HAUSDORFF DIMENSION REGULARITY PROPERTIES AND
GAMES

LOGAN CRONE, LIOR FISHMAN, AND STEPHEN JACKSON

ABSTRACT. The Hausdorff §-dimension game was introduced in [2] and shown
to characterize sets in R? having Hausdorff dimension < §. We introduce a
variation of this game which also characterizes Hausdorff dimension and for
which we are able to prove an unfolding result similar to the basic unfolding
property for the Banach-Mazur game for category. We use this to derive a
number of consequences for Hausdorff dimension. We show that under AD
any wellordered union of sets each of which has Hausdorff dimension < § has
dimension < d. We establish a continuous uniformization result for Hausdorff
dimension. The unfolded game also provides a new proof that every Z} set of
Hausdorff dimension > ¢ contains a compact subset of dimension > §’ for any
8" < &, and this result generalizes to arbitrary sets under AD.

1. INTRODUCTION

Category, measure, and Hausdorff dimension are three fundamental notions of
largeness for sets in a Polish space (for Hausdorff dimension one most commonly
restricts to subsets of R?). In the case of category the notion is connected to a well-
known game, the Banach-Mazur or #*-game (see for example [4] for a discussion
of the game and related notions; we note that for the Banach-Mazur game G**(A)
for a set A it is conventional to have player II being the player trying to get into
the set A). For example, in any Polish space X, a set A C X is comeager iff IT
has a winning strategy in the Banach-Mazur game G**(A), and I has a winning
strategy iff there is a neighborhood on which A is meager. An important aspect of
this game is that it permits an unfolding. By this we mean that if A = dom(R)
where R C X x Y, then if I has a winning strategy in the game G**(R) then T
has a winning strategy in the game G**(A). Assuming the game is determined,
this says that if II can win the game G**(A), then IT can actually win the game
G**(R) in which IT not only produces an x € A but also a pair (z,y) € R, that is,
where y “witnesses” that x € A.

This unfolding phenomenon for the *x-game has many applications to category.
For example, since E% sets A C X are projections of closed sets FF C X x w¥,
this reduces the Banach-Mazur game for E% sets to the game for closed sets, which
are determined in ZF. This gives a proof of the fact that every X1 set in a Polish
space has the Baire property. Another application of the unfolding is to show
continuous uniformizations on comeager sets. Namely, suppose R C X X Y and
A = dom(R) is comeager. If we assume AD, then there is a comeager set C C A and
a continuous function f: C' — Y which uniformizes R, that is, for all z € C we have
R(z, f(z)). Working just in ZF we get that if R is X7 then there is a continuous
uniformization on a comeager set (this requires unfolding the game on R to a closed
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set F C X xY x w*). Yet another application of unfolding is to establish the full
additivity of category under AD. By this we mean the statement that a wellordered
union on meager sets is meager. The most common proof given for this uses the
analog of Fubini’s theorem for category, the Kuratowski-Ulam theorem. However,
a different proof can be given using the unfolded game. This is important as there
is no Fubini theorem for Hausdorff §-dimension measure, and we wish to establish
this additivity result for Hausdorff dimension (Theorem 6).

In [5] (see also [7]) the Measure game was introduced which was shown to char-
acterize Lebesgue measure in a manner similar to how the Banach-Mazur game
characterizes category. In [1] a variation of this game was introduced and an un-
folding result for it was proved. This game analysis had several applications. Aside
from giving new proofs of some classical results such as the Borel-Cantelli lemma,
a strong form of the Rényi-Lamperti lemma of probability theory was shown using
the game.

In [2] a game, the Hausdorff -dimension game was introduced, and it was shown
that this game characterizes when a set A C R? has Hausdorff dimension HD(A) <
0. More precisely, if I wins the game then HD(A) > § and if IT wins the game then
HD(A) < 4. In this paper we introduce a variation of this game which we show also
characterizes Hausdorff dimension in this manner, and for which we are able to prove
an unfolding result (Theorem 4). As with measure and category, this has a number
of consequences. This gives a new proof of the basic regularity result that every
21 set A € R? with HD(A) > 6, if 6’ < & then A contains a contains a compact
set K with HD(K) > ¢’. The classical proof of this fact uses an “increasing sets
lemma” for Hausdorff 4-measure (see Theorems 47 and 48 of [6]). Moreover, this
result extends to other pointclasses assuming the determinacy of the corresponding
games. For example, assuming H%—determinaey we get the same regularity result for
33 sets. We are able to prove continuous uniformization theorems, (see Theorem 5
and the following remarks) again assuming the determinacy of the relevant games.
Finally, using the unfolded game we are able to show that under AD we have full
additivity for Hausdorff dimension < § sets. That is, any wellordered union (of any
length) of sets each of which has Hausdorff dimension < § has Hausdorff dimension
< 4. This complements the corresponding results for category and measure, which
are known theorems from AD.

Throughout, we will be working in a Euclidean space R%. We let H* denote
s-dimensional Hausdorff measure on R%. For A C R? we let HD(A) denote the
Hausdorff dimension of A. This is defined for all sets A C R?, and 0 < HD(A) < d.
We recall that H* is a Borel measure on R%, but it is not o-finite (unless s = d).
We let w = N denote the natural numbers and w® denote the Baire space (set of
sequences of natural numbers) with the usual product of the discrete topologies on
w.

The following theorem is a well-known tool in the theory of Hausdorff dimension,
and is also central to our arguments. We include a proof partly for the sake of
completeness, and also because we wish to be able to use our results in models of
determinacy where AC fails. In the following proof we show that only countable

choice AC,, is needed, and thus we can in particular use this result in any model of
ZF + DC.

Theorem 1 (Rogers-Taylor-Tricot [6]). (ZF + AC,). Let p be a Borel probability
measure on RY.
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B
(i) If A C R? and limsup w < m for every x € A, then

r—0 re
HE(A) > m ™t (A).
B
(ii) If A CR? and limsup W > m for every x € A, then
r—0
H*(A) < cam™ p(A)
where cq is a constant depending only on d.

In these statements, H*(A) refers to the Hausdorff s-dimensional outer measure of
A, and p*(A) refers to the outer p-measure of A.

Proof. (i) Let A, = {x €A 1 supgo,. “(Bﬁf’r)) < m}, and note that | J,., A = A
and that p*(Ae) — p*(A) as € — 0 (note that the A, are increasing as ¢ — 0 and for
any Borel probabillity measure p and increasing sequence of sets C), we have that
(U, Cn) = lim,, p*(Cy,)). Fix € > 0 and let {B;},.,, be a cover of A.. Suppose
further that each B; intersects A. and that each B; has diameter r; < €. For each
i, let ¢; € B; N A, then we have that the sequence {B(x;,7;)},. is also a cover of

A, and that for each i, u(B(z;,7;)) < mri. Thus

er >m™! Zu(B(xi,ri)) >m it (A).

PEW

Since HZ(A.) is the greatest lower bound of all the quantities ), 7 for such
covers of A., and we know m~1u*(A,) is a fixed lower bound for each such sum,
we have that

H(A) > HI(A) > HI(A) > m™ p*(A)

Since p*(A.) = p*(A), we have the desired inequality.

(i) Let € > 0 and let U be any open set containing A. Let

1
Om = {Q CR? : Q is a dyadic cube with side length 2’”} .

By a dyadic cube we mean a set Q = [[, ., [ai, b;] where each pair a;, b; is of the

form a; = 2%, b; = &L for some integer k.

For each m and each = € A, let
Sp(@)={Q € Qp : Ir>0,r/2<diam(Q) <r <eA
QN B(z,r) #0 A
B(z,2r) CU A
w(B(z,r)) > mr®}
and let
Ton(2) = {Q € Siu(w) : VQ' € Spu(2), Q') < u(Q)}

We note that Sy, (z) is always finite, and since = € A there must be some m so
that S,,(z) is nonempty, and so for some m, 7, (z) is also finite and nonempty. For
each x, let m(x) be minimal so that T, (,) () is nonempty, and let Qn € T2 ()
be of minimal index in some fixed enumeration of the dyadic cubes. For each dyadic
cube @ (of which there are only countably many) which is equal to some Q,, we
choose z(Q) so that Q@ = Q(g) and choose some witness 7(Q)) > 0 to the fact that

Q € Sm@) (#(Q)).
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For such @, we have r(Q)/2 < diam(Q), thus we know that the side length of

Q is m > g(—\%. Let Ny = {1 + 12\/3‘ and note that if k is the side length of

Q, then KNy > T(Q)% > 6r(Q) and thus B(z(Q),r(Q)) C Q*, where Q* is Q

scaled by Ny. and thus B(2(Q),r(Q)) can be covered by N¢ dyadic cubes of the
same side length as @, of which @ has maximal p-measure (since we can discard
any dyadic cubes from the cover which do not intersect B(z(Q),r(Q)).

So for each dyadic cube Q = Q,(q), we have

wQ) = Ny w(B(x(Q),r(Q))) > Ny ‘mr(Q)*

and since each such @ is contained in U, we have

pU) = > (@) > Ny'm > r(Q)*.
Q Q

Now also the collection of cubes Q* form a cover of A (since if Q@ = Q,, the enlarged
Q* must contain x, even if z # z(Q)). Since each Q* is covered by N§ translates
of @, and since diam(Q) < r(Q) < €, we have

HZ(A) < Ni Y r(Q)° < Nitm ™ u(U).
Q
Thus by taking a sup as € — 0, we have

H*(A) < N3~ (V)
for any open set U containing A. Thus finally we have

Ho(A) < {1 n 12\/&] m= 1t (A)

2. THE REVISED HAUSDORFF DIMENSION GAME

As we mentioned before, the Hausdorff §-dimension game was introduced in [2].
Here we define a variation of the game, the main difference is that we use not a
single 8, but a sequence (; which goes to 0 sufficiently slowly. Using a sequence of
the 8; does not affect the fact that the game characterizes Hausdorfl dimension (as
Theorems 2 and 3 show), but seems important in our argument for the unfolding
(Theorem 4).

Definition 1. Let d > 1 be an integer and fix pg > 0, 0 < Bi41 < 3 < % be so
that lim; .. 8; = 0 satisfying
(1) Vn>03n0Vn2noﬁn2Hﬁ;’.

<n
Define p, = (HKn ﬂi) po. Let A CR? Let 0 <6 < d. The 5-Hausdorff dimension
game with target set A is following game:

I Fy Fy Fy F3
G(4)

1T ) T T2 z3

where player I must follow the rules
e F; is a finite set of points in Q7.
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e F; is 3p; separated.
o Fip1 C Bz, (1= Bi)pi)-

. . Lo il
e There exists some ¢ > 0 so that lim sup ——=" <ec.

6 —
n—oo Hz’<n Bi

and player IT must simply play so that x; € F;. Provided the players meet these
requirements, player I wins if and only if lim,, _,. z, € A. Note that the last
“rule” for player I is a limiting condition on the average number of choices offered
to player IT.

Remark 1. In the original game of [2], the points which player I plays need not
be rational. It turns out that to prove the two theorems characterizing Hausdorff
dimension (Theorems 2 and 3) it suffices to use the rational version above, which of
course is determined from AD. It is not clear that the rational and real versions of
the game are equivalent, however. For sets A for which the games are determined,
the winning players must agree for § # HD(A), but even though the games are
determined, it seems possible that they may disagree on who wins at § = HD(A).

Theorem 2. If player I has a winning strategy in the d-Hausdorff dimension game,
then there is a compact K C A with HD(K) > 6.

Proof. Suppose o is a winning strategy for player I in the é-Hausdorff dimension
game. Define a finitely splitting tree T' by

T:{(,To,...,.’rn) Vi oz 60(1'0,...7331‘,1)}

Define a map 7: [T] — R? by 7(zq,...,%n,...) = lim, 400 T, which is clearly
continuous. Define a probability measure p on [T] by

p([(zo, - zn))) = [ lo(@o, - 2a)

i<n

and let p also denote the push-forward measure of p on RY. Since o is winning,
w([T]) C A, and since T is finitely splitting, [T] is compact, and since 7 is contin-
uous, K = 7([T]) is compact. We show that HD(K) > 4. It suffices to fix v < §
and show that HD(K) > ~. Now for « € K, we have z = n(zg,...,2Zpn,...). We
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compute
B B(z, pn
s BB (B )
r—0 Y n—00 pn-i-l’y
B nyFn .
< lim sup M by the separation rule
n—oo l)n+1ﬁ’
o thUp :u([(xOv cee vxn)])
nee (Hzgn Bz’y) Po”
= lim sup Micalo(@o.- 20 S
n—o00 Hign ﬁi’y po”
ey Misa @ z) ™Y 1
n—00 Hi<n ﬁi’y 52/’0’Y
_ Loy lo(zo, . yz)| ™" 1
< lim sup t=n
n—o0 ( [Licn 87 [T, B po”
-1
: R 1
s (il ooz 1
e300 -, Biv( +n) po”
= 0 by the limit rule on the number of moves, since v(1+17) > §
And so by Theorem 1, HY(K) = oo and thus HD(K) > 4. O

Theorem 3. If player II has a winning strategy in the §-Hausdorff dimension
game, then HD(A) < ¢

Proof. Note first that for a ball B C R? of radius p, any 3/3p separated subset

FE C B has size at most
]
Bl < | 22|
36
This can be seen by comparing the volumes of a cube of side length 4p (which
contains B) and the sums of the volumes of cubes centered on points in F of side
lengths 33p/+/d, which must be disjoint by hypothesis on E.
The actual bound is unimportant, we need that it depends only on d and S.
Suppose now that 7 is a winning strategy for player IT in the §-Hausdorff di-
mension game. Let p,, B, etc. be the parameters of the game.
Let E, be a maximal %pn—separated subset of Q?. and let {EZL} <<y Partition
E,, into 3p,-separated subsets. Note that this can be done with a fixed ¢ which
doesn’t depend on n. In fact, if each E! is a maximal 3p,-separated subset of

. d
E,\U,; B4, then we can bound ¢ by [14\/3‘ , for example.

We will consider playing various legal subsets of E¢ at round n of the game
against 7 (subject to some restrictions). We will then define a probability measure
on the tree of positions obtainable by playing this way, and then push this measure
forward to R¢ and apply Theorem 1. More precisely, we will define for appropriate
u € (£ X w)<¥ a position p, in the game, a ball B,, and an associated py-measure
value for N, = {z € (¢ x k)¥ : u C z}. We will then push p forward via the function
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which computes the resulting point in the game. We will proceed by induction on
the length of u.

For uw = (), we will assign py as the empty position, By = B(0,r), and we let
w(Np) = 1. For u = (s7,¢°4) where i < ¢, let ky, = ‘Efsl OB(S@’. It > ka,
or if j = 0, then w is inappropriate, otherwise, we let p, be the position of length
|p(s7t)| + 2 in which player I has played E‘isl(t,j) where

El, N B j = ke
By 0B \Uj<jrar, (7B (65N} 5 <k
and player IT has followed 7. If x,, is the point chosen by 7, then we let
B, = B(xu’ (1 - Blul)plul)

The idea is that we first choose which E! to play from, depending on 4, and
then, if j is nonzero and less than or equal to k,, (which is the maximum number of
points we could legally play from E!), we play exactly j many points of E%. Which
points of E! we play is decided by 7. We remove 7’s favorite points first.

Let € > 0 be arbitrary. We assign p-value to N, = N(4~;~;) by the rule

1
. K
guj(lJre) Zj':l (j/)(llJré)

where £, = Hz' <L : 35" kigmir gy > OH is the number of possible choices for 4
which yield appropriate choices for u.
Note that for appropriate u = (s7¢,t7 ), we have

1
— +—(14€)
= ™ W(Ns,1y) = ¢j 1(N(s,1))
éu](1+e) Ejlzl (j,)(11+6)

where ¢ = W And so we have, for appropriate (s,t) € (£ x w)<¥
=1\

E\is|(t7.j) = {

(N(s~ip~j)) = 1(Ns,p))

/L(N(s"i,t"j))

[t]-1

(N5 ) > ot H t(m)—(1+e)_
m=0

The reason we need to use € here is because k, may go to infinity with |u|, and
so we have no uniform constant ¢ without using a summable series.

Now let x € AN B(0,r). Since the sets E, are maximal %pn separated, there
is a sequence of points z, € E, so that for every n, |z, — x| < %pn. Thus since
Pn+1 = 5npn and ﬁn < %a we have

1 1 1 1
‘In—O—l - zn‘ < |xn+1 *x|+|xn - x\ < §Pn+1+§lon = Pn (2 + 25n) < Pn (1 - ﬂn)

So that each z,11 is a legal possibility following x,. Because of this, we can
obtain sequences i,, and j, so that for every n, x, € Ei(jo,...j,) and z, =
7(Ei(jo,...jn)). Since 7 is a winning strategy, and x is in player I's target set,
and each move we made for player I was legal, it must be the case that player I's
condition on the number of choices offered is violated, i.e. for every constant C'

-1
(L)
limsup ~——

C.
n—o0 (ngnﬁm)é g
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Now we can compute, for any v > §(1+¢€)(1+n) > §(1 +€)

B B(z,2py, o
lim sup HB(z,r) > lim sup HB(@ 200)) (because it is a limsup)
r—0 r7 n—00 (2pn)7
B
> lim sup B @n, pn) (monotonicity)

> lim sup # NGy tusio--10))
n— 00 (zpn)’y

. cn-‘rl Hm<n j;L(H”e)
> limsup =
n—oo (2PO Hm<n Bm)ﬂy

o Tzndn ) ([ Br)?059
li m<nJm msn
2 17ILH_>S(>1ip (2p)ﬂy ((ngn /Bm,)5> ( (Hm<n ﬂm)’Y )

(push-forward and monotonicity)

(by the definition of p)

(14-¢) L )o(+e)
> Skl lim sup ¢" ! ULnzn ) (player I lost)
(2p0)7 n—00 (Hm<n ﬁm)’}’
C(1+e) 65(1+€)
= lim sup ¢ 132 (1+e) m
(2,00)’Y n—>oop 6n W]L;[n ;Ya
1+€
- ot lim sup "1 30+ <H 5%1+€)_7>
(200)7  n—oo e
C(1+6) . n+1 n \6(1+€) §(14€)— :
> ooy msupe (I] m) IT 52 (equation (2))
Po n—oo m<n m<n
C(1+€)

i n+1 O (14€)(1+m)—
R VR

m<n

Now since ¢ is a fixed constant and §8; — 0, and since §(1 + ¢)(1 +n) < v, we have
that for large enough m, m > 2 and so

lim sup ol H ﬁ%1+€)(1+7]>—’7 =0

n—
o0 m<n

Thus by Theorem 1, we have shown that for any v > ¢, HD(A) < v, and so
HD(A) <. O

Corollary 1 (AD). Let A C R and 0 < 6 < d, then either A contains a compact
set K so that HD(K) > ¢ or HD(A) < 6.

To illustrate some of the issues concerning the determinacy of this game we
consider the following examples.

Example 1. Let 0 < § < 1 K, C (n,n+ 1) be a compact set with HD(K,,) =

1

o ( — nT—l) for each n € w. Then player II wins G%(Un K ), since this is a deter-

mined game, and player I cannot win, since |J,, K, doesn’t contain any compact
subsets of Hausdorff dimension §.
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Example 2. Let B C R be a Bernstein set, then since \*(B) > 0, we must have
HD(B) = 1. Clearly player I cannot win G%(B) for any 6 > 0, since B cannot

contain any uncountable closed set, so in particular B cannot contain any compact
set with positive Hausdorff dimension. On the other hand, player II cannot have
a winning strategy.

To see this, suppose player IT had a winning strategy 7 in G%(B), then one

can construct a perfect subset of R\ B by building inductively a perfect set of
runs following 7 where at at step n we consider x = 7(FEy, ..., E,—_1, E) for some
maximal legal move E, and also ' = 7(Ey, ..., Fn—1, E \ {z}). Since these moves
are maximal, playing them doesn’t violate player I’s requirement (I is playing
approximately ﬁ many sets at round n, so is satisfying the rule for any § < 1,
that is, for all §). This gives a perfectly splitting tree of positions, in which each
level corresponds to disjoint closed intervals. And since player I’s condition is met,
all branches through this tree must result in points in R\ B, which is impossible.

3. THE UNFOLDED GAME

In this section, we introduce an unfolded version of the Hausdorff dimension
game, and show that it is equivalent to the original. This result gives that analytic
sets have the property that they can be approximated from the inside by compact
sets of the appropriate Hausdorff dimension. This is interesting, as other proofs of
this property are generally quite involved and require the analysis of the approxi-
mations to the Hausdorff outer measure, and a so-called “increasing sets lemma”
(again, see Theorems 47, 48 of [6]), and these are completely absent from our proof.

First a simple combinatorial lemma.

Lemma 1. Suppose A is a finite set with linear orders =1,=2,...,=,. There is
an element a € A so that for every i <n

ed:b=ialz |4
Proof. Let
Ai:{aeA : {be A :b<ia}<71L|A|}
Suppose the lemma fails, so that | J; A; = A. We will proceed by counting: First
note that A; is an initial segment of A by =;, since if a € A; and b <; a, then

certainly {c€ A : ¢ <; b} C {c € A : ¢ %, a}. So for each 4, there is some a; € A;
so that A; = {a € A : a =; a;} But then since a; € A;, we have that

1
|Ail ={a €A :a=;0a} < - |A|
and so since A = |J,; A; we have
1
4] <D 1Al < Zﬁ Al =14
i<n i<n

a contradiction. O

Definition 2. Let d > 1 be an integer and fix pg > 0, 0 < B;41 < f; < % be so
that lim; .. 5; = 0 satisfying

(2) vn>03noVnZnoﬁnZH5?~

<n
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Define p,, = ([1,-,, Bi) po- Let F C R¥xw® and let A = p[F] = {z € R? : Iy € w*(x,y) € F}.
For 0 < 0 < d, the unfolded §-Hausdorff dimension game with target set A is fol-
lowing game:
Player I makes moves F; in each round ¢, and whenever I chooses, they may play
also a digit y; € w extending the finite sequence yo, ...y ;-1 of any digits played so
far. As before, player IT simply makes moves x; € Fj.
In order to not lose trivially, player I must ensure that the following hold.
e [} is a finite set of points in Q7.
e F; is 3p; separated.
o Fip1 C B(w, (1—Bi)pi)-

A
e There exists some ¢ > 0 so that limsup M <ec.
n— oo Hi<n /87,

e For every j € w, y; was eventually played.
Provided player I meets these requirements, player I wins if and only if

(z,y) € F
where x = lim,,—yo0 T,

Clearly if player I has a winning strategy in the unfolded §-Hausdorff dimension
game, then I has a winning strategy in the original é-Hausdorff dimension game,
since the unfolded version has an extra requirement of producing a witness, and so
is a strictly harder game for I. Our goal then, is to show that we can take a player
IT strategy in the unfolded game, and use it to construct a strategy in the original.
Unfortunately, this requires us to give up a little ground in the dimension.

Theorem 4. If player II has a winning strategy in the unfolded §-Hausdorff di-
mension game, and s > 0, then player II has a winning strategy in the s-Hausdorff
dimension game.

We will prove a technical lemma that will be central for the argument. For this
purpose, we need a little notation.

Notation 1. Let p = (Foy,xo, F1,21,...,Fn,x,) be a position in the Hausdorff
dimension game. Let ¢ = (Fo, z(, E1,2,...,Ey,,x},) be a position of the unfolded
Hausdorff dimension game in which the digits of the finite sequence u have been
played along with the E; sets (in some subsequence of the rounds). We’ll call ¢ a
simulation of p with partial witness u if for each 4, E; C F; and z; = x}.

And now we are ready to state our main technical lemma

Lemma 2. Let 7 be a strategy in the unfolded Hausdorff dimension game and let
p be a position of the Hausdorff dimension game. Suppose we have some finite
sequence of partial witnesses ug, ..., u, and a finite sequence of positions qo, - . ., Gn
of the unfolded Hausdorff dimension game so that for each i, q; is a simulation of
p with partial witness u; so that q; is consistent with T.

Given

(1) any finite sequence vy, ...,vy, so that for each i, either v; = u; or v; is an

extension of u; by a single extra digit,

(2) and any move F for I which is legal at p,
there is some x € F so that for each i, there is an extension ¢, = ¢;” E;"x which is
a simulation of p~ F~x with partial witness v; so that |E;| > n%rl |F|, and so that
q} is also consistent with T.
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Proof. Our strategy will be to apply Lemma 1 to obtain this result. Given v; either
extending wu; or identical to u;, we have that 7 at position ¢; induces a linear order
=<; on F' by 7’s preference of which point to choose in response to the move F where
the extra digit (if any) of v; is offered. More precisely, define for each = € F the
rank r;(x) by:

ri(x) = |F| &z =7(q¢:;" (F,vi))

ri@)=jez=1(@"(F\{y :rly) > j},v))
and the linear ordering =<; by

r =y e ri(z) <ri(y)

Note that by the definition of =;, 7 will always pick the maximal element
of any =;-initial segment offered to it, i.e. 7(¢;"(Fx,.,vi)) = z where Fx,, =
{y € F : y =; z}. By Lemma 1, there is some = € F so that for each i, 7 will pick
x in response to the move E; = {y € F : y <; =}, and |E;| > n%rl |F|. O

Note that in Lemma 2, we did not require the u; to be distinct. This will make
our application of the lemma easier, when we choose to split a partial witness u
into several extensions, and still keep u itself alive.

Proof of Theorem 4. Suppose 7T is a winning strategy in the unfolded d-Hausdorff
dimension game, and let s > §. We first attempt to motivate the proof: We want
to construct a strategy for which every full run has a tree of simulations consistent
with 7 for all possible witnesses. The main obstacle is to make sure that along each
branch of this tree, we’ve offered 7 enough choices so that the branch is not winning
for trivial reasons. Then we can use that 7 is winning to prove that (z,y) € F for
every y, thus « € A, producing a win in the original Hausdorff dimension game. In
order to maintain that all the simulations are consistent with 7, we need to play
fewer sets when copying I’s moves, and so we need to be able to absorb the extra %
factor in each round that we have n partial witnesses. This is where the fact that
B; — 0 is critical.

Enumerate w<“ as {w; : i € w} so that if w; C w;, then j < 4. For a while, play
according to 7 in the s-Hausdorff dimension game, playing no witness moves at all,
until 3; gets small enough so that

1
B; < 3
at which point we can absorb a factor of % Now we apply Lemma 2 to the current
position with witnesses ug = u; = ) = wp and vg = ug, v;1 = w;. Continue play in
every round afterwards applying Lemma 2 with ug = wg = vg, u; = w1 = v;. Note
that this maintains the hypotheses of Lemma 2, so that we can continue to apply
it. We do this until §; is small enough so that

1
B0 < 3
at which point we can absorb a factor of % We would like to add the witness ws to
our list at this point, and we know that wy must extend either wg or wy, and so we
apply Lemma 2 to three witnesses ug = wp, u; = wy, ug = wa| |wa| — 1, in which
the ancestor of wy appears twice, with vg = ug, v1 = u; and vo = wq. It is clear
that we can continue this algorithm to define a strategy for II in the s-Hausdorff
dimension game. We now demonstrate that it is a winning strategy for player IT.
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Suppose z is the result of a run following our strategy, and suppose for the sake
of a contradiction that x was a loss for II. In other words z € A and there exists
some ¢ > 0 so that

R
msup s P _
nsoo  licn B
where F; are the sets I played along the way. By the definition of A, we have that
for some y € w¥, (z,y) € F. Let ig,i1,... be the subsequence so that w;, = y[n.

We have a simulation by 7 in which I eventually plays all the digits of y, say with
sets F;. We will now show that

BT
lim sup 71_[“" | ZL
nooo  [ljcp B

which is a contradiction since then this run of the simulated game would be a loss
for 7. Note that by the construction of our strategy, we were always able to play
FE; C F; so that

< 00,

|Ei| > 5770 ||
so then we have
e | BT . 5=0 | . y=1
lim sup 1_L<"7|1|5 < lim sup Hz<n(51 ‘61‘)
n—00 Hi<n Bz n—00 Hi<n IBZ
6— -1
[Lic. B |F]

= lim sup
|t
= lim sup LK” | 2|S
T—00 Hi<n 6i
< o0

4. APPLICATIONS OF UNFOLDING

In this section we derive some consequences of the Hausdorff dimension game
as well as the unfolding theorem, Theorem 4. Our first application concerns the
existence of continuous uniformizations. Recall first the situation with regards to
measure and category. Assuming AD, if R C X X w® and dom(R) is comeager,
then there is a comeager set C' C dom(R) and a continuous function f: C' — w®
which uniformizes R, that is, for all z € C' we have R(x, f(x)). This continuous
uniformization phenomenon is an important aspect of category arguments and fol-
lows from an unfolding argument for category (using the Banach-Mazur game, also
known as the sx-game). There is also a corresponding theorem for measure. Again
assuming AD, if R C X xw* and dom(R) has measure 1 with respect to some Borel
probability measure p, then for any € > 0 there is a A C X with u(A4) > 1 — ¢ and
a continuous f: A — w* which uniformizes R. Our unfolding result Theorem 4
allows us to get a similar result for Hausdorff dimension.

Theorem 5. Assume AD. Suppose R C R? x w® and dom(R) has Hausdorff
dimension at least 5. Then for any 6’ < & there is a B C dom(R) with HD(B) > ¢’
and a continuous f: B — w* which uniformizes R.
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Proof. Fix ¢’ < §"” < § and consider the unfolded §’-Hausdorff dimension game
as in Definition 2 for the set A = dom(R), and using R for the set F. Here we
use a fixed sequence {f;} satisfying the conditions of Definition 2. By AD this
game is determined. If IT had a winning strategy for this unfolded game, then
by Theorem 4 IT would have a winning strategy for the (regular non-unfolded)
0"”-Hausdorff dimension game. From Theorem 3 we have that HD(A) < 4”7, a
contradiction. Thus, I has a winning strategy o for the unfolded ¢’-Hausdorff
dimension game. Ignoring the witness moves that ¢ makes, o gives a strategy &
for the regular 6’-Hausdorff dimension game for A. The proof of Theorem 2 gives a
compact set K C A with HD(K) > ¢’. For « € K there is a unique run according
to o which produces the point x (that is, limz, = z). Let y = (yo,91,...) be
the sequences of witness moves played by o along this run. Then R(z,y) as o is
winning for I. If for © € K we let f(z) be this y, then the function f is continuous
on K as ylk is determined by some finite part p of this run by o, and any 2’ in K
which is in the same open set determined by a,, (where n is the length of p) will
have f(z')[k = f(x)[k.

O

We note that although Theorem 5 is stated under AD as a hypothesis, the deter-
minacy assumption is entirely local, we just need the determinacy of the unfolded
game. So, for example, if R C R% x w® is E%, then we just need the determinacy
of AY games, which is theorem of ZF (the condition that each digit (i) is eventu-
ally played is a II3 condition, and the limsup condition on the size of I’s moves
is a 23 condition). In particular, projective determinacy PD is enough to get the
conclusion of Theorem 5 for all projective relations R.

Within the realm of AD, another important result about measure and category
is the full additivity of these notions. That is, any wellordered union (of any length)
of meager sets is meager, and likewise for measure zero sets. These results can be
proved either using the Fubini theorem (or Kuratowski-Ulam theorem in the case
of category) or by an argument using an unfolded game. In the case of Hausdorff
measure, we do not have an analog of the Fubini theorem. However, our unfolding
theorem can be used to prove the corresponding result.

Theorem 6. Assume AD. Then any wellordered union of subsets of R%, each of
which has Hausdorff dimension at most §, has Hausdorff dimension at most J.

Proof. Let A =J,.y Ao where A, C R? and HD(A,) < 4. Suppose HD(A) > 4.
We may assume 6 is least so that HD(UJ, .y Aa) has Hausdorff dimension greater
than 4, and thus we may assume that the sequence A, in increasing. Fix any ¢’
with 6 < ¢’ < HD(A). From Theorem 3 it suffices to show that II wins the §’-
Hausdorff dimension game for A. Suppose not, and let o be a winning strategy for
I in the ¢’-Hausdorff dimension game for A.

Suppose first that cof(d) = w, and let «,, < € be such that sup,, a,, = 6. So,
A={J, Aq,. Since each A,, has Hausdorff dimension < &, H® (A, ) = 0 for each

n

n. As H% is a measure, H% (A) = 0, a contradiction.

Suppose next that cof(f) > w. Note that § < © as © is the supremum of the
lengths of the prewellorderings of R (or equivalently, the lengths of the increasing
sequences of subsets of R). A theorem of Steel (see Theorem 1.1 of [3] for the general
statement and proof) says that, assuming AD, for any 6 < © with cof(8) > w there
isa@: B — 0 (for some set B C w*) which is onto and such that any 31 set S C B
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is bounded in the prewellordering, that is, sup{p(z): = € S} < 0. Fix such a map
¢ for the ordinal §. Consider the relation R C R? x w® given by

R(z,y) < (x € A)AN(y € B) A (z € Ayy))

Clearly dom(R) = A. Consider the unfolded ¢§’-Hausdorff dimension games for R.
From Theorem 4 we have that II cannot win this game as otherwise we would
have that HD(A) < ¢’ (since for every ¢ > ¢, from theorem 4, IT would win the
regular 0” game for A = dom(R), and so HD(A) < ¢”). As we are assuming AD,
we may fix a winning strategy o for I in this unfolded game. Let o7 be the strategy
which extracts the y = (yo,¥1,...) moves from the play by o. Let S = o7[w*],
more precisely, let S collect all of the y’s which come from a any run of o7 in which
IT has followed the rules of the game. Clearly S is E%, and so there is an a < 6
such that sup{¢(y): y € S} < a. This says that I wins the unfolded ¢§’-Hausdorff
dimension game for the set A,. Thus, I wins the regular ¢’-Hausdorff dimension
game for A, and so HD(A,) > &', a contradiction.

O

The arguments of the current paper naturally suggest two questions. First, can
we get a characterization for when player I or II wins G%(A) when HD(A4) =

0?7 As we noted in Example 1, either player could win in this case (just given
HD(A) = §). Second, to which class of metric spaces can we extend our basic
results (Theorems 2,3, and 4)?
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