
FPGA Acceleration of Deep Reinforcement Learning using
On-Chip Replay Management∗

Yuan Meng†
ymeng643@usc.edu

University of Southern California
Los Angeles, United States

Chi Zhang†
zhan527@usc.edu

University of Southern California
Los Angeles, United States

Viktor Prasanna
prasanna@usc.edu

University of Southern California
Los Angeles, United States

ABSTRACT
A major bottleneck in parallelizing deep reinforcement learning
(DRL) is in the high latency to perform various operations used to
update the Prioritized Replay Buffer on CPU. The low arithmetic
intensity of these operations leads to severe under-utilization of the
SIMT computation power of GPUs. In this work, we propose a high-
throughput on-chip accelerator for Prioritized Replay Buffer and
learner that efficient allocates computation and memory resources
to saturate the FPGA computation power. Our design features hard-
ware pipelining on FPGA such that the latency of replay operations
is completely hidden. Our experimental results show that the per-
formance of the key operations in managing Prioritized Replay
Buffer including sampling and priority insertions are improved by
factor of 21× ∼ 40× compared with the state-of-the-art implemen-
tations on CPU and GPU. In addition, our system design leads to
up to 4.3× improvement in overall throughput compared with the
state-of-the-art CPU-GPU implementations.

CCS CONCEPTS
• Computer systems organization → Parallel architectures.

KEYWORDS
prioritized replay buffer, deep reinforcement learning, FPGA
ACM Reference Format:
Yuan Meng, Chi Zhang, and Viktor Prasanna. 2022. FPGA Acceleration
of Deep Reinforcement Learning using On-Chip Replay Management. In
19th ACM International Conference on Computing Frontiers (CF’22), May 17–
19, 2022, Torino, Italy. ACM, New York, NY, USA, 9 pages. https://doi.org/
10.1145/3528416.3530227

1 INTRODUCTION
Reinforcement Learning (RL) is widely used in many application ar-
eas including self-driving cars, robotics, surveillance, etc. [2, 36, 38].
In RL, an agent iteratively interacts with an environment to im-
prove its policy such that the expected accumulated reward along
the trajectory is maximized. Existing distributed RL frameworks
[12, 16, 33] employ a general architecture consisting of parallel
∗This work is supported by NSF under grant No. CNS-2009057.
†Both authors contributed equally to the paper.

actors, a centralized learner and a Prioritized Replay Buffer [31]
as shown in Figure 1a. Parallel actors concurrently perform data
collection from the environment and data insertion into the Priori-
tized Replay Buffer. The centralized learner samples data from the
Prioritized Replay Buffer and performs stochastic gradient descent
(SGD) [30]. The new priorities after learning are updated in the
Prioritized Replay Buffer. The key operations of Prioritized Replay
Buffer include sampling and priority update. The priority of each
data point is proportional to the loss function, and the sampling
distribution is proportional to the priority. The priority of each
data point in the Replay Buffer is stored in a 𝐾-ary Sum Tree data
structure [41] that can perform sampling and update in 𝑂 (log𝑁)
time, where 𝑁 is the number of total data points in the Replay
Buffer.

The latency of sampling/priority update is high on CPU due to
the sequential execution of different data points in a batch. Although
it can be parallelized using multi-threading, it is undesirable as it
may slowdown the execution of actors. On GPU, sampling different
data points in a batch can be performed in parallel as it is a read-only
operation. However, both priority update and sampling have low
arithmetic intensity. This makes GPU-based acceleration memory
bound and fails to saturate the computation power of GPUs.

To tackle these drawbacks, we propose a generic accelerator on
CPU-FPGA heterogeneous platform to implement the architecture
in Figure 1a with a specialized on-chip Replay Management Module
(RMM) on FPGA. FPGAs have emerged as a promising platform
for accelerating both computation and memory intensive AI appli-
cations [4, 5, 18]. By efficiently allocating compute and memory
resources for Prioritized Replay Buffer on FPGA, the allocated re-
sources are fully utilized despite the low arithmetic intensity of
sampling and priority update. In our design, the latency of replay
operations is completely hidden via hardware pipelining. The re-
maining resources on FPGA are used to design a high-throughput
learner such that the computation power of FPGA is fully saturated
to achieve superior performance. Specifically, our key contributions
are:

• We map actors onto CPU for fast data collection and the
centralized learner onto FPGA for fast gradient computa-
tion. In particular, we map the RMM on FPGA to increase
system throughput and develop a data-structure hardware
co-optimization to further improve the performance.

• We develop a generic accelerator template in High Level
Synthesis (HLS) for a wide range of RL algorithms featuring
a novel Replay Management Module (RMM) that enables
parallel insertion, parallel sampling and parallel priority up-
dates of the𝐾-ary Sum Tree data structure [41]. We optimize
the performance of the RMM using:

40

CF’22, May 17–19, 2022, Torino, Italy Yuan and Chi, et al.

Data Storage

K-ary Sum Tree

Queue

Actor 1

Actor M

…

Synchronization

Environment

Policy Network

Local Storage

State

Action

Reward
Initial Priority

Environment

Policy Network

Local Storage

State

Action

Reward
Initial Priority

Initial Priority

Data Point

Prefix Sum Index

Batch Data

Stochastic Gradient Descent

Updated Priority

Weight Synchronization

CPU core

CPU core

Replay Management Module

Data Producer
Throughput Control

Learner

Prioritized Replay Buffer

(a) Framework overview

Root node

Level 1 node

Leaf node

<latexit sha1_base64="3PxVe2Wdz2jJJApdnqO4So6waPE=">AAACfnicfZBbaxQxFMfPTr3U8batj30JLpVWdJ2R0vZFaL2AL+KKblvYrEMme3aaNpcxyUiXYT6Pn8ZXxW9jZruCbcUDgV/+55/L+eelFM4nya9OtHTt+o2by7fi23fu3rvfXVk9cKayHIfcSGOPcuZQCo1DL7zEo9IiU7nEw/z0Vds//IrWCaM/+VmJY8UKLaaCMx+krLtPldAkq0VDqKtUVp+8SJvP7XawITYJLfALOSOUT4y/YPiYvWktJ5tx1u0l/WRe5CqkC+jBogbZSmedTgyvFGrPJXNulCalH9fMesElNjGtHJaMn7ICRwE1U+jG9XzWhqwHZUKmxoalPZmrf5+omXJupvLgVMwfu8u9VvxXb1T56e64FrqsPGp+/tC0ksQb0gZHJsIi93IWgHErwl8JP2aWcR/ijelrDLNYfBfufV+iZd7YxzVltlDsrAmzFfRJS/8zCv3HGChug00vx3gVDp730+3+1oet3t7LRcTLsAYPYQNS2IE9eAsDGAKHb/AdfsDPCKJH0dPo2bk16izOPIALFe3+BgbnwXg=</latexit>

min
i

iX

j=1

P (i) � x ·
SEX

j=1

P (j)

Prefix Sum
Index

Computation

Priority
Update

<latexit sha1_base64="EP6BYMDRIH72wUhKbjyu9kwygCg=">AAACR3icfVDLSgNBEJyNr7i+9ehlMQREJOxKUI9BPXgRFYwJZIP0TjrJkNmZZWZWDMv+hlf9HT/Br/AmHp3ECL6wYaCoqu7prijhTBvff3YKU9Mzs3PFeXdhcWl5ZXVt/VrLVFGsU8mlakagkTOBdcMMx2aiEOKIYyMaHI/0xi0qzaS4MsME2zH0BOsyCsZSYSitGCmgmOU3qyW/4o/L+w2CCSiRSV3crDnlsCNpGqMwlIPWrcBPTDsDZRjlmLthqjEBOoAetiwUEKNuZ+Olc69smY7Xlco+Ybwx+7Ujg1jrYRxZZwymr39qI/IvrZWa7mE7YyJJDQr68VE35Z6R3igBr8MUUsOHFgBVzO7q0T7YDIzNyQ1P0N6i8MzOPU9QgZFqJwtB9WK4y+1tvXB3hP4zMvFptMh1bbDBzxh/g+u9SrBfqV5WS7WjScRFskm2yDYJyAGpkVNyQeqEkoTckwfy6Dw5L86r8/ZhLTiTng3yrQrOO4WMsdw=</latexit>z}|{ <latexit sha1_base64="EP6BYMDRIH72wUhKbjyu9kwygCg=">AAACR3icfVDLSgNBEJyNr7i+9ehlMQREJOxKUI9BPXgRFYwJZIP0TjrJkNmZZWZWDMv+hlf9HT/Br/AmHp3ECL6wYaCoqu7prijhTBvff3YKU9Mzs3PFeXdhcWl5ZXVt/VrLVFGsU8mlakagkTOBdcMMx2aiEOKIYyMaHI/0xi0qzaS4MsME2zH0BOsyCsZSYSitGCmgmOU3qyW/4o/L+w2CCSiRSV3crDnlsCNpGqMwlIPWrcBPTDsDZRjlmLthqjEBOoAetiwUEKNuZ+Olc69smY7Xlco+Ybwx+7Ujg1jrYRxZZwymr39qI/IvrZWa7mE7YyJJDQr68VE35Z6R3igBr8MUUsOHFgBVzO7q0T7YDIzNyQ1P0N6i8MzOPU9QgZFqJwtB9WK4y+1tvXB3hP4zMvFptMh1bbDBzxh/g+u9SrBfqV5WS7WjScRFskm2yDYJyAGpkVNyQeqEkoTckwfy6Dw5L86r8/ZhLTiTng3yrQrOO4WMsdw=</latexit>z}|{
<latexit sha1_base64="EP6BYMDRIH72wUhKbjyu9kwygCg=">AAACR3icfVDLSgNBEJyNr7i+9ehlMQREJOxKUI9BPXgRFYwJZIP0TjrJkNmZZWZWDMv+hlf9HT/Br/AmHp3ECL6wYaCoqu7prijhTBvff3YKU9Mzs3PFeXdhcWl5ZXVt/VrLVFGsU8mlakagkTOBdcMMx2aiEOKIYyMaHI/0xi0qzaS4MsME2zH0BOsyCsZSYSitGCmgmOU3qyW/4o/L+w2CCSiRSV3crDnlsCNpGqMwlIPWrcBPTDsDZRjlmLthqjEBOoAetiwUEKNuZ+Olc69smY7Xlco+Ybwx+7Ujg1jrYRxZZwymr39qI/IvrZWa7mE7YyJJDQr68VE35Z6R3igBr8MUUsOHFgBVzO7q0T7YDIzNyQ1P0N6i8MzOPU9QgZFqJwtB9WK4y+1tvXB3hP4zMvFptMh1bbDBzxh/g+u9SrBfqV5WS7WjScRFskm2yDYJyAGpkVNyQeqEkoTckwfy6Dw5L86r8/ZhLTiTng3yrQrOO4WMsdw=</latexit>z}|{ Summation

<latexit sha1_base64="EP6BYMDRIH72wUhKbjyu9kwygCg=">AAACR3icfVDLSgNBEJyNr7i+9ehlMQREJOxKUI9BPXgRFYwJZIP0TjrJkNmZZWZWDMv+hlf9HT/Br/AmHp3ECL6wYaCoqu7prijhTBvff3YKU9Mzs3PFeXdhcWl5ZXVt/VrLVFGsU8mlakagkTOBdcMMx2aiEOKIYyMaHI/0xi0qzaS4MsME2zH0BOsyCsZSYSitGCmgmOU3qyW/4o/L+w2CCSiRSV3crDnlsCNpGqMwlIPWrcBPTDsDZRjlmLthqjEBOoAetiwUEKNuZ+Olc69smY7Xlco+Ybwx+7Ujg1jrYRxZZwymr39qI/IvrZWa7mE7YyJJDQr68VE35Z6R3igBr8MUUsOHFgBVzO7q0T7YDIzNyQ1P0N6i8MzOPU9QgZFqJwtB9WK4y+1tvXB3hP4zMvFptMh1bbDBzxh/g+u9SrBfqV5WS7WjScRFskm2yDYJyAGpkVNyQeqEkoTckwfy6Dw5L86r8/ZhLTiTng3yrQrOO4WMsdw=</latexit>

z}|{
New Priority New Priority

(b) Illustration of sampling and priority update in Pri-
oritized Replay Buffer

Figure 1: A generic view of parallel reinforcement learning

– Specialized variable-precision fixed point data format for
storing priority values in the RMM;

– Partitioning of the 𝐾-ary Sum Tree that enables conflict-
free parallel data accesses;

– Pipelined replay operations that allow concurrent access
to multiple memory banks storing the 𝐾-ary Sum Tree.

• Wedevelop a generic throughput-oriented learnermodule on
FPGA that exploits both neural network model parallelism
and data parallelism.

• For widely used RL algorithms including DQN [23] and
DDPG [21], our experimental results demonstrate that: 1)
our on-chip RMM achieves up to 21× ∼ 40× speedup on key
operations compared with the CPU and GPU baselines; and
2) the throughput of the overall system is improved by 4.3×.

2 PARALLEL REINFORCEMENT LEARNING
2.1 WorkFlow Overview
We show a generic view of existing parallel RL workflow [8, 12, 16]
in Figure 1a. It consists of 4 key components:

2.1.1 Actors. Each actor contains an instance of the environment, a
policy network represented as a neural network and a local storage.
The environment outputs the current state 𝑠 . The policy network
computes the action 𝑎 given the current state 𝑠 via neural network
inference. The action 𝑎 is actuated in the environment to obtain
the next state 𝑠 ′ and the reward 𝑟 . The policy network computes
the current loss 𝑃 as the initial priority using (𝑠, 𝑎, 𝑠 ′, 𝑟). Each actor
contains a local storage to temporarily store the data points con-
sisting of tuple (𝑠, 𝑎, 𝑠 ′, 𝑟 , 𝑃) collected by the actor. When the local
storage is full, all the data points are popped out and inserted into
a shared Queue. The data points in the shared Queue are inserted
into the global Prioritized Replay Buffer [31].

2.1.2 Prioritized Replay Buffer. Prioritized Replay Buffer [31] has
been proposed to sample data points with probability proportional
to the current loss to speed up training. It consists of a Data Storage
and a Replay Management Module (RMM). Data Storage is used to
store data points produced by the actors. During training, batches
of data points of size B are popped out from the Queue and inserted
into next available locations in the Data Storage. FIFO replacement
policy is used when the Data Storage is full. RMM manages the
priority 𝑃𝑖 associated with the 𝑖-th data point in the Data Storage.
Internally, it is implemented as a 𝐾-ary Sum Tree [41]. In a 𝐾-ary

Sum Tree, each node has 𝐾 child nodes and the value of each node
is the sum of values of its child nodes. The 𝑖-th leaf node stores
the actual priority value 𝑃𝑖 . A 𝐾-ary Sum Tree provides efficient
prefix sum index computation for sampling to perform training and
priority update after each training iteration.

Key operations. Sampling from the Prioritized Replay Buffer
decides which samples (indices) are used for training the neural
network. For each sample, a data point 𝑥𝑖 is selected according to
a priority distribution Pr(𝑖) = 𝑃 (𝑖)/∑𝑖 𝑃 (𝑖), 𝑖 ∈ [0, 𝑆𝐸), where 𝑆𝐸
is the total number of data points in the Prioritized Replay Buffer.
To do so, we first sample 𝑥 ∼ 𝑈 (0, 1). Then, we use the cumulative
density function (𝑐𝑑 𝑓 =

∑𝑖
𝑗=1 Pr(𝑗), 𝑖 ∈ [0, 𝑆𝐸)) to derive the sample

index 𝑖 = 𝑐𝑑 𝑓 −1 (𝑥). This is equivalent to finding the minimum
index 𝑖 , such that the prefix sum of the probability up to 𝑖 is greater
than or equal to 𝑥 , the target prefix sum value:

min
𝑖

𝑖∑︁
𝑗=1

𝑃 (𝑖) ≥ 𝑥 ·
𝑆𝐸∑︁
𝑗=1

𝑃 (𝑗) (1)

Such index 𝑖 is known as prefix sum index. To find index 𝑖 , we
traverse from the root node to the leaf node level by level as shown
in Figure 1b. During the traversal of each level, we need to read
the prefix sum of priority values from all the child nodes. The time
complexity of finding prefix sum index is 𝑂 (𝐾 log𝐾 𝑁), where 𝑁
is the number of elements in the replay buffer. Priority Update
requires updating the current priorities using newly computed
priorities. This operation is performed after each training iteration.
To update the priority, we update the node values from the leaf
node to the root node as shown in Figure 1b. The time complexity of
priority update is 𝑂 (log𝐾 𝑁). Data Insertion is performed when
new data points are popped out from the Queue. Data Insertion
includes inserting the actual data points into the Data Storage and
updating the priorities from zero to the initial values.

Data Parallelism. Note that sampling and priority update are
always performed on a batch of data with size B. Since computing
the prefix sum index is read-only, sampling different data points
inside a batch can be fully parallelized. Performing priority update
on a batch of data can be reduced to classic parallel sum reduction
problem as shown in Figure 1b.

Arithmetic Intensity. The ratio of number of operations per-
formed to the amount of data accessed is known as the algorithm’s

41

FPGA Acceleration of Deep Reinforcement Learning using On-Chip Replay Management CF’22, May 17–19, 2022, Torino, Italy

Figure 2: (a) Existing High-Level CPU-GPU Mapping; and (b) Our Proposed FPGA-based mapping

16 32 64 128 256
Batch Size

0.0

2.5

5.0

7.5

10.0

12.5

Ex
ec

ut
io

n
Ti

m
e

(m
s)

CPU-GPU mapping

16 32 64 128 256
Batch Size

0

2

4

6

Ex
ec

ut
io

n
Ti

m
e

(m
s)

GPU-based mapping

Prefix Sum Index
Data Transfer

Forward Propagation
Backward Propagation

Stochastic Gradient Descent
Priority Update

Figure 3: Execution time breakdown of a training iteration.
Data Transfer refers to sending data points from the Data
Storage to the learner.

arithmetic intensity [26]. The arithmetic intensity of sampling is
1 FLOPS/word as each data read from the memory is only used
once during the tree traversal. The arithmetic intensity of priority
update is 0.5 FLOPS/word because each data is used once after each
read and write.
2.1.3 Learner. Following [8, 12, 16], we use a centralized learner to
perform policy updates due to its stability in terms of convergence.
At each step, the learner i) samples a batch of indices via the RMM;
ii) accesses the actual data points in the Data Storage using the
sampled indices; iii) performs forward propagation to compute the
loss; iv) performs backward propagation to compute the gradients;
v) updates the weights of the neural network using the gradients
via stochastic gradient descent [30]; iv) updates the priorities of
the sampled batch data using the loss via the Replay Management
Module.

2.2 Performance Metric
The execution of actors and the centralized learner are independent.
The throughput of data collection is fixed given the total number of
actors. Thus, the convergence rate of parallel RL is fully determined
by the throughput of the learner. Following existing work [8, 12, 16],
we measure the performance using training throughput, which
is defined as the number of gradient steps performed by the learner
per second (GPS).

2.3 Mapping Methodology Overview
In this section, we discuss potential mapping methodologies and
motivate the implementation of RMM and training on FPGA. The

Table 1: Potential Mapping Methodologies

Mapping Actors Learner RMM Data Storage
CPU-GPU 1 actor/CPU core GPU CPU CPU DRAM
GPU-based 1 actor/CPU core GPU GPU GPU DRAM
FPGA-based 1 actor/CPU core FPGA FPGA FPGA DRAM

training throughput is affected by the speed of prefix sum in-
dex computation, data transfer from Data Storage to device
memory, neural network training and priority update. Po-
tential mapping methodologies are shown in Table 1. Following
[8, 12, 16], each actor is mapped onto a CPU core. This is because
most environment simulators can only run on CPU. The learner is
always mapped onto the accelerator (GPU or FPGA) for fast neural
network updates.

2.3.1 CPU-GPU and GPU-based Mapping. We show a high-level
execution timeline of CPU-GPU and GPU-based mapping in Fig-
ure 2. Note that RMM is implemented as a binary Sum Tree fol-
lowing existing open-source RL frameworks [20]. In CPU-GPU
mapping, the RMM is implemented on CPU. The Data Storage is
in host DDR memory. During a training iteration of the learner, a
batch of data is sampled from the Prioritized Replay Buffer based
on the priority distribution. The data is transferred from the host
DDR memory to the GPU memory. Then, the GPU computes the
forward propagation to obtain the loss, which is the new priority.
It then sends the new priority to RMM for priority update. In the
meantime, the GPU performs the backward propagation and per-
forms stochastic gradient descent [30] to update the weights of the
neural network.

Limitations of CPU-GPU mapping. We show the execution time
breakdown of CPU-GPU mapping in Figure 3. Specifically, we pro-
file the performance of DQN [23] in Ape-X [12] framework using
open source RLlib [20] on LunarLander environment [1]. The policy
network is a 3-layer MLP with hidden layer size 256. The RMM is
executed using a single thread. The limitations of CPU-GPU map-
ping are: i) data transfer time: As the batch size increases, the
data transfer time is comparable with forward propagation time,
which slows down the learner. ii) limited cores for thread-level
data parallelism: As shown in Section 2.1.2, data parallelism can
be utilized to accelerate sampling and priority update. However,
existing parallel RL frameworks allocate up to hundreds of actors,

42

CF’22, May 17–19, 2022, Torino, Italy Yuan and Chi, et al.

each running on a CPU core [12]. This makes allocation of addi-
tional threads for Replay Management Module undesirable as it
may slowdown the data collection and the overall system.

Limitations of GPU-based mapping. We show the execution time
breakdown of GPU-based mapping in Figure 3 with the same con-
figuration as in CPU-GPUmapping. Note that the data transfer time
is almost negligible as RMM stores all the data on GPU. We observe
that the breakdown of different batch sizes are almost identical. It
indicates that the SIMT of GPUs can fully parallelize the execution
of different data points inside a batch. However, the low arithmetic
intensity of sampling and priority update makes these operations
memory bound and the GPU threads idle most of the time.

2.3.2 FPGA-based Mapping.

Memory requirement. A typical Prioritized Replay Buffer con-
tains 10𝐾 to 1𝑀 data points [23]. The number of nodes in a 𝐾-ary
Sum Tree is at most 2 times the Buffer size 𝐾 = 2. Each node con-
tains a 32-bit floating point (4 byte) priority value. Thus, it takes
0.08MB to 8MB to store the 𝐾-ary Sum Tree. It is smaller than
the available on-chip memory of most state-of-the-art data center
FPGAs [13, 39]. Therefore, we implement the RMM using on-chip
memory to achieve high performance. For tasks using image-based
state space like Atari Games [1], it consumes around 7 GB memory
with 1 million 84 × 84 gray-scale images. Thus, the complete data
can be stored in FPGA DDR memory [13, 39]. This avoids the data
transfer between the host and the device during replay sampling.

High-level methodology. By efficiently allocating computation
and memory resources for Prioritized Replay Buffer on FPGA, the
allocated computation resources can be fully utilized despite the
low arithmetic intensity of sampling and priority update. In ad-
dition, the latency of sampling, priority update and training can
be completely hidden via hardware pipelining. The remaining re-
sources on FPGA are used to design a high-throughput learner such
that the computation power of FPGA is fully utilized to achieve
superior performance.

Applicability. Note that the advantages of FPGA-based mapping
is only applicable when the system bottleneck is the RMM. If the
training becomes the bottleneck (e.g., the total time to perform for-
ward propagation, backward propagation and stochastic gradient
descent can fully hide the RMM operations as shown in Fig. 2), the
performance of GPU-basedmappingwill be superior to FPGA-based
mapping due to higher GPU device performance (clock frequency,
larger number of floating-point compute cores, etc). However, the
neural network used to solve tasks with low-dimensional state
space is 3-layer perceptron (MLP) in existing RL implementations
as shown in [21, 23]. In this case, the computation time of RMM
operations including prefix sum index computation and priority
update dominates that of MLP training.

3 ACCELERATOR DESIGN
We employ parallel actors on the CPU to collect data points from
the environment and pipelined learners on the FPGA to compute
the gradients and update the neural network weights. The overall
system architecture is shown Fig. 4. The data points collected by the
actors are sent to and stored in the FPGA DRAM, and their indices

and priorities are managed using RMM on the FPGA on-chip SRAM.
All activations and gradients are stored on-chip. Neural network
weights are stored in the Device memory and streamed on-chip as
needed. Our accelerator consists of two top-level building blocks: 1.
a K-ary Sum Tree based RMM for accelerating Replay operations
and 2. a Learner Module that supports high-throughput training.

Figure 4: System Architecture

3.1 On-chip RMM
The primary objectives of our RMM design are: (1) providing suffi-
cient effective memory bandwidth to alleviate the communication
bottleneck in performing low-arithmetic replay operations. (2) over-
lapping the Sum Tree traversals of different data points in a batch
as well as overlapping computation with data accesses using hard-
ware pipelining. The basic hardware units for performing replay
operations are the samplers and updaters. Note that an updater is
responsible for both priority insertion and priority updates.

To achieve objective (1), we store the complete 𝐾-ary Sum Tree
data structure using the on-chip SRAM on the FPGA. The nodes
of the Sum Tree are ordered by tree level, and nodes in the same
level are distributed to one or multiple SRAM banks. Each sam-
pler/updater requires read/write access to one word every clock
cycle, and each SRAM bank provides single-cycle access to any data
element through a read/write port. To exploit the maximal effec-
tive SRAM bandwidth in performing the replay operations such
that they are no longer memory-bound, we need to ensure that
in each clock cycle, all the samplers and updaters can access the
data without bank conflicts. Therefore, we propose a fined-grained
scheduling to avoid any race condition in reading or modifying the
same bank. Specifically, we allocate 𝐻 samplers (updaters), where
𝐻 is the tree height. Each sampler (updater) is only allowed to
access a "critical region" of the Sum Tree at any time. A "critical
region" is defined as a group of nodes in a certain level of the tree.
Nodes on different levels are stored in separate SRAM banks. In
any cycle, 𝐻 samplers (updaters) can concurrently access different
critical regions of the 𝐾-ary Sum Tree, ensuring no bank conflict
and stall-free pipelining explained in the following.

To achieve objective (2), we apply pipelining to both sampling
and update processes. The sampling process for each data point
sequentially propagates through 𝐻 levels and tracks the prefix sum,
𝑃 , by accumulating the values from all 𝐾 nodes (described in Sec.
2.1.2). We thus exploit pipeline parallelism between different data
points in a batch. As shown in Fig. 5, the samplers are connected by
FIFOs, each responsible for traversing up to 𝐾 sibling nodes in the
same level. As soon as a sampler 𝑑 (0 < 𝑑 ≤ 𝐻) complete processing
data point 𝑎 (0 < 𝑎 ≤ batch size), sampler 𝑑 + 1 starts processing
data point 𝑎 and sampler 𝑑 starts processing data point 𝑎 + 1 in

43

FPGA Acceleration of Deep Reinforcement Learning using On-Chip Replay Management CF’22, May 17–19, 2022, Torino, Italy

parallel. This way, the parallelism provided by all the samplers
is fully utilized for batch sampling. The state machine logic for
processing 𝐾 sibling nodes in sampler 𝑑 based on the prefix sum 𝑃
is shown in Fig. 5. At the leaf level, the index where 𝑃 reaches 𝑥 ′ is
the minimum index 𝑖 whose prefix sum value ≥ the target prefix
sum value 𝑥 ·∑𝑆𝐸𝑗=1 𝑃 (𝑗) (RHS of Eq. 1), meaning that the data point
at index 𝑖 should be sampled. For the priority update operations, 𝐻

Figure 5: Replay Samplers and Updaters. 𝜏 (𝜏 +𝐾) is the index
of the left (right)-most child node in the current level.

updaters concurrently update the sum values at each level using the
TD error obtained at the learner LOSS stage (The learner pipeline
is introduced in Sec. 3.2). A FIFO is used as the communication
channel between the learner pipeline and the updaters. The replay
update process is overlapped with subsequent computations in the
learner pipeline. To eliminate computation overhead of updaters in
back-tracking the Sum Tree, we apply Memoization technique that
dedicates a light-weight buffer (Fig. 5) to store the traversed path.
This buffer only needs to store 𝐻 − 1 values for each data point,
because the update of a priority value require updating the prefix
sum values at its 𝐻 − 1 parents including the root.

HLS-generated floating point accumulator takes multiple cycles
to compute [6], introducing loop-carried dependency in the pre-
fix sum accumulation computation. This leads to pipeline stalls
and prevents us from efficiently overlapping computation with
data accesses as stated in objective (2). To workaround such ineffi-
ciency, we use fixed-point arithmetic that only requires single-cycle
accumulation. We introduce a variable-precision fixed-point rep-
resentation scheme specialized for storing the Sum Tree. We first
identify the upper bound of the sum of the priorities. The upper
bound is used to decide the range and integer bit-width of the root
register. Each of the subsequent levels adopts integer bit-width of
𝑊𝑏 =𝑊 𝑝𝑎𝑟𝑒𝑛𝑡

𝑏
−log2 𝐾 to avoid any overflow in calculating the sum

of all 𝐾 child values. This representation scheme does not affect
the sampling result compared with floating point representation.

Overall, our RMM design enables single-cycle arithmetic operations
with single-cycle data accesses, such that the replay operations can be
completely hidden (overlapped) by the execution of Learner Module.

3.2 Learner Module
As the latency of replay operations are hidden by the training
process of the learner, the learner becomes the bottleneck in FPGA-
based mapping. Therefore, we carefully design the Learner Module
with the goal of minimizing the execution time of each gradient step.
SGD training algorithms consists of forward propagation (FW), loss
computation (LOSS), backward propagation (BW), weight aggrega-
tion (WA) and weight update (WU) steps. The design principle of
the Learner Module is to support both pipelining across different
layers of the neural network and data parallelism (e.g., a batch of

data points is split into smaller batches and processed concurrently).
Based on this principle, we design a Multi-Pipeline Dataflow archi-
tecture composed of multiple learner pipelines and a module for
WU weight gradient reduction as shown in Fig. 6. We also define
the following two hardware parameters in the Learner Module:

Figure 6: Learner Module Architecture: Multi-Pipeline
Dataflow for 𝐿 =3 MLP neural network. 𝐿𝑖 denotes 𝑖𝑡ℎ Layer.
3.2.1 Pipelining Factor 𝑃𝐼 . 𝑃𝐼 is the number of data points in the
sub-batch processed by a learner pipeline. The learner pipeline for
a 𝐿-layer neural network model consists of 𝑛 = 3 × (𝐿 − 1) stages:
FW through (𝐿−1) layers of policy and value networks, computing
LOSS, BW through (𝐿 − 2) layers, and WA for all (𝐿 − 1) weight
tensors. Each of these stages is mapped to a unique Tensor Unit
(i.e. systolic array of Multiply-Accumulate units), 𝑇𝑈𝑖 , 𝑖 ∈ [1, ..., 𝑛].
To realize data streaming between stages, these modules (𝑇𝑈 s)
are connected by FIFOs, as depicted in Fig. 6. Note that as soon
as the producer stage of a FIFO pushes data into the FIFO, the
consumer stage pops data immediately in the next cycle and start
executing. The gradients generated by each sample in the WA stage
are accumulated into a scratchpad memory to be further aggregated
with other pipelines.

3.2.2 Data Parallel Factor 𝐷𝑃 . 𝐷𝑃 is the number of parallel learner
pipelines in the Learner Module. It captures the data parallelism of
the learner Module. Specifically, we make 𝐷𝑃 copies of the pipeline
described in Sec. 3.2.1 to process sub-batches in parallel, as depicted
in Fig. 6. After the intermediate weight gradients are obtained by
all the 𝐷𝑃 pipelines, the WU stage modifies the weight tensors
based on the reduction over all scratchpads. Note the WU task is
serialized with the FW-BW-LOSS-WA stages of learner pipelines.
This avoids read-after-write hazards by ensuring that weights are
not modified during the FW and BW execution.

Note that the product of 𝑃𝐼 and 𝐷𝑃 equals the total batch size
processed by the Learner Module. Conceptually, for a given batch
size, higher Data Parallel Factor achieves higher throughput for
FW-BW-WA stages, but causes longer overhead for reduction over
all the pipelines. High Data Parallel and low Pipelining Factor also
lead to low effective hardware utilization in each pipeline if 𝑃𝐼 is too
small to saturate the concurrency provided by all 𝑛 stages. The Data
Parallel Factor and Pipelining Factor need to be carefully chosen
for achieving the best performance under the constraints of a given
FPGA device. We further describe the design space exploration
process for searching the optimal accelerator parameters.

3.2.3 Learner Design Space Exploration. The overall learner latency
𝑇𝑙𝑒𝑎𝑟𝑛𝑒𝑟 = 𝑇𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 +𝑇𝑊𝑈 for one RL gradient step is determined
by 𝑃𝐼 , 𝐷𝑃 and compute resources allocated to the pipeline stages
under the constraint of available resources. To minimize 𝑇𝑙𝑒𝑎𝑟𝑛𝑒𝑟 ,
we define a general methodology to derive the desired hardware

44

CF’22, May 17–19, 2022, Torino, Italy Yuan and Chi, et al.

parameters on any target device to minimize learner latency. Our
DSE follows two steps:

a). Pipeline Local Optimization: The latency of a pipeline is
characterized by 𝑇𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = (𝑃𝐼 + 𝑛 − 1) ×𝑇𝑚𝑎𝑥 . As 𝑃𝐼 increases,
𝑛 becomes negligible and the performance is bounded by the la-
tency of the slowest pipleine stage, 𝑇𝑚𝑎𝑥 =𝑚𝑎𝑥𝑛𝑖=1𝑇𝑖 . The latency
of a pipeline stage can be theoretically modeled as the number
of operations processed divided by the total number of Multiply-
Accumulation units (or DSP units) assigned to the 𝑇𝑈 . For given
𝑛 and 𝑃𝐼 , to minimize 𝑇𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 , 𝑇𝑚𝑎𝑥 needs to be minimized. This
means that the latencies of all 𝑛 stages need to be balanced. There-
fore, we allocate compute resources (DSP units) to each 𝑇𝑈 pro-
portional to the number of multiply-add operations in each stage.
This ensures high pipeline resource utilization without expensive
exhaustive search of all the combinations of resource allocations to
stages. Specifically, we derive a ratio 𝑟1 ...𝑟𝑛 for 𝑛 stages, normalized
to the stage with minimum number of operations. The total number
of DSPs allocated to𝑇𝑈𝑖 , 𝑖 ∈ [1...𝑛]) is 𝑟𝑖× 𝑓 , where 𝑓 is a factor that
controls the total amount of DSPs allocated to a learner pipeline. 𝑓
is derived in Step b). Global Optimization.

b). Global Optimization: The second part of the learner la-
tency,𝑇𝑊𝑈 , captures the latency of reduction over𝐷𝑃 intermediate
weight gradients and the latency of WU for all weight tensors:
𝑇𝑊𝑈 =

∑𝐿
𝑗=1 (𝐷𝑃 × 𝑠𝑖𝑧𝑒 (𝑊𝑗))/(𝑟𝑊𝑈 × 𝑓). Note that 𝑟𝑊𝑈 × 𝑓 is

the total number of DSPs allocated to the WU stage. To exploit the
maximum parallelism in WU, we let 𝑟𝑊𝑈 to be consistent with the
number of SRAM banks for storing the weights.

Given a training batch size 𝐵𝑆 , we determine the optimal combi-
nation of 𝑃𝐼 and 𝐷𝑃 by searching for all possible combinations in
𝐵𝑆 steps and applying steps a) and b) described above to obtain the
minimum𝑇𝑙𝑒𝑎𝑟𝑛𝑒𝑟 parameterized with 𝑓 : argmin

𝐷𝑃,𝑃𝐼
(𝑇𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 +𝑇𝑊𝑈)

Then, we increment 𝑓 until one of the resource constraints (avail-
able number of DSPs, SRAM banks, Look-Up Tables) is reached.

3.2.4 Learner: Algorithm-Specific Scheduling.

Target Network. State-of-the-art Deep RL algorithms [9, 28] use
target network(s) to stabilize training by using a fixed target through-
out sequential episodes of training. We create parallel chains of
Tensor Units to perform FW through both the value (or policy)
network(s) and the target network(s) at the same time. We also
develop a Target Synchronization Module (TSM) to average the
target weights with the value (or policy) network weights [21]. The
TSM is activated every fixed number of gradient steps as controlled
by the main loop running on the host.

Actor-Critic. Actor-Critic algorithms (e.g., DDPG, SAC [9]) in-
volve an actor network that produces an action and a critic network
that approximates the value of a state-action pair. The actor and
critic networks are trained interactively (The training process of
the actor also involves the FW and BW of the critic). For actor-critic
algorithms, we organize the 𝑇𝑈𝑠 based on the task dependency
graph for training both networks. Generally, the update of actor
network is dependent on that of the critic [11]. We use a "Lagged
Critic" mechanism to let the actor network use the obsolete critic
weights from the previous training iteration (i.e., gradient step)
when updating actor weights. This eliminates the intra-iteration

read-after-write dependency between the critic network WU (write
critic weights) and critic FW/BW in training the actor network
(read critic weights). It lags the critic update (serving for the actor
update) by only one iteration, which is a negligible cost compared
to the millions of iterations required in total [11, 37].

4 EVALUATION
4.1 Experimental Setup

RL environments and algorithms: We choose widely used
benchmarks CartPole and LunarLander [1] to evaluate the perfor-
mance of our proposed methods. We evaluate our methods using
two widely used RL algorithms DQN [23] and DDPG [21].

Toolchains: We develop a parameterized FPGA kernel template
using High-Level Synthesis (HLS) for quick customization and easy
integration with domain-specific frameworks (e.g., Pytorch [29]).
We follow the VITIS hardware development flow [17] for bitstream
generation. OpenCL is used to implement the data transfer between
the host and the FPGA.

Hyper-parameters: Following the default hyper-parameters
of existing RL algorithms [21, 23], the neural network models for
approximating the Q function and the policy are 3-layer MLP with
64 hidden units. The size of the Prioritized Replay Buffer is 1 million.
We set 𝐾 = 64 in the 𝐾-ary Sum Tree.

Hardware: Our experiments are conducted on Intel(R) Xeon(R)
Gold 5120 CPU, a GTX 3090 GPU and a Xilinx Alveo U200 acceler-
ator board [40].

Figure 7: Illustration of design space exploration (DSE). The
learner latency is normalized to the value at 𝐷𝑃 = 1, 𝑓 = 1.
The OPT Design Point yields the minimum latency within
the DSE bound.

4.2 Optimal Accelerator Configuration
We identify the optimal accelerator configuration for a given RL
algorithm, batch size and target device constraints following the
procedure of design space exploration (DSE) as described in Sec.
3.2.3. In Fig. 7, we show an example of identifying the optimal 𝐷𝑃
and 𝑓 for accelerating DQN with batch size 64. We search all combi-
nations of 𝐷𝑃, 𝑃𝐼 (𝐷𝑃 × 𝑃𝐼= batch size) and increase 𝑓 until finding
the design point that yields the lowest learner latency for one com-
plete gradient step within the hardware resource constraints. We
summarize the final hardware resource utilization obtained using
the DSE for both the algorithms in Table 2. On-chip BRAM and
URAM are both included as the SRAM resources on Xilinx FPGAs
[39]. In modern multi-die FPGAs, an FPGA chip is built by a man-
ufacturing process that combines multiple Super-Logic Regions

45

FPGA Acceleration of Deep Reinforcement Learning using On-Chip Replay Management CF’22, May 17–19, 2022, Torino, Italy

Table 2: Accelerator Configuration and Resource Utilization
Algorithm Hardware parameters and resource utilization

DQN
(Percentages
are derived
wrt 2 SLRs

on the device)

Pipeline
Factor
(𝑃𝐼)

Data Parallel
Factor
(𝐷𝑃)

Max. 𝑇𝑈
Parallelism
(𝑟 × 𝑓)

SLR
Constraint

(RMM, learner)
BS/2 2 32 (1,1)
SRAM REG LUT DSP
6.6 MB
(47%)

459 K
(43%)

346 K
(67%)

1600
(45%)

DDPG
(Percentages
are derived
wrt 3 SLRs

on the device)

Pipeline
Factor
(𝑃𝐼)

Data Parallel
Factor
(𝐷𝑃)

Max. 𝑇𝑈
Parallelism
(𝑟 × 𝑓)

SLR
Constraint

(Replay, learner)
BS/2 2 32 (1,2)
SRAM REG LUT DSP
9.2 MB
(28%)

1035 K
(58%)

708 K
(81%)

2560
(43%)

(SLRs) components (i.e., dies) mounted on a passive Silicon Inter-
poser [39]. During place and route of our design, cross-SLR routing
results in long wires that reduces operating clock frequency. To
better port our design to modern FPGAs composed of multiple SLRs,
we limit the resource constraint to 1 SLR in our DSE for DQN [23]
learners module, and 2 SLRs for DDPG [21] learners module, This
helps in ensuring fast routing and higher clock frequency of the
design.

4.3 Evaluation of RMM and Learner Module
4.3.1 Replay Management Module. In order to show the superior-
ity of our proposed Replay Management Module (RMM) on FPGA,
we compare against two baselines discussed in Section 4.1. Specif-
ically, we compare the time for sampling, insertion and priority
update of the implementations with increasing batch size. The re-
sults are shown in Fig. 8. Sampling is often the bottleneck since
it cannot be hidden during the training process. Even with ∼ 7×
slower operating frequency, our RMM achieves up to 7.4× and 21×
lower latency on batch sampling compared with optimized 𝐾-ary
Sum Tree implementations using CPU and GPU, respectively. Up
to ∼ 40× (∼ 125×) speedup is observed for insertion (update). The
performance improvement are mainly from (1) on-chip Replay Man-
agement enables single-cycle data accesses to all the priority values.
(2) RMM on FPGA ensures parallel accesses to multiple levels of
the Sum Tree at any time during the training due to fine-grained
pipeline scheduling of Replay accesses without memory bank con-
flicts. Note that the insertions take longer than replay updates on
FPGA-accelerated RMM. This is due to the inevitable PCIe latency
that occurs when transferring data from host memory to device
memory for insertion into the replay Data Storage. However, it does
not add extra overheads to the overall system throughput (𝐺𝑃𝑆)
because the latency is completely hidden by the learners training
process.

4.3.2 Learners Module. We evaluate the speed up of learners ac-
celeration using the execution time per gradient step for various
batch sizes. We profile the training execution time per gradient
step of an optimized Pthreads implementation. The baseline im-
plementations are evaluated on the GPU. Fig. 9 shows the training
execution time per gradient step of DQN [23] and DDPG [21] on the
same benchmark environment CartPole [24]. GPU threads can con-
currently process independent samples in a batch in forward and

Figure 8: Scalability comparison of Replay implementations

Figure 9: Comparison of learners performance

backward propagation and re-use the weights. The performance of
GPU learner depends on the high data-reuse and high arithmetic
intensity of large batch sizes. The high memory access latency with
low data re-use in smaller batch size training severely hinder GPU
performance as shown in Fig. 9. The external memory fetch dom-
inates the execution while the amount of arithmetic operations
cannot saturate all the 10K Cuda Cores. While GPU scales better
to larger batch sizes, existing work has shown that RL algorithms
trained using batch size larger than 256 are prone to converge to
local optimums [37]. The FPGA Learner Module takes advantage
of both batched data streaming in a pipelined manner and data
parallelism across batches. We partition the weight buffers and
the scratchpad memory (Sec. 3.2) to match the parallelism factor
𝑓 in each layer. This ensures that we provide enough bandwidth
and low-latency (single-cycle) memory access to match the rate
of data consumption by the computing units. Overall, we observe
consistent speedup ranging from 1.5× to 4.3× for all the batch sizes.

4.3.3 System Bottleneck Analysis. We plot the roofline models [27]
of all the platforms, and the actual achieved performance under var-
ious mappings involved in each algorithm in Fig. 11. For CPU and
GPU plots, the slope of the roof-line is the available DDR bandwidth
and the horizontal line shows the peak performance of the device.
For the FPGA plot, three roof-lines are plotted for different modules
according to their effective bandwidth and theoretical peak perfor-
mance. The first takeaway from Fig. 11 is that on CPU and GPU, low
arithmetic intensity of replay operations and small MLP training
time bounds their achievable performance by memory bandwidth.
It suggests that simply increasing parallelism does not result in
higher throughput. Note that the peak performance on the roofline
assumes 100% hardware utilization and streaming memory access.

46

CF’22, May 17–19, 2022, Torino, Italy Yuan and Chi, et al.

Figure 10: Comparisons of the overall system performance measured using 𝐺𝑃𝑆 . The legend shows the mapping methodology,
where L represents the learner and the R represents the Replay Buffer. For example, L-FPGA-R-CPU indicates a design that
maps the learner onto the FPGA and the RMM onto the CPU.

Figure 11: Roofline plots for all devices. The batch size is 256
in all the curves.
The gap between the actual achieved performance point with the
roofline is due to (1) the actual implementation does not use up
all threads/cores on CPU and GPU, and (2) tree traversal across
levels requires non-streaming (high latency) accesses to discontin-
uous external memory locations (∼140 cycles for CPU DDR4 [14],
80∼150 cycles for GPU GDDR6 [15]). The second takeaway is that
by allocating on-chip SRAM banks that provide sufficient effective
bandwidth to the RMM and the Learner Module, our FPGA-based
design prevents the replay operations and the learner from being
bounded by the memory bandwidth. Our design also achieves high
effective resource utilization observed from the low gap between
the achieved performance point with the roofline. By removing the
bottlenecks on CPU and GPU, our on-chip RMM design and Learner
Module outperforms CPU-GPU and GPU-based implementations.

4.4 Evaluation of Overall System Throughput
Fig. 10 shows the comparison of the overall system throughout
measured in GPS. We compare against two state-of-the-art imple-
mentations: [20] that uses binary Sum Tree for Replay management,
and [41] that uses 𝐾-ary Sum Tree for Replay management. We fix
the implementation of Replay management on CPU and map the
learners onto CPU, GPU and FPGA. Ourmethod achieves 1.3 ∼ 3.7×
speedup among all the evaluated algorithms and RL environments
compared with CPU-GPU mapping baselines. Our method achieves
up to 1.2 ∼ 4.3× throughput improvement compared with the GPU
baselines. In addition, we fix the learner implementations on the
FPGA and compare the performance of a CPU-based Replay man-
agement versus our proposed RMM. The result shows that the GPS

improves up to 263% just frommapping the replay onto FPGA using
our RMM design.

5 RELATEDWORK
Existing works improve the training throughput by simply increas-
ing the number of actors and learners. GORILA [25] proposes a
parallel architecture of DQN [23] to play Atari games [1]. RLlib
[20] proposes high level abstractions for distributed reinforcement
learning built on top of the Ray library [20]. [19] proposes paral-
lel reinforcement learning using MapReduce [7] framework with
linear function approximation. [41] proposes 𝐾-ary Sum Tree data
structure to improve the performance of the Replay operations only
on CPU. A few recent works have focused on hardware accelera-
tion of RL algorithms. A FPGA implementation of Asynchronous
Advantage Actor-Critic (A3C) algorithm is presented in [3]. In [34]
and [35], a hardware architecture is developed to accelerate Trust
Region Policy Optimization (TRPO) [32]. In [10], a CPU-FPGA
architecture is proposed to accelerate Deep Deterministic Policy
Gradient (DDPG) [21], which combines Deep Q-Learning with pol-
icy optimization methods. [22] proposes an accelerator for PPO,
which utilizes separate modules for actor-critic networks.

Prior works on CPU and GPU focus on developing high level
parallel framework for the RL algorithms without system level op-
timizations. Existing FPGA-based implementations only focus on
specific RL algorithms, without a general framework for a wide
range of RL algorithms or optimizing other components such as
Replay Buffer Management. To address the low arithmetic intensity
issue of acceleration on GPU, our work developed the first special-
ized on-chip RMM for general DRL, and uses hardware pipelining
to completely hide the RMM latency.

6 CONCLUSION
In this work, we explored mapping of parallel RL onto heteroge-
neous platforms. Our profiling results suggested that the system
bottleneck lies in the high latency to perform various operations
used to update the Prioritized Replay Buffer. We proposed a Replay
Management Module on FPGA such that the allocated computation
resources are fully utilized despite the low arithmetic intensity of
these operations. Our experiments show superior performance of
both the Replay operations and the overall system compared with
CPU-GPU and GPU-based mapping.

47

FPGA Acceleration of Deep Reinforcement Learning using On-Chip Replay Management CF’22, May 17–19, 2022, Torino, Italy

REFERENCES
[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.
arXiv:arXiv:1606.01540

[2] Konstantinos Chatzilygeroudis, Roberto Rama, Rituraj Kaushik, Dorian Goepp,
Vassilis Vassiliades, and Jean-Baptiste Mouret. 2017. Black-box data-efficient
policy search for robotics. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 51–58.

[3] Hyungmin Cho, Pyeongseok Oh, Jiyoung Park, Wookeun Jung, and Jaejin Lee.
2019. FA3C: FPGA-Accelerated Deep Reinforcement Learning. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, 499–513.

[4] Andrea Damiani, Giorgia Fiscaletti, Marco Bacis, Rolando Brondolin, andMarco D
Santambrogio. 2022. BlastFunction: A Full-stack Framework Bringing FPGA
Hardware Acceleration to Cloud-native Applications. ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 15, 2 (2022), 1–27.

[5] Dimitrios Danopoulos, Christoforos Kachris, and Dimitrios Soudris. 2021. Uti-
lizing cloud FPGAs towards the open neural network standard. Sustainable
Computing: Informatics and Systems 30 (2021), 100520.

[6] Johannes de Fine Licht, Maciej Besta, SimonMeierhans, and Torsten Hoefler. 2020.
Transformations of high-level synthesis codes for high-performance computing.
IEEE Transactions on Parallel and Distributed Systems 32, 5 (2020), 1014–1029.

[7] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/
10.1145/1327452.1327492

[8] Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, KeWang, andMarcinMichalski.
2019. SEEDRL: Scalable and Efficient Deep-RLwith Accelerated Central Inference.
CoRR abs/1910.06591 (2019). arXiv:1910.06591 http://arxiv.org/abs/1910.06591

[9] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
In International Conference on Machine Learning. PMLR, 1407–1416.

[10] Ce Guo, Wayne Luk, Stanley Qing Shui Loh, Alexander Warren, and Joshua
Levine. 2019. Customisable Control Policy Learning for Robotics. In 2019 IEEE
30th International Conference on Application-specific Systems, Architectures and
Processors (ASAP), Vol. 2160. IEEE, 91–98.

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[12] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado van Hasselt, and David Silver. 2018. Distributed Prioritized Experience
Replay. CoRR abs/1803.00933 (2018). arXiv:1803.00933 http://arxiv.org/abs/
1803.00933

[13] Intel. 2017. Intel Stratix 10 MX FPGAs. https://www.intel.com/content/www/
us/en/products/programmable/sip/stratix-10-mx.html

[14] Intel. 2018. SkyLake Specification. https://www.7-cpu.com/cpu/Skylake.html
[15] Intel. 2021. GPU Memory Latency’s Impact, and Updated Test.

https://chipsandcheese.com/2021/05/13/gpu-memory-latencys-impact-
and-updated-test/

[16] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney.
2019. Recurrent Experience Replay in Distributed Reinforcement Learning.

[17] Vinod Kathail. 2020. Xilinx vitis unified software platform. In Proceedings of the
2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.
173–174.

[18] Vasileios Leon, Kiamal Pekmestzi, and Dimitrios Soudris. 2021. Exploiting the
Potential of Approximate Arithmetic in DSP & AI Hardware Accelerators. In
2021 31st International Conference on Field-Programmable Logic and Applications
(FPL). IEEE, 263–264.

[19] Yuxi Li and Dale Schuurmans. 2012. MapReduce for Parallel Reinforcement
Learning. In Recent Advances in Reinforcement Learning, Scott Sanner and Marcus
Hutter (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 309–320.

[20] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Joseph Gon-
zalez, Ken Goldberg, and Ion Stoica. 2017. Ray RLLib: A Composable and Scalable
Reinforcement Learning Library. CoRR abs/1712.09381 (2017). arXiv:1712.09381
http://arxiv.org/abs/1712.09381

[21] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto
Heess, Tom Erez, Yuval Tassa, David Silver, and DaanWierstra. 2016. Continuous
control with deep reinforcement learning. CoRR abs/1509.02971 (2016).

[22] Yuan Meng, Sanmukh Kuppannagari, and Viktor Prasanna. 2020. Accelerating
proximal policy optimization on cpu-fpga heterogeneous platforms. In 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 19–27.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
http://arxiv.org/abs/1312.5602

[24] Takao Moriyama, Giovanni De Magistris, Michiaki Tatsubori, Tu-Hoa Pham,
Asim Munawar, and Ryuki Tachibana. 2018. Reinforcement Learning Testbed for
Power-Consumption Optimization. CoRR abs/1808.10427 (2018). arXiv:1808.10427
http://arxiv.org/abs/1808.10427

[25] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,
Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles
Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray Kavukcuoglu, and
David Silver. 2015. Massively Parallel Methods for Deep Reinforcement Learning.
CoRR abs/1507.04296 (2015). arXiv:1507.04296 http://arxiv.org/abs/1507.04296

[26] NVIDIA. 2022. Deep Learning Performance Documentation.
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-
background/index.html.

[27] Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G Spampinato, and
Markus Püschel. 2014. Applying the roofline model. In 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE,
76–85.

[28] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. 2016.
Deep exploration via bootstrapped DQN. Advances in neural information process-
ing systems 29 (2016), 4026–4034.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[30] H. Robbins and S. Monro. 1951. A stochastic approximation method. Annals of
Mathematical Statistics 22 (1951), 400–407.

[31] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Pri-
oritized Experience Replay. http://arxiv.org/abs/1511.05952 cite
arxiv:1511.05952Comment: Published at ICLR 2016.

[32] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. 2015. Trust Region Policy Optimization. CoRR abs/1502.05477 (2015).
arXiv:1502.05477 http://arxiv.org/abs/1502.05477

[33] Lorenzo Servadei, Jin Hwa Lee, José A Arjona Medina, Michael Werner, Sepp
Hochreiter, Wolfgang Ecker, and Robert Wille. 2022. Deep Reinforcement Learn-
ing for Optimization at Early Design Stages. IEEE Design & Test (2022).

[34] Shengjia Shao and Wayne Luk. 2017. Customised pearlmutter propagation: A
hardware architecture for trust region policy optimisation. In 2017 27th Inter-
national Conference on Field Programmable Logic and Applications (FPL). IEEE,
1–6.

[35] Shengjia Shao, Jason Tsai, Michal Mysior, Wayne Luk, Thomas Chau, Alexander
Warren, and Ben Jeppesen. 2018. Towards hardware accelerated reinforcement
learning for application-specific robotic control. In 2018 IEEE 29th International
Conference on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 1–8.

[36] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484–489.

[37] Adam Stooke and Pieter Abbeel. 2018. Accelerated methods for deep reinforce-
ment learning. arXiv preprint arXiv:1803.02811 (2018).

[38] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg,WojciechMCzarnecki, AndrewDudzik, AjaHuang, PetkoGeorgiev, Richard
Powell, et al. 2019. Alphastar: Mastering the real-time strategy game starcraft ii.
DeepMind blog 2 (2019).

[39] xilinx. 2012. Large FPGA methodology guide. https://www.xilinx.com/support/
documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf

[40] Xilinx. 2021. Alveo U250 Data Center Accelerator Card. https://www.xilinx.com/
products/boards-and-kits/alveo/u250.html

[41] Chi Zhang, Sanmukh Rao Kuppannagari, and Viktor K Prasanna. 2021. Parallel
Actors and Learners: A Framework for Generating Scalable RL Implementations.
arXiv (2021). arXiv:2110.01101 [cs.LG]

48

