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Abstract. We prove global Fourier restriction estimates for elliptic, or two-sheeted, hyperboloids of arbi-
trary dimension d � 2, extending recent joint work with D. Oliveira e Silva and B. Stovall. Our results are

unconditional in the (adjoint) bilinear range, q > 2(d+3)
d+1 , and extend conditionally upon further progress

toward the local restriction conjecture for elliptic surfaces.

1. Introduction

In this article, we establish global Fourier restriction estimates for elliptic, or two-sheeted, hyperboloids
of arbitrary dimension d � 2. These surfaces take the general form

{(⌧, ⇠) 2 R⇥ Rd : (⌧ � ⌧0, ⇠ � ⇠0) ·A(⌧ � ⌧0, ⇠ � ⇠0) = 1}, (1.1)

where (⌧0, ⇠0) 2 R⇥Rd and A is an invertible (d+ 1)⇥ (d+ 1) matrix with exactly one positive eigenvalue.
Due to the a�ne invariance of restriction estimates and time-reversal symmetry, we may (and will) restrict
our attention to the surface

⌃ := {(⌧, ⇠) 2 R⇥ Rd : ⌧ = h⇠i}, h⇠i :=
p
|⇠|2 + 1,

which is the “upper sheet” of (1.1) with (⌧0, ⇠0) = (0, 0) and A = diag(1,�1, . . . ,�1).
We begin by describing the context for this project. While certain aspects of the restriction theory for

hyperboloids have already been studied, see e.g. [16], [13], [4], [5], the question of the optimal range of global
estimates was only recently taken up by Oliveira e Silva, Stovall, and the author in [2]. There, the hyperbolic,
or one-sheeted, hyperboloid in three ambient dimensions was studied. The present article generalizes certain
techniques from [2] to obtain global restriction estimates for higher-dimensional hyperboloids. As noted
above, our results will be stated and proved for elliptic hyperboloids, whose local restriction theory has been
well studied (see e.g. [17], [8]); however, similar methods could potentially yield purely conditional results
for hyperbolic hyperboloids.

Hyperboloids are geometrically interesting from the viewpoint of restriction theory. Historically, a signif-
icant proportion of the work on restriction has focused on compact surfaces, such as the unit sphere or the
truncated paraboloid. Indeed, a general form of the restriction conjecture asserts, in part, that every smooth
compact surface with at least one nonvanishing principal curvature admits some nontrivial restriction esti-
mate. As is well known, however, homogeneity can sometimes be substituted for compactness. Paraboloids
and cones are prototypical examples of noncompact surfaces that obey homogeneity relations and admit
nontrivial restriction estimates. While hyperboloids are not homogeneous in this sense, they come close by
“interpolating” paraboloids and cones: the surface ⌃, for example, resembles the paraboloid ⌧ = 1

2 |⇠|
2+1 as

|⇠| ! 0 and the cone ⌧ = |⇠| as |⇠| ! 1. As we will show, hyperboloids appear to admit a range of restriction
estimates that interpolates (in a precise sense) the restriction conjectures for paraboloids and cones, and our
proof will rest on adaptations of the bilinear restriction theories associated to those surfaces. Also crucial to
our arguments will be the invariance of hyperboloids under appropriately defined Lorentz transformations.
Certain of these transformations, sometimes termed “orthochronous,” additionally preserve each sheet of the
two-sheeted hyperboloid. The orthochronous Lorentz group that acts (transitively) on ⌃ consists of linear
maps on R ⇥ Rd that preserve the quadratic form (⌧, ⇠) 7! ⌧

2 � |⇠|2 as well as (⌧, ⇠) 7! sign ⌧ . Through-
out this article, “Lorentz” will always mean “orthochronous Lorentz,” so that Lorentz transformations are
symmetries of ⌃.
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We now turn to the basic definitions and statements of our results. To begin, we equip ⌃ with its unique
Lorentz-invariant measure µ, given by

Z

⌃
fdµ :=

Z

Rd

f(h⇠i, ⇠) d⇠h⇠i ;

µ also coincides with the so-called a�ne surface measure on ⌃. The role of µ is twofold: to commute with
the symmetries of our surface and to compensate for the surface’s degenerating curvature. As is standard,
we will formulate our results in terms of the adjoint restriction, or extension, operator. Having equipped ⌃
with µ, this operator takes the form

Ef(t, x) := |fµ(t, x) =
Z

⌃
e
i(t,x)·(⌧,⇠)

f(⌧, ⇠)dµ(⌧, ⇠)

for f continuous and compactly supported on ⌃. Henceforth, the dual terms “restriction” and “extension”
will be used interchangeably. We denote by

⌃0 := {(⌧, ⇠) 2 ⌃ : |⇠|  2} and E0f := E(f�⌃0)

the low-frequency “parabolic” region of ⌃ and the corresponding local extension operator. Given p, q 2 [1,1],
we let E(p ! q) denote the statement that E extends to a bounded linear operator from L

p(⌃, µ) to
L
q(R⇥Rd), and we write E0(p ! q) if the analogous statement holds for E0. We can now state a conjecture

on the complete range of exponent pairs (p, q) for which E(p ! q) is valid (see Figure 1).

Conjecture 1.1. If ( d
d+2q)

0  p  min{(d�1
d+1q)

0
, q} and (p, q) 6= ( 2d

d�1 ,
2d
d�1 ), (

2(d+1)
d ,

2(d+1)
d ), then E(p ! q)

holds.

The main results of this article are the following:

Theorem 1.2. If q > max{ 2(d+3)
d+1 , p} and ( d

d+2q)
0  p  (d�1

d+1q)
0, then E(p ! q) holds. If d = 2, then

additionally E(q ! q) holds for 10
3 < q < 4.

Theorem 1.3. If E0(p0 ! q0) holds with p
0
0 = d

d+2q0 for some q0 <
2(d+3)
d+1 , then E(p ! q) holds for all

(p, q) obeying max{q0, p} < q <
2(d+3)
d+1 and ( d

d+2q)
0  p  (d�1

d+1q)
0 and

1

p
>

2

(d� 1)(d+ 3)

 
1
q � d+1

2(d+3)

1
q0

� d+1
2(d+3)

+
d
2 + 2d� 7

4

!
. (1.2)

The conditional result, Theorem 1.3, may warrant some explanation. It implies, in particular, that any
optimal local extension estimate beyond the bilinear range, i.e. E0(p0 ! q0) with p

0
0 = d

d+2q0 for some

q0 <
2(d+3)
d+1 , would lead to an improvement of our unconditional result, Theorem 1.2. The requirement

that p00 = d
d+2q0 is a limitation, but it seems necessary (given our techniques) for obtaining any additional

global estimates on the parabolic scaling line p
0 = d

d+2q. If we assume only that E0(p0 ! q0) holds for some

p0 > ( d
d+2q0)

0, then a slight modification of the proof of Theorem 1.3 would likely yield a range of global

estimates that excludes the line p0 = d
d+2q beyond the bilinear range but nevertheless improves Theorem 1.2.

The rest of the article is organized as follows: In Section 2, we prove a negative result, that Conjecture
1.1 cannot be improved. In Section 3, we present the bilinear restriction theory for the “conic” portion of
our surface ⌃, and we deduce uniform linear extension estimates on dyadic frusta from bilinear estimates
between certain thin sectors. (These results resemble the bilinear restriction theory for cones.) In Section 4,
we use a Strichartz inequality for the Klein–Gordon equation to sum the uniform estimates on frusta, and
consequently we obtain Theorem 1.2. In Section 5, we use the conic decoupling theorem of [1] to convert
conditional local extension estimates into uniform estimates on frusta, and then, appealing to Section 4
again, we obtain Theorem 1.3. Finally, in Section 6, we discuss possible improvements to our results by
means of the state-of-the-art local extension estimates for elliptic surfaces.

Notation. We use the standard notations A . B and A = O(B) to mean that A  CB for some constant
C > 0. If this constant depends on some parameter ", then we might write A ." B. Typically, constants
may only depend on the dimension d and relevant Lebesgue space exponents.

Acknowledgments. The author thanks his advisor Betsy Stovall for suggesting this project and ac-
knowledges support from NSF grant DMS-1653264.
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Figure 1. Conjecture 1.1 asserts that E(p ! q) holds for exponent pairs ( 1p ,
1
q ) lying within

triangle ACD, excluding the points C and D. Theorem 1.2 states that, within the triangle,
E(p ! q) holds unconditionally below line segment BE. Theorem 1.3 brings the range of
estimates (slightly) above BE on the condition that E0(p0 ! q0) holds for some pair ( 1

p0
,

1
q0
)

in the interior of line segment DE. This particular diagram was created using d = 4.

2. Optimality of Conjecture 1.1

In this section, we demonstrate that Conjecture 1.1 cannot be improved. Although the counterexamples
we consider are well known, we include all necessary details for the reader’s convenience.

Proposition 2.1. If E(p ! q) holds, then (p, q) satisfies the hypotheses of Conjecture 1.1.

Proof. Assume that E(p ! q) holds. To show that p � ( d
d+2q)

0, we use the standard Knapp example. Fixing
� 2 (0, 1], let us consider the cap

C := {(⌧, ⇠) 2 ⌃ : |⇠|  �}
and the tube

T := {(t, x) 2 R⇥ Rd : |t|  c�
�2

, |x|  c�
�1},

where c is a small positive constant. If (t, x) 2 T and c is su�ciently small, then

|E�C(t, x)| =
����
Z

C
e
i(t,x)·(⌧�1,⇠)

dµ(⌧, ⇠)

���� �
����
Z

C
cos(t(⌧ � 1) + x · ⇠)dµ(⌧, ⇠)

���� ⇠ µ(C) ⇠ �
d
.

Therefore,

�
d� d+2

q ⇠ �
d|T |

1
q . kE�Ckq . µ(C)

1
p ⇠ �

d
p

by the validity of E(p ! q). Letting � ! 0, we conclude that p � ( d
d+2q)

0.

The necessity of p  (d�1
d+1q)

0 follows by a similar argument, utilizing the decay of µ. Indeed, fixing � � 1,
let

D := {(⌧, ⇠) 2 ⌃ : |⇠|  �}.

If |(t, x)|  c�
�1 and c is su�ciently small, then

|E�D(t, x)| ⇠ µ(D) ⇠ �
d�1

.

Thus,

�
d�1� d+1

q . kE�Dkq . µ(D)
1
p ⇠ �

d�1
p
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by E(p ! q), and sending �! 1 gives the required inequality.
To show that p  q, we consider a randomized sum of bump functions. By interpolation, we may assume

that q � 2. Let � be a nonzero bump function on ⌃ and N a positive integer. For each j 2 {1, . . . , N}, let
Lj be a Lorentz boost and set �j := � � Lj . Choosing the boosts Lj appropriately, the functions �j have

pairwise disjoint supports. Let f :=
PN

j=1 "j�j , where "1, . . . , "N are independent random variables with the
Rademacher distribution. On one hand, Khintchine’s inequality and the Lorentz invariance of µ imply that

EkEfkqq =

ZZ

R⇥Rd

E
����

NX

j=1

"jE�j(t, x)
����
q

dtdx

&
ZZ

R⇥Rd

✓ NX

j=1

|E�j(t, x)|2
◆ q

2

dtdx

�
NX

j=1

ZZ

R⇥Rd

|E�j(t, x)|qdtdx

= NkE�kqq.

On the other hand,

EkEfkqq . Ekfkqp = N
q
p k�kqp

by E(p ! q), the fact that the �j have disjoint supports, and Lorentz invariance. Letting N ! 1 shows
that p  q.

Finally, setting p1 := 2d
d�1 and p2 := 2(d+1)

d , we need to show that the estimates E(p1 ! p1) and E(p2 ! p2)
are false. We could proceed by rescaling known counterexamples for the cone and paraboloid. Indeed, (p1, p1)
lies on the conic scaling line p

0 = d�1
d+1q and the extension operator associated to the cone is known not to be

bounded on L
p1 ; likewise, (p2, p2) lies on the parabolic scaling line p

0 = d
d+2q and the extension operator for

the paraboloid is not bounded on L
p2 . We will instead present direct counterexamples to E(p1 ! p1) and

E(p2 ! p2), using longer but self-contained arguments.
We start with the disproof of E(p1 ! p1). Fixing � � 1, let f : ⌃ ! C be defined by f(⌧, ⇠) :=  (|⇠|)h⇠i,

where  is a bump function satisfying �[2�,3�]    �[�,4�] and | 0| . �
�1. Using polar coordinates, we see

that

Ef(t, x) =
Z 4�

�

Z

Sd�1

e
i(t,x)·(hri,r✓)

 (r)rd�1
d�(✓)dr =

Z 4�

�
�̌(rx)eithri (r)rd�1

dr,

where hri :=
p
r2 + 1 and � is the standard measure on the sphere Sd�1. By a well-known stationary phase

argument (see e.g. [20]), �̌ obeys the asymptotic formula

�̌(y) = a|y|�
d�1
2 cos(|y|+ b) +O(|y|�

d+1
2 ) as |y| ! 1

for some a, b 2 R with a > 0. Thus,

|Ef(t, x)| = a|x|�
d�1
2

Z 4�

�
cos(r|x|+ b)ei(thri+b)

 (r)r
d�1
2 dr +O(�

d�1
2 |x|�

d+1
2 ),

provided that |x| � 1 and � is su�ciently large. The absolute value of the integral is at least that of its real
part. Using the identity 2 cos(✓) cos(⌫) = cos(✓ � ⌫) + cos(✓ + ⌫), we get the bound

|Ef(t, x)| � a

2
|x|�

d�1
2 (|I1|� |I2|) +O(�

d�1
2 |x|�

d+1
2 ), (2.1)

where

I1 :=

Z 4�

�
cos(r|x|� thri) (r)r

d�1
2 dr,

I2 :=

Z 4�

�
cos(r|x|+ thri+ 2b) (r)r

d�1
2 dr.
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Suppose that 1  |x|  c� and |t� |x||  c�
�1, where c is a positive constant. If c is su�ciently small, then

|r|x|� thri|  1 for all r 2 [�, 4�], leading to the bound

|I1| & �
d+1
2 .

To estimate I2, we first write I2 = I21 + I22, where

I21 :=

Z 4�

�
cos(r(|x|+ t) + 2b) (r)r

d�1
2 dr,

I22 :=

Z 4�

�
(cos(r|x|+ thri+ 2b)� cos(r(|x|+ t) + 2b)) (r)r

d�1
2 dr.

The assumptions on (t, x) imply that ||x|+ t| � 1, giving the bound

|I21| =
����
Z 4�

�

sin(r(|x|+ t) + 2b)

|x|+ t

d

dr
( (r)r

d�1
2 )dr

���� . �
d�1
2 .

Estimating the integrand of I22 using the mean value theorem, we find that

|I22| . c�
d+1
2 .

Thus, |I1| � |I2| � 1
2 |I1| & �

d+1
2 if � is su�ciently large and c su�ciently small. Plugging this bound into

(2.1), we conclude that

|Ef(t, x)| & �
d+1
2 |x|�

d�1
2

for all (t, x) satisfying 1  |x|  c� and |t� |x||  c�
�1. If E(p1 ! p1) were true, then it would follow that

�
d2+1
d�1 log � . kEfkp1

p1
. kfkp1

p1
⇠ �

d2+1
d�1 ,

and sending �! 1 would give a contradiction.
The disproof of E(p2 ! p2) is similar but simpler. We will follow an argument from [14, Chapter VIII].

Define f : ⌃ ! C by f(⌧, ⇠) :=  (⇠)h⇠i, where  is a bump function satisfying  (⇠) = 1 for |⇠|  c and
 (⇠) = 0 for |⇠| � 2c, with c a positive constant. Fix (t, x) 2 R ⇥ Rd \ {(0, 0)}, and let � := |(t, x)| and
(t0, x0) := �

�1(t, x). Then

Ef(t, x) =
Z

Rd

e
i��(⇠;t0,x0) (⇠)d⇠,

where �(⇠; s, y) := sh⇠i+y · ⇠. Since r⇠�(0; 1, 0) = 0 and detr2
⇠�(0; 1, 0) = 1, the implicit function theorem

implies the existence of a neighborhood U of (1, 0) such that for each (s, y) 2 U there exists a unique ⇠(s, y)
such that r⇠�(⇠(s, y); s, y) = 0. Making U smaller if necessary, we may assume that |⇠(s, y)|  c and
| detr2

⇠�(⇠(s, y); s, y)| & 1 for all (s, y) 2 U . Suppose that (t0, x0) 2 U , so that ⇠(t0, x0) is a nondegenerate
critical point of the function �(·; t0, x0). If c is su�ciently small (not depending on (t, x)), then

����
Z

Rd

e
i��(⇠;t0,x0) (⇠)d⇠

���� = a| detr2
⇠�(⇠(t0, x0); t0, x0)|�

1
2�

� d
2 +O(��

d+1
2 )

for some constant a > 0, by a standard stationary phase result (see e.g. [14, Chapter VIII, Proposition 6]).
It follows that

|Ef(t, x)| & |(t, x)|� d
2

whenever t is su�ciently large and t
�1|x| su�ciently small. Consequently, we find that Ef /2 L

p2(R ⇥ Rd),
and thus E(p2 ! p2) cannot hold. ⇤
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3. Bilinear and linear restriction on frusta

Now we begin working toward our main results. In this section, we divide the “conic” portion of our
surface, ⌃ \ ⌃0, into frusta ⌃N of width 2N for which we prove uniform extension estimates. Our proof
will combine the bilinear restriction theory for the frusta ⌃N (resembling that for conic frusta), the bilinear
theory for ⌃0 (resembling that for the paraboloid), and the bilinear-to-linear argument found in [18].

We turn to the details. For each integer N � 1, let

⌃N := {(⌧, ⇠) 2 ⌃ : 2N  |⇠|  2N+1}.

Given 1  k  N , we cover the frustum ⌃N by sectors of angular width 2�k by defining

⌃!
N,k :=

⇢
(⌧, ⇠) 2 ⌃N :

����
⇠

|⇠| � !

����  2�k

�

for each ! 2 Sd�1. We refer to these sets as (N, k)-sectors. Two (N, k)-sectors ⌃!
N,k and ⌃!0

N,k are related if

(i) 22�k  |! � !
0|  24�k and k < N , or (ii) |! � !

0|  24�N and k = N . The conic-type bilinear estimate
that we require is the following:

Lemma 3.1. Let ⌃!
N,k and ⌃!0

N,k be related (N, k)-sectors with k < N , and let q >
2(d+3)
d+1 . Then

kEf1Ef2kq/2 . 2(N�k)(d�1� 2(d+1)
q )kf1k2kf2k2

whenever supp f1 ✓ ⌃!
N,k and supp f2 ✓ ⌃!0

N,k.

Proof. After dividing ⌃!
N,k and ⌃!0

N,k into a bounded number of subsets with su�ciently small radial and
angular width, one can directly apply [3, Theorem 1.10]. ⇤

Next, we perform our bilinear-to-linear deduction. To make it work, we will need additional bilinear
estimates corresponding to related (N,N)-sectors, since these thinnest sectors are absent from Lemma 3.1.
Via a Lorentz boost, the local extension theory will be su�cient:

Lemma 3.2. If E0(p ! q) holds, then kEfkq . kfkp whenever f is supported in an (N,N)-sector.

Proof. Given an (N,N)-sector, a suitable Lorentz boost maps it into ⌃0. ⇤
Lemma 3.3. Suppose that p, q, r, and ↵ relate in the following ways: (i) r  p  q  4, (ii) ↵ < 0, (iii)
↵  (d � 1)( 2p � 2

r ), and (iv) ↵ 6= (d � 1)( 2q � 2
r ) or p < q. Additionally, suppose that E0(p ! q) holds and

that

kEf1Ef2kq/2 . 2(N�k)↵kf1krkf2kr (3.1)

whenever f1 and f2 are supported in related (N, k)-sectors with k < N . Then

kEfkq . kfkp
whenever |f | ⇠ �⌦ for some ⌦ contained in some ⌃N with N � 0.

Proof. As noted above, we will adapt the bilinear-to-linear argument found in [18]. Since E0(p ! q) holds, we
may fix N � 1. Our first step is to construct a Whitney decomposition of ⌃N ⇥⌃N . For each k 2 {1, . . . , N},
choose a (finite) set ⇤k ⇢ Sd�1 satisfying

Sd�1 =
[

!2⇤k

{!0 2 Sd�1 : |! � !
0|  2�k}

and |!�!0| & 2�k for all distinct !,!0 2 ⇤k. Given !,!0 2 ⇤k, we write ! ⇠ !
0 if (i) 22�k  |!�!0|  24�k

and k < N , or (ii) |! � !
0|  24�N and k = N . (That is, ! ⇠ !

0 exactly when ⌃!
N,k and ⌃!0

N,k are related.)
We claim that

⌃N ⇥ ⌃N =
N[

k=1

[

!,!02⇤k :
!⇠!0

⌃!
N,k ⇥ ⌃!0

N,k. (3.2)

Indeed, fix (⌧, ⇠), (⌧ 0, ⇠0) 2 ⌃N , and let ⇣ := ⇠
|⇠| and ⇣

0 := ⇠0

|⇠0| . First, suppose that |⇣ � ⇣
0| � 12 · 2�N . Then

there exists k 2 {1, . . . , N�1} and !,!0 2 ⇤k such that 6 ·2�k  |⇣�⇣ 0|  12 ·2�k and |!�⇣|, |!0�⇣ 0|  2�k.
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It follows that (⌧, ⇠) 2 ⌃!
N,k, (⌧

0
, ⇠

0) 2 ⌃!0

N,k, and ! ⇠ !
0. The case when |⇣ � ⇣

0|  12 · 2�N can be treated
similarly using k = N , so the claim is proved.

The pieces of the decomposition (3.2) are (unfortunately) not disjoint. An easy argument shows, however,

that two such pieces, ⌃!1
N,k1

⇥ ⌃
!0

1
N,k1

and ⌃!2
N,k2

⇥ ⌃
!0

2
N,k2

, overlap only if (i) |k1 � k2| . 1 or (ii) k1 = k2 and

|!1 � !2|, |!0
1 � !

0
2| . 2�k1 . Let

I := {(k,!,!0) : 1  k  N ; !,!0 2 ⇤k; ! ⇠ !
0},

and let C be a large constant. We can partition I into O(1) sets I1, . . . , In with the following separation
property: If (k1,!1,!

0
1), (k2,!2,!

0
2) 2 Ij , then either (i) (k1,!1,!

0
1) = (k2,!2,!

0
2), or (ii) k1 = k2 and

max{|!1 � !2|, |!0
1 � !

0
2|} � C2�k1 , or (iii) |k1 � k2| � C. Thus, if C is su�ciently large, then

⌃N ⇥ ⌃N =
n[

j=1

[̇

(k,!,!0)2Ij

⌃!
N,k ⇥ ⌃!0

N,k, (3.3)

where the dot indicates a disjoint union.
From (3.3), it follows that

kEfk2q = k(Ef)2kq/2 . max
1jn

����
X

(k,!,!0)2Ij

E(f�⌃!
N,k

)E(f�⌃!0
N,k

)

����
q/2

. (3.4)

By elementary geometry, there exist rectangular boxes Rk,!,!0 such that ⌃!
N,k + ⌃!0

N,k ✓ Rk,!,!0 and, for
each k, the collection {2Rk,!,!0}!,!02⇤k : !⇠!0 has bounded overlap. This fact allows us to exploit almost
orthogonality in the form of [18, Lemma 6.1]. We obtain the bound

����
X

(k,!,!0)2Ij

E(f�⌃!
N,k

)E(f�⌃!0
N,k

)

����
q/2

.
NX

k=1

✓ X

!,!02⇤k :
!⇠!0

kE(f�⌃!
N,k

)E(f�⌃!0
N,k

)kq/2q/2

◆ 2
q

(3.5)

for each j. To help us estimate (3.5), we set

⌃̃!
N,k :=

[

!02⇤k :
!0⇠! or !0=!

⌃!0

N,k

and note that, for each k, the collection {⌃̃!
N,k}!2⇤k has bounded overlap. We first consider the terms in

(3.5) with k < N . Using (3.1) and assuming that |f | ⇠ �⌦ for some ⌦ ✓ ⌃N , we see that

N�1X

k=1

✓ X

!,!02⇤k :
!⇠!0

kE(f�⌃!
N,k

)E(f�⌃!0
N,k

)kq/2q/2

◆ 2
q

.
N�1X

k=1

2(N�k)↵

✓ X

!,!02⇤k :
!⇠!0

µ(⌦ \ ⌃!
N,k)

q
2r µ(⌦ \ ⌃!0

N,k)
q
2r

◆ 2
q

.
N�1X

k=1

2(N�k)↵ max
!2⇤k

µ(⌦ \ ⌃̃!
N,k)

2
r�

2
q

✓ X

!2⇤k

µ(⌦ \ ⌃̃!
N,k)

◆ 2
q

.
N�1X

k=1

2(N�k)↵ min{µ(⌦), 2(N�k)(d�1)}
2
r�

2
q µ(⌦)

2
q . (3.6)

If µ(⌦)  2d�1, then the hypotheses that ↵ < 0 and r  p imply that (3.6) is O(µ(⌦)
2
p ). Thus, we may

assume that µ(⌦) � 2d�1, and (3.6) becomes

N�
⌃
log2 µ(⌦)

1
d�1
⌥

X

k=1

2(N�k)↵
µ(⌦)

2
r +

N�1X

k=N�
⌃
log2 µ(⌦)

1
d�1
⌥
+1

2(N�k)(↵�(d�1)( 2
q�

2
r ))µ(⌦)

2
q .

The first sum is O(µ(⌦)
2
p ) by the hypotheses that ↵ < 0 and ↵  (d � 1)( 2p � 2

r ). Treating separately

the cases where ↵ is strictly less than, strictly greater than, or equal to (d � 1)( 2q � 2
r ), the second sum is

similarly seen to be O(µ(⌦)
2
p ). Thus, altogether the terms in (3.5) with k < N contribute O(µ(⌦)

2
p ). Now
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we estimate the terms with k = N . By the Cauchy–Schwarz inequality, the hypothesis E0(p ! q), Lemma
3.2, and the hypothesis that p  q, we find that

✓ X

!,!02⇤N :
!⇠!0

kE(h�⌃!
N,N

)E(h�⌃!0
N,N

)kq/2q/2

◆ 2
q

.
✓ X

!,!02⇤N :
!⇠!0

µ(⌦ \ ⌃!
N,N )

q
2pµ(⌦ \ ⌃!0

N,N )
q
2p

◆ 2
q

.
✓ X

!2⇤N

µ(⌦ \ ⌃̃!
N,N )

q
p

◆ 2
q

. µ(⌦)
2
p .

Thus, we have shown that (3.5) is O(µ(⌦)
2
p ). Inserting this bound into (3.4) and noting that kfkp ⇠ µ(⌦)

1
p ,

the proof is complete. ⇤

Corollary 3.4. If q >
2(d+3)
d+1 and ( d

d+2q)
0  p  min{(d�1

d+1q)
0
, q} and (p, q) 6= ( 2d

d�1 ,
2d
d�1 ), then kEfkq . kfkp

whenever f is supported in ⌃N for some N � 0.

Proof. We will apply Lemma 3.3. By interpolation, we may assume that q  2(d+2)
d . Then conditions (i)–(iv)

in the lemma are satisfied with r = 2 and ↵ = d � 1 � 2(d+1)
q . The estimate E0(p ! q) is a consequence of

the techniques in [17], and the bilinear estimate (3.1) is valid by Lemma 3.1. Thus, Lemma 3.3 gives the
restricted strong type analogue of the required estimate, and real interpolation completes the proof. ⇤

4. Summing bounds on frusta and proof of Theorem 1.2

Let Efru(p ! q) denote the statement that kEfkq . kfkp whenever f is supported in ⌃N for some N � 0.
We have shown, by Corollary 3.4, that Efru(p ! q) holds for (p, q) in (a superset of) the range required
by Theorem 1.2. In this section, we sum these uniform bounds and consequently prove Theorem 1.2. Our
argument will utilize the following Strichartz estimate for the Klein–Gordon equation (see [10] and references
therein): If r 2 [2,1], s 2 [2, 2d

d�2 ] (with
2d
d�2

:= 1 when d = 2), (r, s) 6= (2,1), and 1
r = d�1+✓

2 ( 12 � 1
s ) for

some ✓ 2 [0, 1], then

kEfkLr
tL

s
x
. kh·i 1

r�
1
s fk2. (4.1)

Lemma 4.1. If Efru(p0 ! q0) holds for some ( d
d+2q0)

0  p0  min{(d�1
d+1q0)

0
, q0}, then E(p ! q) holds

whenever q > q0 and p
0 = p0

0
q0
q.

Proof. We will show that the hypothesis of the lemma implies the following bilinear estimate: Given q > q0

and p
0 = p0

0
q0
q, there exists a positive constant c such that

kEf1Ef2kq/2 . 2�c|N1�N2|kf1kpkf2kp (4.2)

whenever supp f1 ✓ ⌃N1 and supp f2 ✓ ⌃N2 for some N1, N2 � 0. Assuming the validity of (4.2), we now
demonstrate how E(p ! q) follows. The case q = 1 is trivial, so we assume that q < 1 and set n := dq/2e.
Fixing f , we have

kEfkqq =

����
1X

N=0

E(f�⌃N )

����
q

q


X

N1,...,N2n�0

����
2nY

j=1

E(f�⌃Nj
)

����

q
2n

q
2n

since q  2n. Given N 2 {0, 1, 2 . . .}2n, let p(N) = (pj(N))2nj=1 be a permutation of N such that
kfkLp(⌃p1(N)) is maximal among kfkLp(⌃pj(N)) and |p1(N) � p2(N)| is maximal among |p1(N) � pj(N)|.
Then, by Hölder’s inequality, estimate (4.2), and the fact that p  q (which follows from our hypothesis),
we see that

X

N1,...,N2n�0

����
2nY

j=1

E(f�⌃Nj
)

����

q
2n

q
2n

.
X

N : p(N)=N

����
2nY

j=1

E(f�⌃Nj
)

����

q
2n

q
2n


X

N : p(N)=N

nY

j=1

kE(f�⌃p2j�1(N)
)E(f�⌃p2j(N)

)k
q
2n
q
2
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.
X

N : p(N)=N

2�
cq
2n |p1(N)�p2(N)|kfkqLp(⌃p1(N))

.
X

N1,N2�0

|N1 �N2|2n�22�
cq
2n |N1�N2|kfkqLp(⌃N1 )

.
X

N1�0

kfkqLp(⌃N1 )

 kfkqp.

Thus, we have shown that E(p ! q) holds.
We turn to the proof of (4.2). If N1 = N2, then the desired estimate is a consequence of Efru(p0 ! q0),

the Cauchy–Schwarz inequality, and interpolation. Thus, we may assume that N1 < N2; in particular, we
have N2 � 1. Now, let q1 := 2q0

p0
0

and choose r1, s1, r2, s2 obeying the conditions ri 2 [2,1], si 2 [2, 2d
d�2 ]

(with 2d
d�2

:= 1 when d = 2), (ri, si) 6= (2,1), and 2
ri

+ 2p0
0

(q0�p0
0)si

= p0
0

q0�p0
0
, as well as r1 < s1 and

2
q1

= 1
r1

+ 1
r2

= 1
s1

+ 1
s2
. (For example, fixing an arbitrary r1 2 [d(q0�p0

0)
p0
0

, q1) determines such a choice.) The

Strichartz estimate (4.1) and our hypothesis imply that kEfkLri
t L

si
x

. kh·i
1
ri

� 1
si fk2 for every f . Thus, by

the mixed-norm Cauchy–Schwarz inequality, we have

kEf1Ef2kq1/2 . kEf1kLr1
t L

s1
x
kEf2kLr2

t L
s2
x

. 2N1( 1
r1

� 1
s1

)2N2( 1
r2

� 1
s2

)kf1k2kf2k2 = 2�( 1
r1

� 1
s1

)|N1�N2|kf1k2kf2k2. (4.3)

The estimate (4.2) now follows by interpolating (4.3) with either the trivial inequality kEf1Ef2k1 .
kf1k1kf2k1, if q � q1, or the estimate kEf1Ef2kq0/2 . kf1kp0kf2kp0 (a consequence of our hypothesis),
if q < q1. ⇤

Proof of Theorem 1.2. Together, Corollary 3.4 and Lemma 4.1 imply the theorem, except for the
estimates E(q ! q) with 10

3 < q < 4 when d = 2. The latter bounds can be obtained by (straightforwardly)
adapting the proof of [2, Lemma 8.2]. ⇤

5. Conic decoupling and proof of Theorem 1.3

In this section, we prove our conditional result, Theorem 1.3. We will argue as follows: To prove global
extension estimates, it su�ces to obtain uniform estimates on dyadic frusta, according to Lemma 4.1. By
Lemma 3.3, these bounds would follow from appropriate bilinear estimates between (N, k)-sectors. Lemma
3.1 provides one such bilinear estimate, with a very favorable constant (relative to the hypotheses of Lemma
3.3) but valid only for q in the bilinear range. As we will show, the conic decoupling theorem of [1] and the
hypothesis of Theorem 1.3 together imply a second bilinear estimate, with a worse constant but a smaller
value of q. Interpolation then leads to a compromise, wherein Lemma 3.3 may be applied for a small set of
exponents that nevertheless improves on the bilinear range. After some arithmetic, the admissible exponents
work out to be those satisfying (1.2).

We now turn to the details, beginning with the following elementary fact:

Lemma 5.1. If u 2 Rn for some n � 1 and x, y 2 R2 \ {0} with |x|, |y| � |u|, then
����
(x, u)

|(x, u)| �
(y, u)

|(y, u)|

���� �
1

4

����
x

|x| �
y

|y|

����.

Proof. By a rotation of R2, we may assume that y1 > 0 and y2 = 0. Let ✓ 2 [�⇡,⇡] denote the angle between
the vectors x and (1, 0), so that x = |x|(cos ✓, sin ✓). Noting that |✓| � | x

|x| �
y
|y| |, it su�ces to show that

����
(x, u)

|(x, u)| �
(y, u)

|(y, u)|

���� �
|✓|
4
. (5.1)

We find, by a bit of algebra, that
����
(x, u)

|(x, u)| �
(y, u)

|(y, u)|

����
2

=
2(|(x, u)||(y, u)|� |x||y| cos(✓)� |u|2)

|(x, u)||(y, u)| .
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Due to the bound cos ✓  1� ✓2

2 + ✓4

24 (which follows from Taylor’s theorem), the Cauchy–Schwarz inequality,
and the hypothesis that |x|, |y| � |u|, the right-hand side is bounded below by

2(|(x, u)||(y, u)|� |x||y|� |u|2)
|(x, u)||(y, u)| +

2|x||y|
|(x, u)||(y, u)|

✓
✓
2

2
� ✓

4

24

◆
� ✓

2

2
� ✓

4

24
� ✓

2

16
,

completing the proof. ⇤

The following consequence of conic decoupling is the technical heart of this section:

Lemma 5.2. Suppose that E0(p ! q) holds for some p � 2 and 2  q  2(d+1)
d�1 . Then

kEfkq ." 2
(N�k)((d�1)( 1

2�
1
p )+")kfkp

for every " > 0 whenever f is supported in an (N, k)-sector.

Proof. By rotational symmetry, it su�ces to prove the lemma for functions f supported in the sector ⌃e1
N,k.

We may also assume that k > C and N � k > C, where C is a positive integer of our choice. Indeed, if
k  C, then we can cover ⌃e1

N,k by a bounded number of (N,C)-sectors. Similarly, if N � k  C, then
⌃e1

N,k is covered by a bounded number of (N,N)-sectors, and the required estimate is a consequence of the
hypothesis E0(p ! q) and Lemma 3.2.

We proceed by rescaling the extension estimate on ⌃e1
N,k to one on a nearly conic set of unit size. There,

the conic decoupling theorem, [1, Theorem 1.2], can be directly applied. Let e1, . . . , ed denote the standard
basis vectors in Rd, and let M := LD, where D is the conic dilation D(⌧, ⇠) := 2�N (⌧, ⇠) and L is the linear
map satisfying

L(0, ej) = 2(k�C)(0, ej), 2  j  d,

L(1, e1) = (1, e1),

L(�1, e1) = 22(k�C)(�1, e1).

One easily checks that D(⌃e1
N,k) lies in an O(2�2N )-neighborhood of the conic sector

� :=

⇢
(|⇠|, ⇠) : 1  |⇠|  2,

����
⇠

|⇠| � e1

����  2�k

�
.

The vectors (0, e2), . . . , (0, ed) are angularly tangent to the cone at the point (1, e1), while the vector (1, e1)
is radially tangent and (�1, e1) is normal. The map L preserves the cone and expands � to a sector of
(roughly) unit angular width contained in the frustum

�̃ := {(|⇠|, ⇠) : 1  |⇠|  3}.

Setting � := 22(k�N) and assuming C is su�ciently large, M(⌃e1
N,k) lies in the �-neighborhood of �̃. Let M⇤µ

be the pushforward of µ by M , that is,
Z

M(⌃)
gdM⇤µ :=

Z

⌃
g �Mdµ,

and let EM
g := �gM⇤µ. Let P be a partition of the �-neighborhood of �̃ into plates of angular width �1/2,

thickness �, and length 1, as in [1, Theorem 1.2]. Then

kEM
gkq ." �

�"

✓X

✓2P
kEM (g�✓0)k2q

◆ 1
2

(5.2)

for all g supported in M(⌃e1
N,k), where ✓

0 := ✓ \M(⌃e1
N,k). Let Q be a covering of ⌃e1

N,k by (N,N)-sectors
having bounded overlap, and let { }2Q be partition of unity with supp  ✓ . We claim that each ✓ 2 P
obeys the bound

#{ 2 Q :  \M
�1(✓0) 6= ;} . 1. (5.3)
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If (5.3) holds, then taking g = f �M�1 in (5.2), rescaling, applying the hypothesis E0(p ! q) using Lemma
3.2, and finally applying Hölder’s inequality and summing, we find that

kEfkq ." �
�"

✓X

✓2P
kE(f�M�1(✓0))k2q

◆ 1
2

. �
�"

✓X

✓2P

X

2Q
kE(f �M�1(✓0))k2q

◆ 1
2

. �
�"

✓X

✓2P

X

2Q
kf k2Lp(M�1(✓0))

◆ 1
2

. 2(N�k)((d�1)( 1
2�

1
p )+2")kfkp.

Since " is arbitrary, the proof is complete modulo the claim (5.3).
Toward proving (5.3), fix ✓ 2 P and let

n := #{ 2 Q :  \M
�1(✓0) 6= ;}.

To avoid notational annoyances, we will assume that d � 3 for the remainder of this argument. The case
d = 2 is similar, but easier, and essentially appears in [2]. Given two points (⌧, ⇠), (⌧ 0, ⇠0) 2 R⇥ Rd, let

distang((⌧, ⇠), (⌧
0
, ⇠

0)) :=

����
⇠

|⇠| �
⇠
0

|⇠0|

����

denote their angular separation. Suppose that ⌃e1
N,k \M

�1(✓) has angular width at most n
1

2(d�1) 2�N . Since
Q has bounded overlap, it follows that

n . (n
1

2(d�1) 2�N )d�1

2�N(d�1)
= n

1
2 ,

and thus n . 1. We may assume, therefore, that there exist points (⌧, ⇠), (⌧ 0, ⇠0) 2 ⌃e1
N,k \M

�1(✓) such that

distang((⌧, ⇠), (⌧ 0, ⇠0)) � n
1

2(d�1) 2�N . Since ✓ has angular width O(2k�N ), it su�ces to show that

distang(M(⌧, ⇠),M(⌧ 0, ⇠0)) & 2k distang((⌧, ⇠), (⌧
0
, ⇠

0)). (5.4)

We proceed by exploiting symmetry. First, we observe that

distang(M(⌧, ⇠),M(⌧ 0, ⇠0)) = distang(M(h��1i,��1
⇠),M(h(�0)�1i, (�0)�1

⇠
0)), (5.5)

where � := |⇠|, �0 := |⇠0|, and hxi :=
p
x2 + 1. Next, we utilize rotational invariance. Let R := I2 �S, where

I2 is the 2⇥ 2 identity matrix and S is a rotation of Rd�1 satisfying

S

✓
�
�1(⇠2, . . . , ⇠d)� (�0)�1(⇠02, . . . , ⇠

0
d)

|��1(⇠2, . . . , ⇠d)� (�0)�1(⇠02, . . . , ⇠
0
d)|

◆
= (1, 0, . . . , 0).

(One can check that ��1(⇠2, . . . , ⇠d) 6= (�0)�1(⇠02, . . . , ⇠
0
d).) The maps M and R commute, and R (and thus

R
�1) preserves angular separation. Setting (⇢, ⇣) := R(h��1i,��1

⇠) and (⇢0, ⇣ 0) := R(h(�0)�1i, (�0)�1
⇠
0) and

using (5.5), we see that

distang(M(⌧, ⇠),M(⌧ 0, ⇠0)) = distang(M(⇢, ⇣),M(⇢0, ⇣ 0)). (5.6)

The definitions of ⌃e1
N,k, �, �

0, and R imply the following:

(i) |⇣| = |⇣ 0| = 1 and |⇣ � e1|, |⇣ 0 � e1|  2�k;
(ii) distang((⌧, ⇠), (⌧, ⇠0)) = |⇣ � ⇣

0|;
(iii) ⇣j = ⇣

0
j =: aj for all j 2 {3, . . . , d};

(iv) 1  ⇢, ⇢
0  1 + 2�2N ;

We write (⇢, ⇣) = (⇢, r cos ⌫, r sin ⌫, a3, . . . , ad), where r :=
p
1� a23 � · · ·� a2d =

p
⇣21 + ⇣22 and ⌫ :=

arctan(⇣2/⇣1), and we record that 1 � 2�2k  r  1 and |⌫|  21�k if C is su�ciently large. We com-
pute that M(⇢, ⇣) = 2�N�1(m1(⇢, ⌫),m2(⇢, ⌫),m3(⇢, ⌫), u), where

m1(x, y) := (1 + 22(k�C))x+ (1� 22(k�C))r cos y,
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m2(x, y) := (1� 22(k�C))x+ (1 + 22(k�C))r cos y,

m3(x, y) := 2k�C+1
r sin y,

u := 2k�C+1(a3, . . . , ad).

One easily checks that if C is su�ciently large, then |u|  1 and 1  m2(x, y)  2 and |m3(x, y)|  2
whenever 1  x  1 + 2�2N and |y|  21�k. Writing, analogously, (⇢0, ⇣ 0) = (⇢0, r cos ⌫0, r sin ⌫0, a3, . . . , ad)
and using (5.6) and Lemma 5.1, we find that

distang(M(⌧, ⇠),M(⌧ 0, ⇠0)) =

����
(m2(⇢, ⌫),m3(⇢, ⌫), u)

|(m2(⇢, ⌫),m3(⇢, ⌫), u)|
� (m2(⇢0, ⌫0),m3(⇢0, ⌫0), u)

|(m2(⇢0, ⌫0),m3(⇢0, ⌫0), u)|

����

&
����
(m2(⇢, ⌫),m3(⇢, ⌫))

|(m2(⇢, ⌫),m3(⇢, ⌫))|
� (m2(⇢0, ⌫0),m3(⇢0, ⌫0))

|(m2(⇢0, ⌫0),m3(⇢0, ⌫0))|

����

⇠ |A(⇢, ⌫)�A(⇢0, ⌫0)|, (5.7)

where

A(x, y) := arctan

✓
m3(x, y)

m2(x, y)

◆
.

Using the mean value theorem and bounds on the mj , we find that

|A(⇢, ⌫)�A(⇢, ⌫0)| � |⌫ � ⌫
0| inf

|y|21�k
|@2A(⇢, y)| & 2�C2k|⌫ � ⌫

0| (5.8)

and

|A(⇢, ⌫0)�A(⇢0, ⌫0)|  |⇢� ⇢
0| sup

1x1+2�2N

|@1A(x, ⌫0)| . 2�2C2�2N22k  2�3C2k2�N
, (5.9)

where the implicit constants do not depend on C. Since

2�N . distang((⌧, ⇠), (⌧
0
, ⇠

0)) = |⇣ � ⇣
0| = |(⇣1, ⇣2)� (⇣ 01, ⇣

0
2)| ⇠ |⌫ � ⌫

0|,

(5.4) follows from (5.7)–(5.9) after fixing C su�ciently large. ⇤

Proof of Theorem 1.3. By Lemma 4.1, it su�ces to prove that Efru(p ! q) holds for all (p, q) satisfying
the hypotheses of the theorem. We have assumed that E0(p0 ! q0) holds with p

0
0 = d

d+2q0 for some

q0 <
2(d+3)
d+1 . Necessarily p0 � 2, so by the Cauchy–Schwarz inequality and Lemma 5.2, we have

kEf1Ef2kq0/2 ." 2
(N�k)((d�1)(1� 2

p0
)+2")kf1kp0kf2kp0

for every " > 0 whenever f1 and f2 are supported in (N, k)-sectors. Given q1 >
2(d+3)
d+1 , we also have

kEf1Ef2kq1/2 . 2(N�k)(d�1� 2(d+1)
q1

)kf1k2kf2k2
by Lemma 3.1, provided f1 and f2 are supported in related (N, k)-sectors. Interpolating these estimates, we
see that

kEf1Ef2kqt/2 ." 2
(N�k)↵tkf1krtkf2krt ,

where ✓
1

rt
,
1

qt

◆
:= (1� t)

✓
1

p0
,
1

q0

◆
+ t

✓
1

2
,
1

q1

◆
,

↵t := (1� t)

✓
(d� 1)

✓
1� 2

p0

◆
+ 2"

◆
+ t

✓
d� 1� 2(d+ 1)

q1

◆

for t 2 [0, 1]. Given q 2 (q0,
2(d+3)
d+1 ), let t be such that q = qt, and suppose that

1

p
>

↵t

2(d� 1)
+

1

rt
. (5.10)

We may apply Lemma 3.3 to obtain the estimate

kEfkq . kfkp (5.11)
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whenever |f | ⇠ �⌦ for some ⌦ contained in some ⌃N . Indeed, the hypotheses (i)–(iv) in Lemma 3.3 hold
with r = rt and ↵ = ↵t, and the estimate E0(p ! q) is a consequence of interpolating E0(p0 ! q0) and

E0(1 ! 1) and applying Hölder’s inequality. Letting q1 ! 2(d+3)
d+1 and " ! 0, the condition (5.10) becomes

(1.2), and thus (5.11) extends to all p satisfying (1.2). Real interpolation now implies that Efru(p ! q) holds
in the required range. ⇤

6. Possible improvements via local estimates for elliptic surfaces

In this final section, we discuss some likely improvements to Theorem 1.2 by means of the state-of-the-
art local extension estimates for elliptic surfaces (as defined in, e.g., [18]). We will ignore some details for
simplicity, and thus we do not claim any improvement definitively.

As described in the introduction, the validity of the local estimate E0(p ! q) on the parabolic scaling line

p
0 = d

d+2q for some q <
2(d+3)
d+1 would imply an improvement of Theorem 1.2 by a direct application of our

conditional result, Theorem 1.3. Such an estimate appears to follow from known results: Let Ed
ell(p ! q)

denote the statement that for every elliptic phase � : [�1, 1]d ! R, the associated extension operator

E�f(t, x) :=
Z

[�1,1]d
e
i(t,x)·(�(⇠),⇠)

f(⇠)d⇠

is bounded from L
p([�1, 1]d) to Lq(R⇥Rd) with operator norm depending only on p, q, d, and the parameters

used to define ellipticity. (In particular, Ed
ell(p ! q) would imply E0(p ! q).) Hickman and Rogers [8] have

shown that for each d � 2, there exists some qd <
2(d+3)
d+1 such that Ed

ell(q ! q) holds whenever q > qd.
(Their result is stated for paraboloids, but an adaptation of their methods yields estimates for general
elliptic surfaces; see [8, Remark 11.3] and references therein.) One can move their estimate to the scaling
line p

0 = d
d+2q in a standard way, but with a loss in the range of q. Namely, one interpolates the bilinear

version of Ed
ell(q ! q) (from the Cauchy–Schwarz inequality) with the L

2-based bilinear extension estimate
for elliptic surfaces (see [17]) and then obtains a linear estimate on the scaling line using the bilinear-to-linear
method, [18, Theorem 2.2]. In the end, these steps reveal that Ed

ell(p ! q) holds with p
0 = d

d+2q whenever

q > q̃d,

for some threshold q̃d <
2(d+3)
d+1 that can be explicitly written as a function of qd. This leads to an improvement

of Theorem 1.2 in every dimension. Hickman and Rogers’ exponent qd can be computed (see [8, Footnote
5 and Figure 1]), and for most values of d it defines the best known range of local extension estimates for
d-dimensional elliptic surfaces. (Some stronger results are known for the paraboloid; see Wang [19], Guth
[7], and Hickman–Zahl [9].)

Additionally, the method of slicing o↵ers a means of improving Theorem 1.2 on the conic scaling line
p
0 = d�1

d+1q. Since the cross sections of ⌃ are (d � 1)-dimensional spheres, it is possible to deduce certain

extension estimates for ⌃ using the boundedness of the extension operator associated to Sd�1. We have the
following conditional result:

Proposition 6.1. If p0 = d�1
d+1q and

����
Z

Sd�1

e
ix·✓

f(✓)d�(✓)

����
Lq(Rd)

. kfkLp(Sd�1) (6.1)

for all f 2 L
p(Sd�1), then E(p ! q) holds.

Proof. We proceed along the lines of arguments in [6] and [11]. For later use, we record that q � max{2, p}
due to the hypothesis that (6.1) holds. Now, in polar coordinates, our extension operator takes the form

Ef(t, x) =
Z 1

0

Z

Sd�1

e
i(t,x)·(hri,r✓)

f(hri, r✓)r
d�1

hri d�(✓)dr =

Z 1

1
e
its

Z

Sd�1

e
ihhsiix·✓

f(s, hhsii✓)hhsiid�2
d�(✓)ds,

where hhsii :=
p
s2 � 1. Using the (dualized) Lorentz space version of the Hausdor↵–Young inequality and a

Minkowski-type inequality (see [15, Corollary 3.16] and [11, Lemma 2.1], respectively), it follows that

kEfkq .
����

����
Z

Sd�1

e
ihhsiix·✓

f(s, hhsii✓)hhsiid�2
d�(✓)

����
Lq0,q

s

����
Lq

x
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.
����

����
Z

Sd�1

e
ihhsiix·✓

f(s, hhsii✓)hhsiid�2
d�(✓)

����
Lq

x

����
Lq0,q

s

. (6.2)

By a change of variable and the estimate (6.1), the inner norm in (6.2) obeys the bound
����
Z

Sd�1

e
ihhsiix·✓

f(s, hhsii✓)hhsiid�2
d�(✓)

����
Lq

x

. hhsiid�2� d
q kf(s, hhsii✓)kLp

✓
. (6.3)

Due to the embedding L
q0,p

,! L
q0,q and the Lorentz space version of Hölder’s inequality (see [12, Theorem

3.6]), we have that

khhsiid�2� d
q kf(s, hhsii✓)kLp

✓
k
Lq0,q

s
. khhsiid�2� d

q kf(s, hhsii✓)kLp
✓
k
Lq0,p

s

. khhsii�
1
↵ kL↵,1

s
khhsii

1
↵+d�2� d

q kf(s, hhsii✓)kLp
✓
kLp,p

s

. khhsii
1
↵+d�2� d

q kf(s, hhsii✓)kLp
✓
kLp

s
, (6.4)

where 1
↵
:= 1

q0 �
1
p = 2

(d�1)q . By the change of variable r := hhsii and some algebra, we find that

khhsii
1
↵+d�2� d

q kf(s, hhsii✓)kLp
✓
kLp

s
=

✓Z 1

0

Z

Sd�1

|f(hri, r✓)|p r
d�1

hri d�(✓)dr

◆ 1
p

= kfkp. (6.5)

Combining (6.2)–(6.5), we conclude that E(p ! q) holds. ⇤
Since the sphere Sd�1 is elliptic, (6.1) holds in the range q > q̃d�1 and p

0 = d�1
d+1q, as discussed above.

Proposition 6.1 therefore yields an improvement to Theorem 1.2 on the conic scaling line whenever

q̃d�1 <
2(d+ 3)

d+ 1
. (6.6)

The code from [8, Footnote 5] can be used to compute qd�1 (and thus q̃d�1) and determine explicit values
of d for which the condition (6.6) holds.
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