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Abstract—Cybersecurity is becoming increasingly important
with the explosion of attack surfaces as more cyber-physical
systems are being deployed. It is impractical to create models with
acceptable performance for every single computing infrastructure
and the various attack scenarios due to the cost of collecting
labeled data and training models. Hence it is important to be
able to develop models that can take advantage of knowledge
available in an attack source domain to improve performance in
a target domain with little domain specific data.

In this work we proposed Domain Adaptive Host-based In-
trusion Detection DAHID; an approach for defecting attacks in
multiple domains for cybersecurity. Specifically, we implemented
a deep learning model which utilizes a substantially smaller
amount of target domain data for host-based intrusion defection.

In our experiments, we used two datasets from Australian
Defense Force Academy; ADFA-WD as the source domain and
ADFA-WD:SAA as the target domain datasets. We recorded a
significant improvement in Area Under Curve AUC from 83%
to 91%, when we fine-tuned a deep learning model trained on
ADFA-WD with as little as 20% of ADFA-WD:SAA. Our result
shows transfer learning can help to alleviate the need of huge
domain specific dataset in building host-based intrusion detection
midels.

I. INTRODUCTION

According to a research report prepared by Cybersecurity
Ventures [19], the annual cost of cybercrime damages as of
2015 was 33 trillion. This report also predicted that the annual
cost would double by 2021. In [6], statistics of losses due
to cyber attack incidents within the last decade was reported
where incidents claiming $1 Million or more in loss increased
from 21 in 2009 to 105 in 2019. This shows that not only
has rate of attacks increased but they also cost more. Some
of the recent attacks affecting many people include the Yahoo
hack of 2013 which has been recalculated to have impacted 3
billion user accounts, and Equifax breach of 2017 that affected
over 145 million customers [19]. Very recently, the SolarWind
Hack was reporied [3]. It was an unusual hack that affected
US Government departments such as Homeland Security and
Treasury and Commerce. Evaluation of the full impact of this
attack is still on going.

There have been some improvements over the years in the
area of intrusion prevention and detection, but the cyberse-
curity problems have become even more important as newly
introduced network devices such as Internet of Things, come
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with increased attack surfaces [4]. This situation brings rise to
zero day attacks that existing system may find hard to detect.

Attacks can be either insider or outsider attacks. Firewall
has been instrumental in preventing outsider attacks but has no
effect on insider attacks [18]. To mitigate insider attacks, both
Intrusion Prevention Systems (IPS) and Intrusion Detection
Systems (IDS) are useful. According to [17], “An IDS is a
type of security tool that monitors network traffic and scans
the system for suspicious activities and alerts the system or
network administrator”. IPS on the other hand is described
as a system that can autonomously block attacks before they
occur [24]. IDS are mainly of two types: Host-based Intrusion
Detection Systems (HIDS) which monitors individual hosts
and alerts the user in the event of suspicious activities and
Network Infrusion Detection Systems (NIDS) which stands
at network points to identify intrusions in the network traffic
[17], [13]. [8], [25] are early works that tried to define the
types of HIDS. [25] identified Audit data OS-level HIDS and
Audit data Application-level HIDS. Audit data OS-level HIDS
relates to system calls, file system modifications and user
logons. Recent works including [1], [16], [11] are system calls
based.

Traditional Machine Learning approaches have been used
extensively in automating the intrusive behavior and attack
detection process including Artificial Neural Network ANN,
Decision Tree DT, and Support Vector Machine SVM [17],
[13], [15], but these algorithms require good feature engi-
neering in order to achieve good performance and they don't
benefit much when data increases beyond a certain point. Deep
Learning techniques are able to address the problems with
traditional machine learning algorithms as they are well known
for automatic feature extraction and capability to cope and
in fact, benefit immensely from large scale data in terms of
performance [14], [2].

However, both traditional machine learning and deep leam-
ing algorithms rely heavily on an assumption that training
data (source domain) and test data (target domain) not only
belong to the same feature space, but also share the same
distribution [10]. This assumption hardly holds for many real-
life problems. It is also important to have sufficient training
data in order to achieve good performance, especially with
deep learning models. These constraints very often lead to
poor performance of machine learning algorithms in solving
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such problems. Hence there is a need to create some sort of
agreement between source domain and target domain data such
that learning in source can be useful for training in target.
Transfer learning can help in this situation.

Transfer learning is an approach that atiempis to improve
the performance of a target domain model by transferring
the knowledge gained from a different but related source
domain model in such a way as to reduce the dependence
on a large quantity of target domain data in building target
domain model. Transfer kearning can be grouped into two main
categories: homogeneous and heterogeneous transfer learning
[7]. Homogeneous transfer learning handles situations where
the domains are of the same feature space but only differ in
marginal distribution. Heterogeneous transfer learning on the
other hand handles situations where the domains have different
feature spaces. Apart from having different set of features
making up the features spaces of domains, the number of
features could also be different.

Our goal in this work is to explore the possibilities of
building better performing models for detecting attacks in a
target domain (usually a low resource domain) using help from
a source domain (usually a high resource domain). Our focus
here is on Host-based Intrusion Detection Systems HIDS. The
rest of the paper is organized as follows: in Section 2 we
discuss the related work in this area. Section 3 describes our
methodology. In Section 4 we present the experimental results
and lastly in section 5 we draw our conclusions.

II. RELATED WORK

This section presents the existing work in the area of
intrusion detection using transfer learning approach. More
work has been done for Network Intrusion Detection systems
50 we will discuss some of these works in NIDS scenarios of
homogeneous features (section II-A) and heterogeneous fea-
tures (section [I-B). As there are presently no work for domain
adaptive HIDS, we would also discuss current achievements
in HIDS from machine learning standpoint in II-C

A. Domain Adaptive NIDS with Homogeneous Features

Some of the works found in this area have taken the
approach of converting NIDS dataset into image and treating
the problem as an image classification one using Convolutional
MNeural Networks CNN. Xu et al. [28] in their work used
a source domain KDD Cup 99 dataset and a target domain
"comected” KDD Cup 99 dataset (which has 17 intrusion
types not found in the source dataset) for their experiment.
As the two datasets used in their experiment have the same
set of features and only differ in the types of intrusion, this
is clearly an homogeneous features scenario with source task
different than target task: (Vs # M) In their method, they
started with preprocessing where the goal was to convert the
119 features into a 11 X 11 pixels grayscale image. For the
training using the source dataset, 150,000 samples was set
aside while each of validation and test got 10,000 samples
each. This was fed into CNN model as they evaluated different
values of hyperparameters to get the optimal. Their result

recorded 97.9% accuracy outperforming other methods like
S5VM, DT, K-nearest Neighbor KNN and Long Short-term
Memory LSTM.

Adaptation to the tarpet domain was done by fine-tuning the
source model using data from the target domain. Their result
shows that test performance on target domain data improved
after fine-tuning especially when larger potion of the test
domain data was used in evaluation. The limitation of this
work however lies in their choice of benchmark dataset - KDD
09 which has been criticized by [9] among others, for it's
age, highly skewed target, pattern redundancy, and irrelevant
features among other issues. It would be interesting to see how
this method performs on a dataset like NSL-KDD which has
been created specifically to address problems with KDD Cup
99 dataset.

Another work by Gangopadhyay et al. [10] took a similar
approach. In their work, image-based representation of the
feature set was done on CICIDS2017 dataset from Canadian
Institute for Cybersecurity [21]; mimicking 50 X 5 X 3 RGB
image. Portscan attack type was taken as the source domain
data while each of the other four attack represents a target
domain data. Source data was used to train a model by feeding
it into a four-layered CNN architecture using A batch size
of 32, Stochastic Gradient Descent SGD optimizer and 100
epochs. It was then tested with 50% validation split achieving
over 95% accuracy and a loss around (.3. To transfer the
learning from source domain to target domain, the model
was re-used on other types of attack with minimal additional
learning by adding a dense layer with 32 units. This resulted in
validation accuracies of 100% for both DDoS and Infiltration
attacks and about 95% for Botnet and Web attacks.

In contrast to [28], a more recent dataset with attacks
relevant to our time has been used by [10]. The work however
revealed little details on their method for the choice of

hyperparameters.

B. Domain Adaptive NIDS with Heterogeneous Features

The problem of transfer learning becomes more complicated
with the heterogeneous features scenario as there is a need
to unify the feature space of the source and target Wu et
al. [27] in their work, applied CNN to heterogeneous feature
scenario of network intrusion detection by concatenating CNN
source (base) model and CNN target model which then adds a
fully-connected layer as the ouput Their experiment is based
on source or base dataset, UNSW-NB15 of Australian Centre
for Cyber Security (ACCS) [20] and NSL-KDD dataset of
Canadian Institute for Cybersecurity [23]. These two datasets
have different set of features so clearly this is an heterogeneous
feature scenario. The set of attacks are also not the same
between source and target domain data A dedicated NSL-
KDD test dataset (KDDTest+ and KDDTest-21) were used in
evaluation which has 17 attacks not present in the train dataset.
To unite the feature space of source and tarpet domain, this
work did a preprocessing that resulied in each instance in the
two datasets becoming a vector of 113 values. They claimed to
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have combined the data fields of the UNSW-NB15 and NSL-
KDD datasets.

Their result shows that the method recorded an accuracy
of 87.30% on the KDDTest+ dataset versus 81.94% on the
KDDTest-21 dataset. This is an improvement over the ordinary
ConvNet without transfer learning where they recorded an
accuracy of 84% on KDDTest+ dataset versus 59.92% on
KDDTest-21 dataset.

C. HIDS Literature

Based on literature search, we could not find any work
that has attempted domain adaptation in HIDS, neither in
homogeneous nor heterogeneous scenario. It is however im-
portant to note the recent improvements recorded in HIDS with
non-transfer learning approaches. [26] in their experiment on
ADFA-WD dataset compared models of deep neural network
DNN with SVM. Their result showed that 5 layered DNN with
keras embedding recorded an accuracy of 83%, outperforming
SVM with TFIDF which recorded an accuracy of 80.1%. One
clear drawback of [26] is with their choice of accuracy as
performance metric for ADFA-WD which is an imbalanced
dataset.

[29] in their work compared performance of SVM and
random forest in building a host-based intrusion detection
system. For experiment they used ADFA-WD and ADFA-
WD:SAA datasets. Their result shows that for both ADFA-WD
and ADFA-WD:SAA, Random Forest recorded 2% detection
rate outperforming SVM Sigmoid kernel at 71% and Radial
Basis Function RBF kernel at 68%. Performance of these
models can be improved with a domain adaptive approach.

In this work we investigated the possibility of building a
better performing model in one domain of Host Based Intru-
sion Detection System HIDS by leveraging on the learning
from a different but similar domain. We made the following
contributions:

+ Development of a new domain adaptive approach for Host

Based Intrusion Detection.

« Mitigating need of large domain-specific data in building
intrusion detection models with good performance for a
low resource host domain.

+ Alleviating the pains of zero-day attacks against host
infrastructures.

ITI. METHODOLOGY

In this paper, we have assumed that our type of transfer
learning problem is homogeneous (both source domain Dg
and target domain Tt of HIDS have the same set of features).
We have also assumed that both domains are labeled. The

4 activities: Pre-processing, Network architecture, Evaluation
and Fine tuning. We have in this work used the process to
address the homogeneous features scenario of domain adaptive
HIDS but this process can also work for the heterogeneous
features scenario.
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Fig. 1. General Flow of Domain Adaptation Method

A. Pre-processing

Preprocessing involved converting system calls into to-
kens, feature extraction and sequence padding. We considered
Host-based Intrusion Detection using ADFA-WD and ADFA-
WD:SAA datasets generated at the next generation cyber
range infrastructure of the Australian Centre of Cyber Security
{ACCS) in the University of New South Wale (UNSW) at
Australian Defense Force Academy(ADFA), Canberra [12].

Both ADFA-WD and ADFA-WD:SAA contain traces of
syscalls from Windows XP SP2 system with ADFA-WD
acknowledging “Windows-based vulnerability-oriented zero-
day attacks™ while ADFA-WD:SAA is designed to test the ef-
fectiveness of HIDS against “Windows-based stealth attacks™.
These datasets contain nine core DLL calls (ntdil.dll, ker-
nel32.dll, uwser32.dill, comcti32.dll, ws2_32.d1l, mswsock.dll,
msvert.dll, msvepp.dll, and ntoskrnl.dil) [12].

Algorithm 1: Tokenize
Input: list of syscall's trace files Trace_filesl
Input: dictionary of syscall-integer pair DLL_dic
Result: Tokenized trace files Trace_files2

1 for file € Trace_filesl do

machine learning task in this work is that of classification 2 | for line € file do
of Host sequential process trace as either benign or attacks. 3 for syscall, integer € DLL_dic.items() do
Figure 1 presents the general process flow of DAHID. 4 Regiar:e syscall with integer in line;
System calls-based HIDS datasets being sequence of token 3 Write to Trace_files2;
have been approached in other works in a Natural Language ¢ end
Processing NLP fashion [26]. We have also followed the NLP 7 nd
approach but in a transfer learning way stepping through 8| end
the process as laid out in Figure 1. This process presents
469
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To tokenize these, a dictionary that maps each of the DLL to
integers was created. Algorithm 1 presents steps for conversion
of system calls into token. In order to represent the data in a
form acceptable to the modeling algorithm, feature extraction
will be needed.To keep things simple we are going to use
n-gram setting n = 1.

There are 4 dataset files folder, see the breakdown in Table
I

TABLE 1
ADFA-WD anp ADFA-WD:SAA BREAKDOWN
Trace File Count | Max Length | Madian of Length |
ADFA-WD
Training 355 1670685 4208
Validation 1327 3212884 6834.0
Attack 5542 225573 1840.0
ADFA-WD:5AA
Attack EG2 200664 2032.5

With the median length of both attack datasets at about
2000, we're going to zero pad trace files with length less than
2000 and cut down to 2000 trace files with greater length. This
is to ensure our trace files are of the same length. Training and
Validation are combined and taken to be the nepative (benign
cases) while Attacks are positive.

From Table I we can see that there are 5542 attack instances
in ADFA-WD while ADFA-WD-S5AA has only 862 attack
instances. Clearly, ADFA-WD is our high resource domain
and so we are going to make it our source domain and ADFA-
WD:SAA our target domain.

B. Network Architecture

In Figure 1, Input layer accepts T’ while choice of hidden
layers is based on result of hyperparameter tuning. Choice
of word embedding is based on whether we ame solving
a homogeneous or heterogeneous fransfer learning problem:
monolingual word embedding if homogeneous and bilingual
word embedding if heterogeneous. Choice of output layer is
based on whether the problem is binary or multi-class: sigmoid
activation if binary and sofimax if multi-class.
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Fig. 2. LSTM Architecture Cell Visual Representation [22]

The appropriate deep learning architecture for sequence data
is Recurrent Neural Network (ENN) but there are different
variants of RNN. LSTMs are type of Recurrent Neural Net-
work (RNN) architecture of deep learning with capabilities of
learning long-term dependencies. Generally, all RNN models
are designed to handle time or sequence dependence such
as languape, stock prices etc. While models such as CNN
are feed-forward neural networks, LSTM has a feedback
connection. In place of neural network layers, LSTM network
presents LSTM cell blocks comprising of input gate, forge
gate and output gate as components. Figure 2 is the LSTM
Architecture Cell Visual Representation as presented in [22].

With our deep learning network set up we can build and
evaluate a D5 model.

C. Evaluation

We then evaluate the model on D (this is expected to suffer
performance degradation as evaluation is on a foreign domain).
Lastly we use increasing portions of Dy to fine tune the Dy
model as we evaluate using Dy

The most common performance meiric is the Accuracy
which estimates the ratio of correctly classified instances to
the entire sample size.

TP+TN
TP+TN +FP+FN
TP = True Positive , TN = True Negative , FP = False
Positive and FN = False Negative.
However, accuracy only serves as a good meiric for samples
that contains balanced classes. One of the mefrics that can help

when we have class imbalance problem is Area Under Curve
AUC of Receiver Operating Characteristics (ROC) curve [3].

1
TP
AUC‘:ﬁ TP+FN

Accuracy =

FP
TN +FF

D. Fine-tuning

Fine-tuning could be done by either freezing some hidden
layers or not. Freezing helps in reducing the training time
and allows the model to concentrate on layers that capture
the differences between the two domains. The only advantage
of not freezing any layer is that no assumption is being made
hence every layer that could benefit from fine-tuning no matter
how small will be available.

TABLE 11

ADFA-WD anp ADFA-WD:S5AA TRANTEST SAMPLE SI1ZES
| Soures |ADFA-WD} 1
Sampie Pasitive |5542) Negative [Z152)
[ Tran [ 7% j2051) | 52% [2008) |
| Tast [ 625 (3231 IEETRE]
| Targst |ADFA-WD:SAR)
| Sampla Pasitive [B62} | Hugative (2152)

| &4 |725)
[ 160 [137)

| 33% 721}
| 67% 1381}

| Traien
| Tast

470

Authorized licensed use imited to: University of Maryland Baltimore Cty. Downloaded on August 21,2022 at 13:58:55 UTC from IEEE Xplore. Restrictions apply.



IV. EXPERIMENTAL RESULT
A Dara

As we have disproportionate number of records of negative
and positive examples, to guard against the problem of class
imbalance in our training samples we used resampling to
create Training and Test samples as seen in Table 11

B. Deep Learning Architecture

The network as seen in figure 2 accepts 3 input items: h,_,
{output from the previous LSTM cell), X; (input at the present
time) and C;_y (memory from the previous LSTM cell). While
it returns 2 output items: C; (memory of the present LSTM
cell) and h; (output from the present LSTM cell).

With choice of deep learning architecture made, using
manual tuning method we have selected the following hyper-
paramater values:

Embedding dimension: 128

L]

+ Sequence Maximum Length: 2000

« number of LSTM layers: 3

« number of units: First 2 hidden layers (128 units), last
one (64 units)

« dropout: (.2

« baich size: 10

« Number of Epochs: 100
Figure 3 presents the network architecture.

Modal: "sequential”

Layer [typa) output shape Faram #
evbedding (Embedding) (home, 2000, 128) sz
lstm (LSTH) (Mone, 209G, 128) 131584
Istm 1 (LSTH} (Wone, 2000, 128) 131584
lstm_2 (LSTM) (Wone, 643 48408
dense [Dense) (mone, 13 &5

Total params: 313,733
Trainable params: 313,793
Non-trainable params: @

Fig. 3. NMetwork Architecturs

In the first step of our experiment, a model was trained
using the train sample of source domain ADFA-WD dataset,
with a validation split of 0.2. See the plots of accuracy and
loss of the model as epoch increased in Figure 4.
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The model was evaluated using the test sample of source
domain ADFA-WD dataset. To see the impact of performance
degradation across domain, evaluation using the test sample of
target domain ADFA-WD:SAA dataset was carried out. See
below the performance of the source domain model in Table
I

TABLE III
SourcE Domaiy MoDEL PERFORMANCE
| | Lo | Meuraey | auc
Source Traln 03415 03317 0.01E8
| Source Test | g4 | o758 | ma1z
| Target Test | 0813 | BES1 | B3

Looking at the target test performance in III, we can see
the drop in AUC from 91.8% to 83.1% (because of the class
imbalance, accuracy cannot be a reliable performance metric).

In the second step of our experiment, we attempted to fine-
tune the model (without freezing amy layer) created using
ADFA-WD with some portion of ADFA-WD:SAA. We would
like to see if performance of target test improves. See below
the performance as the amount of target train sample used in
fine-tuning increased.

TABLE IV
FINE-TUNING USING TARGET DoMAIN MODEL PERFORMANCE

| Portion of ADFA-WD:SAS | Loss | Aecuracy | A |
| 20 | o732 | e | mEags
| s JLETEE] | 0.7 TEL | s

| 3% | 04751 | 07444 | astga

| i 04551 | 08008 LT

| Saes LELIE] | 0P | fses

| s 04268 | 08118 | ageaz

TOR O4TES 0.830& 02275

| mor 03667 | 08125 | as213

i 03667 | DE1FS IR

It can be observed in table IV that fine-tuning with just
10% portion of ADFA:SAA train sample resulted in 88.86%
of AUC. This improvement continued as more portion of
ADFA:SAA is used in fine-tuning. Figure 5 presents a plot of
Performance (AUC) against percentage of ADFA:SAA train
sample used in fine-tuning.

Performancs [ALIC)
T

0% 10k 0% e 4 2% &% Tk E% ok
Percentage of Target Domain Data Wsed in Fine-tuning

Fig. 5. Amount of Data Used in Fine-tuning Vs Performance Plot
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V. CONCLUSION

In this paper we have demonsirated a new approach for do-
main adaptation for deep learning in cybersecurity specifically,
homogeneous feature scenario of Host-based 1DS. While trans-
fer learning has been applied to many applications including a
few in cybersecurity domain the need remains critical because
of lack of availability of data, let alone data with labels.

We ran experiments on source ADFA-WD and target
ADFA-WD:S5AA and the results show that it is possible to
develop fransfer learning models in detecting different types
of cyber-attacks with little fine-tuning on the target domain.

In the future we will explore the possibilities of success in
heterogeneous feature scenario of Host-based IDS. Lastly, we
would be investigating how useful our findings would be for
attack detection in loT security.
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