MAXIMAL OPERATORS AND FOURIER RESTRICTION ON THE
MOMENT CURVE

MICHAEL JESURUM

ABsTRACT. We bound certain r-maximal restriction operators on the moment curve.

1. INTRODUCTION

Let y(t) = (t, %tz, e %td), and let T be the image of this curve for ¢t € R. Drury [2]
proved the Fourier restriction estimate

fllza ) < Collfller may

forl1 <p< d;f;z and p’ = %ﬂ)q. In the spirit of [7], we study the r-maximal form
of this restriction operator: M, f|r, where
1/r
M, h(x) = (sup |h|r)
>0 JB(x,s)

and 1 < r < co. For d > 3, we have the following maximal restriction theorem:

Theorem 1.1. Forq= ﬁp’ > p and r satisfying

P . d’>+2d .
{r =D i if 1 fp < 2242
r _ d+d-2 : d“+2d d-+d+2
r<p -5 pnds <P <P
we have the following estimate for every f € LP(R?):
(1.1) My fllary < CorllfllLe (ray-

Miiller, Ricci, and Wright [5] introduced maximal restriction theorems to obtain a
pointwise interpretation of the restriction operator associated to C? curves in R2. After
proving bounds for a two-parameter maximal restriction operator, they introduced the
operator

(1.2) Moh(x) = (MIh*)*(x)

to aid with bounds for a strong maximal restriction operator. Following their logic,
for the restriction operator & associated to the moment curve y, the case r = 2 in
Theorem [1.1|implies:

Corollary 1.2. Let f € LP(RY) and 1 < p < dle;z' With respect to arclength measure,

almost every x € T is a Lebesgue pointforf and the regularized value off at x coincides with

Rf(x).



Later, Vitturi [9] proved similar maximal restriction estimates in the case of the unit
sphere in any dimension d > 3. Ramos [8] improved the known results on spheres in
all dimensions, and then in [[7] focused on dimensions d = 2 and d = 3. In particular, he

generalized the operator to
M,yh = (M|R|")Y" (x)

for 1 < r < oo, and Theorem 2 in that paper was a maximal restriction result for this
operator on the unit circle for p < ‘3—‘ and r < 2. Thus, in the case d = 2, Theorem is
due to Ramos [7], since the arguments that apply to the circle also apply to the parabola.
Kova¢ [4] took a more general approach, proving maximal and variational restric-
tion estimates using restriction inequalities as a black box. Theorem 1, Remark 2, and
Remark 3 in that paper combine with Drury’s [2] restriction estimate to show that

IM2fllrary < CpllfllLe (ra)
for1 < Crds2 g = AdHD 0T 1.1 ds thi f he full
SP < g dndp = —5—q. eorem (1.1) extends this range of p to the fu

(1.1

Drury range for M and gives estimates of the form (1.1) for r > 2. See also [3] for more
on variational restriction theorems.

In the case d > 3, the first two cases of Theorem are distinct. When r = 2,

we obtain the full range given by Drury: p < d;}“—if. For r = £42, the range of p
corresponds to the Christ-Prestini p < dfi;j‘fz (see [1] and [6]). Figure |1|illustrates
these ranges.
1
-
1 1
r=p - d2+2d—2
11/ (L.1) holds
d |
d+2
(1.1) unknown =&
r :p’
(1.1) fails
( d’+d ) ) 1
2 b
d?+d+2 P42d-2 1 P
a>+2d

Ficure 1. Range ofr and pfor which the r-maximal restriction operator is bounded
from LP to L9, where q = ﬁp'.

Outline of Proof. The overall structure follows Drury’s induction scheme from [2].

To accomodate this, we prove the superficially stronger result:
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Proposition 1.3. Let 2 < r < &2, Denote by M¥ the k-fold composition of M, with itself.

Then for eachk €N, 1 < p < Zjﬁ:—;g::;;, and p’ = 1d(d + 1)q, we have

||Mff||Lq(r) < Cprllfllee (ray-
Indeed, for r > %, we can interpolate the above result with the bound

Mo f e (ry < If 1Lt (R

which follows from Hausdorff-Young. For 1 < r < 2, we can apply Holder’s inequality
to see that
M, f(x) < Mof(x).

Thus, Theorem M follows from Proposition M To prove Proposition M we first
linearize the operator f + M¥f|r (Section lzI) Then, in Section IEL we apply the in-
duction hypothesis to prove a mixed-norm estimate for the d-fold power of the linear
operator from Section [2| We interpolate this estimate with an L? bound for that same
operator that comes from Plancherel. This interpolation allows us to increase the value
of p, which completes the induction.

Acknowledgements. The author would like to thank Betsy Stovall for suggesting this
project and for advising throughout the process. He also thanks the anonymous referee
for their comments and suggestions. This work was supported by NSF grant DMS-
1653264.

2. KOoLMOGOROV-SELIVERSTOV-PLESSNER LINEARIZATION

We first fix 2 < r < “%z. This value of r will remain fixed throughout this section
and the next. The first step is to linearize the maximal operator given in Proposition|1.3
The technique here is similar to [7], which built on the techniques of [5], [9], and [J8].

Let yq(x) be the L'-normalized characteristic function of the ball of radius a; that is,

1 X
|Ba|X a)

where B, is the ball centered at 0 with radius a. Let py, . . ., pr: R — R.( be measurable
and 7: R% x R? — C be a measurable function such that

)(a(x) =

(2.1) /[ f G,y dyge ... dyy <1
Bp1 (x) (x) Bpk(yk_l)(yk—l)
for every x € R?. Set
(2.2)
A¥(z1, oz = (e x =20 = o= 21) Xy (0 (21 Xpn (e-20) (22) -+ Xppe(xmzi = m2 ) (2
and
(2.3) My picf(x) = /kd fx—z1—...—z0)stk(z1, ..., zp)dzy ... dz,
R

or, equivalently,

(24) Mr,r],p,kf(x) =f

Bp1 (x) (x)

j[ f(zk)n(x, zi)dzy ... dz.
Bpp (zge_p) (2R-1)
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Lemma 2.1. Suppose there is C > 0 such that for every ny and pi, ..., py as above, and for
all f Schwartz,

IMrp i fllLary < ClIflILe (ra)-
Then
1M fllzacry < Cllfllo gay-
Jor all Schwartz functions f.

Proof. Let f be a Schwartz function, and let
fwIf I

(]%1)1 () ']%pk(zk_n(Zk—O f(ze)ldzc ... dzy

n(x,y) =

Then for any x € R,

j[ j[ In(x, yio)|” dyge ... dy;
Boi)(¥) Y Bpp(yp_p) (Yk-1)

r'(r-1)
o s @IV dy . dy:
fl‘gm (0 () " ']%/’k(zk—ﬁ(zk—l) lf(zk)|rdzk ..dz

Since r’(r — 1) = r, the numerator and denominator are equal and hence 7 satisfies (2.1).
Moreover, using (2.4), we have

F r
]%m(x) r '][llgpk(zk_l)(zk—l) |f(zx)|"dz ... dzy

Mr,ry,p,kf(x) =

=

(]63,01 () () "7 .]%l’k(zk—l)(zk—l) |f(zk)|rdzk T dzl)

Thus, we obtain

1
My ypif(x) = (/[ j[ |f(z0) " dz ... d21) :
By, (x) (x) Bpy (zpe_y) (zk=1)

For well-chosen py, ..., px, this can be made arbitrarily close to M f(x), so the claim

holds. O

Hereafter, we will use the form of M, ,x given in (2.3). As is often the case, it
will be more convenient to work with an extension operator rather than the restriction.
Giveng: R > Cand f: R — C,

<Mr,r7,p,kg>f> = / / gA(y(t) —-Z1—...— Zk)Sﬂ)If(t)(zb .. .,zk)mdzq ... dzkdt
R JRkd

= /R/de ./Rd e‘2m§(y<t>_z1_"'_Zk)g(g)sﬁ;f(t) (21,...,zk)md§dz1...dzkdt.

Hence the adjoint is given by

My k(&) = /R /R y ez’”‘f(Y“)—Zl----—Zk)gq(;(t) (z1,...,2z1) f(t)dz; ... dzdt

- /R e2’”fY<f>%(§, L OF(hdt.
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Setting &= (..., &), we have

My i f (O = /R gk (F)f (1)t
Proposition |1.3[now follows from the following lemma:

Lemma 2.2, Let1 < p < d2+d+2(r_l), q= d(d+l)p’ and 2 < r < &2 There is C > 0 such

2(r-1)
thatfor P55 Pk and n measurable satisfymg , andfor all Schwarlzfunctlons f,
(2.5) 1My, i flLaway < ClIfllee (r).-

3. THE INDUCTION ARGUMENT

The proof of Lemmaproceeds by induction. The base case is p = 1 and q = .
Here,

M O =] [ 0 Epod] < [ sup ot oo 01

R xeRrd

By (2.1), [1s4%]],1 ey < 1 for all x. Thus,

M, ()] < /R FOIdE = 111l oy

This completes the base case. The following lemma, along with a little arithmetic, es-
tablishes the claimed range of p and ¢:

Lemma 3.1. Assume for every 1 < p < py < d2+2’1(t2_(1r)_1), q= d(d+1)p there is C > 0 such

that holds for all k, all measurable p1, . .., px: R? — Rso, all measurablen: RIXR? — C

satisfying for every x € R and all f. Then holdsfor all such n, p, k, and f, andfor
all p satisfying

d S 2 N d
p - (@+2)pi(r'=1) (d+2)po’

and g d(d+1)p,

To prove Lemma we adapt Drury’s argument in [2]. Thus, we rewrite the
left-hand side of as
1/d

% d
IV oty = M YOI

Expanding gives

[ I—
M:,”’p,kf)d(g) — '/[Rld 62711'52521 y(x;) l_[Ay(xJ)(Ek)f(x])dx
j=1

Define

d
(3.1) 16 = [ e [al @6y
I'+--4T j=1

where x = x(y) is uniquely determined by x; <x <--- <xgandy = Z‘;ﬂ y(x;). Leto
be the Vandermonde determinant,

@l = [] Fxi-xl.

1<i<j<d
5



Then with the choice .
Gy) = [ | FeploGl™,
j=1
we have

(52) TG = 5 (M, (D).

To apply the induction hypothesis, we will need to work with another change of vari-
ables. For h = (h,h’) withhy =0 < hy < --+ < hg,setx; = t+h; and y,(¢) = Z?:l y(x;).
Define the auxiliary function

d
(3.3) G(t.h) = G(yn(t) = | [ £(t+hploh)|™".
j=1

da+2 _
2

Finally, ix 0 < ¢ <
Lemma 3.2. For T a’eﬁned asin (3.1) and r + & < &2 , we have

2
(3.4) TG lure < CUG o g o7 oy

Proof. For any test function H, by we have

(TG, H)| = ‘ / TG(§)H(§)d§’

T+--+T

eIty ﬂ ok (& >G<y>H(§>dyd§)

Changing the order of integration and applying Plancherel in ¢,

TG, H)| =

/ G(y) *sﬂ . (wl,...,wk)ﬁ(y—wl—...—wk)dwl...dwkdy.
T+l Rkd j=1 V(%)
We can now apply the following lemma, which we will prove shortly.

Lemma 3.3. Let A5 (wy, ..., wk) be defined as in , and let H be a test function. Then for
eachnk e Nand zy,. .., zp,

(3.5) /{de |(.§21]Z<1 >x<...*sﬁfﬁ)(w1,...,wk)ﬁ(y—w1 — o= wp)|dwy . dwe < M:lkﬁ(y).

Using this lemma, we see that

wGmls [ 16w Am
I'+--4T
By Holder’s inequality, we obtain
(TG, H)| < [|Gl|(rrey |MF ||+
Since r < r + ¢, we have
|<TG9H>| < ||G||(r+£)’||H||r+s-
Finally, r + ¢ > 2, so by Hausdorff-Young,
KTG, HY| < |Gl (r+ey HI I (r4e) -

Thus, TG is bounded from LU+ to L™, which, along with a change of variables,

proves the lemma. O
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Now we prove Lemma

Proof. Fix k > 1. We proceed by induction. The base case is n = 1. In this case, the

left-hand side of is

/kd|ﬁ(y—w1—...—wk)n(z,z—wl—...—wk)
R

* Xpi(2) (wi) ... Xpr (z=wi—...—wi_1) (wi)|dwy ... dwg.
Applying Hélder’s inequality, this is bounded by

r

(/de H(y = wi — .. = Wl X100 W[+ | Xpe zmwi = mwp ) (Wi [ dwr . .. dwk)

U

: In(z.z = wi = ... = WOl | Xp1 0 (WD - - [Xprzm i mwi ) (Wi | dwr . . dwie
de

Changing variables in each integral transforms the above into

( f . f |H ()| dog . ... dm)

Bpl (z) (y) Bpk(vk,ﬁ-zfy) (Uk—1)

. (j[ j[ |r7(z,vk)|r,dvk...d01)
By, (2)(2) By (z-vp_q) (Ok-1)

By (2.1), the second term is bounded by 1. Moreover, the first term is bounded by
M¥H (1), so the base case is done. Now, assume we have (3.5) for some n and all functions
H. We want to bound

(3.6) /kd |(.52112<1 * Lk d§n+1)(w1,...,wk)ﬁ(y —wi — ... —wg)|dwy ... dwy,
R

with the convolution performed n+1 times. Split up the convolution as the convolution
of an n-fold convolution with A, to rewrite (3.6) as

/kdl(sﬂi1 *...*sﬂ'z‘n)*sﬂk (Wi, .., W) H(y — wi — ... — wi)|dwy ... dwy.
R

Zn+1

Expanding this convolution, we can further rewrite (3.6) as

//|(Qﬂ§1*...*&qfn)(v1,...,vk)gﬂ§n+l(w1—01,...,wk—0k)
Rkd JRkd

“H(y—wi —...—w)|doy ... dogdwy ... dwy.
With the change of variables u; = w; — v, (3.6) becomes

/de /dem; s.oxd Y(on L o0dE  (u. L ug)

-FI(y—m—...—vk—ul—...—uk)|dv1...dvkdu1...duk.

By the induction hypothesis, the above is bounded by

/kd |&1§"+1(01, oMM H(y — 01 — ... = op)|doy . .. doy.
R

Finally, another application of the induction hypothesis shows that is bounded by

M£n+1)kHA(y)' O
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Lemma 3.4. For T a’eﬁned as in , there is a constant Cpr such that
(3.7) [ITGl|re < Cp,r||G||L}l,(Lf;|v(h)|)'

Proof. By Minkowski’s inequality for integrals,

ITGl|La =

27y (1) ]_[%(Hh )(,g YG(t, h)o(h)dedh’

hy ha-1 L? X

27n
A0 ngﬂ . L (E)G(t hyo(r)de i
h™g

Define the operator

d
SpF () = Aeznifyh(t) l_l d(;(mhj)(gk)F(t)dt’
j=1

whose adjoint is given by

d ——
SIH(t) = /Rd e~ 2migyn (1) n sﬂ)’f(th)(g‘)H(f)df

= * .SZQ y(t+h; )(W1,...,Wk)ﬁ(yh(t) —wi—... —Wk)dW1 ...dwk.

de

Using Lemma@ we obtain the bound
|S;H()] < MEH (ya(2)).

Since each yy, is an affine transformation of the original curve, the induction hypothesis
yields
[1SpHI|Ly < Cprl|H||Lg -
Hence, we have
||5hF||Lg < Cprl|F||Lp-

Setting F(t) = G(t, h)o(h) for each h and integrating in h’ finishes the proof. o
By interpolating and , we obtain
(3.8) TGl < Ca,b,rl|G||LZ,(L§;|u(h)|)

forall (a™',b71) in the triangle with vertices (1, 1), (1,‘061 ), and (((r+¢))7!, ((r+e))™h),
with ¢ satisfying
@+2@-1) .y o dd+]) _dd+1)
2 2 2
Expanding out G using , we see that

~ g\
||G||L;,<Lf;|v<h>|>=( i |v<h>|—<a-1>( L. If(t+h1)---f(t+hd)|bdt) dh') |




‘ o
As noted in [2], 0(0,h")™" € L™, so we can apply Hélder’s inequality to obtain

A d
(3-9) ||G||LZ,(L§’;|0(}1)|) < “f”Lf]
for
l<a< %,
a<b< 3% and

d _ (d+2)(@d-1) 1 -1 _ d@-1
d _ (@D o1y -t D)

P 2
Plugging and into ,

(3.10) My fllze < 11l
for
(3.11) d_@+29(d-1 4 . dd-1)

P 2 2 7
where g = @p', and a and b satisfy (Figure :

<y,

d _
m <a
(d+2)a' -2b"' < d, and

(po—(r+e))at+po((r+e) —1)b! > po—1.
(d+2)al-2b"1<d

bl=a!

[ po= 1= (o= (e )a T po((r k) = Db

d 2 d
(Z2 @2, (vor-D * @27
0 | a’!

_d_ 1
d+2

FIGURE 2. Range of a and b for which holds with p satisfying and q = M;Dp’.

: d+2 ; -1 -1y = (_d_ 2 d :
Since r + ¢ < %=, the point (a™',b7") = (55, @ * T2 lies on the

boundary of this region and satisfies

d+9d-1) o . _dd-1) d
2 2 Po
9




Taking (a L, b7 slightly inside of the region and using real interpolation, we obtain

dd+1) , d_ 2 L d
2 P T e p(rre 1) " (d+2)po’

1My picfllLa < |Ifllee, g =

Since this is true for all 0 < ¢ < d;z r, we have

dd+1) , d_ 2 L d
2 P T e pr—1) @+ 2)p0
which proves Lemma @l and hence Theorem M

UMy picfllLe < flle, g =

4. BoUuNDS ON r

We are not able to show, nor do we believe, that the range of r is sharp. The fol-

lowing proposition shows that r < p” is necessary in any bound of the form (1.1), which
2

corresponds to r < %

d = 2 is due to Ramos [[7].

in the full Drury range. This counterexample in dimension

Proposition 4.1. Suppose that for some p, q, and r, and all f € LP(R?), we have the bound

(4.1) M- fllacr) < Corllfllie ey
Thenr < p’.

Proof For 0 <t < 1,let f; = X[-t.114» and let k = 1. We first compute f;.

fe= [ o= [ [ o

4 BT d .
e2mixjt _ p=2mix;t Sln(Zﬂ'th)

2mix;

of (LI ] e

For x € [-1,1]9, by taking the ball centered at x with radius 10, we see that

rft(x) Rt

Jj=1
Thus, we have

s1n(27rx sin(27x;t) t) P

il ) = (

2t s1n(y]
Yi

=1

*\n.

Hence, we have
d
||Mrft||Lq(r) 2tr.
Combining these estimates and (4.1] glves

by
N

d
t te .

Sending t — 0 shows that

v
|~

N~

which means that r < p’. O
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