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Abstract—Power system equipment presents special signatures
at the incipient stage of faults. As more renewables are integrated
into the systems, these signatures are harder to detect. If
faults are detected at an early stage, economical losses and
power outages can be avoided in modern power grids. Many
researchers and power engineers have proposed a series of
signature-specific methods for one type of equipment’s waveform
abnormality. However, conventional methods are not designed
to identify multiple types of incipient faults (IFs) signatures at
the same time. Therefore, we develop a general-purpose IF
detection method that detects waveform abnormality stemming
from multiple types of devices. To avoid the computational
burden of the general-purpose IF detection method, we embed
the abnormality signatures into a vector and develop a pre-
training model (PTM) for machine understanding. In the PTM,
signal “words,” “sentences,” and “dictionaries” are designed and
proposed. Through the comparison with a machine learning clas-
sifier and a simple probabilistic language model, the results show
a superior detection performance and reveal that the training
radius is highly related to the size of abnormal waveforms.

Index Terms—Incipient fault, distribution system protection,
representation learning, pre-training model.

I. INTRODUCTION

FAULT analysis and prediction are with significant impor-
tance to distribution network operation and protection.

Establishing effective fault analysis and prediction theory
can help distribution network operators monitor distribution
network systems and equipment health status. The advanced
monitoring is useful for effective overhaul and maintenance
decisions, which reduces the risk of large-scale power outages.
Many factors affect distribution network fault characteristics,
such as equipment type, operating conditions, and noise,
etc. Therefore, the research on fault analysis and prediction
methods [1]–[4] has been extensively studied.

Distribution network fault analysis needs to detect anoma-
lies in voltage and current waveforms [5]. Once anomalies
are detected, the waveforms and root-mean-square values
associated with the anomalous cycles can be extracted for
detailed analysis. Ultimately, the state of the device can be
determined from the results. There are a wide variety of
equipment fault characteristics, many of which are not yet well
understood. Furthermore, it is hard to find a general method
that incorporates the equipment signature together. Therefore,
if a general method that can detect all types of equipment
anomalies is established, it will be helpful in understanding
equipment anomalies coherently and comparably. However,
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most of the present research proposes one algorithm for a
specific device [6]–[9]. For example, various fault detection
algorithms are developed specifically for cables [6], [9], trans-
formers [1], [10], [11], and lines [7].

In the fault detection field, IF detection is beneficial to
distribution network operations due to its preventive capability.
Prior to an equipment failure, there are repeated predictive
anomaly signals [12]–[15]. Effective IF detection helps avoid
catastrophic failures stemming from different devices. Faulty
equipment can be replaced in advance to effectively improve
power supply reliability. In addition, it transforms reactive
processing into predictive maintenance, which greatly im-
proves the traditional thinking pattern of power protection
[16]. According to the IEEE Power and Energy Society report
[5], there are five classes of methods for detecting wave-
form anomalies [5], [8], [17]–[22]: current-based methods,
voltage-based methods, methods based on integrated current
and voltage, methods based on hypothesis testing, and the
interpretive anomaly detection method. Characterization of the
IF waveform generally exists in the time domain, frequency
domain, and time-frequency domain. In the time domain, the
magnitude of the fault current and the fault duration are usually
recorded. In the frequency domain, the harmonic components
associated with the fault are generally monitored, and the
total harmonic distortion of the voltage at the fault point is
used as a criterion, which should exceed the threshold value
when the initial fault occurs. In the time-frequency domain,
the transient behavior of the fault is generally analyzed using
wavelet transform; then the initial fault is classified by certain
detection rules. In the work of [23], a simple algorithm
based on five main characteristics of voltage and current
waveforms in early fault conditions is proposed. To identify
the system parameters and characterize the observed initial
behavior, field data recorded from underground distribution
feeders were evaluated in the literature [15], which is based
on time and frequency domain analysis. In the literature
[24], the authors proposed a pattern analysis technique for
classifying load variation transients and early anomalies in
underground distribution cables using a KNN classifier. The
scheme proposed in the literature [23] detects self-clearing
transient faults based on the magnitude and rate of change
of a neutral current. An intelligent system-based approach is
proposed in the literature [25]. In the frequency domain-based
approach introduced in the literature [26], the S-transform
takes into account the harmonic components of the arc current
and/or voltage. In the literature [27], a rule-based and SVM-
based pattern classifier is used to classify the transient patterns
of underground cables.

Conventional IF detection methods are not designed to



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2022.3151110, IEEE
Transactions on Power Delivery

2

Figure 1. The overview of the proposed method.

comprehend the waveform signatures of different IF faults in
a coherent way, therefore, they usually focus on the signature
detection of one equipment. However, incipient faults are hard
to detect since different equipment exhibits different behaviors
in various operating conditions. There were efforts in the past
to combine the nonlinear systems theory with language theory
[28], but the natural language processing technique was not
very successful before 2006 [29]. In this paper, we formulate
signature vectors and their dictionary through the embedding
of the physical characteristics of the power grid. This enables
the machine’s understanding of distribution network fault
analysis and prediction. Then, we construct signature vectors
and their dictionaries to help build a general quantitative model
of faults and disturbances as well as a probabilistic analysis
model, which provides theoretical basis, methods, and analysis
tools for power system IF detection. In the end, a signature
vector pre-training model is introduced into the field of fault
analysis and prediction, which provides a new solution for
initial fault detection. The idea of introducing dictionaries and
words may not be completely new, but the new philosophy
that is evolving brings significant new ideas and applicability
to incipient faults. For example, the dictionary coupled with
the automatic feature extraction and construction capability of
the dictionary is brand new and necessary for cyber-physical
systems such as power systems with incipient faults. Inspired
by the momentum of new research ideas in the field of natural
language processing, this paper not only transforms the way
word2vec is used, but also shows how to embed physical
knowledge from power protection to improve the knowledge
database. This leads to constructing fault models by making
full use of fault databases and signal processing techniques.
Technically, we use Pytorch to implement our own word2vec
algorithm with libraries like Sklearn, Nltk, NumPy, etc. Then,
we improve the proposed algorithm through numerical testing
and redesign it by introducing new concepts and functions that
traditional word2vec that does not have.

This paper is organized as follows: Section II describes
the distribution system anomaly characteristics and anomaly
dictionary concept. Section III illustrates the formation of
the distribution network pre-training model for IF detection.
Section IV shows the numerical results, followed by Section
V the conclusions.

II. DISTRIBUTION SYSTEM ANOMALY CHARACTERISTICS
AND WAVEFORM DICTIONARY

Features extracted from time/frequency domains vary when
used to detect faults of multiple types of equipment. It could
be a mathematical burden when dealing with multidimen-
sional data, especially when different types of power systems
equipment are involved. To address this issue, we develop a
distributed representation of the waveforms in a low-dimension
vector. There is no specific meaning in this vector, but it
contains rich information when viewed as one vector. The
vector can be realized through a designed IF pre-training
model (IF-PTM). The proposed IF-PTM has three advantages:

• The extensive training over large-volume power measure-
ment data ensures the generalized representation of the
power grid anomalies. This is helpful for the subsequent
prediction task.

• Has a ready-to-use IF detection model with excellent
parameter initialization. This enhances the IF-PTM gen-
erality and convergence speed.

• Provides a way of normalization when viewed on a small
dataset, avoiding model overfitting.

This paper proposes to construct a signature vector pre-
training theoretical system, as shown in Fig. 1. It is inspired by
research results in the field of natural language processing. The
paper is carried out by involving cross-application and the in-
novation of knowledge in computer science and electric power
fields, to construct fault models by making full use of fault
databases and signal processing techniques. At the same time,
a fault word embedding model focusing on learning context
waveform is used to obtain advanced machine understanding
of distribution network faults. Finally, fault analysis, identifi-
cation and prediction theories, and techniques are developed
based on the aforementioned research procedures.
A. Build a fault database.

The training and testing of the proposed PTM requires
a high volume database to become effective. The database
to be studied includes three parts: the realistic data from
open resources, the simulation data that is complementary
to the realistic data, and the artificial data that is based on
realistic data. First, we extract data from technical reports,
top journal articles, and shared data. The data is in image
format at the beginning, shown as the original signal in Fig.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2022.3151110, IEEE
Transactions on Power Delivery

3

2. We then digitalize the waveform using specialized software.
Furthermore, we add Gaussian noises to mimic more realistic
scenarios, which expands the datasets.

Figure 2. Build the incipient fault dataset.

Second, we use the distribution network edge equipment
(including power quality meter, relay protection equipment,
PMU, etc.) as data collection devices and intelligent com-
puting terminals. First, we simulate various system operating
conditions. At the system level, we change the system topol-
ogy, line parameters, load type, normal operating conditions,
etc. to obtain fault data of different equipment and fault data
from early to late-stage. At the equipment level, we change the
equipment model, operation mode, and capacity size to obtain
normal operation and fault operation data from equipment.
Based on this, the relationship between operating conditions
and faults is used to populate the database. Fig. 3 shows some
of the disturbance data. It includes permanent fault data since
they are disturbances to the IF identification tasks.

Figure 3. Build a non-incipient-fault dataset.

Third, we generate artificial data based on the realistic data
we obtain. We construct it by assigning different amplitudes
and simply repeating the initial fault waveform two or three
times (see figure 4). The purpose is to simulate the IF events
that possess repetitive characteristics, instead of looking at
only one IF event in the literature.

B. Waveform processing and signal sentences.

To convert the waveform into digital values, the link
between signal analysis and processing is essential. Signal
features are extracted by Fast Fourier Transform (FFT), which

Figure 4. Build multi-periods IF datasets.

is simple, reliable, and can be implemented in many engineer-
ing fields. FFT is used to capture most physical quantities
and is widely implemented in microcomputer-based relays.
Since the open-source data is obtained at varying sample
frequencies, we re-sample it according to the sample rate of
power system protection or monitoring devices once we get
a signal waveform. After the re-sample, we split the entire
signal waveform by cycle. Then we apply the FFT to each
cycle and acquire the amplitude single-sided spectrogram as
shown in Fig. 5.

Figure 5. Signal processing and feature extraction.

Based on the selected features above and our designed
Value-Letter Table, we translate the cycle information into
“letters” and then combine them into one “word.” The example
in Fig. 6 shows the continuous values are discretized into
multiple intervals. The first 10 intervals are equally split and
the last interval has a larger range since the contributions
from the high order harmonics are subtle. These intervals can
be designed according to specific cases. Once we obtain the
“words” for signals, many cycles of waveforms form a “signal
sentence” in the same order as the cycles in signal waveforms.

In particular, when the effective features are determined
after much data analysis and research, an ”alphabet” of sig-
nature vectors is obtained. Unlike English words, each fault
waveform unit (segment,si) corresponds to a fixed alphabet
[F1,F2, ...,Fn], in which the numerical difference of each
feature represents a different waveform unit si. For example,
taking n = 3, F1, F2 and F3 represent the FFT transformed
direct current (DC) component A0, fundamental amplitude
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Figure 6. Generating signal “words” and “sentences.”

Figure 7. Building a signature vector’s dictionary.

A1, the second order harmonic A2, so that when sorting the
signature vector’s dictionary, it is only necessary to sort the
different waveform signals by comparing the magnitude of the
values after normalization (here the values may be an interval).
The alphabet needs to include (1) high frequency harmonics
due to the existence of power electronics equipment, (2) inter-
harmonics and transient harmonics due to some special equip-
ment, and (3) the periodicity of the FFT and its associated
errors due to aliasing and Gibbs phenomenon. It is noteworthy
that the selection of the alphabet is not unchanged. It requires
the distribution system operator to evaluate the selection of
the alphabet according to the characteristics of the distribution
networks.

Admittedly, many factors need to be further explored. How-
ever, the core idea of building a signature vector’s dictionary
is to construct a sortable and expandable “waveform feature
dictionary,” i.e., a signature vector’s dictionary. This dictionary
contains many different kinds of equipment faults after the
waveform signal is extracted by features. Fig. 7 shows how to
build the signal “corpus” and signal “dictionary.” Since most of
the IF dataset does not contain the waveforms of the resulting
device failure waveforms, we add a special “word” called EF
(equipment failure) as the target learning “word” at the end of
each IF dataset for better learning performance.

III. DISTRIBUTION NETWORK PRE-TRAINING MODEL FOR
IF DETECTION

There is a wide variety of equipment types and numerous
manufacturers of the same equipment in one system. The com-
bined performance is hard to coordinate in a complex system.
Thus, we design a PTM to enable machine understanding of
abnormal waveforms in complex systems. This part of the
study is carried out according to the two steps: (1) constructing
a waveform pre-training model, and (2) constructing a before-
and-after waveform correlation pre-training model. A discus-
sion about the general-purpose idea follows.
A. Construction of a waveform pre-training model.

A pre-training model construction method suitable for a
power quality meter or a relay protector measurement data
is designed. The purpose of the model is to predict the
target waveform unit (st) from the surrounding waveform unit
(st−m, ...,st−1), assuming that the length of the signature vec-
tor’s dictionary is L1 and each waveform segment (waveform

1To estimate the dictionary size related to the computational burden in a real
distribution network system, the distribution system operator can calculate the
magnitude of the signal vocabulary through the following empirical equation:
L = TIF × Nmanu × Teq × Nop × Tcl , where L is the length of the signature
vector’s dictionary, TIF is the number of the type of fault signature, Nmanu is
the number of manufacturers, Teq is the number of the types of equipment,
Nop is the number of system operating conditions, and Tcl is the number of
the types of climate or weather to be considered.
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“word”) in the dictionary corresponds to 1 ∼ L one by one.
Given the total length T of the waveform dictionary provided
in the waveform recorder and the contextual waveform win-
dow size of m, the probability of generating a target waveform
unit, given any surrounding waveform unit, is required to
maximize the function J = ∏

T
t=m p(st |st−m, ...,st−1;θ), which

is equivalent to

min
θ

J = min
θ

(
− 1

T −m

T

∑
t=m

log p(st |st−m, · · · ,st−1;θ)

)
, (1)

where the conditional probability p(st |st−m, · · · ,st−1) =

so f tmax(gT
j qi) =

exp(gT
j qi)

∑k∈L exp(gT
k qi)

; qi is a vector when the faulty
unit is the target unit, whose vector dimension is d × 1. g j
is a vector when the faulty unit is the prediction unit, whose
vector dimension is d × 1. Softmax is introduced so that it
can convert the output value of a multi-classification into a
probability distribution in the range [0,1] and the sum is 1. The
disadvantage of softmax is its high computational cost. The
complexity of the softmax equation is O(V +V )≈ O(V ). This
is computationally very expensive, as the signal vocabulary
and their weights can reach millions or more as previously dis-
cussed. To solve this problem, we utilize the negative sampling
technique [30]. This technique reformulates the problem into
a set of independent binary classification tasks of algorithm
complexity = O(K+1), where K typically has a range below
20. When implemented in a real distribution network system,
the computational burden can be approximated in such a way.

Eq. (1) is based on a simple idea: minimizing the loss func-
tion so that the probability of predicting the target waveform
using the contextual waveform is maximized. However, in
power systems, there are much more normal waveforms than
abnormal waveforms. Since it is not necessary to learn those
normal waveforms all the time, we introduce the concept of
“jumping level” to control the probability in (1). The “jumping
level” is defined as JL(si,si+1), which means the “waveform
difference” between two consecutive signal waveforms re-
flected by their signal words, as shown in Fig. 7.

It is assumed that the “jumping level” from letter “a” to “b”
or from “d” to “e” is 1, and that from letter “a” to “c” or from
“d” to “f” is 2. This assumption does not depend on where the
letter is located in the “word.” For example, JL(′aaa′,′ aab′) =
1, JL(′aaa′,′ aca′) = 2, and JL(′aaa′,′ abc′) = 3. After defining
the “jumping level,” we show the proposed loss function as
follows:
J =− 1

T −m

T

∑
t=m

logλ (st−m, · · · ,st)p(st |st−m, · · · ,st−1;θ), (2)

where λ (st−m, · · · ,st) = 1, when 1
m ∑

t−1
i=t−m JL(si,si+1) < n;

λ (st−m, · · · ,st) = 10−6, when 1
m ∑

t−1
i=t−m JL(si,si+1)≥ n. n is an

empirical parameter that indicates the “level” of signal word
change.

In the above training framework, the high dimensionality
of the signature vector is represented by the one-hot and can
cause a dimensionality catastrophe when solving certain tasks
(e.g., building fault synthesis models). Thus, we use the signa-
ture vectors generated by the distributed representation. This
is usually multidimensional and each dimension represents its
feature. The distance between two signature vectors is the
Euclidean distance between them.

B. Constructing pre-training models for before and after
waveform correlation.

The trained signature vectors of a single waveform pre-
training model can also capture the meaning of simple wave-
forms. Although these pre-trained signature vectors can also
capture these types of faults implied by the waveforms, they
are not constrained by context and simply learn the ”co-
occurrence probability.” Such an approach is clearly unable
to understand higher-level waveform information, such as
initial faults, grid disturbances, colored noise, etc. Therefore,
this project will also focus on designing signature vector
embedding algorithms that learn the context. In the field of
natural language processing, word embedding algorithms, such
as CoVe, ELMo, OpenAI GPT, and BERT, which learn more
reasonable word representations that encapsulate contextual
information about words, can be used for subsequent tasks
such as question and answer systems, machine translation, etc.

C. The idea behind general-purpose IF detection

For each type of IF, it is one “word” in the created “dictio-
nary”. In the dictionary, each signal word is treated equally.
This is the main difference between the proposed general-
purpose IF-PTM method and other special-purpose methods.
We can imagine that each signal vector is one point in the high
dimensional space. A specific type of IF will formulate a high-
dimensional shape, which can be a high-dimensional sphere
or most probably anything else. The distance between every
two shapes indicates the similarity of two IFs. The shorter the
distance is, the more similar two IFs are to each other. It is
pointless to visualize individual IF type, but we can infer the
comparative operating space of devices using signature vectors
in the three dimension rectangular coordinate.

IV. NUMERICAL RESULTS

This section first focuses on the demonstration of general-
purpose detection among multiple types of equipment. Then,
the prediction advantages of the proposed method are com-
pared with other methods under two datasets. Next, the
proposed method is tested under complicated fault conditions
based on one dataset. Last, the effect of vector size and loss
function selection of IF-PTM test scores are presented.

As previously mentioned, the detection alphabet depends on
the IF tasks and fault types. The waveforms in [5] are collected
and studied. After harmonic analysis, we utilize only the first
seven FFT amplitudes as the selected features, including the
DC offset, and the amplitudes from the fundamental frequency
to the sixth order harmonics. Since we realize 7 amplitudes
are good enough for the incipient fault detection problem
based on the waveform data in [5]. Based on our observation,
the magnitude of the high frequency that is higher than the
7th order is low. Therefore, we choose the first seven orders
of harmonics in the numerical example. It is necessary to
emphasize and not to mislead the readers that the selection
of the “alphabet” of signature vectors is flexible based on the
incipient fault types. When the IF under study contains, for
example, high frequency components, it is necessary to include
related signal “alphabet” for better performance.
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The proposed IF-PTM method edges towards a generic
solution of machine understanding of all of the IFs through
learning the meaning in the signal “corpus”, which is the
measured signals over a long time. Therefore, this idea is
different from the past solutions that focus on one application
for one device. What this method provides is the machine
understanding of the waveform abnormality. This is hard to
visualize since the output is just the signal vectors of abnormal
waveforms.

A. General-purpose detection with equipment IF signatures
embedded.

In this subsection, we first study IFs of three types of
equipment, including cables (IF on one phase of a 27 kV
underground feeder), lines (tree branch to burn and fall to the
ground), and transformers (load tap changer failure). Then, we
study 16 types of IFs to show the general purpose nature of
the proposed method.

The data source of the first study comes from [5] that
provides rich information on a variety of the IF scenarios.
With the IF datasets, we train a PTM for the detection of the
three types of power equipment IF. One important output of
the IF-PTM model is the signal signature vector, therefore, we
can easily get the waveform dictionary based on the historical
waveform data. Consequently, with a focus on three important
pieces of equipment in power systems, we visualize the learned
faulty waveform of lines, transformers, and cables from the
waveform dictionary, as shown in Fig. 8. It is noteworthy that
Fig. 8 is not for classification purposes, but for visualization
only. In the visualization below, we choose the best training
window size (9 cycles in this case) based on the performance
evaluation index (to be discussed in the following subsections).
Each signature vector has 20 dimensions in our IF-PTM, so the
representative waveform has 180 dimensions in this example.
Different equipment fault signature vectors are differentiable,
as seen by the computer but not human beings. Therefore,
we visualize them in Fig. 8. We plotted three self-contained
application cases in 3-D in Fig. 8. We can see that the
IF of lines is relatively far from cables and transformers.
Interestingly, cables and transformers are close to each other
and are distributed in a larger space. It indicates IFs associated
with cables and transformers have a larger operating space
compared to lines.

The data source of the second study also comes from [5].
The main advantage of the proposed method is its general-
purpose nature, therefore, examples with additional failure
types are provided for the benefit of the reader. We included
16 types of IF according to the field data in [5]. They are
summarized in Table I, including some typical and common
IFs like failures of cable joints, failures of tap changers, etc.
To further demonstrate the efficacy of the proposed method,
we plot the signal words in Fig. 9. It is hard to show the signal
word separability in high dimensional space, therefore, in this
figure, we visualize each signal vector against the other vectors
in the upper triangle. For example, after dimension reduction,
the sub-figure at row 1 and column 2 is the visualization
of the first and second fault types that are corresponding
to Table I. For the lower triangle, waveforms are associated

Figure 8. Visualization of three devices’ signature vectors. Data source: Fig.
10 (cable), Fig. 22 (line), and Fig. 28 (transformer) in [5].

with their counterparts in the upper triangle to demonstrate
their difference in the time domain. Additionally, we randomly
select four sub-figures from the upper triangle in Fig. 10 for
the readers to have a close-up view of the IF separability. The
sub-figures are first delimited by the method of support vector
classifier with Gaussian kernel and then plotted with contour
lines that are the boundaries of the red and blue dots. A darker
colored area means this area is further from the classification
boundary.

Table I
INCIPIENT FAULT TYPES IN [5]. THE FIGURE NUMBER AT THE END OF

EACH IF TYPE REFERS TO THE FIGURE IN [5].

Devices IF types

Cables

1. Failures of Cables (Fig.4(a))
2. Failures of Cable Joints (Fig.13)
3. Experimental Results on Cable

Insulation Failure (Fig.20)
Overhead Lines 4. Failure of Overhead Lines (Fig.22)

Transformers
5. Failures of Tap Changers (Fig.28)

6. Failures of Transformer
Bushing(Fig.36)

Switches
7. Failure of Line Switch (Fig.42)

8. Arcing of Capacitor Bank Switch
(Fig.43)

9. Restrikes during Capacitor
De-energization (Fig.46)

Capacitors

10. Capacitor Failure Caused by
Misoperation of Controller (Fig.51)

11. Unsuccessful Synchronous Closing
Control (Fig.53)

12. Capacitor Energization Triggering
Resonance (Fig.54)

13. Other types of failures in a capacitor
bank (Fig.58)

Lightning and Surge Arresters
14. Failure of Lightning Arresters (Fig.60)

15. Failure of Surge Arresters (Fig.61)

Potential Transformers 16. Failure of Potential Transformers
(Fig.62)
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Figure 9. Visualization of the general-purpose IF detection method with 16 types of IF in 2-D space. The lower triangle is in soft white shadow to balance
the contrast with the upper triangle. Each element indicates the separability of its row and column element number related to the IF type number in Table I.

B. The prediction advantages over machine learning and
simple natural language processing methods.

To show the comparison performance, two datasets are
created. Dataset A includes two parts. The first part consists
of the initial failure waveforms in Fig. 10 of [5], which
illustrate the occurrence of an IF on phase-A of a 27 kV
underground feeder, and 10 waveforms with random Gaussian
noise with an Signal-To-Noise Ratio (SNR) of 8 added to
this original waveform. The second part comes from known
disturbance waveforms that include swell, sag, oscillatory tran-
sient waveform, impulse transient waveform, and permanent

fault waveform. Dataset B is similar to dataset A. The only
difference is the addition of a third part, i.e., the incipient fault
waveform from the first part is repeated multiple times. For
example, two waveforms with amplitudes of 1.1 and 0.8 times
the amplitude of the original waveform are inserted into the
original waveforms respectively. The purpose is to take into
account the repetitive nature of the incipient fault waveform
of signals at a longer time horizon.

The proposed PTM is compared with other methods at two
different angles. The first angle is a simple machine learning
classifier – logistic regression. The logistic regression method
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Figure 10. Closeup view of the general-purpose IF separability. Sub-figures
(a), (b), (c), (d) presents the classification between IF 5 and 7, IF 9 and 11,
IF 13 and 16, IF 1 and 5 related to the IF type number in Table I.

utilizes a sliding window to classify IF data. The second angle
is a comparison with a simple model that assigns probabilities
to waveforms and sequences of waveform units. Each method
was trained using our randomly sliced training set and tested
in the corresponding test set. Ten experiments were conducted
for each method, and the average of the ten experiments was
used as our final result.

We use different methods to predict whether a permanent
failure will occur. If a permanent failure occurs after a known
waveform, we record the predicted true value as 1 (a positive
sample), otherwise as 0 (a negative sample). Next, we compare
the proposed PTM with Logistic Regression and N-gram
methods. Based on data A, we compare the precision, recall,
and F1 scores of different methods for positive samples,
i.e., with permanent faults, as shown in Fig. 11. We have
chosen ten different sizes of windows from 1 to 10. In
the IF-PTM, we specify the length of the signature vector
to be 20. We note that in dataset A, N-gram is unable to
predict whether a permanent failure will occur, as indicated
by (Recall 1,F1 1,Precision 1). This is because dataset A is
small and the N-gram algorithm works poorly when the data

volume is not sufficient. Meanwhile, the proposed IF-PTM has
a better performance than Logistic Regression. Besides, the
IF-PTM method and N-gram method each have advantages
and disadvantages in most of the evaluation scenarios, except
for the overall accuracy with a window size of less than 8.
However, selection of the IF-PTM window size is flexible and
we can choose the window size of 9 in our experiments.

Then, we tabulate the accuracy, dependability, security, F1
score, etc. in Table II and Table III. In these tables, 1 represents
the positive samples and 0 represents the negative samples.
Bold font indicates the highest score on a specific evaluation.
The value in brackets indicates the size of the window. Since
the F1 score of positive samples is our primary concern, we
have identified it in red.

From both tables, it is noticed that N-Gram and IF-PTM in
general perform better than Logistic Regression. Moreover, N-
Gram performs no worse than IF-PTM. However, the N-Gram
method is not performing stably especially in the positive
samples under the index of Precision, Recall, and F1 score. In
sum, the proposed IF-PTM has the best performance among
the three methods.

C. High IF Detection Performance Under Complicated Fault
Conditions.

The IF-PTM performance is further tested under compli-
cated fault conditions with the dataset of B. In this dataset,
the IF scenarios demonstrate a long and varying complexity,
which imposes difficulty on the IF detection task. The results
are illustrated in Fig. 12. In dataset B, N-Gram performs better
comparing with its performance in dataset A. Additionally, N-
Gram is as good as the proposed IF-PTM in this dataset. For
example, the precision, recall, and F1 score of the N-Gram
method are almost equally good as the IF-PTM method in
negative sample tests; while both methods have their pros and
cons in positive sample tests. However, Logistic Regression is
not as good as the other two methods. By evaluating both Fig.
11 and Fig. 12, the IF-PTM exhibits a stable performance in
different datasets. Table IV and V present the performance
comparison of Logistic Regression, N-Gram, and IF-PTM.

Figure 11. Nine evaluation criteria for different methods under different window/radius values in dataset A. Namely, negative samples precision, negative
samples recall, negative samples F1 score, positive samples precision, positive samples recall, positive samples F1 score, overall accuracy, overall macro
average F1 score and overall weighted average F1 score. In the IF-PTM, we specified the length of the signature vector to be 20.
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Table II
THE ACCURACY, MACRO AVERAGE F1 SCORE AND WEIGHTED AVERAGE F1 SCORE FOR ALL SAMPLES BASED ON DATASET A.

Methods
Window Size 1 2 3 4 5 6 7 8 9 10

Logistic Regression
accuracy 0.7444 0.7655 0.7717 0.7167 0.7116 0.7395 0.7030 0.7357 0.6696 0.6444

macro average F1 score 0.5868 0.5806 0.5476 0.5126 0.5450 0.5628 0.5569 0.6182 0.5985 0.5903
weighted average F1 score 0.7984 0.8125 0.8046 0.7586 0.7585 0.7772 0.7345 0.7539 0.6824 0.6479

N-Gram
accuracy 0.9297 0.9356 0.9358 0.9229 0.9209 0.9162 0.8812 0.8519 0.7955 0.7176

macro average F1 score 0.4817 0.4832 0.4834 0.4799 0.4791 0.4778 0.4683 0.4596 0.4424 0.4171
weighted average F1 score 0.9050 0.9047 0.9050 0.8861 0.8836 0.8768 0.8260 0.7844 0.7062 0.6012

IF-PTM
accuracy 0.8484 0.9085 0.8962 0.9062 0.8698 0.8730 0.8562 0.8519 0.8318 0.7706

macro average F1 score 0.4649 0.6085 0.6200 0.6970 0.6351 0.6968 0.7140 0.7365 0.7784 0.7200
weighted average F1 score 0.8648 0.9168 0.8929 0.9133 0.8688 0.8823 0.8655 0.8633 0.8392 0.7982

Figure 12. Nine evaluation criteria for different methods under different window/radius values in dataset B. In the IF-PTM, we specified the length of the
signature vector to be 20.

Table III
EVALUATION INDEX FOR DIFFERENT METHODS IN IF DETECTION ON
DATASET A. THE VALUE IN BRACKETS INDICATES THE SIZE OF THE

WINDOW.

Evaluations
Methods LogistReg N-Gram IF-PTM

Precision 0 0.9665 (1) 0.9385 (1) 0.9669 (10)
Recall 0 0.8170 (3) 1.0000 (2) 0.9477 (3)
F1 score 0 0.8636 (3) 0.9667 (3) 0.9509 (2)
Precision 1 0.4551 (10) 0.0000 (1) 0.6102 (9)
Recall 1 0.7520 (2) 0.0000 (1) 0.9000 (10)
F1 score 1 0.4545 (10) 0.0000 (1) 0.6710 (9)
Accuracy 0.7717 (3) 0.9358 (3) 0.9085 (2)
Macro average F1 score 0.6182 (2) 0.4834 (3) 0.7784 (9)
Weighted average F1 score 0.8125 (2) 0.9050 (1) 0.9168 (2)

These tables show that IF-PTM has a better comprehensive
performance.

D. The effect of vector size and loss function selection on IF-
PTM test scores.

We first investigate the vector size of the proposed waveform
representation in the IF-PTM and its impact on prediction
performance. As shown in Fig. 13, a larger vector size tends to
perform better according to the evaluation index. However, it
is a trade-off among the accuracy, precision, F1 score, and
the computational burden. In our study, we use the vector
size of 20, which does not compromise the performance
and computational speed. It is an optimization problem to
determine the optimal length of vector size. Through the
experiments indicated in Fig. 11, we notice the score of

precision 1 is low for most of the vector sizes. Therefore,
we choose the highest precision score that is corresponding to
a vector size of 20. However, when the vector size is 20, its
Recall and F1 score are not the highest among all sizes. If we
choose the vector size with the highest Recall and F1 score,
its accuracy and precision are compromised. Therefore, based
on the general performance in Fig. 11, we choose the vector
size of 20.

Figure 13. The effect of vector size on IF-PTM test scores.
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Table IV
THE ACCURACY, MACRO AVERAGE F1 SCORE AND WEIGHTED AVERAGE F1 SCORE FOR ALL SAMPLES BASED ON DATASET B.

Methods
Window Size 1 2 3 4 5 6 7 8 9 10

Logistic Regression
accuracy 0.8736 0.8851 0.8776 0.8694 0.8743 0.8676 0.8664 0.8566 0.8623 0.8571

macro average F1 score 0.5108 0.5301 0.5369 0.5429 0.5212 0.4890 0.5060 0.5111 0.5125 0.4964
weighted average F1 score 0.8875 0.9002 0.8904 0.8824 0.8849 0.8678 0.8729 0.8678 0.8619 0.8571

N-Gram
accuracy 0.9321 0.9383 0.9217 0.9261 0.9216 0.9273 0.9100 0.9041 0.8991 0.8865

macro average F1 score 0.5639 0.5966 0.5909 0.6010 0.6050 0.6036 0.5871 0.6035 0.5778 0.6042
weighted average F1 score 0.9364 0.9400 0.9203 0.9240 0.9246 0.9300 0.9085 0.9057 0.8948 0.8859

IF-PTM
accuracy 0.9272 0.9354 0.9283 0.9191 0.9088 0.9094 0.8977 0.8860 0.8839 0.8740

macro average F1 score 0.5705 0.5936 0.6051 0.5686 0.5514 0.6129 0.5538 0.5852 0.5428 0.5622
weighted average F1 score 0.9300 0.9361 0.9334 0.9251 0.9127 0.9189 0.9023 0.8982 0.8812 0.8809

Table V
EVALUATION INDEX FOR DIFFERENT METHODS IN IF DETECTION ON
DATASET B. THE VALUE IN BRACKETS INDICATES THE SIZE OF THE

WINDOW.

Evaluations
Methods LogistReg N-Gram IF-PTM

Precision 0 0.9580 (2) 0.9708 (2) 0.9706 (3)
Recall 0 0.9283 (6) 0.9650 (2) 0.9655 (2)
F1 score 0 0.9384 (2) 0.9678 (2) 0.9663 (2)
Precision 1 0.1256 (4) 0.2850 (10) 0.2416 (6)
Recall 1 0.2299 (4) 0.3058 (6) 0.3588 (6)
F1 score 1 0.1567 (4) 0.2701 (10) 0.2744 (6)
Accuracy 0.8851 (2) 0.9383 (2) 0.9354 (2)
Macro average F1 score 0.5429 (4) 0.6050 (5) 0.6129 (6)
Weighted average F1 score 0.9002 (2) 0.9400 (2) 0.9361 (2)

To highlight the advantages of the proposed loss function,
we compare the original loss function in (1) (loss1), the
proposed loss function in (2) (loss2), and a variation of the
proposed function (loss3) that is shown as follows:

min
θ

J = min
θ

(
− 1

T −m

T

∑
t=m

λ (st−m, · · · ,st)

logp(st |st−m, · · · ,st−1;θ)

) (3)

Loss3 function is different from loss2 by having the λ (·)
term outside of the logarithmic function, while the proposed
loss2 has the λ (·) term inside. Fig. 14 shows the comparison
among the three designed loss functions. It is observed that
each loss function outperforms the other two in some of the
evaluation indices. However, loss3 does not work well in
positive samples. As for the performance of loss1 and loss2,
loss2 performs no worse than loss1 in 8 evaluation indices out
of 9. This builds confidence and justifies the adoption of the
proposed loss function.

Figure 14. The comparison among three loss functions.

V. CONCLUSIONS

This paper focuses on IF detection in power distribution
systems. The signature vector is constructed to realize a

general fault analysis and prediction method to protect the
electric power equipment in the distribution network. It can be
effectively used for IF analysis and prediction, as well as later
equipment maintenance and overhaul. This paper introduces
the “signature vector” model, “signature vector dictionary”
and pre-training model for waveform correlation in the field
of power system protection. These can realize the machine
understanding of fault waveform, meet the protection needs
of various devices in the complex state of intelligent power
distribution network protection, and effectively improve the
reliability and economy of power distribution networks. In the
future work, it will be meaningful to consider concurrent faults
and investigate the impact of power electronics equipment on
the proposed method.
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