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Abstract—Recent audio super-resolution works have achieved
significant success in promoting audio quality by improving a
sensor’s sampling rate, e.g., from 8 kHz to 48 kHz. However,
these works fail to maintain the performance when the sampling
rate at the sensor is ultra-low, where the audios suffer serious
frequency aliasing. In this paper, we propose an audio frequency
unfolding framework that efficiently reconstructs the aliasing
audios to be perceptually recognizable. The intuition is that
the audios generated by humans have a regular pattern on the
spectrums; by learning such a regular pattern, our framework
can reconstruct audio that sounds similar to real human voices.
We evaluate our framework in a perceptual way: an automatic
speech recognition (ASR) system is used to judge whether the
words in the reconstructed audios can be correctly recognized. In
the implementation based on AudioMNIST, when reconstructing
the sampling rate from 2 kHz to 16 kHz, the recognition accuracy
of the reconstructed audio reaches 77.1%.

I. INTRODUCTION

The audio of human voices becomes an essential data source

in many applications in reality, such as speech recognition [7],

[2], user identification [5] and human localization [15], [19].

The common method to acquire these audios always requires

a microphone with a high sampling rate. In general, a mi-

crophone with a sampling rate over 8 kHz can be considered

speech-recognizable and with a sampling rate of 48 kHz is of

good quality [10]. Such a high sampling rate of a microphone

usually renders high power consumption, which limits the

microphone’s wider deployment on low-power devices. On

the other hand, a microphone’s being low-power means its

low sampling rate, which suffers frequency aliasing according

to the Nyquist sampling theorem. Besides the power con-

sumption issue of the microphone, recent works [12], [18]

focus on extracting audios from inertial measurement units

(IMU). Compared to the microphones, the audios extracted

from IMUs concentrate on the sound sources traveled from

the solid mediums, less interfered by the noise source far

away. However, the sampling rate of the IMU, much lower

than that of a microphone [18], also suffers frequency aliasing.

Hereby, given the benefits of the low-power microphones and

the IMUs over the traditional microphones, is it possible to

address the frequency aliasing problem, i.e., reconstructing

their low sampling rates to a high sampling rate?
Recently, many efforts have been devoted to audio super-

resolution [10], [11], [3], [21], which improves an audio’s

sampling rate to promote its quality. For example, the 8 kHz

compressed audios can be promoted to 48 kHz high fidelity

audios. However, the audio super-resolution does not match
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Fig. 1: The low sampling rate of the input audios for audio

super-resolution is caused by the low pass filter (a) and that

for audio frequency unfolding is caused by the low sampling

rate sensor (b).

our problem. The input audios for super-resolution are col-

lected by a high sampling rate sensor and pass a low pass

filter, as shown in Fig. 1(a). This low pass filter ensures

the audio’s low-frequency band remains unchanged, where

the frequency aliasing problem does not appear. In addition,

the sampling rates of the input audios are not very low, i.e.,

they can still be recognized by human or automatic speech

recognition (ASR) systems. As for audio frequency unfolding,

the low sampling rate is due to the low sampling rate at the

sensors, shown in Fig. 1(b). Since the ultra-low sampling rate

of the sensor, serious frequency aliasing occurs. Besides, the

ultra-low sampling rate significantly degrades the recognition

accuracy.

In this paper, we propose an audio frequency unfolding

framework, which reconstructs the audio’s low sampling rate

to a recognizable high sampling rate. Our framework first

transfers audio to the spectrogram and demonstrates the fre-

quency unfolding on its spectrogram. Specifically, we build

our frequency unfolding model on U-Net [14]. Based on the

signal processing theorem, we develop a new pixel shuffle

layer that reconstructs the spectrums more effectively.

To train the framework, we downsample original audio with

a high sampling rate to produce the audio collected by a sensor

with a low sampling rate. Then, our framework reconstructs

this produced audio to new audio with a high sampling rate.

This new audio is evaluated by comparing it to the original

audio. Specifically, we adopt a reconstructed loss and a per-
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Fig. 2: The original spectrums of human voice audios (a) and

the input spectrums for super-resolution (b) and frequency

unfolding (c).

ceptual loss. The former loss is the spectrogram discrepancy of

the original audios and the reconstructed audios. In addition,

a perceptual loss minimizes the acoustic features of the two

audios, i.e., filter bank (FBank) in our implementation. This

is because this feature fully determines the subjective feeling

for human ears. Hence, the two audios with closed acoustic

features perceptually sound similar.

Different from existing audio evaluation metrics, we evalu-

ate our framework by an automatic speech recognition (ASR)

system. Existing metrics, including signal-to-noise ratio (SNR)

and log-spectral distance (LSD) [8], compare the details in

the waveforms or spectrograms of audios. However, it is

possible that two audios with totally different waveforms

and spectrograms sound similar for human ears. These two

audios are both acceptable in practice but are labeled as a bad

performance by these two metrics. On the other hand, the ASR

system, whose working principle is similar to human ears,

judges audios by the words in the audios. In this way, as long

as the two audios contain the same words, the reconstruction

is regarded as successful.

II. PRELIMINARY

Both audio super-resolution and audio frequency unfolding

is designed to improve the sampling rate of audio. In this sec-

tion, we first introduce the concept of audio super-resolution

and several state-of-the-art related works. Then, we illustrate

the audio frequency unfolding and how it is different from the

audio super-resolution.

A. Audio super-resolution

Audio super-resolution refers to the process that promotes

compressed audio with a low sampling rate to high fidelity

audios with a high sampling rate. In reality, the original

audios collected by microphones are too heavy to be directly

used, so compression is exploited. Generally, the spectrum of

human voice audio is composed of several peaks at different

frequencies, as shown in Fig. 2(a). To compress these audios,

a low-pass filter is adopted to filter out high-frequency peaks.

In this way, the input spectrum in the low-frequency band

remains unchanged after downsampling, shown in Fig. 2(b).

As a result, although the overall quality of the audio is

deprecated, the audio can still be mostly recognized by its

spectrum in the low-frequency band.

In the field of signal processing, Whittaker-Shannon formu-

lar [20] and B-spline [17] are two traditional algorithms that

improve the sampling rate of audios. According to the Nyquist

sampling theorem, the recovered audios are still limited by

the Nyquist sampling rate, which is half of the input audio’s

sampling rate. With the emergence of deep learning, one of the

most widely adopted frameworks for audio super-resolution

is based on U-Net [14]. This framework first extracts the

features of audio in the time domain or the frequency domain

by downsampling and then reconstructs the audio with a high

sampling rate by upsampling [10], [11]. Besides U-Net, gener-

ative adversarial network (GAN) [6] is another framework that

enables the super-resolution task. In GAN, a generator takes

the low sampling rate audios as input and reconstructs the high

sampling rate audios. Not being supervised, a discriminator is

used to evaluate the quality of the reconstructed audios [3],

[21].

B. Audio frequency unfolding

Audio frequency unfolding enables the audios collected by

low sampling rate sensors to be recognizable, where there are

two main challenges to be addressed.

As shown in Fig. 2(c), without a low-pass filter that removes

the high-frequency peaks, directly using a low sampling rate

sensor to collect audios folds the high-frequency peaks to the

unexpected peaks in the low-frequency band. Such unexpected

peaks seem no different from other low-frequency peaks

and make the spectrum ambiguous. Therefore, the task of

frequency unfolding is not only to reconstruct the missing

peaks at high frequency but also to recognize the unexpected

peaks and remove them.

Another challenge of the frequency unfolding is the ultra-

low sampling rate of the input audio, e.g., 2 kHz, which is

much lower than the Nyquist frequency of the human voice.

As a result, the audio suffers a more serious frequency aliasing

issue, which can neither be recognized by human ears nor the

ASR systems.

Despite the two challenges, fortunately, there are regular

patterns of human throats. In detail, for a given phoneme

by the human voice, the peaks always appear at certain

frequencies. As long as these regular patterns can be correctly

recognized, the peaks in the spectrum can be correctly recon-

structed. In this way, audio with a high sampling rate can be

reconstructed and perceptually recognized.

III. DESIGN

In this section, we first introduce the model architecture and

how it fits the characteristic of audio frequency unfolding.

Then, we illustrate the loss function for training the model,

which avoids the over-fitting and benefits the training conver-

gence.

A. Model Architecture

We mainly perform the frequency unfolding on the spectro-

gram, termed the spectrogram unfolding. Here the spectrogram

is a series of spectrums by the short-time Fourier transform
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Fig. 3: The spectrogram unfolding model architecture, where downsampling blocks, residual blocks and upsampling blocks

are used sequentially.

(STFT) over different time windows. In doing so, an audio-

to-spectrogram and a spectrogram-to-audio processes are re-

quired before and after the spectrogram unfolding. Hence,

there are three corresponding steps in our model: audio-

to-spectrogram, spectrogram unfolding and spectrogram-to-

audio.
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Fig. 4: The original spectrogram (a), the direct logarithm of

the spectrogram (b) and the improved logarithm after adding

a small constant (c).

Audio-to-spectrogram. This step transfers audio to a spec-

trogram by STFT. Specifically, in the audio analysis, the time

window of STFT lasts for 25ms and the time interval between

two time windows lasts for 10ms [7], [2].

To facilitate the spectrogram unfolding, we also need to

calculate the logarithm after STFT, so that more details in

the high-frequency band are presented in the spectrogram as

shown in Fig. 4(a). However, directly taking the logarithm

operation may amplify the noises. Specifically, the frequency

bands with 0 power are sensitive to noises and after the log-

arithm operation, it shows small spots, as shown in Fig. 4(b).

Such small spots can mislead the features to be extracted,

and thus deprecate the training process afterward. To address

this problem, we add a small constant to the spectrogram,

which is larger than the noises but is still much smaller than

the power in non-zero areas. As a result, this small constant

can effectively remove the impact of the noises around the 0
values. The improved spectrogram with the small constant is

shown in Fig. 4(c).

Spectrogram unfolding. We build the model architecture

of spectrogram unfolding based on the U-Net backbone [14],

[9], as shown in Fig. 3. There are three types of blocks

in a sequence: the downsampling block, the residual block

and the upsampling block. During the inference process, the

input spectrogram’s time dimension is always maintained; the

frequency dimension is downscaled by 2 in the downsampling

block and upscaled by 2 in the upsampling block. Since the

output sampling rate is always greater than the input sampling

rate, the number of the upsampling blocks is greater than

that of the downsampling blocks. Note that the number of

blocks in Fig. 3 is not the actual numbers we use. The block

numbers vary for unfolding tasks with different input and

output sampling rates. Within each block, we use the instance

normalization (IN) [16] and gated linear unit (GLU) [4], both

of which are commonly used in time series based model

architectures.
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Fig. 5: The pixel shuffle layer’s working principle in our

framework. The even number of the channels are flipped over

the frequency dimension.

In an upsampling block, the upscale process is performed

by a pixel shuffle layer, which reduces the channel dimension

by half and doubles the frequency dimension. Different from

the pixel shuffle layer in the traditional audio super-resolution,

we develop a new pixel shuffle layer for audio frequency

unfolding. As shown in Fig. 5, when unfolding, the even num-

ber of the old spectrograms are flipped around the frequency

dimension. Such improvement is based on the famous signal

processing theorem that the odd number of the spectrums are

unchanged and the even number of the spectrums are flipped

when the frequency aliasing occurs.

Spectrogram-to-audio. The last step is to transfer the

reconstructed spectrogram to a high sampling rate audio. Since

the phase is discarded in the spectrogram, we adopt an iterative
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algorithm, fast Griffin-Lim algorithm (GLA) [13], to estimate

the audio. In addition, the Hann window is exploited on each

time window to improve the perceptual quality.

B. Loss Function

Original High 
Sampling Rate Audio

Original Low 
Sampling Rate Audio

Reconstructed High 
Sampling Rate Audio

Reconstructed Low 
Sampling Rate Audio

High Rec Loss

Low Rec Loss

Model 
Inference

Downsampling Downsampling

Fig. 6: The pipeline for the cyclic reconstructed loss calcula-

tion.

To train the model, we examine the discrepancy between the

reconstructed audio and the original audio. In detail, there are

two losses to measure such the discrepancy: a reconstructed

loss and a perceptual loss. The reconstructed loss directly com-

pares the two spectrograms; the perceptual loss is higher-level,

which compares the acoustic features difference. We adopt the

mean squared error (MSE) to measure the discrepancy.

The training of the reconstructed loss is easier than the

perceptual loss. Thus, in the training progress, we weigh

more on the reconstructed loss at first and reduce its weight

gradually. On the other hand, the weight of the perceptual loss

starts from a small value and increases over time.

Reconstructed loss. The pipeline of the reconstructed loss

is cyclic, shown in Fig. 6. There are three steps in this pipeline:

downsampling of the original audio, model inference and

downsampling of the reconstructed audio. Given an original

high sampling rate audio from the dataset, we generate its

corresponding low sampling rate audio by downsampling in

the time domain. The model reconstructs a high sampling rate

audio using this downsampled audio. Finally, we demonstrate

downsampling on the reconstructed high sampling rate audio

to another low sampling rate audio. Since the last step of the

model inference is the fast Griffin-Lim algorithm, which is

iterative and hence non-differentiable, we bypass this step by

directly performing downsampling on the spectrogram. So far,

we have a pair of high sampling rate audios and a pair of low

sampling rate audios.

There is a high reconstructed loss and a low reconstructed

loss within the reconstructed loss, which are derived from

the discrepancy of the pair of the high sampling rate audios

and the pair of the low sampling rate audios, respectively.

Generally, the weight of the high reconstructed loss is larger,

which ensures the similarity between the reconstructed and the

original audios. Also, the existence of the low reconstructed

loss constraints the reconstructed audios to the input, avoiding

the model outputs random audio irrelevant to the input.

Perceptual loss. The perceptual loss compares the discrep-

ancy of acoustic features, filter banks (FBank), extracted from

the original audios and the reconstructed audios. Note that

without being cyclic, we only calculate the perceptual loss

between the pair of the two high sampling rate audios. This

is because the frequency dimension in the spectrograms of

the low sampling rate audios is too coarse to extract precise

FBank.

The introduction of the perceptual loss is non-trivial for

two reasons. The first reason is based on an observation:

human ears are only sensitive to acoustic features instead of

detailed spectrograms. In other words, there exist two different

spectrograms, with closed acoustic features, that sound similar

for human ears. The usage of the reconstructed loss alone

may constraint the reconstructed audios to the original audios’

spectrograms, leading to model over-fitting. Replacing recon-

structed loss by the high-level perceptual loss can effectively

address this problem. In addition, this perceptual loss can also

benefit the ASR systems, improving their recognition accuracy.

Before inferring their model, most of the ASR systems extract

acoustic features of audio, such as FBank, Mel-frequency

cepstral coefficients (MFCC). Most of these features can be

derived from the FBank. That is to say, the perceptual loss does

not only minimize the FBank distance, but also ensures other

acoustic features to be closed. With the closed input features

to ASR systems, the recognition results tend to be the same.

As a result, the reconstructed audios can be recognized by

ASR systems at high accuracy.

IV. EVALUATION

We implement our framework to reconstruct the low sam-

pling rate audios from the dataset, AudioMNIST [1], where

there are spoken 10 digits. The framework is evaluated by

a typical ASR system, connectionist temporal classification

(CTC) [7].

A. Experiment Setup

In this section, we explain the details of the dataset and the

hardware where our model is trained and evaluated.

Dataset. We adopt the dataset, AudioMNIST [1] to train

our model. Specifically, AudioMNIST contains 30000 audios

of 0.5 second, which stands for spoken 10 digits (from 0 to

9). There are 60 speakers, including 48 males and 12 females,

whose native languages include English, German, Chinese and

Spanish. The original sampling rate of these audios is 48 kHz

and we pre-downsample it to 16 kHz as the high sampling

rate audios. We randomly split the 60 speakers into 50 with

25000 audios as the training set and 10 with 5000 audios as

the evaluating set.

Hardware. We deploy our framework on the GPU, TITAN

RTX with 24220 MBs. We train the model for 200 epochs,

spending 140 minutes. The inference progress spends no

more than 0.224 second to reconstruct audio with 0.5 second,

revealing the feasibility of real-time inference.

B. Evaluation Metric

Our framework is evaluated by the recognition accuracy

of an ASR system. We do not adopt the metrics in existing

works, such as signal-to-noise ratio (SNR) and log-spectral

Authorized licensed use limited to: Duke University. Downloaded on August 21,2022 at 15:03:38 UTC from IEEE Xplore.  Restrictions apply.



0 168

1

7

8

(a) Original

0 2

1

7

8

(b) Input

1

7

8

0 168

(c) Reconstructed

Fig. 7: The original (a), the input (b) and the reconstructed (c) spectrograms for
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Fig. 8: The original (a) and the recon-

structed (b) FBank over time for digits 1,

7 and 8 in a sequence.

distance (LSD) [8]. As we state in Sec. III-B, as long as

the acoustic features are closed, the two audios with totally

different waveforms or spectrograms may sound similar for

human ears, both of which can be considered as effective

outputs. In our evaluation, we adopt a typical ASR system,

connectionist temporal classification (CTC) [7]. In our CTC

implementation, we first extract the acoustic feature, FBank,

from audios, followed by two convolutional layers, two long

short-term memory (LSTM) layers and one fully connected

layer. We train the ASR system for 500 epochs and it achieves

the accuracy of over 99% on AudioMNIST’s high sampling

rate audios (16 kHz).

C. Overall Performance

We first show the evaluation results at a default setup, where

we reconstruct the sampling rate from 2 kHz to 16 kHz. We

set the dimension of FBank as 40 for the sampling rate of

16 kHz. We first show the details of reconstructing three audio

samples, including the spectrograms and the acoustic features.

Then, we show the recognition accuracy of this default setup.

Spectrogram and feature reconstruction. We pick three

audio samples of the digits 1, 7 and 8 and show their original,

input and reconstructed spectrograms in Fig. 7. The overall

shapes of the spectrograms are similar at both the high-

frequency band and the low-frequency band. However, the

original spectrograms show more details while those details

in the reconstructed spectrograms are blurred.

We also show the acoustic features, FBank, over time of

the same audio samples in Fig. 8. Since the perceptual loss

only takes FBanks into account and dominates the loss in

the last several training epochs, the original features and the

reconstructed features are very similar. Furthermore, different

from the spectrograms, FBanks are more smooth, especially

in the high-frequency band. Such smoothness makes the

reconstructed spectrograms ignore the details in the original

spectrograms and becomes blurred.

Recognition accuracy. The overall recognition accuracy of

the default setup is 77.1% and the confusion matrix is shown

in Fig. 9. According to the confusion matrix, we can find the

accuracy varies over digits. Many digits, such as 1, 3 and 5,

reach accuracy over 99% while some digits, such as 6 and 7,

Fig. 9: The confusion matrix of the default setup, where we

reconstruct the sampling rate from 2 kHz to 16 kHz.

have relatively low accuracy. Interestingly, almost all the digits

2 are mistaken as digit 3, which means the folded spectrogram

of digit 2 is similar to that of digit 3. This illustrates the fact

that when the frequency aliasing occurs, it is possible that two

different sounds appear to be the same at a low sampling rate.

D. Impact of Factors

(a) Sampling Rate (b) SNR

Fig. 10: The recognition accuracy comparison over different

factors: the input sampling rate (a) and the SNR of the input

audios (b).
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Input sampling rate. The sampling rate of the input audios

is an important factor in our framework. This factor determines

the lower bound of a sensor’s sampling rate. In our evaluation,

we fix the original sampling rate as 16 kHz and test our

framework with the input sampling rate ranging from 1 kHz

to 16 kHz. As shown in Fig. 10(a), the recognition accuracy

maintains high when the input sampling rate is higher than

2 kHz. However, when the input sampling rate is 1 kHz,

the spectrograms suffer serious frequency folding and the

reconstructed audio can be partially recognized (53.3%). That

is to say, the sampling rate of the sensor should be larger

than 2 kHz. Moreover, when the input sampling rate reaches

16 kHz, which is exactly the sampling rate of the original

audios, the recognition accuracy reaches 99.1%, closed to

ASR’s recognition accuracy of the original audios.

Signal-noise ratio. So far, the input audios are directly

downsampled from the audios in the dataset, which are

recorded in a quiet room with subtle background noises.

However, it is not practical in reality: background noises are

inevitably added to the input audios. Hence, we add back-

ground noises to the input audios and evaluate our framework’s

robustness against different signal-to-noise (SNR) levels. We

try different SNR levels from 40dB to 0dB. As Fig. 10(b)

shows, our framework maintains good recognition accuracy

as long as the SNR is greater than 10 dB.

V. CONCLUSION

In this paper, we present a frequency unfolding framework

that reconstructs the audio collected by the ultra-low sampling

rate sensors. The proposed framework utilizes a U-Net-based

model architecture and reconstructs the audios of better per-

ceptual quality. Instead of the metric SNR or LSD, we adopt

the recognition accuracy of the ASR system to evaluate the re-

constructed audios by our framework. Exhaustive experiments

show the reconstructed audios from 2 kHz to 16 kHz can be

recognized by the ASR system at an accuracy of 77.1%. Our

work enriches the usage of the sensors with low sampling

rates, moving one step closer to the real-life adoption of ultra-

low-power sensors.
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