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Abstract

Approximately 75% of the raw material and 50% of the products in the chemical
industry are granular materials. The Discrete Element Method (DEM) provides
detailed insights of phenomena at particle scale and it is therefore often used
for modeling granular materials. However, because DEM tracks the motion and
contact of individual particles separately, its computational cost increases non-
linearly O(np log(np)) – O(n2p) (depending on the algorithm) with the number of
particles (np). In this article, we introduce a new open-source parallel DEM soft-
ware with load balancing: Lethe-DEM. Lethe-DEM, a module of Lethe, consists
of solvers for two-dimensional and three-dimensional DEM simulations. Load-
balancing allows Lethe-DEM to significantly increase the parallel efficiency by
≈ 25−70% depending on the granular simulation. We explain the fundamental
modules of Lethe-DEM, its software architecture, and the governing equations.
Furthermore, we verify Lethe-DEM with several tests including analytical solu-
tions and comparison with other software. Comparisons with experiments in a
flat-bottomed silo, wedge-shaped silo, and rotating drum validate Lethe-DEM.
We investigate the strong and weak scaling of Lethe-DEM with 1 ≤ nc ≤ 192
and 32 ≤ nc ≤ 320 processes, respectively, with and without load-balancing.
The strong-scaling analysis is performed on the wedge-shaped silo and rotat-
ing drum simulations, while for the weak-scaling analysis, we use a dam break
simulation. The best scalability of Lethe-DEM is obtained in the range of
5000 ≤ np/nc ≤ 15 000. Finally, we demonstrate that large scale simulations
can be carried out with Lethe-DEM using the simulation of a three-dimensional
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cylindrical silo with np = 4.3× 106 on 320 cores.

Keywords: Discrete Element Methods (DEM), High-Performance Computing,
Load-balancing, Silo, Rotating Drum

1. Introduction

Granular material is ubiquitous in nature in the form of soil, sand, or gravel,
and the second most used and manipulated material in global industry, right
after water [1, 2]. Approximately half of the products and three quarters of the
raw material in the chemical industry is in the form of granular materials [3, 2].5

Because of their prominence, an accurate modeling method for granular flows
is critical to simulate the efficiency and safety of industrial processes involving
such materials. There are two common approaches in the numerical modelling of
granular flows, continuum models (Eulerian) and discrete models (Lagrangian).
The continuum models, in which a constitutive model describes the relation10

between stresses and strains, ignore the discrete essence of granular systems
and therefore suffer from multiple limitations, for instance in calculating solids
holdup [4].

The Discrete Element Method (DEM) is a Lagrangian model that simulates
the motion and collision of discrete particles with each other and with surfaces15

[5]. Due to the small modelling scale of individual particles and its discrete
nature, DEM is accurate and provides detailed insights of phenomena at par-
ticle and system scale [6, 7, 5]. DEM has been used to simulate the granular
systems in geotechnical [8, 9], material processing [10, 11], mining [12], chemical
[6, 5], polymers [13], metallurgical [14], pharmaceuticals [15], agricultural [16, 4],20

and food [17] industries. Furthermore, DEM models coupled with Computa-
tional Fluid Dynamics (CFD) approaches, a.k.a. CFD-DEM, provide insight
into solid-fluid systems, such as pneumatic conveying, fluidized, and spouted
beds [6, 7, 18, 19]. In DEM, the flow properties of granular materials are sim-
ulated using the interactions between the individual discrete particles. Two25

main approaches exist to model collisions, namely hard-sphere (event-based)
and soft-sphere (time-based) methods [7, 6]. In hard-sphere models, the simula-
tion proceeds collision by collision. As a result, the model is unable to simulate
multiple simultaneous collisions or quasi-static systems, making hard-sphere
models only suitable for the simulation of dilute systems. On the other hand, in30

concentrated systems with a high number of particles, the collision frequency is
high and multiple simultaneous collisions may occur. Soft-sphere models handle
such dense systems by using a small time step (dt ≈ 10−5 − 10−6 s).

Figure 1 illustrates the major steps of a conventional DEM simulation [6].
All these steps have a computational cost that is proportional to the number of35

particles (O(np)), except contact search and collision force calculations. After
initialization of the parameters, DEM performs a contact search to obtain a list
of all particle-particle and particle-wall contacts. In the worst-case scenario, the
DEM has to investigate the possibility of contact of each particle with all other
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Figure 1: Major steps in a conventional DEM simulation. Blue, green and red colors show
steps that are performed once, at every n-th time step and at each step throughout the
simulation, respectively. P and W stand for particle and wall, respectively.

particles and the system walls at each step. This would result in a computational40

cost of O(n2p) per step. To avoid this, usually a two-step contact search method
is employed, often called broad and fine searches, respectively. The broad search
detects nearby particles as contact candidates, while the fine search finds the
candidate contact pairs in a smaller domain. This two-step contact detection
method decreases the computational cost to O(np log np). In the next step, the45

contact list is used to compute the contact forces. Subsequently, the integration
step of the DEM updates the accelerations, velocities, and positions of the
particles, based on the accumulated forces. According to their new positions,
the particles are mapped to the simulation grids for the next time step and
visualization purposes.50

Several software packages have been developed for DEM simulations, in-
cluding LIGGGHTS [20], MercuryDPM [21], EDEM [22] and XPS [23]. In this
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work, we introduce a new open-source, parallel and load-balanced software for
the simulation of granular systems: Lethe-DEM. Lethe-DEM is a DEM solver in
the framework of Lethe [24], a high-order CFD solver to simulate incompressible55

flows and targeting practice-oriented chemical engineering applications. Lethe
is built upon deal.II [25], a well-established open-source finite element modelling
library. Lethe-DEM uses the background mesh infrastructure of the deal.II li-
brary, which allows it to reuse many functionalities that have been implemented
with FEM in mind and provides several advantages. First of all, it enables the60

use of high-order finite element mappings, enabling the simulation of complex
geometries (such as cylinders and spheres) with high accuracy. Additionally,
Lethe-DEM inherits deal.II’s high-performance infrastructure, such as SIMD
vectorization [26] and, more importantly, parallelization capabilities with the
message passing interface (MPI) including load-balancing capabilities through65

the p4est library [27, 28]. Using load-balancing, Lethe-DEM redistributes the
computational load among the CPUs throughout a simulation by ensuring that
all cores have a similar amount of particles. Load-balancing diminishes the pos-
sibility of having idle cores during a simulation and decreases the simulation
time significantly, especially in large-scale systems or when complex and sparse70

geometries are considered. Due to this redistribution of the computational load
via load-balancing, Lethe-DEM shows good strong scaling.

The remainder of this work is organized as follows. First, we present the gov-
erning equations of the DEM models in Lethe-DEM in Section 2. Then, Section
3 describes the architecture of Lethe-DEM, including contact detection, par-75

allelization and load-balancing strategies. In Section 4 we verify and validate
the software with available correlations, results of other DEM codes and ex-
perimental data. Additionally, we investigate both the strong and weak scaling
capabilities of the software. To the best of our knowledge, these are amongst the
first DEM parallel scaling result of this kind that were demonstrated. Finally,80

Section 5 concludes the article and presents the future works of the software.

2. Governing equations and solution strategies

In DEM, Newton’s second law of motion describes the evolution of the po-
sition and the velocity of all the particles through time:

mia = mi
dvi
dt

=
∑
j∈Ci

(F nij + F tij) +mig + F ext
i (1)

Ii
dωi

dt
=
∑
j∈Ci

(M t
ij +M r

ij) +M ext
i (2)

where i is the particle index, mi is the mass of particle i, vi the velocity of
particle i, ai the acceleration of particle i, t denotes time, j runs through all
particles Ci in the contact list of particle i, F nij and F tij are normal and tangential85

contact forces due to the contact between particles i and j, g is the gravitational
acceleration, F ext encompasses all other external forces, Ii is the moment of
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Figure 2: Typical particle-particle contact in the framework of soft-sphere DEM. For a de-
scription of the shown quantities see equations (1) and (2).

inertia of particle i, ωi denotes the angular velocity of particle i, M t
ij and M r

ij

are tangential and rolling friction torques due to the contact between particle i
and j, and M ext denotes all other external torques. Figure 2 shows a typical90

contact between two particles in the framework of soft-sphere DEM. This figure
illustrates some of the variables introduced in equations (1) and (2).

2.1. Contact force and torque models

The particles can overlap in the soft-sphere model (see Figure 2), and the
contact forces in the normal and tangential directions are defined using the95

normal and tangential overlaps. The normal overlap (δn) between the particles
i and j is computed as:

δn = Ri +Rj − ‖xj − xi‖ (3)

where xi and xj are the position vectors of the particle centers, and Ri, Rj
are radii of particles i and j, respectively. Consequently, the normal overlap
is positive when the distance between two particles i and j is smaller than the100

sum of their radii, that is, when particles are undergoing collision.
The contact normal vector (nij), as illustrated in Figure 2, is a vector point-

ing from particle i to particle j in a collision, computed as:

nij =
xj − xi
|xj − xi|

(4)

The tangential overlap (δt) in the contact models of Lethe-DEM depends
on the contact history. At the beginning of each contact, the tangential overlap
is equal to zero. The following equation is then used to update the tangential
overlap during a contact [7]:

δt,newij = δt,oldij + vrtdt (5)
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Here, dt denotes time-step, vrt is the contact relative velocity in tangential
direction and is computed as described below.105

This approach is different from the one taken in MercuryDPM [21], which
uses a two-step procedure to update the tangential overlap during a contact.
This two-step procedure consists of removing the normal component of the tan-
gential overlap using the updated normal vector in the first step, and updating
the tangential overlap using the updated relative velocity in the tangential direc-
tion in the second step. Even though this could theoretically lead to some minor
differences when a particle rolls on top of another particle, we did not observe
any significant benefit in several benchmarks. As a result, we followed the pro-
cedure which is also utilized in other software packages including LIGGGHTS
[20]. The contact relative velocity in the tangential direction (vrt) is given by:

vrt = vij − vrn (6)

where the contact relative velocity (vij) and relative velocity in the normal
direction (vrn) are given respectively given by:

vij = vi − vj + (Riωi +Rjωj)× nij (7)

vrn = (vij .nij)nij (8)

The computed normal and tangential overlaps are then used to calculate
normal and tangential contact forces. For the calculation of contact forces and
torques, previous studies have proposed several models. Linear viscoelastic mod-
els (a.k.a. Hookean models) [29], in which the contact force is a linear function
of the contact overlap, and non-linear viscoelastic models (a.k.a. Hertzian mod-110

els), in which the relation between contact force and overlap is non-linear, are
the most well-known models.

In linear and non-linear viscoelastic models, normal and tangential contact
forces are calculated using the following equations [29, 30]:

F nij = −(knδn)nij − (ηnvrn) (9)

F tij = −(ktδt)− (ηtvrt) (10)

where k is the spring constant and η is the damping constant. In linear mod-
els, spring and damping constants do not depend on the normal or tangential
overlaps, whereas in non-linear models, these constants are a function of the115

overlaps.
Several models have been proposed to calculate the spring and damping

constant in the context of linear models. In Lethe-DEM, we use the model
expressed with the following equation [20]:

kn =
16

15

√
ReYe

(
15meV

2

16
√
ReYe

)0.2

(11)
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ηn =

√
4mekn

1 +
(
π
ln e

)2 (12)

where Re, Ye,me, V and e are the effective radius, effective Young’s modulus,
effective mass, characteristic impact velocity, and coefficient of restitution, re-
spectively. Spring and damping constants in the tangential direction are also
calculated using Equations (11) and (12).120

On the other hand in non-linear viscoelastic models, the following equations
calculate the normal and tangential spring and damping constants [20]:

kn =
4

3
Ye
√
Reδn (13a)

ηn = −2

√
5

6
β
√
Snme (13b)

kt = 8Ge
√
Reδn (13c)

ηt = −2

√
5

6
β
√
Stme (13d)

Table 1 reports the parameters of Equations(13a)–(13d).

Table 1: Parameters in Equations (13a)-(13d)

Parameter Equation

Effective mass 1
me

= 1
mi

+ 1
mj

Effective radius 1
Re

= 1
Ri

+ 1
Rj

Effective shear modulus 1
Ge

= 2(2−νi)(1+νi)
Yi

+
2(2−νj)(1+νj)

Yj

Effective Young’s modulus 1
Ye

=
(1−ν2

i )
Yi

+
(1−ν2

j )
Yj

β β = ln e√
ln2 e+π2

Sn Sn = 2Ye
√
Reδn

St St = 8Ge
√
Reδn

The following equation calculates the tangential torque in Lethe-DEM:

M t
ij = Rinij × F cij (14)

Two models, namely constant [31, 7] and viscous [32, 7], are available for
the calculation of the rolling friction torque. Table 2 reports these two models
and their corresponding parameters.
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Table 2: Rolling friction torque models in Lethe-DEM and the corresponding parameters. Fn
ij

and µr are contact force in normal direction and rolling friction coefficient, respectively.

Model Equation

Constant torque model [31] M r
ij = −µrRe

∣∣F nij∣∣ ω̂ij
Viscous torque model [32] M r

ij = −µrRe
∣∣F nij∣∣ |Vω| ω̂ij

Parameters ω̂ij =
ωi−ωj
|ωi−ωj |

Vω = (ωi ×Rinij − ωj ×Rjnji)

If
∣∣F tij∣∣ ≥ µ

∣∣F nij∣∣ occurs during a collision, Coulomb’s criterion is violated
(a.k.a. gross sliding). In this case, the magnitude of the exerted kinetic friction is
independent of the magnitude of particles’ velocities, and the tangential overlap
is limited to [29]:

δt =
F̃ tij
−kt

(15)

where F̃ tij is the limited elastic tangential force (tangential force without the
damping force),

F̃ tij = F̂ tij + ηtvrt (16)

in which F̂ tij is the limited tangential force:

F̂ tij = µ
∣∣F nij∣∣ F tij∣∣F tij∣∣ (17)

To limit the tangential force to the Coulomb limit, two different approaches125

are common in the literature [21, 30, 20, 7]. Some researchers only limit the
tangential force to the Coulomb’s limit, while others limit the tangential over-
lap first and then recalculate the tangential force using this limited overlap.
In Lethe-DEM, we use the second approach, similar to the method used in
LIGGGHTS [20], to ensure that the tangential overlap does not accumulate dur-130

ing gross sliding. Furthermore, we noticed that using the equation δt = F tij/kt is
not consistent with tangential force models including damping force. Tangential
force models with damping lose their continuity when they exceed the Coulomb’s
limit (with δt = F tij/kt). As a result, we use equations (15)–(17) to maintain
the continuity of the tangential force when it is limited to the Coulomb’s limit.135

For particle-wall contacts, we apply the same model and equations of particle-
particle contacts. We use the background triangulation and mapping, which are
available using deal.II, to obtain the normal vectors at the location of the contact
and the normal overlap with each boundary wall.
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2.2. Integration methods140

Equation (1) converts the net force exerted on a particle to its acceleration
at each DEM time step. Several integration methods can be used in DEM [7].
In Lethe-DEM, we have implemented the Explicit Euler and the Velocity Verlet
methods.

2.2.1. Explicit Euler145

In the explicit Euler method, the following equations calculate the velocity
and position of a particle at each time step:

vn+1
i = vni + ani dt (18)

xn+1
i = xni + vni dt (19)

in which n and n + 1 denote the current and the next step, respectively. This
scheme is first order accurate for both position and velocity. It is very simple to
implement, but its accuracy is limited [7]. The same method is applied to the
calculation of angular velocity using the momentum exerted on a particle.

2.2.2. Velocity Verlet150

The velocity Verlet integration scheme uses a half-step velocity v
n+ 1

2
i to

update the position of the particles:

v
n+ 1

2
i = vni + ani

dt

2
(20)

xn+1
i = xni + v

n+ 1
2

i dt (21)

The new velocity of the particle is:

vn+1
i = v

n+ 1
2

i + an+1
i

dt

2
(22)

When the force only depends on the position, the Velocity Verlet scheme is
second-order accurate for position and velocity. In this context, the Velocity
Verlet scheme is symplectic (see [33] for a full demonstration). When the force
depends on the velocity, as is the case when the coefficient of restitution is not
one, the scheme is first-order accurate for both position and velocity [33]. In155

practice, however, it is still significantly more accurate than an explicit Euler
scheme. Since the only velocity-dependent force in DEM are dissipative forces,
the loss of symplectic characteristic of the integration scheme does not pose a
problem since there is no more energy to conserve.

3. Software description and architecture160

In this section, the architecture of Lethe-DEM as well as the main features
and algorithms of this software are explained.
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Figure 3: Lethe-DEM fundamental steps, classes and function.

3.1. Overview of Lethe-DEM

The fundamental steps, features, and architecture of Lethe-DEM are illus-
trated in Figure 3. The main steps are divided into six main groups, depending165

on whether a particular step is called once, at every contact detection, sporad-
ically, at every load balancing operation, only in parallel or at every iteration.

At the beginning, the simulation domain is defined using a triangulation
(grid), which defines the system outer and inner boundaries. Similar to Lethe
[24], unstructured meshes (using the GMSH [34] file format) and native meshes170

produced by the deal.II library (ranging from a simple ball and cube to more
complex ones like airfoils) are supported. Lethe-DEM supports writing and
reading checkpoint files, which enables the user to quickly restart an unfinished
simulation.

Once the triangulation has been initialized, the neighbor lists of all cells are175

produced (Finding Neighbor Cells block in Figure 3). Cell neighbor lists is a
data container in which the neighbors of all the cells sharing a vertex/node are
stored. To make broad and fine searches more efficient, repetitions are avoided
in the neighbor list. For instance, if cell j is in the neighbor list of cell i, we
do not reconsider cell i in the neighbors list of cell j. Figure 4 gives as an180

example a two-dimensional triangulation and its cell neighbor lists. The same
procedure defines the neighbor lists also in three-dimensional triangulations.
In load-balancing iterations, cell neighbor lists have to be reconstructed since
the owners of the cells change. The details of load balancing are explained in
more detail in Section 3.5. Similar to the cell neighbor lists, boundary cells185

are also identified within the triangulation (Finding Boundary Cells block in
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Figure 4: A sample triangulation and the corresponding cell neighbors lists.

Figure 3). For the sample triangulation in Figure 4, cells 1, 2, 3, 4, 5, 8, 9, 12,
13, 14, 15 and 16 are the boundary cells.

In the insertion step (Insertion block in Figure 3), particles with specified
properties (e.g., size) are inserted in the simulation domain. In Lethe-DEM,
two particle size types, namely uniform and normal size distributions, can be
used. A uniform size distribution results in a constant diameter for all particles.
A normal size distribution for a parameter ξ is defined as:

f(ξ) =
1

σ
√

2π
e

1
2 ( ξ−µσ )

2

(23)

where µ and σ are average and standard deviation of the normal distribution.
Multiple particle types, with different size distributions (uniform or normal)190

and mechanical properties, can be inserted by defining a new particle type in
the parameter handler file. Given a batch of particles, the software searches the
surrounding cell of each particle and assigns the responsibility of the particle
to that cell. Using this information, broad and fine contact searches obtain
particle-particle (Particle-Particle Broad Search and Particle-Particle195

Fine Search blocks in Figure 3) and particle-wall (Particle-Wall Broad Search

and Particle-Wall Fine Search blocks in Figure 3) contact lists. Lethe-DEM
does not call broad and fine contact searches every iteration. It supports two
approaches to find contact search iterations: constant and dynamic. In the
constant approach, the simulation calls broad and fine searches at a frequency200

of every n time steps, defined by a user defined parameter. On the other hand,
in the dynamic method, Lethe-DEM automatically estimates the iterations for
calling broad and fine searches by tracking the maximal displacement of particles
and comparing it with a user-defined value.

In the next step, Equations (3)–(9) calculate the contact forces of the pairs205

present in the particle-particle and particle-wall contact lists (Particle-Particle
Contact Force and Particle-Wall Contact Force blocks in Figure 3). Af-
ter calculating the contact forces, the integration class (Integration block in
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Figure 5: Contact pair candidates (which is the output of broad search and input of fine
search) in a sample system.

Figure 3) updates the locations and velocities of all the particles by using Equa-
tions (18)–(22). Finally, when required, the software outputs the necessary210

post-processing files (Visualization block in Figure 3) and the checkpoints
(Write Checkpoint block in Figure 3).

3.2. Contact detection algorithm

In the broad search, we use the cell neighbor lists to find contact pair candi-
dates. To this end, Lethe-DEM loops through all the cells in the triangulation:215

for each cell it loops through all the particles, and for each particle, it adds
other particles in the main cell or in neighbor cells to the contact pair candi-
dates. Figure 5 shows the contact pair candidates in a sample system.

The fine search uses these contact pair candidates as an input, and calculates
the distance between these pair candidates. If the distance between a pair is220

smaller than a used-defined threshold (generally 1.3dp, where dp is the maximum
particle diameter), the fine search adds the pair to the contact list. For instance,
in the system illustrated in Figure 6, the red circle shows the domain for the
fine search. In this system, particle 9 is in the contact list of particle 7, while
particle 10 is not in this list. This contact list is the output of the fine search.225

The contact forces are calculated using this contact list. Contact list as well as
contact pair candidates are updated at the contact search iterations.

3.3. User input and parameter files

To enable full control over the simulations, Lethe-DEM is parameterized
using an input file in the native deal.II prm format. There are separated sections,230

such as Simulation control, Model parameters, Physical properties, In-
sertion information, Mesh reading/generation, and Boundary motion in
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Figure 6: A sample system for showing contact list (which is the output of fine search and
input of contact force class) members.

an input file. Listing 1 in Appendix A shows examples of an input parameter
file for a DEM simulation.

3.4. Version control, continuous integration, and testing235

Lethe-DEM is directly integrated within Lethe [24]. It is built as sepa-
rate executable and is configured using CMake [35]. A public GitHub repos-
itory https://github.com/lethe-cfd/lethe keeps Lethe under version con-
trol. The Wiki documentation of the project is also on the GitHub repository.
Lethe-DEM is distributed with several unit tests for individual functions and240

classes, and application tests for all the solvers. GitHub Actions instances are
used for continuous integration and to verify all the tests (including unit and
application tests). This ensures the stability of the master branch and ensure
quality control when merging pull requests. Lethe is distributed under an LGPL
3.0 license.245

3.5. Parallelization

Lethe-DEM is parallelized using MPI [36]. This allows the simulation of
large problems on distributed computer architectures. Lethe-DEM leverages
the p4est library via deal.II to handle mesh partitioning [27, 37]. First, a coarse
triangulation is created, either from a GMSH file or a deal.II native triangula-250

tion. This coarse triangulation, which in most cases consists of not more than
100–10,000 cells, is replicated on all processes. This triangulation is then re-
fined locally or globally to a desired element size in a forest-of-tree manner, par-
titioning the final triangulation with a well-established domain-decomposition
approach. Each locally-owned subdomain is surrounded by a halo layer of the255

width of a single cell. Particles which reside in the ghost cells of a process are
defined as ghost particles. In Figure 7, a sample domain is distributed among
four processes. For each process, we specify the locally owned and the ghost
cells.

13
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Figure 7: A sample distributed triangulation on four processes, local and ghost cells are
specified for each process.

All the operations in Lethe-DEM except particle-particle and particle-wall260

contacts occur in the local domain of each process. For each process, we cate-
gorize the particle-particle collisions into two types: local-local and local-ghost
contacts. In local-local contacts between particles i and j, the process owns
both particles i and j, while in local-ghost contacts, the process owns particle
i, while another process owns particle j located in a ghost cell. Therefore, the265

processes fully handle local-local collisions, while for local-ghost collisions, only
the exerted contact force on particle i and the associated integration is per-
formed using the information (position, velocity, etc.) of the ghost particle of
index j. The exchange ghost particles and update ghost particles func-
tions update the information of location and properties of the ghost particles.270

The exchange ghost particles function creates and updates the ghost par-
ticles by removing particles that have left the ghost cells and as a consequence
have become unnecessary, as well as by creating the required ghost particles
incoming from other processes. Furthermore, it sets up the communication pat-
terns while the update ghost particles function only updates the properties275

and location of the ghost particles. Therefore, we call the former only at contact
detection iterations, where we are locating particles in the cells by calling the
sort particles into subdomains and cells function. In other iterations, we
call the significantly cheaper update ghost particles function.

3.6. Load balancing280

Lethe-DEM supports load-balancing for parallel computations by using p4est’s
and deal.II’s functionalities. Each cell owned by the local process is assigned
a weight according to its computational load. Lethe-DEM then distributes the
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sum of these weights evenly among the available processes. Users can specify the
load-balancing frequency in the parameter-handler file. At the load-balancing
iterations, Lethe-DEM re-equalizes the computational loads on the process ac-
cording to the number of particles in the distributed simulation domain. Here,
a load Lc is attributed to each process, which is a linear combination of the
number of cells ne and particles np owned by the process:

Lc = αnp + βne (24)

where α and β are weights of particles and cells. During the redistribution,
this load is balanced between the processes. Currently, the defined ratio of the
weights is α/β = 10. Considering the high number of particles compared to the
number of cells in a DEM simulation, this weighting strategy focuses mainly on
the number of particles owned by each process. We should mention that future285

investigations are required to optimize the ratio of the weights and investigate
the performance of this linear weighting strategy, in particular once we tackle
the coupling of DEM and CFD which possibly have conflicting load balancing
needs. The same load balancing algorithm applied to a different application
has been shown to only modestly influence the performance as long as the ratio290

remains reasonably close to an optimal ratio that is model dependent [38].

3.7. Other features

Some of the other useful features of Lethe-DEM are covered in this section.
First of all, Lethe-DEM makes use of C++ templates to create two separate
solvers for two-dimensional (dem 2d), and three-dimensional (dem 3d) simula-295

tions. Hence, both 2D and 3D simulations are supported without loss of per-
formance using the same code base. Another important feature of Lethe-DEM
is particle-line and particle-point contacts. Lethe-DEM automatically checks
the input triangulation for possible boundary lines (edges) or points (vertices).
Particles may collide with boundary faces, as well as boundary lines and points300

in specific geometries. If boundary lines or points exist in the input triangula-
tion, the software considers the contact between particles and these boundary
elements. Boundary lines may only exist in three-dimensional triangulations,
while boundary points may exist in both two-dimensional and three-dimensional
triangulations.305

Another feature of Lethe-DEM is the motion of boundaries. Boundaries can
move in Lethe-DEM. Currently, users can define two types of motion, namely
rotational (Figure 8a) and translational (Figure 8b), in the parameter handler
file. By specifying the boundary id, type of motion, and motion properties,
Lethe-DEM implements the motion in the simulation. Another feature of Lethe-310

DEM is the definition of floating walls, as illustrated in Figure 8c. By specifying
the normal vector of the floating wall (arrow in Figure 8c), a point on the wall,
start and end times of the wall, Lethe-DEM defines it automatically in the
simulation. This feature is especially convenient when simulating filling and
discharge of particles in containers.315
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a
b c

Figure 8: Schematics of a: rotational boundary motion, b: translational boundary motion,
and c: a floating wall (red dashed line) with its normal vector (arrow).

4. Verification and validation

All the major functions and modules of Lethe are tested and verified using
unit tests. New features added to the software are tested with at least one
test to guarantee the accuracy and reproducibility of its outputs. Besides these
tests, we have compared the outputs of Lethe-DEM with experimental data320

and simulations made using other software. We present the result of selected
comparisons in the following.

4.1. Verification

In this section, we compare the outputs of Lethe-DEM and analytical solu-
tions by three test cases.325

4.1.1. Particle trajectory before and after a collision

In this test, we compare the height of a particle before and after a collision
with a wall. The accuracy of particle-wall collisions extends to particle-particle
collisions, since the same model and calculation procedure are employed for
both. In Figure 9, we show the results of this comparison. The analytical330

solution for the position of the particle consists of three parts: free fall of the
particle before the collision, contact with the wall, and motion after the collision.
Equations (25a)–(25c) express the location of the particle during these steps
[39, 40].

y(t) = h0 −
gt2

2
(25a)

y(t− t1) = (α1 cos(w(t− t1)) + α2 sin(w(t− t1))) exp(−β1ω0(t− t1)) + rp − α1

(25b)

y(t− t2) = rp + v2(t− t2)− 0.5g(t− t2)
2 (25c)
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where

α1 =
g

ω2
0

, α2 =
−
√

2g(h0 − rp) + βg
ω0

w
, β1 =

ηn

2
√
knmi

, (26)

ω0 =

√
kn
mi

, w =
√

1− β2ω0. (27)

and h0, y, t1, t2 and v2 are initial particle height, vertical position, end times
of steps one and two, and velocity of the particle at the end of step two, re-
spectively. Relative percent error (RPE) values (0.82%, 0.68% and 0.32% for
coefficients of restitution e = 0.5, 0.7 and 0.9, respectively for ∆t = 7× 10−6 s)
demonstrate the accuracy of Lethe-DEM in modelling the contacts. The RPE
is defined as:

RPE =

∑l
i=1

∣∣∣ fexp−fsim

fexp

∣∣∣
l

· 100% (28)

where l, f exp and f sim denote the number of data points, the expected value from335

the analytical solution, and the simulated value from Lethe-DEM. The errors
are attributed to the numerical integration, and they decrease with decreasing
the time-step (following a second-order convergence for the Verlet scheme).
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Figure 9: Comparison of particle position between Lethe-DEM (lines) and analytical solution
(markers).

4.1.2. Orders of convergence of the integration schemes

We also measured the order of convergence for the explicit Euler and Velocity340

Verlet integration schemes in a unit test (integration schemes accuracy).
This is an artificial problem with a known analytical solution which is very
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similar to the collisions in DEM, and we use this test to investigate the orders of
convergence of the integration schemes [5]. This test calculates and compares the
errors with respect to the analytical solution of the explicit Euler and Velocity345

Verlet schemes in a pendulum oscillation problem. Table 3 reports the errors
and orders of convergence. The calculated orders of convergence for the explicit
Euler and the Velocity Verlet schemes are 1 and 2, respectively.

Table 3: Errors and orders of convergence of explicit Euler and Velocity Verlet integration
schemes for a pendulum oscillation model (integration schemes accuracy unit test)

Explicit Euler Velocity Verlet

Error for ∆t = 0.1 s 0.01275 0.00010

Error for ∆t = 0.05 s 0.00634 2.63× 10−5

Error for ∆t = 0.025 s 0.00316 6.57× 10−6

Order of convergence ≈ 1 ≈ 2

4.1.3. Normal and tangential forces during a collision

In this section, we compare the normal and tangential forces of a particle-350

wall collision at a specified condition (reported in Table 4) with simulation
results of another code (cemfDEM) [7]. Figure 10 shows the results of this
comparison in a plot of the normal force over the normal overlap. The results
show high accuracy (RPE = 2.98%, 3.54% and 3.52% for en = 0.5, 0.7 and 0.9,
respectively) of Lethe-DEM compared to cemfDEM [40, 7]. Small discrepancies355

between the normal forces in Figure 10 arise from different non-linear contact
models used in the codes. For instance, the coefficient and power of the normal
overlap in the damping force are different.

Table 4: DEM parameters of the normal and tangential force calculations in Figures 10 and
11

Property Value

dp 2 mm

ρp 7850 kg m−3

Yp, Yw 200 GPa

νp, νw 0.3

µp, µw 0.3

ep, ew 0.5− 0.9

Impact velocity 0.1− 2 m s−1
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Figure 10: Comparison of normal overlap - force between Lethe-DEM (lines) and cemfDEM
[7] (markers).

With the DEM parameters reported in Table 4, we calculate the contact
tangential force at three different contact angles: 5◦, 25◦ and 65◦ (Figure 11).360

At contact angles of 25◦ and 65◦, the tangential force is limited by Coulomb’s
limit (Equation (15)). Other research [41, 7] report similar trends of tangential
force at various contact angles.

4.2. Validation

We validate Lethe-DEM with experimental results of a flat-bottomed silo365

(Table 5-a), a wedge-shaped silo (Table 5-b), and a rotating drum (Table 5-c)
filled with granular material. We chose these systems since both the normal
and tangential forces govern their dynamics. In other words, the normal and
tangential force calculations and integration are tested in these validations.

4.2.1. Flat-bottomed silo370

Balevivcius et al. [42] measured the particle velocity using particle image
velocimetry and DEM in a flat-bottomed silo with np = 18, 000 particles. Ta-
ble 5-a shows the geometry of the silo and reports the physical properties of
the simulation [42]. An animation (silo1.mp4) of this simulation is available in
the supplementary materials. Figure 12 shows the lateral distributions of the375

vertical (Figure 12-a) and lateral (Figure 12-b) components of particle velocity
in this flat-bottomed silo at three heights (z = 0.05 m, 0.1 m, and 0.15 m). RPE
values of the axial velocity distributions are 15.4%, 25.6% and 19.0% at z=
0.05, 0.1 and 0.15, respectively. RPE values of lateral velocity distributions are
also less than 17%. Lethe-DEM predicts the trends and velocity magnitudes380

with acceptable accuracy, and comparable DEM results in the same work [42]
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Table 5: Geometries of the validation and scalability simulations and the corresponding DEM
parameters. (a) flat-bottomed silo, (b) wedge-shaped silo, (c) rotating drum, and (d) cylin-
drical silo

Geometry Properties Value Case

dp 7.5 mm

ρp 1290 kg m−3

νp, νw 0.2 (a)

µp, µw 0.29, 0.2

ep, ew 0.56

dt, tf 10−5s, 6 s

dp 5.83 mm

ρp 600 kg m−3

νp, νw 0.5

µp, µw 0.5 (b)

ep, ew 0.7

fLB 0.5 Hz

dt, tf 10−5s, 40 s

dp 3 mm

ρp 2500 kg m−3

νp, νw 0.2

µp, µw 0.85 (c)

ep, ew 0.97, 0.85

tLB 1.5 s

dt, tf 10−5s, 10 s

dp 4 mm

ρp 600 kg m−3

νp, νw 0.5

µp, µw 0.5 (d)

ep, ew 0.7

fLB 2 Hz

dt, tf 10−5s, 6 s
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Figure 11: Tangential force at the physical conditions reported in Table 4 and contact angles
of (a) 5◦, (b) 25◦, and (c) 65◦ and the corresponding Coulomb’s limit.

have similar error values. Since both DEM results show deviations from the
experiments, the remaining errors are attributed to systematic differences be-
tween the DEM model setup and the experimental setup – for example in the
material properties or the used contact model parameters – and not an error in385

the numerical implementation of Lethe-DEM.

4.2.2. Wedge-shaped silo

Similar to the flat-bottomed silo, we compare the lateral distributions of
axial and lateral components of particle velocity in a wedge-shaped silo with
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Figure 12: Lateral distributions of (a) vertical, and (b) lateral components of particles velocity
in a flat-bottomed silo, obtained from Lethe-DEM (lines) and experiments (markers) using
PIV [42].

np = 132 300 particles. Golshan et al. [43] measured time-averaged particle ve-390

locity in a wedge-shaped silo using particle image velocimetry (PIV) and DEM.
Table 5-b reports the DEM physical properties of this simulation [43]. In the
experiments, non-spherical barley grains were used, while in the DEM simula-
tions we replaced them with spheres with the same volume as the non-spherical
particles. Interested readers may find the simulation animation (silo2.mp4) in395

the supplementary materials. Figure 13 shows the lateral distributions of ver-
tical and lateral components of particle velocity in this silo. RPE values of the
comparison between DEM and experiments are less than 20% for all the veloc-
ity distributions in Figure 13. Errors (overestimation of the velocity values) are
attributed to replacing non-spherical barley grain with spherical particles.400

Load-balancing redistributes the computational load on the processes every
2 s in the wedge-shaped simulation. Figure 14 shows the distribution of core
domains during the simulation (on 32 processes). At t = 8 s (iteration 8× 106),
the majority of the cores (26 processes) are in the hopper section (upper part),
and as the simulation proceeds the processes move toward the bottom of the405

geometry. At t = 38 s (iteration 38 × 106), the particles are in the bottom of
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Figure 13: Lateral distributions of (a) vertical, and (b) lateral components of particles velocity
in a wedge-shaped silo, obtained from Lethe-DEM (lines) and experiments (markers) using
PIV [43].

the container and only one process handles all the cells located in the hopper
section. We also compared the velocity distributions of particles calculated from
simulations on 1-128 processes and observed identical velocity distributions. It
means that the accuracy of a simulation does not diminish by performing it in410

parallel.

4.2.3. Rotating drum

Here we compare the simulation results of a rotating drum containing np =
226 080 particles with the experiments of Alizadeh et al. [44]. Table 5-c reports
the simulation parameters according to the physical properties of glass beads415

(particles) and plexiglass (wall). In the simulation of the wedge-shaped silo, we
used a frequent load-balancing with the frequency of fLB = 0.5 Hz since the
particles move from the hopper to the bottom container during the simulation.
In the simulation of the rotating drum, after reaching the steady-state condition
(t ≈ 1.5 s), the particles occupy a specific part of the rotating cylinder, and the420

rest of the simulation domain is without any particles. From this point on, no
load-balancing is performed anymore. As a result, we use a single-step load
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t = 8 s t = 18 s t = 28 s t = 38 s

Figure 14: Distribution of core domains as a function time in the simulation of wedge-shaped
silo on 32 cores.

balance at t = 1.5 s, when all the particles have been inserted and have reached
the particle bed.

Figure 15: Time-averaged velocity field of the particles in a rotating drum from (a) Lethe-
DEM simulation and (b) experiments [44]. The free surface angle is equal to 27◦ from the
simulation and experiments.

Figure 15 shows the time-averaged velocity field obtained from the simulation425

and experiments [44]. We also compare the free surface angle with a horizontal
line on this figure. Figure 16 compares the streamwise velocity profiles in x and
y directions (these directions are defined in Figure 15) between Lethe-DEM and
experiments carried out using radioactive particle tracking [44]. These profiles
show the particles’ velocity in (a) parallel and (b) perpendicular planes to the430
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free surface. RPE values of these profiles are less than 20%. Interested readers
may find an animation of this simulation (drum.mp4) in the supplementary
materials.
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Figure 16: Streamwise velocity profiles in (a) x (parallel to the free surface) and (b) y (per-
pendicular to the free surface) directions.

4.3. Scalability

In this section, we present the results of strong and weak scaling analyses.435

For the strong scaling, we use the simulations of the wedge-shaped silo (Table 5-
b) and the rotating drum (Table 5-c), while for the weak scaling analysis, we use
a dam break case. We used the Graham cluster for the strong scaling analysis
on the wedge-shaped silo as well as the Cedar cluster for strong scaling analysis
on the rotating drum and weak scaling analysis. Each node on both clusters440

consists of 32 cores in the form of 2 x Intel E5-2683 v4 Broadwell @ 2.1 GHz
processors with an available memory of 128 GiB per node.

4.3.1. Strong scaling

Strong scaling studies are not prevalent for DEM codes, since DEM codes
generally fail to provide high speed-up values on large core numbers for constant445
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problem size. For Lethe-DEM however, due to the unique design of the software,
we report strong scaling analyses for the two cases investigated with and without
load-balancing. To the authors’ best knowledge, these results are amongst the
few strong scaling analysis of DEM softwares.

As a first test, we consider a wedge-shaped silo on 1, 2, 4, 8, 16, 32, and 64450

cores (i.e., using up to two nodes), and measure the simulation time, keeping the
number of particles and the size of the domain fixed. The simulation of wedge-
shaped silo calls load balancing every 2 s (i.e. every 2× 106 steps) to distribute
the computational load of the simulations on all the cores as particles move in
the domain. Figure 17 shows the result of this comparison. For lower core counts455

(nc < 16), the strong scaling (with load-balancing) is nearly optimal. However,
the speed-up deviates from the ideal line as the number of cores increases and
the number of particles per core drops below 8,000 particles per core. This is
because with increasing number of cores, the ratio of ghost particles to owned
particles per process increases, which adds a non-negligible additional cost to460

the simulation. Furthermore, higher usage of shared resources like the memory
bandwidth (up to 32 cores) or the network (64 cores) also leads to a deviation
from the ideal behavior. Enabling load-balancing decreases the computational
time by around 30% depending on the number of processors. The simulation
time per iteration decreases from 2.07 s to 0.086 s for this simulation on 1 to 64465

processes with load-balancing.
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t s
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Figure 17: Simulation times of the wedge-shaped silo with (LB) and without load-balancing
(no LB).

As a second test, we simulate the rotating drum on 1 to 6 compute nodes,
each with 32 cores. Figure 18 shows the simulation times of these simulations.
Similar to the simulation of the wedge-shaped silo (Figure 14), the deviation
from the ideal speed-up increases with the number of cores. The best scalability470
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is obtained at 4000 < np/nc < 20 000 (1–3 nodes or 32–96 cores for the 226 080
particles in this simulation). Using load-balancing decreases the computational
time by around 35%. The simulation time per iteration decreases from 0.099 s
to 0.025 s for this simulation on 1 to 6 nodes with load-balancing.
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Figure 18: Simulation time of rotating drum case as a function of number of nodes with and
without load-balancing. Each node has 32 cores.

4.3.2. Weak scaling475

We use dam break simulations for weak-scaling analysis of Lethe-DEM. In
this case (illustrated in Figure 19), particles are inserted and packed in the
left half of a box (grey zone in Figure 19). A floating wall dam (red line in
Figure 19) holds the particles in the left half. At t = 0.5 s, the dam is removed
and particles fill the entire length of the box. We choose this scenario for weak-480

scaling analysis, since all the major functions of Lethe-DEM (including insertion,
particle-particle and particle-wall contacts) are included and the particles can
flow in the entire simulation domain. In weak-scaling analyses, the number
of particles per process is kept constant. To this end, we increase the depth
(z in Figure 19) of the box proportionally to the number of particles in the485

simulation. Consequently, particles owned by different processes are in contact.
We use four values of np/nc : 5k, 10k, 15k and 20k. Table 6 reports the values of
z and np in weak-scaling simulations. Dynamic load-balancing redistributes the
computational load between the processes during the weak-scaling simulations.
In the dynamic load balancing approach, the code automatically detects the490

load-balancing steps from the distribution of particles and cells on the processes.
Figure 20 shows the results of the weak-scaling analysis by reporting the

simulation times (ts) against the number of nodes. The simulation times in-
crease slightly with the number of processes at all the np/nc values. The ratio
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Table 6: Number of particles and depth of the box (illustrated in Figure 19) used for weak-
scaling analysis. k and M stand for ×103 and ×106, respectively.

np/nc

nc

5k 10k 15k 20k

32
z = 0.01 m

np = 160 k

z = 0.02 m

np = 320 k

z = 0.03 m

np = 480 k

z = 0.04 m

np = 640 k

64
z = 0.02 m

np = 320 k

z = 0.04 m

np = 640 k

z = 0.06 m

np = 960 k

z = 0.08 m

np = 1.28 M

96
z = 0.03 m

np = 480 k

z = 0.06 m

np = 960 k

z = 0.09 m

np = 1.44 M

z = 0.12 m

np = 1.92 M

128
z = 0.04 m

np = 640 k

z = 0.08 m

np = 1.28 M

z = 0.12 m

np = 1.92 M

z = 0.16 m

np = 2.56 M

160
z = 0.05 m

np = 800 k

z = 0.1 m

np = 1.6 M

z = 0.15 m

np = 2.4 M

z = 0.2 m

np = 3.2 M

224
z = 0.07 m

np = 1.12 M

z = 0.14 m

np = 2.24 M

z = 0.21 m

np = 3.36 M

z = 0.28 m

np = 4.48 M

256
z = 0.08 m

np = 1.28 M

z = 0.16 m

np = 2.56 M

z = 0.24 m

np = 3.84 M

z = 0.32 m

np = 5.12 M

320
z = 0.1 m

np = 1.6 M

z = 0.2 m

np = 3.2 M

z = 0.3 m

np = 4.8 M

z = 0.4 m

np = 6.4 M
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Figure 19: Geometry of breaking of dam simulations used for weak-scaling anslysis.

of simulation times on the maximum and minimum number of processes are495

2.5 and 1.2 for np/nc = 5k and 20k, respectively. Note that for np/nc = 20k
on more than 6 nodes the simulation time does not further increase, which
represents near ideal weak scalability in this range and suggests Lethe-DEM is
well suited for large-scale parallel simulations. We also performed the weak-
scaling analysis for np/nc = 10k without load-balancing. We observe that the500

ratio of simulation times without and with load-balancing (tno LB
s /tLBs ) is ≈ 2.4

at np/nc = 10k more or less independent of model size and therefore particle
number. This means not only is the load-balancing very effective for this ap-
plication, it is also scaling to larger problem sizes. The simulation time per
iteration on 1–10 nodes changes from 0.112 s to 0.285 s for 5k/core and from505

0.578 s to 0.691 s for 20k/core. Interested readers may find a simulation anima-
tion (weak scaling.mp4) in the supplementary materials.

4.4. Large scale feasibility

We investigate the performance of Lethe-DEM in a simulation of a large
system. To this end, we simulate the packing of np > 4.3 × 106 particles in a510

three-dimensional silo. The silo geometry is a three-dimensional (cylindrical)
version of the silo used in Section 4.2.2. Table 5-d reports the properties of the
particles and simulation parameters. Figure 21 shows the packing configuration
at t = 6 s. This simulation is performed on 320 cores and takes ≈ 6 days
(≈ 46 800 core-hours) for 650 000 time steps.515

5. Impact and conclusions

In this work, we introduced an open-source parallel DEM software with load-
balancing: Lethe-DEM. Lethe-DEM consists of two solvers for two-dimensional
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Figure 20: Simulation times of weak-scaling analysis on up to nn = 10 nodes, at different
values of np/nc, illustrated in Table 6. Each node has 32 cores. Error bars indicate the
standard deviation across three runs of the same simulations.

Figure 21: Packing of 4.3M particles in a three-dimensional silo computed on 320 cores.

(dem 2d) and three-dimensional (dem 3d) simulations. We designed this software
in the framework of Lethe, a high-order CFD solver for incompressible flows.520
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Lethe-DEM uses a background grid that is compatible with other solvers in
Lethe, which will allow coupling DEM and CFD simulations in the future. Sev-
eral tests and comparisons with analytical solutions, models, and experiments
verify and validate Lethe-DEM. For validation of Lethe-DEM, we compared its
results with analogous experiments in a flat-bottomed silo, a wedge-shaped silo,525

and a rotating drum. Load-balancing allows Lethe-DEM to decrease the simula-
tion times by roughly 25− 70% in parallel simulations compared to unbalanced
parallel computations. To investigate the strong scalability of Lethe-DEM, we
compared the simulation time of benchmark cases on 1–192 processes with and
without load-balancing. Results show that Lethe-DEM scales optimally when530

there are ≈ 15 000 particles per process, while scalability decreases for fewer
particles per process due to increased communication costs. We also performed
a weak-scaling analysis of Lethe-DEM using a dam break simulation on 32–320
processes and showed optimal weak scalability for more than ≈ 20 000 parti-
cles per process. We finally demonstrated the computational performance and535

scalability of Lethe-DEM in the simulation of a cylindrical silo with 4.3 × 106

particles on 320 cores.
Lethe-DEM is under continuous development and we expect to add the fol-

lowing features in the near future:

• Unresolved coupling with CFD [19, 6];540

• Heat transfer via conduction, convection and radiation mechanisms;

• Particle size change (particle size growth and shrinkage);

• Cohesive force models;

• Coarse graining;

• Electrostatic force.545

The growing availability of large-scale massively parallel computing systems
allows the modeling of physical processes at the pilot and industrial scales that
can not be resolved by current simulations. However, in order to take advan-
tage of this computing power we need DEM software that can leverage next
generation HPC systems. Lethe-DEM was designed to use this opportunity and550

eventually enable coupled CFD-DEM models on the next generation of super-
computers.
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novation (CFI), the ministère de l’Économie, de la science et de l’innovation
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Appendix A. An example of the input files

Listing 1: Example of sections in a PRM file

# --------------------------------------------------

# Simulation and IO Control

#---------------------------------------------------575

subsection simulation control

set time step = 1e-5

set time end = 0.4

set log frequency = 1000000

set output frequency = 1000000580

end

#---------------------------------------------------

# Restart

#---------------------------------------------------585

subsection restart

set restart = true

set checkpoint = true

set filename = sliding_restart

end590

#---------------------------------------------------

# Timer

#---------------------------------------------------

subsection timer595

set type = none

end

#---------------------------------------------------

# Test600

#---------------------------------------------------
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subsection test

set enable = true

end

605

# --------------------------------------------------

# Model parameters

#---------------------------------------------------

subsection model parameters

set contact detection method = constant610

set contact detection frequency = 20

set neighborhood threshold = 1.3

set particle particle contact force method = pp_nonlinear

set particle wall contact force method = pw_nonlinear

set rolling resistance torque method = constant_resistance615

set integration method = velocity_verlet

end

#---------------------------------------------------

# Physical Properties620

#---------------------------------------------------

subsection physical properties

set gx = 0.0

set gy = 0.0

set gz = -9.81625

set number of particle types = 1

subsection particle type 0

set size distribution type = uniform

set diameter = 0.005

set number = 20630

set density = 2000

set young modulus particle = 1000000

set poisson ratio particle = 0.3

set restitution coefficient particle = 0.3

set friction coefficient particle = 0.1635

set rolling friction particle = 0.05

end

set young modulus wall = 1000000

set poisson ratio wall = 0.3

set restitution coefficient wall = 0.3640

set friction coefficient wall = 0.1

set rolling friction wall = 0.05

end

#---------------------------------------------------645

# Insertion Info

#---------------------------------------------------

subsection insertion info

set insertion method = non_uniform

set inserted number of particles at each time step= 20650

set insertion frequency = 2000000
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set insertion box minimum x = -0.05

set insertion box minimum y = -0.05

set insertion box minimum z = -0.06

set insertion box maximum x = 0.05655

set insertion box maximum y = 0.05

set insertion box maximum z = 0

set insertion distance threshold = 2

set insertion random number range = 0.75

set insertion random number seed = 19660

end

#---------------------------------------------------

# Mesh

#---------------------------------------------------665

subsection mesh

set type = dealii

set grid type = hyper_cube

set grid arguments = -0.07:0.07:true

set initial refinement = 3670

end

#---------------------------------------------------

# Boundary Motion

#---------------------------------------------------675

subsection boundary motion

set number of boundary motion = 1

subsection moving boundary 0

set boundary id = 4

set type = translational680

set speed x = 0.15

set speed y = 0

set speed z = 0

end

end685
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[38] R. Gassmöller, H. Lokavarapu, E. Heien, E. G. Puckett, W. Bangerth, Flex-
ible and scalable particle-in-cell methods with adaptive mesh refinement for
geodynamic computations, Geochemistry, Geophysics, Geosystems 19 (9)
(2018) 3596–3604.800

[39] R. Garg, J. Galvin, T. Li, S. Pannala, Open-source mfix-dem software
for gas–solids flows: Part i—verification studies, Powder Technology 220
(2012) 122–137.

[40] H. R. Norouzi, R. Zarghami, N. Mostoufi, New hybrid CPU-GPU solver
for CFD-DEM simulation of fluidized beds, Powder Technology 316 (2017)805

233–244.

37

https://doi.org/10.1145/2049673.2049678
https://doi.org/10.1145/2049673.2049678
https://doi.org/10.1145/2049673.2049678
https://doi.org/10.1145/2049673.2049678
https://doi.org/10.1145/2049673.2049678
https://doi.org/10.1145/2049673.2049678
https://doi.org/10.1145/2049673.2049678


[41] H. Kruggel-Emden, S. Wirtz, V. Scherer, A study on tangential force laws
applicable to the discrete element method (dem) for materials with vis-
coelastic or plastic behavior, Chemical Engineering Science 63 (6) (2008)
1523–1541.810
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