
Exploring the Use of Games and a Domain-Specific Teaching
Language in CS0

Jennifer Parham-Mocello
Oregon State University

Corvallis, USA
parhammj@oregonstate.edu

Aiden Nelson
Oregon State University

Corvallis, USA
nelsonai@oregonstate.edu

Martin Erwig
Oregon State University

Corvallis, USA
erwig@oregonstate.edu

ABSTRACT
University students learning about computer science (CS) can be
intimidated and frustrated by programming, and to make matters
worse, the general-purpose programming languages chosen for
introducing students to programming contain too many features
that have the potential to overwhelm and distract students. We
hypothesize that by using a delayed-coding approach with a lan-
guage designed for teaching a smaller set of features focused on the
fundamental CS concepts, such as types, values, conditions, con-
trol structures, and functions, student retention and success would
improve, especially for those with no or little prior programming
experience.

To test this hypothesis, we split a college computer science orien-
tation class into two sections. One section began programming with
a general-purpose language, Python, during week 1. The second
section used a new, functional domain-specific teaching language
themed around programming simple, well-known physical games.
A group of researchers designed the new language with the pur-
pose of giving students a more focused approach to learning basic
computer science concepts and emphasizing good programming
practices early, such as working with user-defined types and de-
composition. Based on student survey responses before and after
the two sections and their grades through the two subsequent CS
courses, we find that students in the delayed-coding section using
the new language had lower engagement in their class. In addition,
we find no evidence of a higher pass rate for students from this
section in their subsequent computer science courses.

CCS CONCEPTS
• Applied computing → Education; • Social and professional
topics → CS1; Computational thinking; • Software and its
engineering → Domain specific languages.

KEYWORDS
domain-specific language, functional programming, games, un-
plugged, CS0 and CS1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524812

ACM Reference Format:
Jennifer Parham-Mocello, Aiden Nelson, and Martin Erwig. 2022. Exploring
the Use of Games and a Domain-Specific Teaching Language in CS0. In
Proceedings of the 27th ACM Conference on Innovation and Technology in
Computer Science Education Vol 1 (ITiCSE 2022), July 8–13, 2022, Dublin,
Ireland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.
3524812

1 INTRODUCTION
We developed a two-level curriculum for introducing computer sci-
ence (CS) based on identifying computing concepts in well-known
non-electronic games, which we refer to as the ChildsPlay ap-
proach. Our approach is similar to the approaches taken in CS
For Fun (CS4FN), the Teaching London Computing, and CTArcade
[13, 15, 32], which also employ physical games to teach CS concepts,
but it differs in a fundamental way: Instead of focusing on the strat-
egy for winning games or students playing against the computer,
we use the instructions and rules for playing games without the use
of a computer to introduce students to CS concepts, such as repre-
sentation, algorithm, and computation before introducing them to
programming. More specifically, our approach has the following
five features.

• Non-Coding First. We deliberately avoid the teaching of a
programming language in the first part of the curriculum.

• Unplugged. We don’t use technology and embrace physical
artifacts as teaching devices.

• Games. We employ physical games as the conceptual frame-
work and metaphor for computing concepts.

• Well-Known. We use games well-known for being simple.
• Domain-Specific Language (DSL). We introduce students to a
formal programming notation employing a newly developed
DSL for describing board games.

One major goal of the ChildsPlay approach is to debunk negative
perceptions of CS early by demonstrating to students that under-
standing basic concepts of computer science is as easy and as fun
as playing games. We believe choosing well-known, simple games,
such as Nim, Tic-Tac-Toe, and Rock, Paper, Scissors, makes CS more
widely accessible for students.

In this research study, we use our approach in a university CS
Orientation course to provide students with a gentle slope into
the concepts of CS and programming. We use students’ pre and
post survey responses, prior programming information, and grades
to determine if students in the section using the new approach
with a new functional DSL like the new approach and are impacted
differently than those in the traditional taught section using Python.
We answer these questions by addressing the following:

(1) How do students feel about the new approach and does this
differ from the traditional approach?

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

351

(2) Does the new approach influence students’ decisions to study
CS differently than the traditional approach?

(3) Do students using the new approach perform differently in
the orientation course than those students in the traditional
approach?

(4) Does the new approach with a gentle slope into program-
ming better prepare students for the subsequent C++ classes
than the traditional programming-first approach?

In the rest of the paper, we first describe the motivation and
related work behind developing the ChildsPlay approach in Section
2. Then, we describe the Level 1 and Level 2 curriculum in more
detail in Section 3, and we provide our research method in Sec-
tion 4. In Section 5, we provide the results, and finally, we present
conclusions and directions for future work in Section 6.

2 MOTIVATION AND RELATEDWORK
Playing games helps develop problem-solving skills and creativity,
which are fundamental to computational thinking [22, 42, 43]. Thus,
it is not surprising that games have a long tradition as learning
tools in education, especially in the form of gamification, which is
the idea of representing a learning process as playing a game [28].
While studies have shown that playing board games improves math
skills in elementary school students [8] and involves computational
thinking activities [5, 6, 24, 29], simply playing games does not
increase one’s computational thinking skills, unless guided instruc-
tion about the skills is given [33]. Our curriculum goes beyond just
playing games by teaching core CS concepts using well-known
physical games for explaining computation.

Several new board and card games have been invented specifi-
cally to teach computational thinking (CT), such as RaBit EscAPE
(ages 6-10), Cubetto (ages 3-6), and Crabs and Turtles [1, 40, 46], but
new games present two disadvantages over focusing onwell-known
and familiar games. First, learning the rules of a new game can cre-
ate unnecessary extraneous cognitive load on the learner, taking
away cognitive resources from the learning of the computational
concepts. Second, schools, kids, and families might not have access
to the new games. We believe using well-known games instead
broadens participation and shifts the focus to the computational
concepts being taught.

The idea of using games well-known to be simple, such as Nim
and Tic-Tac-Toe to explain computational concepts is not new
[12, 14, 32], and researchers understand that playing games unsup-
ported by an appropriate framework may be ineffective at teaching
the computational concepts [33]. Researchers in the CS4FN and
Teaching London Computing projects have shown that the use of
games with well-developed lesson plans are effective for teaching
specific computational concepts [13, 15], and Lee et al. show that
their educational software called CTArcade enables children to ar-
ticulate CT-related thinking patterns while playing Tic-Tac-Toe and
Connect Four [32].

We do not use CTArcade, because we want students to play
games with their peers to promote social interaction and commu-
nication, and we want students and teachers to practice concepts
learned in one game by identifying them in other games, which
would have to be first implemented in CTArcade. Our curriculum
fits into the landscape of game-based CT teaching approaches by

using familiar games, instead of new ones, and we use the same
games to teach new computational concepts.

CS Unplugged [3, 4] has been shown to broaden participation
[11], and several studies have demonstrated that unplugged activi-
ties, such as games, puzzles, and storytelling, can be a viable alter-
native to traditional programming activities for teaching introduc-
tory computational skills and algorithms [3, 16, 17, 37–39, 41, 45].
Supporting studies have shown the positive impacts unplugged
activities have on students’ perspectives of, engagement in, and
motivation to study CS [2, 16, 18, 34, 44].

After introducing students to fundamental concepts in CS us-
ing physical games in an unplugged environment, students can
then apply the concepts to programming. However, Brusilovsky
et al. argue that one of the obstacles general-purpose languages
pose to beginning students includes being too large and cognitively
overwhelming [7]. Likewise, educators have shown success using
domain-specific languages for introducing programming [30, 31].
Other researchers argue that the reduced complexity and natural
relationship to familiar mathematical concepts, in addition to level-
ing the playing field, makes functional languages a better choice
for teachers and students [9, 20, 21, 25, 27, 35], which is what spear-
headed the successful Bootstrap Algebra project [10, 47]. For these
reasons, we think it is important to use a functional, domain-specific
language as the beginning language for students. While we under-
stand that block-based languages have been shown to help students
understand some programming concepts better [26, 36], in this
project, we are specifically interested in introducing a text-based
language for expressing algorithms in a formal notation.

3 OUR CHILDSPLAY APPROACH
Our approach is unique by embracing all of the following features.
(1) Focusing on game rules and not strategy; (2) Connecting game
descriptions to CS concepts; (3) Playing games socially to pro-
mote communication and terminology; (4) Reusing the same simple
games as common threads; (5) Delaying a programming language
to promote algorithmic thinking without the use of technology;
(6) Employing a text-based, functional domain-specific language for
programming board games. In the following subsections, we discuss
the non-programming curriculum and programming curriculum in
more detail.

3.1 The Non-Programming Curriculum
The goal of the non-programming part of the curriculum is to intro-
duce CS concepts, such as representation, abstraction, algorithm,
types, values, names, input, output, instruction, control structures,
conditions, and computation, without the use of a computer. First,
we motivate the concept that representations are a form of ab-
straction using stories to represent games. Then, we focus on the
representations, which are the types of things and the actual val-
ues, used by the game instructions (or algorithm), and transformed
during game play (or computation). Next, we focus on the concept
of algorithms being a set of instructions to perform some task, and
we further the concept of representation through thinking of pros
and cons of using other representations in a game and how the
instructions/rules of a game (have to) change based on represen-
tations. At this time, we also introduce the idea of placeholders

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

352

for values in algorithms and how to formalize their IF-THEN-ELSE
and WHILE-DO constructs with conditions. Lastly, we explore the
idea of computation and computational resources, such as time
and space, by comparing games such as Nim with one heap versus
several heaps and Tic-Tac-Toe versus Connect Four.

It is important to remember that the algorithms developed as
part of the curriculum are not strategies for winning games, but
rather for capturing the rules that describe games as computational
processes.

3.2 The Programming Curriculum
The goal of the programming curriculum is to introduce a formal
notation for algorithms within the scope of board games. To this
end, we designed a new DSL targeted at the particular application
domain of board games with a web interface to make it accessible
by anyone on any platform with internet access (see Figure 1).
More specifically, the DSL is a domain-specific teaching language
(DSTL) created to be very small with only the basic features for
teachers and students and shaped by the goal of moving students
to a general-purpose language. The new DSTL for board games is
primarily a functional, text-based language syntactically similar to
Haskell [23] or Elm [19], but with a significantly simplified syntax
and type system.

Figure 1: Screenshot of TicTacToe in the new DSTL.

Mirroring the non-programming curriculum, which begins with
the concept of representation, in the programming curriculum,
we introduce types and values before functions, which are the
formal equivalent of algorithms in the DSTL. We start with simple
functions to illustrate the use of parameters, followed by simple
expressions, control structures, and conditions. The curriculum
ends with introducing repetition and the concept of an array data
structure to represent game boards. We also support the smooth
transition from algorithmic notation to a program in the DSTL
through demonstrating a systematic process during lecture to help
students turn their algorithm into a program.

4 RESEARCH METHOD
To answer our research questions, we split a CS Orientation course
into two sections, and the same instructor taught each section.
Both sections had a 110-minute lecture, one two-hour lab, and
one assignment each week. One section used the new ChildsPlay
approach with a gentler slope into programming and the new DSTL
for programming board games. The ChildsPlay section did not start
programming until the fourth week of a 10-week quarter, and the
traditional section began using the Python programming language
in week 1.

Based on our prior research on delayed-programming approaches
and the purpose of the new approach to offer a gentler slope into
programming, we advertised the section with the new approach
for those with no or little prior programming and the traditional
section for those with lots of prior programming. Advisors sug-
gested which section to take based on students self-reported prior
programming experience during registration, and the course cata-
log reflected these differences in the notes section of the class. We
acknowledge the threat to validity this causes, but it is important
to remember that the ChildsPlay approach is for those with no or
little experience with programming. Additionally, moving forward,
all engineering students will be made to take this course, and the
intention is to offer 12 sections of the course taught using different
themes to better fit students’ varied interests and backgrounds. This
research study more accurately represents reality for our university,
and we present this study as an experience report with quantitative
support for its findings, rather than a scientific experimental study.

Interestingly, the two sections did not differ significantly in the
number of students with and without prior programming. However,
there was a difference in the amount of programming experience
students had in each section. The traditional section had more
students with moderate to significant experience than the other
section, but many students reported selecting the section based on
scheduling considerations, rather than advisor input.

The instructor in the ChildsPlay section covered the concepts of
representation, algorithm, and computation without programming
for the first four weeks. Beginning in week four until the end of
the 10-week quarter, students used the DSTL to reinforce the non-
programming concepts of types, names, values, functions, control
structures with conditions, and arrays.

Since the university was online due to COVID-19, the instructor
used Zoom for class lecture and labs, and used Canvas to organize
all the information for the class, such as the syllabus, grades, etc.
Initially, there were 150 students in the ChildsPlay section, and
there were 126 students in the traditional section. Out of those
students, 2 withdrew from the section, and 6 withdrew from the
traditional section, which left 148 and 130 students respectively.
With IRB approval, we collected consent, pre/post survey responses,
and demographic information from 48 students in the ChildsPlay
section and 41 in the traditional section.

5 RESULTS
In this section, we present survey results from those participating
in the research study, but we provide performance information
for all students taking the class. We used observational statistics
to present the distribution of responses to survey questions and

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

353

grades in both sections. We used paired, two-sided, 2-sample t-tests
for equality of proportions with continuity correction to compare
the mean responses before and after participating in the different
sections. We used unpaired two-sided, 2-sample t-tests for equality
of proportions with continuity correction to compare the mean
responses and grades between the two sections. For all statistical
tests, we selected 𝛼 = 0.05 to be the significance level for reporting
results with 95% confidence.

5.1 How do students feel about the new
approach and does this differ from the
traditional approach?

To answer this question, we asked students how they felt about
using games to explain computation, how they felt about the new
DSTL for learning programming, how much interest they had in
the class before and after, and how much they overall enjoyed the
approach used for their the course.

5.1.1 Do students like using games as a way to learn fundamental
CS concepts? We asked students how using games as a way to teach
computation affected their engagement in the class and motivation
to learn more CS and programming. The majority of the students
(30 out of 48) said that using games greatly or slightly increased
their engagement in the class (see Figure 2). Whereas, an equal
number of the students were either neutral or positive about the
use of games impacting their motivation to learn more about CS or
programming (see Figure 3).

Figure 2: Impacts of Using Games on Engagement.

Figure 3: Impacts of Using Games on Motivation.

5.1.2 Do students enjoy programming in a new functional, text-based
domain-specific board game language? Next, we asked students if
they enjoyed using the new DSTL for programming board games

in the class. The majority of the students either only somewhat
liked the language or did not like the language at all (see Figure 4).
We believe this was not necessarily a bad outcome considering the
language was very new with little documentation on how to use
it, except for the class notes and example programs with a tutorial
being developed alongside the class.

Figure 4: Student Feelings Toward Using the New DSTL.

5.1.3 What are students interest in the class before and after and
is this different for the traditional section? We asked students how
interested they are in the class before and after taking the CS ori-
entation class and how much they enjoyed the overall approach
in their class. We compared these results from the two sections to
see if there was a difference in the way students felt about their
class in the ChildsPlay versus the traditional section. As Figure 5
shows, unfortunately, there was a significant decline in students’
interests in the ChildsPlay section after taking the class (p-value
= 0.005757). Whereas, Figure 6 show that there was no difference
in the mean response to students’ interests before and after taking
the traditional section (p-value = 0.2004).

Figure 5: Student Class Interests in ChildsPlay Section.

In addition, we asked students how they felt about the approach
used to teach their class, and there was a significant difference
between the way the students felt about their approach used in the
ChildsPlay versus traditional section (p-value = 0.01593). Students
in the traditional section liked the approach used in their class more
than those in the ChildsPlay section (see Figure 7). The majority
of the students in the ChildsPlay section only somewhat liked the
approach used in their class; whereas, the Python section had more
students who liked the approach a great deal.

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

354

Figure 6: Student Class Interests in Traditional Section.

Figure 7: Student Feelings Toward Approach Used for Class.

5.2 Does the new approach influence students’
decisions to study CS differently than the
traditional approach?

We asked students about their pre- and post-interests in 1) learning
more about CS, 2) majoring in CS, 3) taking more CS classes, 4)
programming, and 5) using computation in their job after college.
The first four interests did not significantly change in the ChildsPlay
section or in the traditional Python section. However, students’
interest in using computation in a job after college did change before
and after taking the ChildsPlay section (p-value = 0.01926). More
students were extremely interested in using computation in their
job before taking the ChildsPlay section than after taking the class
(see Figure 8). In contrast, mean student interests in computational
jobs before or after taking the traditional Python section remained
exactly the same (see Figure 9).

5.3 Do students using the new approach
perform differently in the orientation
course than those students in the traditional
approach?

In order to answer this question, we used the grades and drop, fail,
withdraw rates from all students in the class, not just those who
consented to the research study. We did not need consent for the

Figure 8: Student Job Interest in ChildsPlay Section.

Figure 9: Student Job Interest in Traditional Section.

course-level data from the registrar, because our IRB determined
that existing, de-identified course-level data with unique ids to
follow students across courses did not involve human subjects
according to the Dept. of Health and Human Services.

We did not find a significant difference in the performance of
students in the ChildsPlay section versus the traditional section
of the CS Orientation course (see Figure 10). The majority of the
students in both sections got an A in the class, and approximately
8% in each class did not make a C or above, which was the grade
required to pass the class. At our university, all CS classes require
a C or above to count toward the CS degree. There were more
students who withdrew from the traditional Python section (6 out
of 126) than the ChildsPlay section (2 out of 150) with a gentler
slope into programming. From this analysis, it appears that the
gentler slope retained more students in the orientation class.

We found that 135 out of 150 students enrolled in the ChildsPlay
section passed (90% pass rate), and 110 out of 126 students enrolled
in the Python section passed (~87% pass rate). We found no evidence
of a difference between the two pass rates (p-value = 0.606).

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

355

Figure 10: Student Grades in the CS Orientation Sections.

5.4 Does the new approach with a gentle slope
into programming better prepare students
for the subsequent C++ classes than the
traditional programming-first approach?

Wedetermined if therewas a difference in theway students from the
ChildsPlay versus traditional section performed in their subsequent
Introduction to Programming I and II courses by collecting grade
information from each subsequent course. Using this information,
we determined pass rates for each group of students (DSTL and
Python) in each of the subsequent courses (Intro to Programming I
and II). We then compared these rates for differences between the
two student groups in each class. We categorized passing grades
as letter grades that are a C or higher, and we categorize non-
passing grades to include anything less than a C, withdrawals,
incompletes, and S/U (satisfactory/unsatisfactory option) grades.
This categorization was consistent with the college’s policy on
passing grades for CS courses for CS majors.

We found that 72 out of the 101 students from the ChildsPlay
section enrolled in the Introduction to Programming I in the winter
passed (~71% pass rate), while 78 out of 94 students from the Python
section passed the same course (~83% pass rate) (see Figure 11).
We found weak evidence of a difference between these two pass
rates (p-value ≈ 0.077), but the pass rate of the students from the
ChildsPlay section was lower than the pass rate of the students from
the Python section. This difference could be because 15 students
from the ChildsPlay section withdrew, as opposed to only one from
the Python section. Counts of other grades were not drastically
different. We expected that the students from the ChildsPlay section
would be better prepared for the first subsequent CS course and
have a higher pass rate than the students from the Python section.

In the second subsequent class, we found that 54 out of 66 stu-
dents from the ChildsPlay section, who enrolled in the Introduction
to Programming II in the spring, passed (~82% pass rate), and 64
out of 78 students from the Python section passed (~82% pass rate)
(see Figure 11). These results showed no difference in students’
success in the second course depending on the approach used in
the orientation course.

6 CONCLUSION
From this research study, we conclude that most university stu-
dents found using board games in a CS orientation course to be
engaging and that many also liked using board games as way to
learn more about CS and programming. However, most university

Figure 11: Student Pass Rates in Subsequent CS Classes

students only somewhat enjoyed programming in a new DSTL in
their orientation course. Some students stated that this was because
they liked other languages based on what they already knew or
what their peers were learning in the other section. We believe that
some students influenced their peers’ views in the class. Some stu-
dents commented on disliking the language because there was little
documentation or resources, including TAs, to help them or that
the error messages were unclear. In the future, this is something to
consider before using a new language with 150 students.

While students’ interests in the class and using computation
in a job after college was negatively impacted by the approach
using a new DSTL, the new approach did not negatively impact
any of their other interests in CS. Therefore, we do not see this
as a primary concern for adopting the approach with first-year
university students. In fact, most students somewhat liked the new
approach or liked the new approach a great deal, and we found no
correlation between their prior programming experience and how
they felt about the approach. However, in the future, we would like
to determine the type of student this approach is best for.

Even though student grades and drop, fail, withdraw was not
different between the new approach and the traditional approach, it
did appear that therewas a slight difference in students performance
in the first subsequent C++ class but not in the second one. We
understand that some of these differences might be attributed to
the way we recruited students to the different sections, but based
on students’ survey responses and prior programming experience,
we do not believe this was a contributing factor.

We recognize that we did not control for the increase in fami-
lywise error rate across the series of reported statistical tests. In
other words, there is a likelihood that we incorrectly rejected a
null hypothesis in this study. In addition, we recognize the smaller
number of traditional section responses could also contributed to
the acceptance of a null hypothesis. However, we consider this
research to be an experience report with support for its findings
and encourage replication.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation
under the grant #1923628.

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

356

REFERENCES
[1] P. Apostolellis, M. Stewart, C. Frisina, and D. Kafura. 2014. RaBit EscAPE: A Board

Game for Computational Thinking.. In Confȯn Interaction Design and Children.
349–352.

[2] T. Bell, P. Curzon, Q. I. Cutts, V. Dagiene, and B. Haberman. 2011. Overcoming
Obstacles to CS Education by Using Non-Programming Outreach Programmes.
In Int. Conf. on Informatics in Schools (LNCS 7013). 71–81.

[3] T. Bell, I. H. Witten, and M. Fellows. 2015. CS Unplugged. An Enrichment and
Extension Programme for Primary-Aged Students.

[4] T. C. Bell, I. H. Witten, and M. Fellows. 1998. Computer Science Unplugged: Off-line
Activities and Games for All Ages. Computer Science Unplugged.

[5] M. Berland and S. Duncan. 2016. Computational Thinking in theWild: Uncovering
Complex Collaborative Thinking through Gameplay. Educational Technology 56,
3 (2016), 29–35.

[6] M. Berland and V. R. Lee. 2011. Collaborative Strategic Board Games as a Site for
Distributed Computational Thinking. Int. Journal of Game-Based Learning 1, 2
(2011), 65–81.

[7] Peter Brusilovsky, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko,
and Philip Miller. 1997. Mini-languages: a way to learn programming principles.
Education and Information Technologies 2, 1 (1997), 65–83. https://doi.org/10.
1023/A:1018636507883

[8] S. Cavanagh. 2008. Playing Games in Class Helps Students Grasp Math. Education
Digest: Essential Readings Condensed for Quick Review 3 (2008), 43–46.

[9] Manuel M. T. Chakravarty and Gabriele Keller. [n.d.]. The risks and benefits of
teaching purely functional programming in first year. 14, 1 ([n. d.]), 113–123.
https://doi.org/10.1017/S0956796803004805

[10] Bootstrap Community. [n.d.]. Bootstrap. https://bootstrapworld.org/materials/
algebra/

[11] T. J. Cortina. 2015. Reaching a Broader Population of Students Through “Un-
plugged” Activities. Commun. ACM 58, 3 (2015), 25–27.

[12] CS For Fun: Queen Mary, University of London. 2011. Noughts and Crosses.
http://www.cs4fn.org/programming/noughtscrosses/. Accessed: 2021-01-07.

[13] CS For Fun: Queen Mary, University of London. 2011. Welcome to cs4fn : the
fun side of Computer Science. http://www.cs4fn.org/. Accessed: 2021-01-07.

[14] CS For Fun: QueenMary, University of London. 2011. Winning at Nim: computers
outwitting humans. http://www.cs4fn.org/binary/nim/nim.php. Accessed: 2021-
01-07.

[15] CS For Fun: Queen Mary, University of London. 2015. Teaching Lon-
don Computing: A Resource Hub from CAS London & CS4FN. https://
teachinglondoncomputing.org/. Accessed: 2021-01-07.

[16] Paul Curzon, Peter W. McOwan, Nicola Plant, and Laura R. Meagher. 2014. In-
troducing teachers to computational thinking using unplugged storytelling. In
Proceedings of the 9th Workshop in Primary and Secondary Computing Education
(WiPSCE ’14), 89–92.

[17] Q. Cutts, Q. Connor, G. Michaelson, and P. Donaldson. 2014. Code or (not code):
separating formal and natural language in CS education. Proceedings of the 9th
Workshop in Primary and Secondary Computing Education, 20–28.

[18] Q. I. Cutts, M. I. Brown, L. Kemp, and C. Matheson. 2007. Enthusing and inform-
ing potential computer science students and their teachers. In SIGCSE Conf. on
Innovation and Technology in Computer Science. 196–200.

[19] Elm. 2021. A delightful language for reliable web applications. https://elm-
lang.org. Accessed: 2021-08-11.

[20] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krish-
namurthi. [n.d.]. The structure and interpretation of the computer science
curriculum. 14, 4 ([n. d.]), 365–378. https://doi.org/10.1017/S0956796804005076

[21] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krish-
namurthi. [n.d.]. The TeachScheme! Project: Computing and Programming
for Every Student. Computer Science Education 14, 1 ([n. d.]), 55–77. https:
//doi.org/10.1076/csed.14.1.55.23499

[22] C. Harris. 2009. Meet the New School Board: Board Games Are Back–And They’re
Exactly What Your Curriculum Needs. School Library Journal 5 (2009), 24–26.

[23] Haskell. 2019. An advanced, purely functional programming language. https:
//www.haskell.org. Accessed: 2020-08-24.

[24] N. R. Holbert and U. Wilensky. 2011. Racing games for exploring kinematics: a
computational thinking approach. 7th Int.l Conf. on Games + Learning + Society,
109–118.

[25] John Hughes. [n.d.]. Experiences from teaching functional programming at
Chalmers. 43, 11 ([n. d.]), 77–80. https://doi.org/10.1145/1480828.1480845

[26] Niklas Humble. 2021. The use of Programming Tools in Teaching and Learning
Material by K-12 Teachers. https://doi.org/10.34190/EEL.21.117

[27] Stef Joosten, Klaas Van Den Berg, and Gerrit Van Der Hoeven. [n.d.]. Teaching
functional programming to first-year students. 3, 1 ([n. d.]), 49–65. https:
//doi.org/10.1017/S0956796800000599

[28] K. M. Kapp. 2012. The Gamification of Learning and Instruction: Game-Based
Methods and Strategies for Training and Education. Pfeiffer.

[29] C. Kazimoglu, M. Kiernan, L. Bacon, and L. MacKinnon. 2012. Learning pro-
gramming at the computational thinking level via digital game-play. Procedia
Computer Science 9 (2012), 522–531.

[30] Tomaž Kosar, Marjan Mernik, and Jeffrey C. Carver. 2012. Program compre-
hension of domain-specific and general-purpose languages: comparison using a
family of experiments. Empirical Software Engineering 17, 3 (2012), 276–304.

[31] Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Matej Pereira, Črepinšek,
Daniela Da Cruz, and Pedro Henriques Rangel. 2010. Comparing general-purpose
and domain-specific languages: An empirical study. Computer Science and Infor-
mation Systems 7, 2 (2010), 247–264.

[32] T. Y. Lee, M. L. Mauriello, J. Ahn, and B. B. Bederson. 2014. CTArcade: Com-
putational Thinking with Games in School Age Children. Int. Journal of Child-
Computer Interaction 2, 1 (2014), 26–33.

[33] T. Y. Lee, M. L. Mauriello, J. Ingraham, A. Sopan, J. Ahn, and B. B. Bederson. 2012.
CTArcade: Learning Computational Thinking Thile Training Virtual Characters
Through Game Play. In Human Factors in Computing Systems. 2309–2314.

[34] C. Mano, V. Allan, and D. Cooley. 2010. Effective In-Class Activities for Middle
School Outreach Programs. In Annual Conf. on Frontiers in Education. F2E–1–
F2E–6.

[35] J. Margolis and A. Fisher. 2003. Unlocking the Clubhouse: Women in Computing.
MIT Press, Cambridge, MA.

[36] Monika Mladenovi, Saa Mladenovi, and Žana Žanko. 2020. Impact of used
programming language for K-12 students’ understanding of the loop concept.
International Journal of Technology Enhanced Learning 12 (2020), 79–98.

[37] J. Parham-Mocello, S. Ernst, M. Erwig, E. Dominguez, and L. Shellhammer.
2019. Story Programming: Explaining Computer Science Before Coding. In
ACM SIGCSE Symp. on Computer Science Education. 379–385.

[38] J. Parham-Mocello and M. Erwig. 2020. Does Story Programming Prepare for
Coding?. In ACM SIGCSE Symp. on Computer Science Education. 100–106.

[39] J. Parham-Mocello, M. Erwig, and E. Dominguez. 2019. To Code or Not to Code?
Programming in Introductory CS Courses. In IEEE Int. Symp. on Visual Languages
and Human-Centric Computing. 187–191.

[40] Primo. 2018. Cubetto: Screenless Coding Toy for Girls and Boys Aged 3-6.
https://www.primotoys.com.

[41] Primo. 2020. Free beginner’s guide to Coding with Kids. https://www.primotoys.
com/guide-coding-for-kids-ebook/. Accessed: 2021-01-07.

[42] C. Ragatz and Z. Ragatz. 2018. Tabletop Games in a Digital World. Parenting for
High Potential 7 (2018), 16–19.

[43] L. A. Sharp. 2012. Stealth Learning: Unexpected Learning Opportunities Through
Games. Journal of Instructional Research 1 (2012), 42–48.

[44] R. Taub, M. Ben-Ari, and M. Armoni. 2009. The Effect of CS Unplugged on Middle-
School Students’ Views of CS. In SIGCSE Conf. on Innovation and Technology in
Computer Science. 99–103.

[45] R. Thies and J. Vahrenhold. 2013. On Plugging “Unplugged” Into CS Classes.
365–370.

[46] K. Tsarava, K. Moeller, and M. Ninaus. 2018. Training Computational Thinking
Through Board Games: The case of Crabs Turtles. Int. Journal of Serious Games
5, 2 (2018), 25–44.

[47] Geoff Wright, Peter J. Rich, and Robert Lee. 2013. The Influence of Teaching
Programming on Learning Mathematics.

Session: Programming novices ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

357

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 Our ChildsPlay Approach
	3.1 The Non-Programming Curriculum
	3.2 The Programming Curriculum

	4 Research Method
	5 Results
	5.1 How do students feel about the new approach and does this differ from the traditional approach?
	5.2 Does the new approach influence students' decisions to study CS differently than the traditional approach?
	5.3 Do students using the new approach perform differently in the orientation course than those students in the traditional approach?
	5.4 Does the new approach with a gentle slope into programming better prepare students for the subsequent C++ classes than the traditional programming-first approach?

	6 Conclusion
	Acknowledgments
	References

