sets of topological
dynamical systems are always analytic.

Theorem 1. Every sα-limit set of a topological dynamical system (X, f) is analytic.

Proof. Give XN the product topology. It is compact and metrizable. For example, if d is the

metric on X, then d̂(x0x1 · · · , y0y1 · · · ) =
∑

n 2−n min(1, d(xn, yn)) is one compatible metric

on XN. Now let X̂ ⊆ XN be the closed subspace

X̂ = {x0x1 · · · | f(xn+1) = xn for all n ∈ N}.

X̂ is a topological space whose points are the backward orbits of (X, f). We remark that the

space X̂ equipped with the map x0x1 · · · 7→ f(x0)x0x1 · · · is a well-known object in topological
dynamics called the natural extension of (X, f).

Consider the relation R ⊆ X̂ ×X given by

R = {(x0x1 · · · , y) | xni → y along some subsequence ni →∞}

=
∞⋂
j=1

∞⋂
N=0

∞⋃
n=N

{
(x0x1 · · · , y) | d(xn, y) < 1

j

}
.

Then R is a countable intersection of open sets, so it is Borel.

Let π0 : X̂ → X be the projection on the zeroth coordinate, x0x1 · · · 7→ x0. Now fix

an arbitrary point x ∈ X and let A = π−10 ({x}). Then A is closed in X̂. Finally, let

π : X̂ ×X → X be the map (x0x1 · · · , y) 7→ y. By the definition of sα-limit sets we have

sα(x) = π(R ∩ (A×X)).

Thus we have expressed sα(x) as the continuous image of a Borel subset of the compact metric

space X̂ ×X. It follows that sα(x) is analytic. �
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2. A non-Borel sα-limit set in a shift space

In order to show that a set B in a Polish space Y is not Borel, it suffices to start with
a known non-Borel set A in a Polish space X and find a reduction of A to B, that is, a
continuous function f : X → Y such that A = f−1(B). We follow this strategy using the
well-known example of the ill-founded trees as a non-Borel subset of the Cantor space.

To describe those trees let N<N denote the set of all finite words in the countable alphabet
N = {0, 1, 2, . . .}. Then a tree is any subset T ⊆ N<N which contains along with any word
all of its initial segments. The nodes of the tree are just the individual words v ∈ T , and if
v has length n ≥ 1, then its parent node is its initial segment of length n− 1. By passing to
shorter and shorter initial segments we traverse the branch which connects the node v back
to the empty word ∅, which forms the root of the whole tree.

A tree T is said to be ill-founded if it has an infinite branch, that is, an infinite word
v ∈ NN such that every initial segment of v belongs to T . Let P(N<N) denote the power
set, that is, the collection of all subsets A ⊆ N<N. Let T and TIF denote the set of trees
and the set of ill-founded trees, respectively. P(N<N) becomes the Cantor space when we

identify it with the countable product {0, 1}N<N
by identifying each subset A ⊆ N<N with its

characteristic function χA : N<N → {0, 1}. A well-known result in descriptive set theory is
that TIF ⊂ P(N<N) is analytic but not Borel, and in fact, this is regarded as the prototypical
example of a Σ1

1-complete set, see [18, Theorem 27.1].
The following notation will be useful. We write len(w) ∈ N ∪ {∞} for the length of a

finite or infinite word, and we write wi for the ith symbol of w for 0 ≤ i < len(w). We write
w|n = w0 . . . wn−1 for the initial segment of w of length n. We write vaw for the concatenation
of the words v, w, provided len(v) <∞. We use exponents to indicate repetition of a symbol,
so an is the symbol a repeated n times, while a∞ is the infinite sequence aaa · · · . If we write
a word explicitly as a string of digits w = 4530 · · · the reader may assume that each wi is
a single-digit number, otherwise we will use a longer notation such as w = (4, 53, 0, · · · ) to
avoid confusion.

We recall a few facts from the standard proof that TIF ⊂ P(N<N) is analytic, as we will
need them later on.

Lemma 2. The set of trees T is closed in P(N<N). The set

R = {(T, y) ∈ P(N<N)× NN | T is a tree and y is an infinite branch of T}

is closed in P(N<N)× NN. In particular, this implies that TIF ⊂ P(N<N) is analytic.

Proof. We include the proof for completeness. Suppose that A ⊆ N<N is not a tree. Then
there is a word v and an initial segment w of v such that v ∈ A but w /∈ A. Consider the
set {A′ ⊆ N<N | v ∈ A′, w /∈ A′}. Translating to characteristic functions this is the set of

χA′ ∈ {0, 1}N
<N

which take the value 1 in position v and 0 in position w. But specifying values

in finitely many positions clearly defines an open set in the product topology on {0, 1}N<N

(such sets are usually called cylinder sets). This shows that the complement of T is open in
P(N<N), so T is closed.

For the second statement of the lemma, since T is closed it suffices to show that R is
relatively closed in T ×NN. So suppose that (T, y) belongs to the complement of R in T ×NN.
This means that y is not an infinite branch of the tree T , so there must be some n such that
y|n /∈ T . Consider the set of pairs (T ′, y′) ∈ T × NN such that y|n /∈ T ′ and yi = y′i for all
i < n. Again, since we’ve specified the values of T ′, y′ in only finitely many positions, we get
a relatively open set in T ×NN. This shows that the complement of R is open, so R is closed.
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Finally, note that TIF is just the projection of R on the first coordinate, and the continuous
image of a Borel subset in a Polish space is analytic by definition. �

We wish to “encode” the set TIF into a sα-limit set. Let 2N be the standard Cantor space.
Choose an enumeration (si) of N<N and define a homeomorphism h : P(N<N)→ 2N by letting
h(T ) be the point x such that xi = 1 whenever si ∈ T and xi = 0 whenever si 6∈ T . Let
5N = {0, 1, 2, 3, 4}N be the one-sided shift space in five symbols (it is also a Cantor space)
and let σ : 5N → 5N be the shift map defined by (σx)i = xi+1. A subshift in 5N is any closed
subset X ⊆ 5N such that σ(X) ⊆ X. For T an ill-founded tree and y an infinite branch of T
we define inductively points ωn(T, y) ∈ 5N by

ω0(T, y) = 3a4a0∞,

ωn(T, y) = 3a(x|n)a2yn−1aωn−1(T, y), for n ≥ 1, where x = h(T ).
(1)

Then define a subset X ⊂ 5N by

X := {0, 1, 2, 3}N ∪ {σj(ωi(T, y)) | (T, y) ∈ R, i, j ∈ N}, (2)

where we continue to use the set R from Lemma 2.

Example 3. Let T be the tree of strictly increasing finite words s ∈ N<N and let y =
(2, 3, 5, 7, 11, . . .) ∈ NN be an infinite word in the body of T . Let (si) be an enumeration of
N<N whose first few terms are s0 = ∅, s1 = 0, s2 = 00, so that s0, s1 ∈ T but s2 6∈ T . Then

ω3(T, y) = 3 110 22222 3 11 222 3 1 22 3 4 00000 · · ·
Thus, from ωn(T, y) we can read off the first n symbols of x = h(T ) and y. Each block of 2’s
encodes a digit of y. The blocks of 0’s and 1’s record the initial segments of x.

Lemma 4. The set X ⊂ 5N is a subshift and σ(X) = X.

Proof. Invariance σ(X) ⊆ X is immediate from (2). Surjectivity of σ|X follows from (1), (2),
and the observation that σtn(ωn(T, y)) = ωn−1(T, y), where tn = 1 + n+ yn−1.

Equations (1) and (2) implicitly determine a set of forbidden words F in the alphabet
{0, 1, 2, 3, 4}. Any word with an initial 4 and a non-zero symbol occuring after it is forbidden.
Any word which ends with a 4 is forbidden if it is not an initial segment of some σj(ωi(T, y)),
i, j ∈ N, (T, y) ∈ R. A point x ∈ 5N is in X if and only if it contains none of those forbidden
words. This shows that X is closed. �

Now consider the dynamical system given by the subshift σ|X : X → X and fix the point
ω0 = 3a4a0∞ ∈ X. The backward orbit branches of ω0 correspond to the ill-founded trees,
allowing us to prove the following result.

Theorem 5. The set sα(ω0) ⊂ X is Σ1
1-complete.

Proof. We know from Theorem 1 that sα(ω0) is analytic. It remains to show that it is not
Borel. Define a map f : P(N<N) → X by f(T ) = 3ah(T ). The map is well-defined since
X contains {0, 1, 2, 3}N. It is continuous since h is. We will show that T ∈ P(N<N) is an
ill-founded tree if and only if f(T ) ∈ sα(ω0). This means TIF = f−1(sα(ω0)), and since the
preimage of a Borel set by a continuous map is always Borel, it follows that sα(ω0) is not a
Borel subset of X.

Suppose first that T ∈ P(N<N) is an ill-founded tree. Let y ∈ NN be an infinite branch of
T . Continuing to use the notation from Lemma 2 we see that (T, y) ∈ R and so each of the
points ωn(T, y), n ∈ N, belongs to X. Clearly there is a backward orbit branch of ω0 with
(ωn(T, y))n as a subsequence. But ωn(T, y)→ 3ah(T ) = f(T ) as n→∞.
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Conversely, choose any T ∈ P(N<N) such that f(T ) ∈ sα(ω0). Then we can choose a
backward orbit branch of ω0 with a subsequence converging to f(T ), so we get points ωi ∈ X
and times ti ≥ 1, i ∈ N, such that ωi → 3ah(T ) as i→∞ and

σti(ωi+1) = ωi, i ∈ N. (3)

We may suppose without loss of generality that each ωi begins with the symbol 3. By the
definition of X we may write ωi = ωni(Ti, yi) for some (Ti, yi) ∈ R, ni ∈ N. We warn the
reader that yi ∈ NN is a whole infinite word; the subscript here does not refer to the symbol
in position i, but to the ith infinite word in the sequence. Since ni counts the number of 3’s
in ωi (except the last 3 before the 4), equations (1) and (3) imply that ni+1 > ni. Thus the
numbers ni form an increasing sequence, and in particular ni ≥ i for all i. Write xi = h(Ti)
for all i. Again from (1) and (3) we get xi|ni = xi+1|ni and yi|ni = yi+1|ni for all i. Therefore
we may pass to the limits x = limxi, y = lim yi, and since ωi → 3ah(T ) we get x = h(T ).
But h is a homeomorphism and therefore T = limTi. Since each (Ti, yi) ∈ R and R is closed,
we conclude (T, y) ∈ R, that is, T is an ill-founded tree. This concludes the proof. �

3. A non-Borel sα-limit set in the square

The square is the Cartesian product I2 = [0, 1]× [0, 1] with the usual Euclidean topology.
For a mapping f : X → X a subset A ⊆ X is called invariant if f(A) ⊆ A and totally invariant
if f−1(A) = A. Two topological dynamical systems (X, f), (Y, g) are called conjugate if there
is a homeomorphism h : X → Y such that h ◦ f = g ◦ h. The main goal of this section is to
prove the following theorem.

Theorem 6. There is a continuous surjective map F : I2 → I2 and a point x0 ∈ I2 such that
sα(x0) ⊂ I2 is Σ1

1-complete.

The proof proceeds by constructing the map F . It has the form of a skew product F (x, y) =
(f(x), gx(y)). There is a closed subset S in the “x-axis” of the square, S ⊂ I × {0} ⊂ I2,
such that F−1(S) = F (S) = S. The subsystem (S, F ) is conjugate to the subshift (X,σ)
constructed in the previous section.

Proposition 7. There is a surjective continuous map F : I2 → I2 and a closed subset S ⊂ I2
such that F−1(S) = F (S) = S and (S, F ) is conjugate to (X,σ).

Proof. Start with the embedding e : 5N → I and the map f : I → I given by

e(x0x1x2 · · · ) =

∞∑
j=0

2xj
9j+1

,

f(x) =

9x− 2i, for x ∈
[
2i
9 ,

2i+1
9

]
, i ∈ {0, 1, 2, 3, 4}

(2i+ 2)− 9x for x ∈
[
2i+1
9 , 2i+2

9

]
, i ∈ {0, 1, 2, 3}.

Then f is the standard 9-horseshoe with 5 increasing laps and 4 decreasing laps and C =
e(5N) ⊂ I is the Cantor set of points whose trajectories stay in the increasing laps, see
Figure 1. Clearly f ◦ e = e ◦ σ, and so (C, f) is conjugate to (5N, σ). Henceforth we will write
Ii = [2i9 ,

2i+1
9 ] for the ith increasing lap of f .

By Lemma 4 we have σ(X) = X. That means we can write X as the following finite union
of closed sets

X =
⋃
i<5

Xi, Xi := {x ∈ X | iax ∈ X}.
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0 1 2 3 4

The base map

f : I → I

φ(x)

A fiber map

gx : [0, 1]→ [φ(x), 1]

Figure 1. The components of the skew product mapping F (x, y) =
(f(x), gx(y)). The invariant Cantor set C is suggested by the line segments
below the graph of f . For the definitions of φ and gx see equations (5), (6).

Here Xi is the “follower set” of the symbol i in X, i.e. the set of points in X which can be
preceded by the symbol i and still belong to X.

Going through the embedding e we get that the closed set A = e(X) ⊂ I is the union of
the closed sets Ai = e(Xi), i < 5. Moreover, we have A ⊂ C and (A, f) is conjugate to (X,σ).
For any closed set Y ⊆ I we write d(x, Y ) = min{|x − y| | y ∈ Y } for the distance from a
point x ∈ I to Y . For i < 5 we define sets

Bi = {x ∈ I | d(x,Ai) ≤ d(x,Aj) for all j < 5}.
Thus Bi represents the points x ∈ I for which Ai is as close or closer to x than any of the
other sets Aj . Clearly the sets Bi are closed and their union is all of I. For points x ∈ A we
have x ∈ Bi if and only if x ∈ Ai, because the distance to at least one of the sets Ai is zero.
This shows that

I =
⋃
i<5

Bi, and for all i < 5, Bi ∩A = Ai. (4)

Now we define a function φ : I → [0, 12 ]. Let

φ(x) =
1

2
d(f(x), Bi), for x ∈ Ii, i < 5. (5)

This defines φ on the increasing laps of f . On the decreasing laps of f we have already defined
φ at the endpoints, and we simply extend to any continuous function with 0 < φ(x) ≤ 1

2
whenever x ∈ I \

⋃
i<5 Ii.

Now define a skew product mapping F : I2 → I2 by

F (x, y) =
(
f(x), gx(y)

)
, where gx(y) = φ(x) + y · (1− φ(x)), (6)

see Figures 1 and 2.
Let E : 5N → I2 be the embedding E(x) = (e(x), 0) and let S = E(X) = A × {0}. We

claim that φ has the following three properties:

(i) φ(x) = 0 for all x ∈ A,
(ii) φ(x) > 0 if x 6∈ A but f(x) ∈ A,

(iii) For each y ∈ I there is a preimage x ∈ f−1(y) with φ(x) = 0.

Property (i) gives F ◦ E = E ◦ σ, which implies that F (S) = S and (S, F ) is conjugate to
(X,σ). Property (ii) implies that F−1(S) = S. Property (iii) makes F surjective. This is
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a

→

0 1 2 3 4

−→

f(a)

C

A

B0

→

0 1 2 3 4

←−

· · ·

· · ·

→

0 1 2 3 4

−→

C

A

B3

→

0 1 2 3 4

←−

→

0 1 2 3 4

b

−→

f(b)

φ(b)

C

A

B4

Figure 2. The map F : I2 → I2 applied to nine rectangular regions. Arrows
indicate orientation. C is the full Cantor set 5N embedded into I. A is the
embedded copy of the shift space X. The sets Bi have gaps around the points
that cannot be preceded by the symbol i. For example, B0 is missing the
embedded image of 40∞, since this point can only be preceded by a 3, and B4

is a singleton, since only 0∞ can be preceded by a 4. (Note: the gaps are not
drawn to scale, and many smaller gaps are not visible at all). The choice of φ
causes the image of each rectangle Ii× I to meet the x-axis of the square only
in the set Bi. The point a represents 02∞, so a, f(a) ∈ A and φ(a) = 0. The
point b represents 42∞, so b 6∈ A, f(b) ∈ A, and φ(b) > 0.

everything we needed to show about the system (S, F ). It remains to establish properties (i)
– (iii) of the function φ.

To prove property (i) choose x ∈ A and write x = e(x0x1 · · · ) with x0x1 . . . ∈ X. Let i = x0
so x ∈ Ii. Then x1x2 · · · ∈ Xi so f(x) ∈ Ai ⊆ Bi and therefore φ(x) = 0.

To prove property (ii) we choose a point x 6∈ A such that f(x) ∈ A. There are two cases.
First, suppose x 6∈ C. If x is in an increasing lap of f then f(x) 6∈ C either, contradicting
f(x) ∈ A. But if x is not in an increasing lap of f then φ(x) > 0 by the definition of
φ, so we are done. Second, suppose x ∈ C \ A. Then we can write x = e(x0x1 · · · ) with
x0x1 · · · ∈ 5N \X. Let i = x0, so Ii is the lap containing x. Then x1x2 · · · 6∈ Xi, so f(x) 6∈ Ai.
But we supposed f(x) ∈ A, so by (4) we have f(x) 6∈ Bi. Therefore φ(x) > 0 by the definition
of φ.

To prove property (iii) pick any point y ∈ I. Since the sets Bi cover I we can find i with
y ∈ Bi. Then we take x = f |−1Ii (y) ∈ Ii. Then φ(x) = 0 by the definition of φ. �

Proof of Theorem 6. By Theorem 5 the subshift (X,σ) has a point ω0 such that sα(ω0) ⊂ X
is not Borel. By Proposition 7 there is a continuous surjection F : I2 → I2 and a closed subset
S ⊂ I2 such that F−1(S) = F (S) = S and (S, F ) is conjugate to (X,σ). Let E : X → S ⊂ I2
denote the conjugacy and let x0 = E(ω0). The backward orbit branches of x0 in the system
(I2, F ) are the same as the backward orbit branches in the subsystem (S, F ), and these
correspond through the conjugacy to the backward orbit branches of ω0 in (X,σ). Therefore
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sα(x0) = E(sα(ω0)). Since E is a topological embedding we conclude that sα(x0) ⊂ I2 is not
Borel. �

Remark 8. The only property of the subshift (X,σ) which was really needed in the proof
of Proposition 7 was surjectivity σ(X) = X. Thus, the same proof technique leads to the
following general embedding result.

Proposition 9. Any subshift X ⊆ {0, . . . , r − 1}N, r ≥ 2, with σ(X) = X can be embedded
as a totally invariant subsystem of a surjective map on the square.

Proof. The proof is essentially the same as the proof of Proposition 7. To accomodate a shift
space with r symbols we divide the square into 2r−1 vertical strips and use for the base map
the full 2r − 1 horseshoe. No other significant changes are needed. �

Remark 10. In dimension one, the sα-limit sets of an interval map f : I → I are always Borel
and can only occur at or below the second level of the Borel hierarchy (they are simultaneously
Fσ and Gδ, see [13]). But the possibility to embed subshifts into the square without the
restrictions imposed by the order structure of R gives much more flexibility to dynamical
systems in dimension two than in dimension one. This gives some explanation of why their
special α-limit sets can be more complex.
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[4] F. Balibrea, G. Dvorńıková, M. Lampart, P. Oprocha, On negative limit sets for one-dimensional dynamics,
Nonlinear Anal. 75 (2012), 3262–3267.

[5] L. S. Block, W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics 1513, Springer-
Verlag, Berlin, 1992.

[6] A. Bruckner, J. Smı́tal, The structure of ω-limit sets for continuous maps of the interval, Math. Bohem.
117 (1992), no. 1, 42–47.

[7] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. Math., vol. 38, American
Mathematical Society, Providence, RI, 1978.

[8] H. Cui, Y. Ding, The α-limit sets of a unimodal map without homtervals, Topology Appl. 157 (2010),
no. 1, 22–28.

[9] E. Coven, Z. Nitecki, Non-wandering sets of the powers of maps of the interval, Ergod. Theor. Dyn. Syst.
1 (1981), 9–31.

[10] M. Foreman, D. Rudolph, B. Weiss, The conjugacy problem in ergodic theory, Ann. of Math. (2) 173
(2011), no. 3, 1529–1586.

[11] C. Good, J. Meddaugh, J. Mitchell, Shadowing, internal chain transitivity and α-limit sets, J. Math. Anal.
Appl. 491 (2020), no. 1, 124291, 19 pp.

[12] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector
Fields, Appl. Math. Sci., vol. 42, Springer-Verlag, New York, 1983.
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