GLOBAL RESTRICTION ESTIMATES FOR ELLIPTIC HYPERBOLOIDS

BENJAMIN BAKER BRUCE

ABSTRACT. We prove global Fourier restriction estimates for elliptic, or two-sheeted, hyperboloids of arbi-
trary dimension d > 2, extending recent joint work with D. Oliveira e Silva and B. Stovall. Our results are
unconditional in the (adjoint) bilinear range, ¢ > 2(;{:13)’

toward the local restriction conjecture for elliptic surfaces.

and extend conditionally upon further progress

1. INTRODUCTION

In this article, we establish global Fourier restriction estimates for elliptic, or two-sheeted, hyperboloids
of arbitrary dimension d > 2. These surfaces take the general form

{(1&) eRxRY: (1 — 70,6 — &) - A(T — 70,€ — &) = 1}, (1.1)

where (79,&) € R x R? and A is an invertible (d + 1) x (d + 1) matrix with exactly one positive eigenvalue.
Due to the affine invariance of restriction estimates and time-reversal symmetry, we may (and will) restrict
our attention to the surface

2={(r¢ eRxR: 7= ()}, € = VIEP+1,

which is the “upper sheet” of with (79,&) = (0,0) and A = diag(1,-1,...,—1).

We begin by describing the context for this project. While certain aspects of the restriction theory for
hyperboloids have already been studied, see e.g. [16], [13], [4], [5], the question of the optimal range of global
estimates was only recently taken up by Oliveira e Silva, Stovall, and the author in [2]. There, the hyperbolic,
or one-sheeted, hyperboloid in three ambient dimensions was studied. The present article generalizes certain
techniques from [2] to obtain global restriction estimates for higher-dimensional hyperboloids. As noted
above, our results will be stated and proved for elliptic hyperboloids, whose local restriction theory has been
well studied (see e.g. [17], [8]); however, similar methods could potentially yield purely conditional results
for hyperbolic hyperboloids.

Hyperboloids are geometrically interesting from the viewpoint of restriction theory. Historically, a signif-
icant proportion of the work on restriction has focused on compact surfaces, such as the unit sphere or the
truncated paraboloid. Indeed, a general form of the restriction conjecture asserts, in part, that every smooth
compact surface with at least one nonvanishing principal curvature admits some nontrivial restriction esti-
mate. As is well known, however, homogeneity can sometimes be substituted for compactness. Paraboloids
and cones are prototypical examples of noncompact surfaces that obey homogeneity relations and admit
nontrivial restriction estimates. While hyperboloids are not homogeneous in this sense, they come close by
“interpolating” paraboloids and cones: the surface X, for example, resembles the paraboloid 7 = %|§ 2+1 as
|¢€] — 0 and the cone 7 = || as |{| — oo. As we will show, hyperboloids appear to admit a range of restriction
estimates that interpolates (in a precise sense) the restriction conjectures for paraboloids and cones, and our
proof will rest on adaptations of the bilinear restriction theories associated to those surfaces. Also crucial to
our arguments will be the invariance of hyperboloids under appropriately defined Lorentz transformations.
Certain of these transformations, sometimes termed “orthochronous,” additionally preserve each sheet of the
two-sheeted hyperboloid. The orthochronous Lorentz group that acts (transitively) on ¥ consists of linear
maps on R x R? that preserve the quadratic form (7,&) + 72 — |£]2 as well as (7,€) + sign7. Through-
out this article, “Lorentz” will always mean “orthochronous Lorentz,” so that Lorentz transformations are
symmetries of X.
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We now turn to the basic definitions and statements of our results. To begin, we equip ¥ with its unique

Lorentz-invariant measure p, given by
d
[ gan= [ ste.0
pY Rd

1 also coincides with the so-called affine surface measure on 3. The role of p is twofold: to commute with
the symmetries of our surface and to compensate for the surface’s degenerating curvature. As is standard,
we will formulate our results in terms of the adjoint restriction, or extension, operator. Having equipped X
with pu, this operator takes the form

Ef(t.x) == Falt,z) = /E ¢G0T [ (7 €)dp(r, €)

for f continuous and compactly supported on ¥. Henceforth, the dual terms “restriction” and “extension”
will be used interchangeably. We denote by

So:={(r,§) €T: ¢ <2} and & f = E(fxx,)

the low-frequency “parabolic” region of ¥ and the corresponding local extension operator. Given p,q € [1, 00],
we let E(p — ¢) denote the statement that £ extends to a bounded linear operator from LP(X,u) to
LR x R?), and we write & (p — ¢) if the analogous statement holds for £&. We can now state a conjecture
on the complete range of exponent pairs (p, ¢) for which £(p — q) is valid (see Figure .

Conjecture 1.1. If (;45¢)' < p < min{(%2q),q} and (p,q) # (24, 24), (AL 2D then E(p — q)
holds.

The main results of this article are the following:

Theorem 1.2. If ¢ > max{ j_ﬁf’ ,p} and (d+2q) p < (%q)’, then E(p — q) holds. If d = 2, then

additionally E(q — q) holds for <qg<d4.

Theorem 1.3. If &(po — qo) holds with p{, = %qo for some qo < 293 then E(p — q) holds for all

d+1
(p,q) obeying max{qo,p} < ¢ < zgirls and (fizq) <p< (d+1Q) and
1 (;—2{2113) d2+2d7> 12)
p (d=1)(d+3)\ & — 55 4 ' '
The conditional result, Theorem may warrant some explanation. It implies, in particular, that any
optimal local extension estimate beyond the bilinear range, i.e. &(po — qo) with p{; = ﬁ%qo for some

q < 2(;1:13)7 would lead to an improvement of our unconditional result, Theorem The requirement

that pf, = fizqo is a limitation, but it seems necessary (given our techniques) for obtaining any additional
global estimates on the parabolic scaling line p’ = 5 +2q If we assume only that £y(pg — qo) holds for some
po > (% T43 ¢o)’, then a slight modlﬁcatlon of the proof of Theorem . would likely yield a range of global

estimates that excludes the line p’ = 2q beyond the bilinear range but nevertheless improves Theorem

The rest of the article is organized as follows: In Section [2| we prove a negative result, that Conjecture
cannot be improved. In Section |3 we present the bilinear restriction theory for the “conic” portion of
our surface ¥, and we deduce uniform linear extension estimates on dyadic frusta from bilinear estimates
between certain thin sectors. (These results resemble the bilinear restriction theory for cones.) In Section
we use a Strichartz inequality for the Klein-Gordon equation to sum the uniform estimates on frusta, and
consequently we obtain Theorem In Section |5] we use the conic decoupling theorem of [I] to convert
conditional local extension estimates into uniform estimates on frusta, and then, appealing to Section
again, we obtain Theorem Finally, in Section [6] we discuss possible improvements to our results by
means of the state-of-the-art local extension estimates for elliptic surfaces.

Notation. We use the standard notations A < B and A = O(B) to mean that A < C'B for some constant
C > 0. If this constant depends on some parameter ¢, then we might write A <. B. Typically, constants
may only depend on the dimension d and relevant Lebesgue space exponents.

Acknowledgments. The author thanks his advisor Betsy Stovall for suggesting this project and ac-
knowledges support from NSF grant DMS-1653264.
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Q=

D=

FIGURE 1. Conjecture|l.1|asserts that £(p — ¢) holds for exponent pairs (%, %) lying within
triangle ACD, excluding the points C and D. Theorem states that, within the triangle,

E(p — q) holds unconditionally below line segment BE. Theorem brings the range of

estimates (slightly) above BE on the condition that & (py — ¢o) holds for some pair (p%’ q%)

in the interior of line segment DE. This particular diagram was created using d = 4.
2. OPTIMALITY OF CONJECTURE [LL.T

In this section, we demonstrate that Conjecture [1.1] cannot be improved. Although the counterexamples
we consider are well known, we include all necessary details for the reader’s convenience.

Proposition 2.1. If E(p — q) holds, then (p,q) satisfies the hypotheses of Conjecture E

Proof. Assume that £(p — ¢) holds. To show that p > (fqu)’ , we use the standard Knapp example. Fixing
d € (0,1], let us consider the cap

C:={(r,§) e T: [¢{| < 6}
and the tube
T:={(t,x) e R xR |t| <72, || <61},

where ¢ is a small positive constant. If (¢,2) € T and c is sufficiently small, then

Exe(t,a)] = / ei<tvz>'<f-1’f>du<na>\ > / cos(t(r — 1) + 2 - E)dp(r,&)| ~ u(C) ~ &°.
C C

Therefore,
_d+2 1 1 d
64~ YT S llExcly S u(C)F ~ 6
by the validity of £(p — ¢). Letting 6 — 0, we conclude that p > (#‘qu)’.
The necessity of p < (%q}’ follows by a similar argument, utilizing the decay of p. Indeed, fixing A > 1,
let
D:={(7,§) € Z: [§] < A}
If |(t,2)| < cA~! and c is sufficiently small, then
[Exp(t, @) ~ p(D) ~ X
Thus,

d+1 d—1

N5 < lExnlly S uD)F ~ AT
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by £(p — ¢), and sending A — oo gives the required inequality.

To show that p < g, we consider a randomized sum of bump functions. By interpolation, we may assume
that ¢ > 2. Let ¢ be a nonzero bump function on ¥ and N a positive integer. For each j € {1,..., N}, let
L; be a Lorentz boost and set ¢; := ¢ o L;. Choosing the boosts L; appropriately, the functions ¢; have

pairwise disjoint supports. Let f := Zjvzl €;¢;, where €1, ...,en are independent random variables with the
Rademacher distribution. On one hand, Khintchine’s inequality and the Lorentz invariance of p imply that

E|lf]1¢ = / /R )
e //RXW <§; |5¢j('fam)l2> %dtdx

N
>3 [ leostapitas
j=1 RxR4

= N||€][g-

q
Eoi(t,x)| dtdx

On the other hand,
E[lEfIG SENfIE =N[4l

by E(p — ¢), the fact that the ¢, have disjoint supports, and Lorentz invariance. Letting N — oo shows
that p < gq.

Finally, setting p; := 75 and po 2(d;1) , we need to show that the estimates £(p; — p1) and €(p2 — p2)
are false. We could proceed by rescahng known counterexamples for the cone and paraboloid. Indeed, (p1,p1)
lies on the conic scaling line p’ = § Hq and the extension operator associated to the cone is known not to be

bounded on LP*; likewise, (p2, p2) lies on the parabolic scaling line p’ = Jr2q and the extension operator for
the paraboloid is not bounded on LP2. We will instead present direct counterexamples to £(p; — p1) and
E(pa — p2), using longer but self-contained arguments.

We start with the disproof of £(p; — p1). Fixing A > 1, let f: ¥ — C be defined by f(7, &) := ¥(|£])(£),
where 1 is a bump function satisfying x2x 3: < ¥ < xaa0 and 9| S A~ Using polar coordinates, we see
that

4x

75
Ef(t,x) :/ / e @) (0 (1= do (0) dr z/ & (ra)emp(r)rd=tdr,
>\ Sd*l

A

where (r) := /72 + 1 and ¢ is the standard measure on the sphere S~!. By a well-known stationary phase
argument (see e.g. [20]), & obeys the asymptotic formula

o) = alyl =" cos(yl +b) + O(ly| =) as |yl = o0
for some a,b € R with a > 0. Thus,

d+1

4N
|Ef(t, )| :a|x|*%/ cos(r|z| + b)) T dr + ONT |2~ T),
A

provided that || > 1 and A is sufficiently large. The absolute value of the integral is at least that of its real
part. Using the identity 2 cos(#) cos(v) = cos(@ —v) + cos(f + v), we get the bound

Ef )] = 5 \xl (L] - b))+ ONT [2 ), (2.1)
where
4 i
/ cos(r|z| — t{(r))w(r)r = dr,
A

ax
cos(r|z| + t(r) + 2b)y(r)r = dr.

y\
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Suppose that 1 < |z| < ¢\ and |t — |z|| < cA™!, where c is a positive constant. If ¢ is sufficiently small, then
|r|z| — t(r)| <1 for all r € [\, 4], leading to the bound

d+1

| Z A=z .

To estimate I, we first write Is = I5; + 22, where
4 i
Iy = / cos(r(|z| +t) + 2b)(r)r = dr,
A
4 s
Iy = / (cos(r|z| + t(r) + 2b) — cos(r(|z| + t) + 2b))(r)r = dr.
A

The assumptions on (¢, x) imply that ||| + ¢| > 1, giving the bound

ax
sin(r(|z| +t) +2b) d d—1 a-1
I = — dr| SA 7.
| 21| “/)\ |1‘|+t dr(d}(r)r 2 ) T ~ 2

Estimating the integrand of I35 using the mean value theorem, we find that

‘122‘ S C)\%.

Thus, |I)| — |I| > L[| 2 A if A is sufficiently large and ¢ sufficiently small. Plugging this bound into
(2.1)), we conclude that

d

EF(t )| 2N F a7
for all (¢, ) satisfying 1 < |z| < X and |t — |z|| < AL If £(p1 — p1) were true, then it would follow that

AT log A S €I S IFIE ~ AT
and sending A — oo would give a contradiction.

The disproof of £(pa — p2) is similar but simpler. We will follow an argument from [14] Chapter VIII].
Define f: ¥ — C by f(7,§) = ¥(§)(£), where ¥ is a bump function satisfying ¥ (£) = 1 for [£| < ¢ and
(&) = 0 for €] > 2¢, with ¢ a positive constant. Fix (t,z) € R x R?\ {(0,0)}, and let X := |(¢, )| and
(to,.%‘o) = )\_1(75,33). Then

£f(t.a) = [ M)

where ®(&; 5,y) = 5(§) +y-£. Since Ve®(0;1,0) = 0 and det VZ®(0;1,0) = 1, the implicit function theorem
implies the existence of a neighborhood U of (1,0) such that for each (s,y) € U there exists a unique (s, y)
such that Ve®(&(s,y);s,y) = 0. Making U smaller if necessary, we may assume that |{(s,y)| < ¢ and
| det Vg@({(s,y); s,y)| 2 1 for all (s,y) € U. Suppose that (to,z) € U, so that £(tg, zo) is a nondegenerate
critical point of the function ®(-;tg,zo). If ¢ is sufficiently small (not depending on (¢, x)), then

d+1

/ AP EtoT0)y) (£)de| = af det VED(£(to, 20); to, 20)| TEATE + O(ATT)
Rd

for some constant a > 0, by a standard stationary phase result (see e.g. [14, Chapter VIII, Proposition 6]).
It follows that

EF(t, @) 2 |(t,2)| 7%

whenever ¢ is sufficiently large and ¢~!|z| sufficiently small. Consequently, we find that £f ¢ LP2(R x R?),
and thus £(pa — p2) cannot hold. O
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3. BILINEAR AND LINEAR RESTRICTION ON FRUSTA

Now we begin working toward our main results. In this section, we divide the “conic” portion of our
surface, ¥\ Xg, into frusta ¥ of width 2V for which we prove uniform extension estimates. Our proof
will combine the bilinear restriction theory for the frusta ¥y (resembling that for conic frusta), the bilinear
theory for ¥y (resembling that for the paraboloid), and the bilinear-to-linear argument found in [18].

We turn to the details. For each integer N > 1, let

Yy = {(1,6) € Z: 2NV < ¢ < 2NV

Given 1 < k < N, we cover the frustum Xy by sectors of angular width 27% by defining
N = {(7,5) €Xy: ‘é —w| < Q_k}

for each w € S1. We refer to these sets as (N, k)-sectors. Two (N, k)-sectors ¥% , and E“K,:k are related if
(i) 227%F < |lw—w'| <24 % and k < N, or (ii) |w — | <2* Y and k = N. The conic-type bilinear estimate
that we require is the following:

w

Lemma 3.1. Let X%, and E‘J‘\’,”k be related (N, k)-sectors with k < N, and let g > 2448)  Then

d+1
_ _1_2(d+1)
1€ F1E fallgya S 2N R0 ol fal2

whenever supp fi1 € XY, . and supp fa C Z“I(,l’k,

Proof. After dividing X%, and Z‘j\’;’k into a bounded number of subsets with sufficiently small radial and
angular width, one can directly apply [3, Theorem 1.10]. |

Next, we perform our bilinear-to-linear deduction. To make it work, we will need additional bilinear
estimates corresponding to related (NN, N)-sectors, since these thinnest sectors are absent from Lemma
Via a Lorentz boost, the local extension theory will be sufficient:

Lemma 3.2. If &(p — q) holds, then ||Ef|lq S || fll, whenever f is supported in an (N, N)-sector.
Proof. Given an (N, N)-sector, a suitable Lorentz boost maps it into . (]

Lemma 3.3. Suppose that p, q, v, and « relate in the following ways: (i) r < p < q <4, (ii) a < 0, (iii)
a<(d—1)(2-2), and (iv) a # (d—1)(2 — 2) or p < q. Additionally, suppose that Ey(p — q) holds and

p T q T
that
IEAE fallarz £ 2PN fallol foll, (3.1)
whenever f1 and fo are supported in related (N, k)-sectors with k < N. Then
1€f1lq S 1SNl

whenever | f| ~ xq for some Q contained in some X with N > 0.

Proof. As noted above, we will adapt the bilinear-to-linear argument found in [18]. Since & (p — ¢) holds, we
may fix N > 1. Our first step is to construct a Whitney decomposition of Xy x X . Foreach k € {1,..., N},
choose a (finite) set A, C S9! satisfying

Sl = | {o €St jw—w| <27F)
wEAL
and |w —w’| > 27% for all distinct w,w’ € Ag. Given w,w’ € Ay, we write w ~ W' if (i) 227% < |w—w/| < 247F
and k < N, or (ii) |w —w'[ <27 and k = N. (That is, w ~ w' exactly when X%, , and Ej(,:k are related.)
We claim that

N
SvxSv= U %% xS%x (3.2)

k=1 w,w'EA/k:
Indeed, fix (7,€),(7,¢') € XN, and let ¢ := é—| and (' := Igl' First, suppose that [¢ — ¢’| > 12-27". Then

there exists k € {1,..., N—1} and w,w’ € Ay, such that 6-27% < |¢(—¢/| £ 12-27% and |w— (], |o' ('] < 27F.
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It follows that (7,§) € X% 4, (7,¢') € ZNk, and w ~ w’. The case when | — (| <1227V can be treated
similarly using £ = N, so the claim is proved.
The pieces of the decomposition ([3.2]) are (unfortunately) not disjoint. An easy argument shows, however,

that two such pieces, X3, X Zlfvl,kl and X3, X E“Ji,"”kz, overlap only if (i) |k; — ka| < 1 or (ii) k1 = ko and
w1 — wal, [w] —wh] <2751, Let

T:={(kyw,'):1<k<N; ww €Ap; w~uw'l,
and let C be a large constant. We can partition Z into O(1) sets Zy,...,Z, with the following separation
property: If (ki,wi,w)), (k2,ws,why) € Z;, then either (i) (ki,wi,w]) = (k2,ws,wh), or (ii) k1 = ke and
max{|w; — wal, |w] — wh|} > C27%1 or (iii) |ky — kz| > C. Thus, if C is sufficiently large, then

SvxSv=1) U =%xx3%. (3.3)
J=1 (k,w,w’)EL;

where the dot indicates a disjoint union.

From (3.3)), it follows that

IELIZ = IES N2 S max

1<j<n

(3.4)

Z g(fXEx,Yk)g(fXE%’yk)

(kw,w')EL;

q/2

By elementary geometry, there exist rectangular boxes Ry . such that X% , + 23(,/’ v € Riww and, for
each k, the collection {2Rj u 0 }ww €Ay : ww has bounded overlap. This fact allows us to exploit almost
orthogonality in the form of [18, Lemma 6.1]. We obtain the bound

N
>ttty s2(0X I ey IE) T 69

(k,w,w")EL; a/2 k=1 “w,w EAy:

/
wnw

o

for each j. To help us estimate (3.5, we set

W . w’
Nk ‘= Nk

w EAg:
! !
w'~w or w'=w

and note that, for each k, the collection {i%7k}w€ A, has bounded overlap. We first consider the terms in
(3.5) with £ < N. Using (3.1) and assuming that |f| ~ xq for some Q C X, we see that

N-—1 2 2

S X ety i) ZQ(N e X wenSgFa@nsg o)

k=1 w,w €Ay : w,w €Ay :
wrw’ wrw’

N-1 - %

S 2V max u(Q N £ k)r_q< Z p(QN X% k))

wEA o

k=1 weAL
= 2_2 2

< 3 2R i (), 2P ) (36)
k=1

If 4(2) < 2971 then the hypotheses that a < 0 and r < p imply that (3.6) is O(M(Q)%) Thus, we may
assume that p(Q2) > 2971 and (3.6) becomes

- ’Vlogz H(Q)ﬁ—‘ N—1
Z Q(N—k)aM(Q)% + Z Q(N*k)(a*(dfl)(%*%))M(Qﬁ_
k=1

k=N-— {log2 () ﬁ] +1

The first sum is O(N(Q)%) by the hypotheses that o < 0 and o < (d — 1)(2 2). Treating separately

T
the cases where « is strictly less than, strictly greater than, or equal to (d — 1)(7 - 7) the second sum is

similarly seen to be O(N(Q)%) Thus, altogether the terms in (3.5) with k& < N contribute O(u (9 ) ). Now



8 BENJAMIN BAKER BRUCE

we estimate the terms with k¥ = N. By the Cauchy—Schwarz inequality, the hypothesis & (p — ¢), Lemma
and the hypothesis that p < ¢, we find that

(3 et ety >||3§§) (X sensmtuansgob)

2
q

w,w'EAf\r: w,w'EAf\z:
w~w w~w R
(2 wensit)
wEAN
2
S ()P,
Thus, we have shown that (3.5) is O(M(Q)%) Inserting this bound into (3.4) and noting that || f]|, ~ M(Q)%,
the proof is complete. O

Corollary 3.4. Ifq > 25 and (745q)' < p < min{(4539)', q} and (p,q) # (5, 2%). then |Ef[lq S I1f [l

whenever f is supported in Xy for some N > 0.

Proof. We will apply Lemma By interpolation, we may assume that ¢ < %. Then conditions (i)—(iv)
in the lemma are satisfied with r = 2 and o = d — 1 — 29D The estimate Eo(p — q) is a consequence of

q
the techniques in [17], and the bilinear estimate (3.1) is valid by Lemma Thus, Lemma gives the
restricted strong type analogue of the required estimate, and real interpolation completes the proof. O

4. SUMMING BOUNDS ON FRUSTA AND PROOF OF THEOREM [I.2]

Let &y (p — ¢) denote the statement that ||€f||; < || f]|, whenever f is supported in 3y for some N > 0.
We have shown, by Corollary that Eru(p — ¢q) holds for (p,q) in (a superset of) the range required
by Theorem In this section, we sum these uniform bounds and consequently prove Theorem Our
argument will utilize the following Strichartz estimate for the Klein—Gordon equation (see [10] and references
therein): If r € [2,00], s € [2, 24] (with 24 := 0o when d = 2), (r,s) # (2,00), and £ = &=L (1 — 1) for
some 6 € [0,1], then
1S lLyry S N5 fll2- (4.1)
Lemma 4.1. If &u(po — qo) holds for some (ﬁqo)' < po < min{(%qo)',qo}, then E(p — q) holds

q.

whenever ¢ > qo and p’ = zg
Proof. We will show that the hypothesis of the lemma implies the following bilinear estimate: Given q > qg

and p’ = £0q, there exists a positive constant ¢ such that
q0

1€ LE Fallgso S 27 N2l £, 1 foll (4.2)

whenever supp fi1 C ¥y, and supp fo C 3y, for some Ni, No > 0. Assuming the validity of (4.2)), we now
demonstrate how £(p — ¢) follows. The case ¢ = oo is trivial, so we assume that ¢ < co and set n := [¢/2].
Fixing f, we have

H E(fxsy,)

since ¢ < 2n. Given N € {0,1,2...}?", let p(N) = (pj(N))j:1 be a permutation of N such that
||f||Lp(Zp1(N)) is maximal among Hf”Lp(Zp_(N)) and |p1(IN) — p2(IN)| is maximal among |p1(IN) — p; (IN)].
Then, by Holder’s inequality, estimate (4.2), and the fact that p < ¢ (which follows from our hypothesis),
we see that

lEflE = H S E(fxs)
N=0

q
p>
q

Ni,...,N2, >0

>

Ni,...,N2,>0

H E(fxsy,)

2n
H g(fXENj )
j=1

q

2n
S Z
~

q

2n

N: p(N)=N

< Z H ||g(fxzp2j—1(1\’))g(fXEPQj(N))”?L

N: p(N)=N j=1
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< Z — 5% |p1(IN)— pZ(N)‘”f”LP(Z
N: p(N):N

S Z |N1—N2|2n7227%‘N17N2‘||f||qu(zN1)
N1, N2>0

) P [

N12>0

1115

P1(N))

A

IN

Thus, we have shown that £(p — ¢) holds.
We turn to the proof of (4.2). If Ny = Ns, then the desired estimate is a consequence of Exu(po — qo),
the Cauchy—Schwarz inequality, and interpolation. Thus, we may assume that N7 < Ns; in particular, we

have Ny > 1. Now, let ¢; = i)‘%" and choose r1, 51,72, $2 obeying the conditions r; € [2,00], s; € [2, d2d2]
. 2p;, c

(with 2% := oo when d = 2), (r;,s;) # (2,00), and % + (qof;%)si = qOZi)pg’ as well as r; < s; and

q% = % T i = i + é (For example, fixing an arbitrary ry € [UI(‘Z‘)T?D(’), ¢1) determines such a choice.) The

1 1
Strichartz estimate (4.1) and our hypothesis imply that [|Ef[[,ri s S [|(-)7 % f||2 for every f. Thus, by
the mixed-norm Cauchy—Schwarz inequality, we have

IEFLE Fallgr 2 S NEFLll s o 1€ foll ra oo
1 (1 _ 1 _
< MG 2N S 75 £y lo fallz = 27 G O N £y o (4.3)

The estimate (4.2) now follows by interpolating (4.3) with either the trivial inequality ||€f1€f2llcc S
Il f1ll1llf2ll1, if ¢ > g1, or the estimate ||Ef1€f2llq0/2 S [If1llpollf2llpy (2 consequence of our hypothesis),
if g <q1. (]

Proof of Theorem Together, Corollary [3.4] and Lemma imply the theorem, except for the
estimates £(q — q) Wlth Y < ¢ < 4 when d = 2. The latter bounds can be obtained by (stralghtforwardly)
adapting the proof of [2] Lemma 8.2]. O

5. CONIC DECOUPLING AND PROOF OF THEOREM [[.3

In this section, we prove our conditional result, Theorem We will argue as follows: To prove global
extension estimates, it suffices to obtain uniform estimates on dyadic frusta, according to Lemma By
Lemma these bounds would follow from appropriate bilinear estimates between (N, k)-sectors. Lemma
provides one such bilinear estimate, with a very favorable constant (relative to the hypotheses of Lemma
3.3) but valid only for ¢ in the bilinear range. As we will show, the conic decoupling theorem of [I] and the
hypothesis of Theorem together imply a second bilinear estimate, with a worse constant but a smaller
value of g. Interpolation then leads to a compromise, wherein Lemma, may be applied for a small set of
exponents that nevertheless improves on the bilinear range. After some arithmetic, the admissible exponents
work out to be those satisfying .

We now turn to the details, beginning with the following elementary fact:

Lemma 5.1. If u € R" for somen > 1 and x,y € R?\ {0} with |x|,|y| > |ul, then

o o 2 dlw it

Proof. By a rotation of R?, we may assume that y; > 0 and yo = 0. Let § € [—7, 7] denote the angle between

the vectors z and (1,0), so that = |z|(cos §,sin ). Noting that || > ‘I%I - \%IL it suffices to show that

‘|(x,u) B (y7z)|‘ > %. (5.1)

(z,u)]
We find, by a bit of algebra, that
(z0) () |

(@, w) (Y, w)

_ 2((, w)[[(y, w)| — ||yl cos(6) — |ul?)
(@, w)[|(y, w) '
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Due to the bound cosf < 1— % + % (which follows from Taylor’s theorem), the Cauchy—Schwarz inequality,
and the hypothesis that |z|, |y| > |ul, the right-hand side is bounded below by

2@ wllwwl = lellyl = [w?) el (0 0\ ¢t
(2, 0)] (5, )] * |<x,u>||<y,u>|( ) = =

2 24
completing the proof. O

=2 24716’

The following consequence of conic decoupling is the technical heart of this section:

Lemma 5.2. Suppose that Ey(p — q) holds for somep > 2 and 2 < g < %, Then

_ _1y(l_1
IEfllg Se 2N PEDE=2+9 1)),
for every € > 0 whenever f is supported in an (N, k)-sector.

Proof. By rotational symmetry, it suffices to prove the lemma for functions f supported in the sector E]e\}, &
We may also assume that £ > C and N — k > C, where C is a positive integer of our choice. Indeed, if
k < C, then we can cover X%, by a bounded number of (N, C)-sectors. Similarly, if N —k < C, then
Ef\},k is covered by a bounded number of (N, N)-sectors, and the required estimate is a consequence of the
hypothesis & (p — ¢) and Lemma
We proceed by rescaling the extension estimate on E?\i  to one on a nearly conic set of unit size. There,

the conic decoupling theorem, [1, Theorem 1.2], can be directly applied. Let eq,...,eq denote the standard
basis vectors in R?, and let M := LD, where D is the conic dilation D(7,&) := 27V (7,¢) and L is the linear
map satisfying

L(0,e;) = 2%=9(0,¢;),  2<j<d,

L(1,e1) = (1,e1),

L(—1,e1) = 22790 (1, ¢y).

One easily checks that D(X% ;) lies in an O(272N)-neighborhood of the conic sector

£ —k}
=

The vectors (0,e2),...,(0,e4) are angularly tangent to the cone at the point (1,e;), while the vector (1,e;)
is radially tangent and (—1,e;) is normal. The map L preserves the cone and expands I' to a sector of
(roughly) unit angular width contained in the frustum

I:={(l¢,6): 1< |¢] <3}

Setting 6 := 22(*=N) and assuming C' is sufficiently large, M(XY ;) lies in the d-neighborhood of T. Let M,p
be the pushforward of p by M, that is,

/ gdM, :=/90Mdu7
M(%) by

and let EMg := m Let P be a partition of the d-neighborhood of T into plates of angular width §1/2,
thickness §, and length 1, as in [1, Theorem 1.2]. Then

— e

r {<|f,f>: 1<l <2,

1€ gl <. 57 ( 3 ||<‘3M(g><e/)|§) (5.2)

0cP

for all g supported in M (X ), where " := 0 N M(X% ;). Let Q be a covering of X, by (IV, N)-sectors
having bounded overlap, and let {1, }.co be partition of unity with supp,, C x. We claim that each § € P
obeys the bound

#rkeQ:rNM1O)£0} <1 (5.3)
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If (5.3) holds, then taking g = f o M ! in (5.2)), rescaling, applying the hypothesis & (p — ¢) using Lemma
and finally applying Holder’s inequality and summing, we find that

1Ef]ly <. 5 ( ) ||5<fo1(e/>>|§)2

0eP

<5 ( D ||e<fwan-1<9/>>||3) 2

0EP KEQ

<o67° ( Z Z ||f¢n||%p(M1(0’))) 2

0eP kEQ
< o(N=k)((d=1)(3—3)+2¢) 1£1lp-

Since ¢ is arbitrary, the proof is complete modulo the claim (5.3)).
Toward proving (5.3)), fix § € P and let
ni=4#{keQ: N M Y0) #0}.

To avoid notational annoyances, we will assume that d > 3 for the remainder of this argument. The case
d = 2 is similar, but easier, and essentially appears in [2]. Given two points (7,&), (7/,¢') € R x RY, let

& _ ¢
i€l 1€
denote their angular separation. Suppose that Ef\}) » N M~1(#) has angular width at most n7@152-N | Since
Q has bounded overlap, it follows that

distang ((7,€), (7',¢")) ==

(nﬁ 2—N)d—1

1
N ) L
and thus n < 1. We may assume, therefore, that there exist points (7, &), (7',¢') € Xy ;. N M~1() such that

distang ((7,6), (7',¢')) > n7@ 12N Since 0 has angular width O(25~), it suffices to show that

distang(M (7, €), M(7',€")) Z 2" distang (7€), (7, €))- (5.4)
We proceed by exploiting symmetry. First, we observe that
distang(M (7,€), M(7',€")) = distang (M (A7), A71€), M((X) 1), (\)71€)), (5.5)

where X := [£|, N := |¢'|, and (z) := Va2 + 1. Next, we utilize rotational invariance. Let R := Io @ S, where
I, is the 2 x 2 identity matrix and S is a rotation of R~ satisfying

A& 0 8a) = ()TN, -, €0) )

S — (1,0, ...,0).
(e —g) - 009

(One can check that A71(&a,..., &) # (N)7H(&, ..., &)).) The maps M and R commute, and R (and thus

R~1) preserves angular separation. Setting (p, ¢) := R((A™1), A71¢) and (o', ¢’) := R({(\)~1), (N)~1¢’) and

using , we see that

diStang(M(Ta £), M(T/, E/)) = diStang(M(pv Q) M(p/, C/)) (5.6)

The definitions of ¥, , A, ', and R imply the following;

(i) [/ =1¢' =1 and |[¢ —e1],|¢ — e <27

(ii) distang((7,€), (1,€)) = ¢ = {'[;

(iii) ¢; = ¢ =:a; forall j € {3,...,d};

(iv) 1<p,p <14272N;
We write (p,{) = (p,rcosv,rsinv, as,...,aq), where r = \/1 —a3—--—ai = G+ and v =
arctan((2/¢1), and we record that 1 — 2728 < 7 < 1 and |v| < 217% if C is sufficiently large. We com-
pute that M (p,¢) = 27N (my(p,v), ma(p,v), m3(p,v),u), where

my(z,y) = (14 22*=DNz 4+ (1 — 22¢=D)prcosy,
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ma(x,y) = (1 —22*=DNz 4 (14 22¢=Dprcosy,
ms(x, ) ok CHrsmy
=2FCtl (a3, ... ag).
One easily checks that if C is sufficiently large, then |u| < 1 and 1 < ma(z,y) < 2 and |ms(z,y)| < 2
whenever 1 < z < 1+ 272V and |y| < 2'~%. Writing, analogously, (o', (') = (p/,7cosv’,rsinv/ as, ..., aq)
and using (5.6) and Lemman we find that
/ / / /
diStang( (7_ 5) ‘ (p71/),m3(p,u),u) _ (mQ(pl7V/)’m3(p/7V/)7u) ‘
| (p,y),mg(p,v),uﬂ |(m2(p,l/),m3(p, ),U)|
‘ 2(/)7 V),m3(p’ V)) _ (mQ(plvyl)am3(plvy/)) '
~ |(m2(p, V)? m3<p7 V))l |(m2(p’, VI)’ mg(p/, V/))l
~ |A(p,v) — A(p', V)|, (5.7)
where
A(z,y) := arctan (m;;(x,y))
mZ(xay)
Using the mean value theorem and bounds on the m;, we find that
[Ap,v) = A(p, V)| = [v — v | 0 A(py) 2272w =/ (5.8)
and
[Alp, ) = A" V) < lp—p'|  sup [0 A(,V)| S 2720272 N2 <2739k, (5.9)

1<z<142-2N
where the implicit constants do not depend on C. Since
27N < distang (1, €), (7,€) = [¢ = | = (¢, &) = (¢, &) ~ v =/,
(5.4) follows from (5.7)—(5.9) after fixing C' sufficiently large. O

Proof of Theorem By Lemma it suffices to prove that &y (p — ¢) holds for all (p, ¢) satisfying
the hypotheses of the theorem. We have assumed that & (py — ¢o) holds with pj = #‘lzqo for some

qo < 2(dd113). Necessarily pg > 2, so by the Cauchy—Schwarz inequality and Lemma we have

_ 11— 2
1€ 1€ Fallgoz Se 2 TR CTDOTZITED £y | ol
for every € > 0 whenever f; and f> are supported in (N, k)-sectors. Given ¢ >

_ _ 1 2(d+1)
IEFE Fallgr o S 2N P70 fr o foll2

by Lemma provided f; and f, are supported in related (N, k)-sectors. Interpolating these estimates, we
see that

2(d+3)

T We also have

||5f18f2||(h/2 58 Q(Nik)at ||f1||n ||f2Hrw

(o) =000 a) ea)
a-n(@-n(1-2) o) ofa-1- 2EED)

for t € [0,1]. Given ¢ € (qo, (d+1 )) let ¢ be such that ¢ = ¢;, and suppose that
1 (673 1
- > =+ —. 5.10
»7 -1 (5:10)
We may apply Lemma [3.3] to obtain the estimate

1€Fllq S 11 f1lp (5.11)

where
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whenever |f| ~ xq for some Q contained in some Xx. Indeed, the hypotheses (i)—(iv) in Lemma hold
with 7 = r;, and @ = a4, and the estimate & (p — ¢) is a consequence of interpolating & (py — ¢o) and
50(1 — 00) and applymg Holder’s inequality. Lettlng q — 2d j ) and & — 0, the condition ([5.10) becomes

, and thus extends to all p satisfying (|1.2)). Real interpolation now implies that &y (p — ¢) holds
in the required range. O

6. POSSIBLE IMPROVEMENTS VIA LOCAL ESTIMATES FOR ELLIPTIC SURFACES

In this final section, we discuss some likely improvements to Theorem by means of the state-of-the-
art local extension estimates for elliptic surfaces (as defined in, e.g., [18]). We will ignore some details for
simplicity, and thus we do not claim any improvement definitively.

As described in the introduction, the validity of the local estimate E(p — ¢) on the parabolic scaling line

p = fizq for some ¢ < 2(;:13) would imply an improvement of Theorem by a direct application of our

conditional result, Theorem Such an estimate appears to follow from known results: Let 5311 (p = q)
denote the statement that for every elliptic phase ¢ : [~1,1]? — R, the associated extension operator

Eof(tn) = [ D009 fe)ie
[_111]d

is bounded from LP([—1,1]9) to LY(R x R?) with operator norm depending only on p, g, d, and the parameters
used to define ellipticity. (In particular, £%,(p — ¢) would imply E(p — ¢).) Hickman and Rogers [8] have
shown that for each d > 2, there exists some ¢4 < 2%{:13) such that 5e11(q — ) holds whenever ¢ > gg.
(Their result is stated for paraboloids, but an adaptation of their methods yields estimates for general
elliptic surfaces see [8, Remark 11.3] and references therein.) One can move their estimate to the scaling

line p’ = q in a standard way, but with a loss in the range of q. Namely, one interpolates the bilinear

d+2
version of £4,(¢ — ¢) (from the Cauchy-Schwarz inequality) with the L?-based bilinear extension estimate
for elliptic surfaces (see [17]) and then obtains a linear estimate on the scaling line using the bilinear-to-linear
method, [18, Theorem 2.2]. In the end, these steps reveal that £%,(p — ¢) holds with p’ = #‘zq whenever

q>qda

2%(1:13) that can be explicitly written as a function of ¢4. This leads to an improvement

of Theorem in every dimension. Hickman and Rogers’ exponent gq can be computed (see [8, Footnote
5 and Figure 1]), and for most values of d it defines the best known range of local extension estimates for
d-dimensional elliptic surfaces. (Some stronger results are known for the paraboloid; see Wang [19], Guth
[7], and Hickman—Zahl [9].)

Additionally7 the method of slicing offers a means of improving Theorem on the conic scaling line

p =9 Hq Since the cross sections of ¥ are (d — 1)-dimensional spheres, it is possible to deduce certain

for some threshold ¢4 <

extension estimates for ¥ using the boundedness of the extension operator associated to S¥~1. We have the
following conditional result:

Proposition 6.1. If p' = %q and

H/ e f(0)do(0)
Sd—1
for all f € LP(S?71), then E(p — q) holds.

S llpr a1y (6.1)
La(RY)

Proof. We proceed along the lines of arguments in [6] and [11]. For later use, we record that ¢ > max{2,p}
due to the hypothesis that n holds. Now, in polar coordinates, our extension operator takes the form

) i(t,x) ({r),ro) r r— etUsNa0 £ (g W24 B
s = [T e Fr) s dot0yr = [~ et [ 0 s o)) (01,

where ((s)) := v/s? — 1. Using the (dualized) Lorentz space version of the Hausdorff-Young inequality and a
Minkowski-type inequality (see [15] Corollary 3.16] and |11, Lemma 2.1], respectively), it follows that

lery | [ st (0" a0t

!’
q’,q9 q
riellpe
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<[ [ o ss ot aoe) | (62)
§d—1 Lellpe e
By a change of variable and the estimate , the inner norm in obeys the bound
Lo 0 s Do) ) @) 5 (s ()l (63)

@

Due to the embedding L7P < L4+ and the Lorentz space version of Holder’s inequality (see [12, Theorem
3.6]), we have that

1) 71 s, (DOl o S M1GsH e (DD zgll Lo

SIS oo 1) =25 £ (5, (DOl g o
S I £ s, (90 gl (6.4)
1

where & 1= o — & = 0 d_21)q. By the change of variable r := ((s)) and some algebra, we find that

d—1 5
atd=2-¢ s pllp = T pl_ o r - . .
=2 laglor = ([ [ oo’ cdo@ar)” < 1sl 03

Combining (6.2 , we conclude that £(p — ¢) holds. O

Since the sphere Sd’l is elliptic, (| . holds in the range ¢ > g1 and p’ = § _Hq, as discussed above.
Proposition [6.1] therefore yields an improvement to Theorem [I.2] on the conic scaling line whenever
a < M
R

The code from [8, Footnote 5] can be used to compute gg—1 (and thus §z—1) and determine explicit values
of d for which the condition holds.

(6.6)
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