EQUIVALENCE RELATIONS AND DETERMINACY

LOGAN CRONE, LIOR FISHMAN, AND STEPHEN JACKSON

ABSTRACT. We introduce the notion of (T, E')-determinacy for I' a pointclass and E an equivalence relation
on a Polish space X. A case of particular interest is the case when E = Eg is the (left) shift-action of
G on S where S = 2 = {0,1} or S = w. We show that for all shift actions by countable groups G,
and any ‘“reasonable” pointclass T, that (T', Eg)-determinacy implies I'-determinacy. We also prove a
corresponding result when E is a subshift of finite type of the shift map on 2Z.

1. INTRODUCTION

For X = 2% or X = w¥, E any equivalence relation on X, and I' any pointclass (a collection of
subsets of Polish spaces closed under continuous preimages, the reader can consult [8] and [3] for back-
ground on the basic notions of descriptive set theory which we use throughout), there is a natural notion
of (T, F)-determinacy. Namely, this asserts that any A C X in T’ which is E-invariant is determined.
Similarly, if G is a countable group, and we fix an enumeration of GG, then there is a natural notion of
(T, E)-determinacy for sets A C 2¢ or A C w® in T' (under the natural identification of 2¢ with 2 via
the enumeration of G). We will give a more general definition of (I, E')-determinacy for arbitrary Polish
spaces X and equivalence relations E on X in §5. However, even the special cases just mentioned have
risen in various contexts. For example, when F is the Turing equivalence relation on 2, then the question
of when I' Turing-determinacy implies full I'-determinacy has been an important question in modern logic.
Harrington [2] showed that Ei Turing-determinacy is equivalent to Ei—determinacy. Woodin showed that
in L(R) Turing determinacy implies full determinacy. It is open in general for which pointclasses T' we
have that I" Turing-determinacy implies I'-determinacy.

In another direction, in recent years arguments involving Borel determinacy have had fruitful applications
to the theory of Borel equivalence relations. The determinacy of Borel games is a fundamental result of
Martin [6], [7]. Despite the central significance of this result in modern logic, this result has until recently
found relatively few applications as a proof technique. Recently, however, Marks [5] uses Borel determinacy
arguments to get lower-bounds on the Borel chromatic number x g for free actions of free products of groups,
in particular, the lower-bound that yp(2f") > 2n + 1 for the chromatic number for the free part of the
shift action (defined below) of the free group F,, on the space 2. See also [4] for a detailed account of
recent advances in the theory of descriptive graph combinatorics including the use of Borel determinacy.
There are currently no other proofs of this result, and so the introduction of determinacy methods into the
subject represents an important connection.

In this paper we begin to investigate the general question of when (T, E)-determinacy implies I'-
determinacy. Again, we formulate the notion of (T, E')-determinacy more generally for arbitrary Polish
spaces and equivalence relations in §5. First, however, we investigate the special case where X = 2% (or
X = w%) and E is the equivalence relation induced by the shift action of G on X.

One of our main results is that for any countable group GG and any pointclass I satisfying some reasonable
closure properties (a “reasonable pointclass”) that (T, Fg)-determinacy implies I'-determinacy. The proof
passes through a property of G which we call weak amenability which may be of interest elsewhere. In §2
and §3 we introduce the notion of weak amenability and establish some basic properties. In §4 we use weak
amenabilty to give a combinatorial proof of the determinacy result.

In §5 we give the general definition of (T', F)-determinacy and then in §6 we prove our second main
result that for equivalence relations F induced by subshifts of 2% of finite type and reasonable pointclasses
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I that (T, E)-determinacy implies I'-determinacy. The proof follows the outline of the first main theorem,
but has extra complications involving the combinatorics of the subshift.

2. SHIFT ACTIONS

Let G be a countable group. The (left) shift action of G on S¢ is the action defined by g-x(h) = z(g~'h).
The cases of primary interest are when S = 2 = {0,1} and S = w. In either of these cases, we refer to
S as the shift space, and note that the action of G on S is continuous (with the usual product of the
discrete topologies on S¢). Let Eg denote the equivalence relation on S¢ induced by the shift action.

Let m: w — G be a bijection, which we view as an enumeration of the group G, G = {7 (0),7(1),... }.
We also write g; for 7(¢) to denote the ith group element. The enumeration 7 induces a homeomorphism,
which we also call 7, between S and S¢, namely 7(x) =y where y(g,) = z(n).

Definition 1. Let I" be a pointclass. Let G be a countable group and S =2 or S = w, and let Eg be the
shift equivalence relation on S¢. We say (T', Eg)-determinacy holds if for all A C S which are in T' and
Eg-invariant we have that m7=!(A) C S is determined, for all enumerations 7 of G.

Our main theorem will require a mild closure hypothesis on the pointclass I" which we now state.

Definition 2. We say a pointclass I' is reasonable if

(1) T is closed under unions and intersections with Ag sets.
(2) T is closed under substitutions by Ag-measurable functions.

We note that all levels of the Borel hierarchy past the finite levels are reasonable, as are all levels of the
projective hierarchy.
The next result is our main result connecting (T', Eg)-determinacy with full I'-determinacy.

Theorem 3. For any countable group G and any reasonable pointclass T, (', Eq)-determinacy implies
T-determinacy.

The proof of Theorem 3 will involve a weak form of amenabilty of groups which we simply call weak
amenability. We give this definition next.

Definition 4. Let G be a countable group. We say G is weakly amenable if either G is finite, or if there
is an equivalence relation ~ on G such that

(1) G/~ is infinite

(2) Vg € G 3b(g) ENVC € G/~ |{C' € G/~: gCNC' # B} < b(g)
and an increasing sequence of finite sets A,, C G/~, such that G/~ =
(1) lim {C e A, : gC CUA,}| _1

n—oo |An|

A,, such that for any g € G

new

We call an equivalence relation ~ on a group G which satisfies both conditions (1) and (2) of Definition 4
appropriate. We note that the equivalence classes C in an appropriate equivalence relation need not be
finite themselves, but in the definition of weak amenability, the sets A, are finite (i.e., they are finite sets
of equivalence classes).

We note that every amenable group G is weakly amenable. This follows taking ~ to be the equality
equivalence relation on G. Note that the equality equivalence relation on G is an appropriate equivalence
relation (with b(g) = 1 for every g € G).

We will prove Theorem 3 by showing two separate results, one of which is a purely algebraic result
concerning weak amenability, and the other a pure game argument. The algebraic result is the following:

Theorem 5. Every infinite group has an infinite weakly amenable subgroup.
The game argument is given in the following theorem.

Theorem 6. If G is a countable group which has an infinite weakly amenable subgroup, then for every
reasonable pointclass T' we have that (T, Eg)-determinacy implies T'-determinacy.
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3. WEAK AMENABILITY

In this section we establish that certain classes of groups are weakly amenable, including all the amenable
groups and free groups, and prove Theorem 5.
The following two lemmas are easy and well-known.

Lemma 7. If G is a non-torsion group, then G has an infinite weakly amenable subgroup.

Proof. This is immediate as an element of infinite order generates an infinite cyclic subgroup, which is
amenable and so weakly amenable. ]

Lemma 8. If GG is locally finite then G is amenable, and so weakly amenable.

Proof. We may write G = |J G, an increasing union of finite subgroups. The G,, can be used as Fglner
sets to witness the amenability of G. |

Proof of Theorem 5. We may assume without loss of generality that GG is an infinite countable group. By
Lemma 7 we may assume that G is a torsion group. By Lemma 8 we may assume that G is not locally
finite. Then G contains an infinite subgroup H = (F, g) generated by a finite subgroup F' < G and an
element g € GG of finite order. If suffices to show that any such group H is weakly amenable.

Every element h € H can be written (not uniquely) in the form h = f19% fog® --- f,g° where f; € F
and a; are positive integers less than the order of g. We call n the length of this representation of h. We
let |h| denote the minimum length of a representation of h. Note that |h=!| < |h| + 1 for any h € H. We
easily have that |hihs| < |hi| 4 |h2| and also |hiha| > ||h1| — |h2|| — 1.

We let ~ be the equivalence relation on H given by hy ~ hg iff |hi| = |ha|. Each equivalence class is
finite as F' is finite and ¢ has finite order. So, H/~ is infinite. Let h € H. By the above observations we
have that for any k € H that |k| — |h| — 1 < |hk| < |k| + |h| and we may take b(h) = 2|h| + 2 to satisfy (2)
of Definition 4. Thus ~ is an appropriate equivalence relation on H.

Let A, = {[h]~: |h] < n}, so |A,| =n+ 1. For h € H we have that {C € A,: hC C UA,} D {[k] €
Apn: [kl <n—|hl}, and so [{C € A,: hC CUA,}| > n — |h| + 1, and Equation 1 follows. O

The argument above for the proof of Theorem 5 in fact shows the following.
Theorem 9. Every finitely generated group is weakly amenable.

sketch of proof. Assume G is infinite and finitely generated. Let S = {g1,...,9n} be a finite generating
set for G. For g € G, let |g| be the minimal length of a word representing ¢ using the symbols g;, g; L for
g; € S (we use only g; and g; ! here, not other powers of the g;). We define ~ in the same way as before
(i.e., g ~ h iff |g| = |h|). Note that G/~ is still infinite with this modification. The rest of the argument
proceeds as before. O

In fact, as pointed out to us by Simon Thomas, this argument shows the following even more general
fact.

Theorem 10. If G is a countable group which has a Cayley graph with an infinite diameter, then G is
weakly amenable. |

In particular, the free group F,, on infinitely many generators is weakly amenable.

Question 11. Is every countable group weakly amenable?

4. PROOF OF THEOREM 3

In this section we use a game argument to prove Theorem 6, which in view of Theorem 5 implies
Theorem 3. For convenience we restate Theorem 6:

Theorem. If G is a countable group which has an infinite weakly amenable subgroup, then for every
reasonable pointclass T' we have that (T, Eg)-determinacy implies T'-determinacy
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Proof. Let H < G be an infinite weakly amenable subgroup. Let the equivalence relation ~ on H and the
the sequence of sets {A,,} witness this. We recall here that the sets A,, are finite subsets of the quotient

[An+1\Anl _
[Anta]

new
H/~. Without loss of generality, assume that the sequence {4, } is such that lim,,
Define H; and H subsets of H by

H =U <AO U U A2n+2\A2n+1>

new

Hy; = U <U Ayt \ A2n>

new
Let {gxH: k € w} enumerate the cosets of H in G. Let Gt = |, g H1 and Gy = J;c,, g Ha. Clearly
GrNGr =0and G =GrUGiy.

Let A C S* be in I'. We will define an alternate payoff set A C S¢ which is Eg-invariant and simulate
the game A by the game A in which player I makes moves corresponding to g € Gy and player II makes
moves corresponding to g € Gy (we assume the enumeration 7 satisfies 771(g) is even for g € Gy, and
7 1(g) is odd for g € G1).

We will define sets of rules, which if followed by both players will enforce that each player in the game A
eventually specifies moves in A to play. First, we partition the positive even integers into infinitely many

disjoint subsequences {{cnyj }jEW} , and the odd integers also into {{dn’j }jEuJ} . Let B[ ; denote
new new ’
1By,

Ac, ;\ Ac, ;-1 and BF, denote Aqg, ; \ Ag, ;1. Note that lim; Z =1, and likewise for BI

We will have the players specify in A their nth move in A by playing more of those moves (by proportion)
on the rounds corresponding to Bfm- (or B,ILI j respectively). In order to successfully specify a move, they
must have that the limit as j — oo of the proportion of classes C' for which all the moves in C are the
same goes to 1.

Now we give the formal definition of the rules which will enforce the correct encoding of moves from A
into A.

BI,:Vh h)
sz{xeXGzamvzchmHCE € C wlgeh) = m}| 1}

" Jree |BI,j|
CeBI .vheC h)
RE = {7z c X% ImVk lim o€ e € 0 2(g m}| =1
jo0 | B

We claim these rules are invariant. Suppose z € RL and g € G. Let m witness the fact that z € RI,
and fix k € w. We want to show that m also witnesses g -z € RL, or in other words that

. |{CEB :VheCg-x(gph) = m}‘
lim T
500 |B]
Let £ € w and ' € H be so that g"'gx = geh’ and notice that, by definition of the shift, we are
attempting to show that the following set is large.
{CEB :Vhe C g-xz(gih) = }
—{CGB :Vhe Ca(g tgrh) = m}
—{C’EB :Vh e C z(geh'h) = m}
Now define S; by the formula
S;={C e B} ,;:VheC x(gh'h)=m}

and Tj by
T; =Bl ;\ S;.
It will suffice to show that 7} is small compared to B nj as j — oo. To see this, recall that B,Iw =
Ae,; \ Ae, ,—1 and observe that each class C' in T} is of one of the following three types:
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(1) C is moved by h' to intersect some class in A, .1,
(2) C is moved by h' to intersect some class outside A, ,,
(3) or C is moved by k' to hit some other class C’ which fails to specify m properly.

Thus,
T, C{CeBL,;:3C" €A, ,_1 WCNC #0}
u{CeBl,;: NC¢UA,, ,}
U {c € BL,: WC CUBL, A 3C'(NCNC #£0A3h e C' a(geh) # m)} .

‘We want to show that

T
i B | =0

and we will do so by showing that the limit is 0 for each of the three sets above whose union contains 7}.

The first set has size at most b(h') ’Acn,jq , which is small compared to ’B£7j| as j — 00. The second
set is small compared to |A., ;| by the weak amenability hypothesis, and so also small compared to |B;€ ;-
The third set has size at most b(h'~!) ’TJ' , where T} = {C’ e Bl ;: 3h € ¢ x(geh) # m}, which is small

compared to |B;€ j| as j — oo since m witnesses x € RE.

Thus the rule sets RE and RX are all invariant.

Now we define the payoff for the auxiliary game. Via the bijection 7: w — G we have a natural bijection
between S¥ and S¢. The auxiliary game is officially a subset of S, but we view it as a subset of S¢ with
this bijection. Thus, for a position n in the game, the move y(n) is viewed as giving the value Z(m(n)),
where Z € S is the function the players are jointly building. The payoff A C S€ for player I in the
auxiliary game is given by:

i-U (e o(n @ant o)

new \i<n new

where f is the following decoding function with domain (., (RENRE). For z € N, (RENRE),
define

C e B :VheC i(gh) =
f(#)(2n) = m & Vk lim {CeBi,:VheCa(geh) =m}|

j—o0 ’Brlz,j
C e B :vh e C #(gih) =
)0 +1) = m ek i L€ fek Fgeh) =m}| _
n,J

Since all the rule sets RL and RX are invariant, and the function f is invariant, A is invariant. We want
to show that whichever player has a winning strategy in the game A has a winning strategy for A.

The rule sets RL, R are easily TI5 if S is finite, and X if S = w. This easily gives that A is the
union of a Eg set with the intersection of a Hg set and f~1(A). A simple computation gives that f is
AS-measurable. Since T' is reasonable, A € T'.

Suppose now 7 is a winning strategy for player IT in A (the case for player I is similar but slightly
easier). We will define a winning strategy 7 for player IT in A.

We call a class C declared (at position p) if C' N dom(p) # 0. At any position p in the game A only
finitely many digits of the resulting real # € S¢ have been determined, and thus only finitely many classes
C have been declared. For each position p and declared class C relative to p, we have exactly one of the
following:

(1) for some m € S, for all moves p(g) so far played with g € C' we have p(g) = m, (we say in this case
that C' is a m-class)

(2) or there are moves p(g), p(h) played so far with g,h € C for which p(g) # p(h). (we say in this
case that C' is an invalid class).
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For every position p of the game, any class C is either undeclared, an m-class for some unique m, or an
invalid class. Over the course of the game, a class can change from an undeclared class to an m-class, and
will then either remain an m-class or become an invalid class at some point. Note that invalid classes can
never change. Thus the players’ progress towards following the rules can actually be measured at a finite
position p.

We say a ring BTILJ or B;? ; 1s declared relative to a position p if all of the classes C' in this ring are
declared relative to p. Consider one of the sets B,’; ; (or Bf ;). Suppose p is a position of the auxiliary
game and B ; is a declared ring. We say (relative to the position p) that BJ ; is an invalid ring if at least
1/10 of the classes C' € Bid are invalid at position p. We say BTILJ is an m-ring if at least 1/2 of the classes
C e Bi, ; are m-classes. If B,i ; 1s invalid at some position p, and ¢ is a position which extends p, then
BrIl’j is also invalid with respect to ¢. If B,Im- (or B ;) is declared but not an m-ring with respect to p,
then it is not an m-ring with respect to any extension ¢ of p.

Consider the first round of the game A. Suppose I makes first move myq in this game, and we define
T(mg). Consider the set P,,, of positions p of even length in the auxiliary game A satisfying:

(1) pis consistent with 7.
(2) For every j, every class C' € B({j, every k and every g € C, if grg € dom(p), then we have that
p(grg) = mo.

First note that we cannot have a sequence pg,p1, ... in Py, with p, extending p,_; for all n, and for each
n there is a j such that Bg{j is invalid with respect to p, but either not invalid or not declared with respect
to pn—1. For otherwise the limit of the p, would give a run by 7 for which I has satisfied the rule Ré
but IT has not satisfied Rél , contradicting that 7 is winning for II. Let g9 € P,,, be such that there is
no extension of g in P,,, which a new ring B()’{j becomes invalid. So, for all sufficiently large j and any ¢
extending qo, the ring B&Ij is not invalid. Likewise we cannot have a sequence ¢; C ¢o C --- of positions
extending ¢o such that for each n there is a j so that Bg{j is declared and not an m-ring (for any m) at
Gn, but is not declared at ¢,_,. For in this case each of these rings Bgfj would remain not m-rings in the
limiting run, which again violates R . By extending gy we may assume that for all sufficiently large j and
all g extending qq, Bg{j, if it is declared at g, is an m-ring for some m at q. Note that this ring will remain
an m-ring for all further extension r of ¢, since it cannot change to become an invalid ring or an m’ ring for
any m’ # m. Finally, a similar argument shows that we cannot have a sequence ¢; C ¢3 C --- extending
qo such that for each n there are two rings Bé{j and Bg{j, declared at g, but not declared at ¢, with
Bg{j an m-ring and B({Ij/ an m’-ring with m # m’. By extending ¢y further we may assume that we have
a declared my-ring Bfl; with respect to go, and such that for all extensions g of gy and all j/ > j, if BJL,
is declared at ¢ then it is also an mq-ring We define 7(mg) = mj.

In general, suppose I has played mg, ms,...,mor in A. Suppose inductively we have defined positions
90 Cq1 C--- Cgr_1. Let Py, ma;, for i <k, be the set of positions p in A extending ¢;_1 such that for
alli <i,C e BiI,J and g € C, and all k, if grg € (dom(p) \ dom(g;—1)) then we have p(grg) = mair. We
inductively assume that for all sufficiently large j and any g extending qx_1 in Py, ma._», and for any
i < k, if BZI‘; is declared at ¢ then it is an mg;y1-ring, where mo;+; = 7(mo, ..., m2;). We now consider
extensions of qx_1 in Py, ... m,,. By the same arguments as above, there is a gy € Pp,,... m,, €xtending
qr—1 such that for all large enough ¢ and all extensions ¢ of ¢, if B,gj is declared at ¢, then it is an
Mak+1-ring for some fixed integer maoy1. We let 7(my, ..., mag) = Mags1. This complete the definition of
the strategy 7.

To see that 7 is winning, note that for any run = according to 7, we have a sequence of positions qg, q1, - - .
which give us a run Z consistent with 7 which follows all the rules. From the definition of the ¢; we have
that f(#) = x. Thus since 7 is winning in A, we know that & ¢ f~'(A), and so = ¢ A, resulting in a win
for player IT in the game A. O

5. (T, E)-DETERMINACY

We now present a notion of (T', F)-determinacy for more general equivalence relations on Polish spaces.
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Definition 12. Let T’ be a pointclass and E an equivalence relation on a Polish space X. We say
(T, E)-determinacy holds if for all continuous, onto 7: w* — X and all A C X which are E-invariant T’
sets, we have that 7=1(A) is determined.

First we note that the restriction that the coding maps 7 be onto is necessary to avoid trivialities. For
by the Silver dichotomy, for every Borel equivalence relation E on X with uncountably many classes, there
is a continuous map 7: w* — X such that « # y implies = 7(z)E 7(y). Given A C w* in some pointclass T,
let B C X be the E-saturation of 7(A). Then B is an E-invariant subset of X which also lies in T' for most
pointclasses (in particular for all pointclasses closed under 37 or V**). Since 7—(B) = A we see that if
we allow non-surjective maps 7 in Definition 12 then (T, E)-determinacy trivially implies I'-determinacy
(even restricting the maps to be continuous).

In the case where X C S¢ (S = 2 or w), it is immediate that (T', E')-determinacy by Definition 12 implies
(T, E)-determinacy by Definition 1. In the case where E = E¢ is the equivalence relation generated
by the shift action of the group G on S¢ or w®, Theorem 3 shows that for any reasonable pointclass
that (T, Eg)-determinacy as in Definition 1 implies full I'-determinacy and thus (T, E')-determinacy as in
Definition 12. So, for all reasonable pointclasses, the two definitions are equivalent for shift actions on
S%. For more general shift actions on X C S¢ (such as subshifts of finite type considered in §6) it is not
clear that the definitions are equivalent, and the stronger Definition 12 seems to be the more reasonable
definition, and as well as the natural generalization to arbitrary equivalence relations.

Another possible variation of Definition 12 would be to allow Borel onto maps 7: w* — X. Although
we do not see that this version trivializes the notion, it seems more natural to require the coding maps to
be as effective as possible.

A common situation is that we wish to impose a set of “rules” on the players in the game 7=*(A4). We
next show that a more general version of (T, E)-determinacy which allows for rules imposed on the game
is in fact equivalent to (T, E')-determinacy as in Definition 12.

Definition 13. Let T C w<* be a pruned tree (i.e., T has no terminal nodes). We say (T, E, T')-determinacy
holds if for every continuous onto map 7: [T] — X and every E-invariant I set A C X, we have that game
G(7~1(A),T) with payoff set 7=1(A) and rule set T is determined.

Theorem 14. For every pointclass T, for every equivalence relation E, we have that (T, E)-determinacy
implies (T, E,T)-determinacy for every T.

Proof. Assume (T', F)-determinacy and let T' C w<*“ be a pruned tree, and let w: [T] — X be a continuous,
onto map. Fix an E-invariant I" set A € X. We define a continuous onto map 7’: w* — X which extends .
Let € w*\ [T], and we define 7’/(z). Let s be the least initial segment of x with s ¢ T". Let s’ = s[(|s| —1).
We consider two cases. First suppose that Ny N7 1(A) # 0 and Ny N7~ (X \ A) # 0. Fix xg, y, in
[T] with 7(zs) € A and 7(ys) ¢ A. If |s| — 1 is even (i.e., player I was responsible for first violating the
rules) then we set 7'(z) = 7(ys). Likewise, if |s| — 1 is odd, we set 7n'(s) = 7(zs). Next suppose that
Ny N[T] C 77 (A) or Ny N[T] C 77 1(X \ A). Note that the game is essentially decided at this point, so
our intention is to ignore further violations of the rules. In this case let 7'(x) = w(¢(x)) where ¢: w* — [T
is a fixed Lipschitz continuous retraction of w* to [T]. We clearly have that 7’ is continuous and extends
.

By the assumption of (T', E)-determinacy, the game «’ 71(A) C w* is determined. Say without loss of
generality that ¢’ is a winning strategy for I in w’fl(A). Let 0 = £ oo’ (as £ is Lipschitz, we may view o’
as defined on sequences s € w<¥). We show that o is winning for I in G(7~1(A),T). Since 0 = foo’, I
following ¢ will never first move off of the tree T'. So we assume therefore II always moves in the tree T'.
Consider a run x of G(7~1(A),T) where I follows o and both players move in T. If for every even n we
have that o’ (z|n) = o(z|n), then z is also a run of ¢’ and so # € 7~ 1(A). Suppose that there is a least
(even) n so that o’(x[n) # o(xz[n), that is (z[n)"c’(z[n) ¢ T. Let s’ = z[n and s = s'~¢’(s"). We cannot
be in the first case above (that is, both Ny N7~1(A) and Ny N7~1(X \ A) are non-empty), as otherwise
7'(x) = ys ¢ A, and would be a loss of I in 7/~1(A), a contradiction. In the second case we have either
Ny N[T] C 77 (A) or Ny N[T] C 7 1(X \ A). We cannot have that Ny N [T] C 7~!(X \ A) since then
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FIGURE 1. a double loop

Ny C 7/~1(X \ A), which contradicts ¢’ being winning for I. So we have Ny N[T] € 7~!(A) and so since
o=/Loo',x € Ny N[T] C 7 1(A), and so I has won the run following o. O

6. SUBSHIFTS OF FINITE TYPE

In this section we consider (T', E)-determinacy where E is the equivalence relation corresponding to a
subshift X C 27 of finite type. Recall this means that there is a finite set of “forbidden words” wy, ..., w. €
2<% and X = {z € 22: Vk € Z VI < e z|[k, k + |we|] # we}, where |w| denotes the length of the word w.

Theorem 15. Let E be the shift equivalence relation on a subshift X C 27 of finite type, and assume
E has uncountably many classes. Then for all reasonable pointclasses T', (T, E)-determinacy implies T'-
determinacy.

Proof. Let wy,...,w, be the forbidden words of the subshift X. Fix N > max{|w;|: 1 <1i <e}. Let G be
the finite directed graph, the de Bruijn graph, corresponding to the forbidden words and N. That is, the
vertices of G are elements of 2/ which don’t contain any forbidden words, and (u,v) is an edge in G iff
v[[0, N — 1] = u[[1, N].

Throughout the rest of this section, G will denote this fixed de Bruijn graph (and not a countable group).

Definition 16. Let u € G. We say u is good to the right there are uncountably many directed paths
p = (u,uy,us,...) in G starting from u. Likewise we say u is good to the left if there are uncountably
many (..., us,u,u) paths starting from u and moving in the reverse direction in G (i.e., (un+1,uy) is an
edge in G).

If v is good to the right and there is a path v = ug,uq,...,u, = v from u to v in the graph G, then u
is good to the right as well. Likewise in this case, if u is good to the left, then v is also good to the left.
This simple observation will be used throughout.

Note that an element of X can be identified with a bi-infinite path through G.

Definition 17. A double loop in a directed graph G is a directed subgraph consisting of the union of two
cycles with vertex sets C; and Cs such that C; N Cs # () and Cy # Cs. See Figure 1.

Lemma 18. If GG is a finite directed graph with uncountably many paths, then G contains a double loop.

Proof. Let ug be a vertex in G for which there are uncountably many directed paths in G starting from wug.
Inductively define (ug,u1,...,u,), a directed path in G, such that there are uncountably many directed
paths in G starting from w,. We can clearly continue this construction until we reach a least n so that
Up € {ug,...,un_1} (since G is finite). Let j < n — 1 be such that u, = uj, Let po denote this directed
path (ug,u1,...,uy). Let £y = (uj,ujt1,...,un—1) be the “loop” portion of pg. There must be a vertex
vg = uy, of £y such that there is an edge (v, v1) in G where v1 # uj41 and such that there are uncountably
many directed paths in G starting from v;. For if not, then the only directed paths in G starting from v
would be, except for a countable set, those which continually follow the loop ¢y. This is a contradiction to
the definition of vg as there are only countably many such paths. If v; € pg then we have a double loop
in the graph. If not, then we repeat the process starting at vy forming a path p; = (vg, V1, .., Vm—1,Vm)
where vy, € poU (vo, .-, Um—1). If v, € pg, then we have a double loop in G. Otherwise v, = v; for some
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FIGURE 2

i<m-—1,and ¢; = (vj,...,v;m—_1) gives another loop in G. Since G is finite, we must eventually produce
a double loop in G.
O

Note that every vertex in a double loop is good to the right and left. Returning to the proof of the
theorem, by our assumptions, the de Bruijn graph G for the subshift has a double loop, and thus G has a
vertex which is good to the right and left.

We now define the continuous onto map 7: [T] — X, where T will be be a pruned tree on w which we
will be implicitly defining as we describe w. Let z € w*, and we describe the conditions on = which give
x € [T], and in this case describe 7(x) € X C 2Z. First, view every digit i as coding a binary sequence u;
of length N (recall N was maximum size of the forbidden words, and was used to construct the de Bruijn
graph G). Fix a fast growing sequence 0 = by < by < - -+, with say lim; % =0, and with N|(b; —b;—1)
for all i. Let A; = [bj_1,b;) for i € w'. Let also A_; = —A; —1={—a—1:a € A;}.

Let n + u,, be an onto map from w to 2V (binary sequences of length N). We first define a preliminary
map 7’. Given z € w¥ we define y' = 7'(x) as follows. Given the first 2n digits of z, that is, z[2n, we
define ¢’ [[-nN,nN). Assume y'[[-nN,nN) has been defined, and from z(2n), z(2n + 1) we extend to
Y'[[=(n+1)N, (n+1)N). If nN € A; for i odd, then y'[[nN, (n4+1)N) = uy(2y,) and y' [[-(n+1)N, —nN) =
Ug(2n+1)- If 4 is even, then we let y/[[nN, (n + 1)N) = uy2,41) and y'[[—(n 4+ 1)N, —nN) = uy(a,). Let
T C w<¥ be the tree of sequences z[2n such that the corresponding sequence y'[[—nN,nN) contains no
forbidden words. Note that [T] = 7/~ '(X). Let F = [T] be the closed set corresponding to 7', and let
T C T be the pruned tree with [T] = [T] = F.

We now define y = m(x). If I's first move u, gy is bad in both directions, we set 7(z) = 7'(z). If for all
n we have that u,(,) is good to the left and right, then we also set 7(x) = 7'(z). Otherwise, say ng is least
such that u,(2p,) OF Uz(2n,41) IS N0t good to both the left and right.

Suppose that (2, is not good in both directions, that is, I has made the first such move. Note that
Uz (2n,) MUst be good in one direction as we are assuming that I's first move u,(g) is good in at least one
direction. In this case we ignore the remainder of I's moves in the game, and we alternate concatenating
IT’s moves on the left and right. This produces y = w(x). If II first makes the move u(2pn,+1) Which is
not good in both direction, we similarly ignore the future moves of IT and alternating concatenating I’s
move to the left and right. This defines y = 7(z) in all cases.

Let A C 2¢ be a T set. We define the auxiliary payoff set A C X to which we will apply the hypothesis of
(T, E)-determinacy for the m constructed above. The set A will be a shift-invariant T' set. The construction
of A will be similar to that of Theorem 6. Say z € [T] C w® is the play of the game 7~ '(A) where both
players have followed the rules (i.e., no forbidden words appear in y = 7(z)).

First, if there exists a subword of length N in y which is bad to right and also a subword which is bad
to the left, then I loses (this is part of the definition of A). In the remaining cases we assume that there
is at least one direction so that all subwords of y are good in that direction.

Recall the sets A; have been defined for i € Z\ {0}. Let A’ be defined (for i € Z \ {0}) by A} = A, if
every subword of y is good to the right, and otherwise let A} = A_; ;. As in the proof of Theorem 6 we
partition w into w-many pairwise disjoint sets Bfw», BTIL{J». These sets are defined exactly as before using
the sets Af for ¢ > 0, except (for notational convenience) we let the Bij correspond to odd 7, and the Bﬁj
to even 1.
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In order to define the rule sets for the game we will make use of the following notion.

Definition 19. Given y € X and a double loop (Cy,Cy) in G, and given integers a < b, we say y|[a,b)
traces the double loop with pattern s € 2<¥ if vg = ylla,a+ N) € Co N Cy, and if v; = ylla +i,a+i+ N),
then the sequence vg, vy, ..., Vp—q—n+1 Of nodes in G is a path in G of the form C’;(O)"C;(l)" e C;(|s\—1)
where C}), C} are the same cycles as Cy, O} except we start at the vertex vg. If |s71(i)| > |s71(1 — i)|, we

call C; the majority loop and Cy_; the minority loop.

We define the conditions RE, RT and the decoding function f: X — 2% as follows. We fix an ordering
on the cycles of G (the de Bruijn graph) as so write each double loop in G as (Cy,Cy) where Cy < Cf.
This makes the representation of each double loop unique. In the definition of R (and likewise for RI)
we require that the following hold:

(2)  yeRE<3i€{0,1} Ve > 0 3jy V5 > jo 3 double loop (Cp, C1) such that the following hold:
Jla,b) C BTILJ (b—a)>(1- e)|BTIw.| and y|[a,b) traces (Cp, Cq) with pattern s € 2<¢

7@ > (-2l

1 . 1
s7 A=)l = (1~ €)y5ls]

Likewise we define RH using the Brlf ; sets. If there is some direction so that every subword of y is good
in that direction and y € (,, RL NN, RY, then we define the decoding map f at y by f(y)(2n) is the
witness i € {0,1} to y € RL, and likewise f(y)(2n + 1) is the witness to y € RHE.

To ensure f is well-defined, we note that if i witnesses y € RI, then 1 — i does not. This is because
for small enough e, for all large enough j if y traces (Cp, C1) with pattern s over a subinterval I of length

(1 —€)|B| of some fixed B = B} ; then the double loop (Cp,C1) is unique (for this j). Say C; (i € {0,1})
is the majority loop. The majority loop C; is traced say M times, where M > (1 — €)2[s| many times.
The minority loop is traced say m times, where m < (1 + Z¢)|s| + €|B|. The condition m < M becomes

€|B| < (3 — %€)|s|. Since |s| > (1— e)% it suffices to have e < (3 — 3¢) (l‘ar). Clearly this is satisfied for e
small enough. On the other hand, m > (1 —€)15|s| > (1 — 6)21—10%. Any other loop can be traced only in

B\ I, and so can be traced at most €| B| many times. But (1 — 6)21—10% > €| B| holds for all small enough

€. So, there is a fixed €, independent of j, so that if y[Bi’ ; satisfies Equation 2 for this € then the double
loop (Cy, Cy) is well-defined as is the integer i € {0,1} with C; being the majority loop.

On the invariant set of y such that there is at least one direction so that all subwords are good in that
direction we define A by:

a=y (et o(Q wnennso)

ncw \i<n new

This completes the definitions of 7, and the auxiliary game A.

We next observe that the auxiliary game A C 2% is shift invariant. Given y € 2%, the case split as to
whether there is a direction so that all all subwords of y are good in that direction is clearly shift invariant
(and the set of such directions is also invariant). In the case where there is at least one such good direction,
whether y € A is decided by putting down the sets Al for i € Z \ {0}, using these to define the sets BTILJ,
Bg ;» then defining the sets RI RI asin Equation 2 which gives the decoding function f and finally asking
whether f(y) € A. It suffices to show that the sets RE, RE are invariant (in that y € RL iff m -y € R}
for all m € Z), as this implies that the decoding function f is also invariant. The intervals BTIL, j(m - y)

as defined for the shift m - y are just the shifts m - be,j(y) of the corresponding sets be,j(y) for y. In

particular, [BE ;(y) N B] ;j(m-y)|/|B] ;(y)| tends to 1 as j goes to infinity. Thus the asymptotic condition
of Equation 2 holds for y iff it holds for m - y. The value of i in Equation 2 is therefore the same for both
y and m - y. This shows that f(y) = f(m-y) andsoy € Aiff m-y € A.



EQUIVALENCE RELATIONS AND DETERMINACY 11

By the assumption of (I', E)-determinacy the game 7~ (A) on w is determined. First consider the case
where I has a winning strategy o in 7~ 1(A).

Claim 20. If 2(0),z(1),...,2(2n) is a position of the game 7~ !(A) consistent with ¢ in which all of II’s
moves Ug(2k4+1), K < n, are good in both directions, then u,(2,) is good in both directions.

Proof. We first note that u,(2,) is not bad in both directions. If n > 0 this is clear as u,) is good in
both directions and the last move is legal, and so good in (at least) the direction pointing back to u,(q).
If n = 0, and wug () is bad in both directions, then there is no direction for which every subword of the
resulting y is good, which is a loss for I, a contradiction. Suppose now that w,(s,) were bad in exactly
one direction, say bad to the right. If the definition of m we gave full control of all future moves to IT (we
ignored I's moves after this point). But IT can now play moves to violate R and thus produce a loss for
I, a contradiction. For example, II can move (for each of the two directions) to a cycle of G, and simply
trace this cycle forever. O

We will construct a position py of odd length which is consistent with o, so that ¢ is committed to a
particular witness ig to its following of RI, which will be our first move. Fix € small enough so that for all
large enough j, if a double loop is traced in BTIL’ ; meeting the conditions of Equation 2 for this €, then that
double loop is unique.

Now consider the tree of positions of odd length which

(1) are consistent with o,

(2) in which player IT has made only moves which are good in both directions,

(3) there is some j such that for the partial sequence y|[c, d) constructed so far, we have [c,d) N B ; =
B and [e,d)NB{ ., =0,

(4) and that y[[c,d) doesn’t satisfy the existence of a double loop as in Equation 2 on B()’,j with e = €.

This tree must be wellfounded, as a branch could be used to produce a loss for I which is consistent with
o, a contradiction. Let p{, be a terminal position in this tree. Next, we consider the tree of positions of
odd length extending p{, which

(1) are consistent with o,

(2) in which player IT has made only moves which are good in both directions,

(3) there is some j so that for the partial sequence y|[c, d) constructed so far, we have [¢,d) N B{, 1=
Bé,j—s-l and [¢,d) N Bg7j+2 =0,

4) if yl[e,d) traces (Co,Cy) in B . and (C4,C%) in Bl .., satisfying the conditions of Equation 2

0,j 0“1 0,j+1

with € = € and the majority loop which y|[c, d) traces in Bé}j is C;, then the majority loop yl[c, d)
traces in Bf ;. is C]_,.

Again, this tree must be wellfounded, since a branch would result in a y which fails to satisfy RI. Let po
be any terminal node of this tree and let jo be such that if y[[co,dp) is the portion of y constructed at
po, then [co,do) N BY ;= B, and [co,do) N B ; 11 = 0. Notice that for any extension ¢ of py which
is consistent with o and in which II's moves are good in both directions, with y[[c,d) the portion of y
constructed at ¢, we will have that y[[c, d) traces a double loop in each Bg’ ; forall j > jo, satisfying the
conditions in Equation 2 with ¢ = €. Furthermore, there will be some iy € {0, 1} so that for any j > jo, if
ylle, d) traces (Cp,C1) in Bg,j, then C;, will be the majority loop and C_;, will be the minority loop.
Our first move in the game A will be to play this ig. Next suppose our opponent plays i;. We will again
consider a tree of positions consistent with o. We consider only positions of odd length extending py which

(1) are consistent with o,

(2) in which player IT has made only moves which are good in both directions,

(3) in each new B({Ij player II has moved as quickly as possible to the nearest double loop (Cp, Cy)
in G, and in B(‘)'{j declares C;, the majority loop and C7_;, the minority loop (say by tracing the
minority loop sufficiently many times first, then the majority loop for the rest of the time) to satisfy
the conditions in Equation 2,
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(4) for the partial sequence y[[c, d) constructed so far, we have for some j that [¢,d) N BII, B ; and
[C d)mBlj+1 :(2)7
(5) and that y[[c, d) doesn’t satisfy the conditions of Equation 2 on B{J with € = €.

This tree must be wellfounded, since along a branch, IT would be satisfying RI (with 4;) but player T
isn’t satisfying R, which would be a loss consistent with o, a contradiction. Let p} be a terminal position
in this tree. Next, we consider the tree of positions of odd length extending p} which

(1) are consistent with o,

(2) in which player IT has made only moves which are good in both directions,

(3) in each new BH player IT has moved as quickly as possible to the nearest double loop (Cp, C1) in
G, and in BOI declares C;, the majority loop and C;_;, the minority loop to satisfy the conditions
in Equation 2

(4) there is some j so that for the partial sequence y[[c, d) constructed so far, we have [¢,d)NB{ ;.| =
B{7j+1 and [c,d) N B{’j+2 =0,

(5) if y[[e,d) traces (Co,Cq) in Bll’j and (C{,C1) in B{’jﬂ satisfying the conditions of Equation 2
with e = € and the majority loop which y[[c, d) traces in Bll,j is Cy, then the majority loop y[[c, d)
traces in B{’jﬂ is C1_;.

This tree also must be wellfounded, since I must commit to a particular i, with which to satisfy RY, and
a branch through this tree would have I changing its answer infinitely often, resulting in a loss consistent
with 0. Let p; be any terminal position in this tree, and let i be the digit which I will declare in each
new B{’j from p; onwards.

We play the move i in A and continue playing in this manner, using each new move is,1 by our
opponent to satisfy in the auxiliary game 7*1(/1) an additional rule R¥ | and then by moving to terminal
positions p,, in wellfounded trees, and use these to fix digits io,, which we will play in A. By the construction
of these positions p,,, we will have that if y is the resulting element of X corresponding to the sequence of
moves g, i1, -+ in A, then we will have f(y)(n) = iy, and that y € (), (RE N RX), so that our strategy is
winning for I in A.

Consider now the case where IT has a winning strategy 7 in the game 77_1([1). The argument is similar
to the case above where I had the winning strategy, so we just sketch the differences. By Lemma 18 there
is a double loop in the graph G, and therefore there is a word of length N which is good in both directions.
Have I play in A such a word as their first move Uz (0)- Suppose I plays ig in the game A. We proceed
as in the argument above having I move as quickly as possible (only making moves which are good in
both directions) to a double loop within each BO ., and moving to encode iy within B 0,j- An analogous
claim to Claim 20 shows that as long as I plays in thlb manner, 7’s moves are also good in both direction.
since I is satisfying RZ (with the digit ig), a wellfoundedness argument as before will produce a position pg
consistent with 7 and a digit 41 so that for all runs y consistent with 7 in which I plays as just described we

have that y satisfies REf with i;. Continuing in this manner, as previously, this defines a winning strategy
for IT in A.

7. CONCLUSION

We have introduced the general notion of (T', E)-determinacy for arbitrary equivalence relations E on
Polish spaces and pointclasses I'. Since the definition involves the use of continuous coding maps from w*
onto X (which seems necessary to have a reasonable definition), it is not immediately clear to what extent
the structure of the particular Polish space X plays a role. Since all uncountable Polish spaces are Borel
isomorphic, it is reasonable to ask the following:

Question 21. Suppose X, Y are uncountable Polish spaces, ¢: X — Y is a Borel isomorphism, and Ex
is a Borel equivalence relation on X. Let Fy be the corresponding Borel equivalence relation on Y, that
is y1 By yo iff 9~ (y1)Ex ¢~ *(y2). Then for any pointclass T' closed under substitution by Borel functions,
countable unions and countable intersections, is it the case that (T', Fx)-determinacy is equivalent to
(T, Ey)-determinacy?
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If E, F are equivalence relation on X with F C F', then we immediately have that (T, E')-determinacy
implies (I', F')-determinacy (because F-invariant sets are also E-invariant). Since the shift equivalence rela-
tion Ez on 27 is a subset of the Turing equivalence relation on 2%, we have that (T, Ez)-determinacy implies
I" Turing-determinacy for any I'. We have shown that (I", Ey)-determinacy implies full I'-determinacy for
any reasonable I'. We recall that Harrington showed that 2} Turing-determinacy implies E}—determinaey
and Woodin showed that in L(R), Turing-determinacy is equivalent to full determinacy. If Ep is the Tur-
ing equivalence relation on 2¢, then our definition of (T, E7)-determinacy immediately implies T' Turing
determinacy in the usual sense (all E7 invariant subsets of 2 are determined) but the converse direction
is not clear as we allow more general continuous onto maps for the coding. So we ask the following.

Question 22. For which T' and E on 2¥ is (I', E)-determinacy equivalent to the determinacy of all E-
invariant I" subsets of 2¢7

Extending Theorem 3 to more general equivalence relations is expected to be a difficult problem. Nev-
ertheless, in Theorem 15 we extended the result to include subshifts of 2% of finite type.

We recall that the Feldman-Moore theorem states that every countable Borel equivalence relation £ on
a Polish space is generated by the Borel action of a countable group G (one can also choose the Polish
topology to make the action continuous). We also recall the result [1] that every equivalence relation E
generated by the action of a countable group G Borel (equivariantly) embeds into the shift action of G x Z
on 262 Theorem 6 applies to shift actions of arbitrary countable groups, so the problem of passing
to general (not necessarily closed) subshifts embodies the general question of whether (T, E)-determinacy
implies I'-determinacy. In particular, we can ask:

Question 23. For which subshifts (closed, or more generally Borel, invariant subsets X of 2% with the shift
map) of 2% do we have that (T, F)-determinacy implies I'-determinacy, where E is the shift equivalence
relation restricted to X.

If E is generated by the continuous action of a countable group G on a compact 0-dimensional space X,
then [1] shows that (X, E) equivariantly and continuously embeds into a subshift of 22%¢. Thus, given a
positive answer to Question 21, the question of whether (T', E)-determinacy implies I'-determinacy reduces
to considering the question for subshifts of 2¢, for countable groups G.

Aside from the observation above on subequivalence relations, it is not clear how the notion of (T, E)-
determinacy interacts with other aspects of the theory of Borel equivalence relations. So we ask:

Question 24. How does the notion of (I', F)-determinacy interact with the notions of Borel reducibility
of equivalence relations, products of equivalence relations, increasing unions of equivalence relations, etc.?

O

REFERENCES

1. Randall Dougherty, Stephen Jackson, and Alexander S. Kechris, The structure of hyperfinite borel equivalence relations,
Transactions of the American Mathematical Society 341 (1994), no. 1, 193-225.

2. Leo Harrington, Analytic determinacy and 0%, Journal of Symbolic Logic 43 (1978), no. 4, 685-693.

3. Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New
York, 1995.

4. Alexander S. Kechris and Andrew Marks, Descriptive graph combinatorics, to appear.

5. Andrew Marks, A determinacy approach to Borel combinatorics, Journal of the American Mathematical Society 29 (2016),
no. 2, 579-600.

6. Donald A. Martin, Borel determinacy, Annals of Mathematics 102 (1975), no. 2, 363-371.

, A purely inductive proof of Borel determinacy, Recursion theory (Ithaca, N.Y., 1982), Proc. Sympos. Pure Math.,
vol. 42, Amer. Math. Soc., Providence, RI, 1985, pp. 303—308.

8. Yiannis N. Moschovakis, Descriptive set theory, Mathematical Surveys and Monographs, American Mathematical Society;
2nd edition, 2009.




14 LOGAN CRONE, LIOR FISHMAN, AND STEPHEN JACKSON

LoGAN CRONE, UNIVERSITY OF NORTH TEXAS, DEPARTMENT OF MATHEMATICS, 1155 UNION CIRCLE #311430, DENTON,
TX 76203-5017, USA
E-mail address: logancrone@my.unt.edu

LioR FISHMAN, UNIVERSITY OF NORTH TEXAS, DEPARTMENT OF MATHEMATICS, 1155 UNION CIRCLE #311430, DENTON,
TX 76203-5017, USA
E-mail address: lior.fishman@unt.edu

STEPHEN JACKSON, UNIVERSITY OF NORTH TEXAS, DEPARTMENT OF MATHEMATICS, 1155 UNION CIRCLE #311430, DEN-
TON, TX 76203-5017, USA
E-mail address: stephen.jackson@unt.edu



