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A�������. We bound certain A-maximal restriction operators on the moment curve.

1. I�����������

Let W (C) = (C, 12C2, . . . , 13 C3 ), and let � be the image of this curve for C 2 R. Drury [2]
proved the Fourier restriction estimate

| | 5̂ | |!@ (�)  ⇠? | |5 | |!? (R3 )

for 1  ? < 32+3+2
32+3 and ? 0 = 3 (3+1)

2 @. In the spirit of [7], we study the A-maximal form
of this restriction operator: "A 5̂ |�, where

"A⌘(G) =
✓
sup
B>0

�
π
⌫ (G,B)

|⌘ |A
◆1/A

and 1  A < 1. For 3 � 3, we have the following maximal restriction theorem:

Theorem 1.1. For @ = 2
3 (3+1) ?

0 > ? and A satisfying(
A  ?0

3 , if 1  ?  32+23
32+23�2 ;

A < ? 0 � 32+3�2
2 , if 32+23

32+23�2 < ? < 32+3+2
32+3 ,

we have the following estimate for every 5 2 !? (R3 ):

(1.1) | |"A 5̂ | |!@ (�)  ⇠?,A | |5 | |!? (R3 ) .

Müller, Ricci, and Wright [5] introduced maximal restriction theorems to obtain a
pointwise interpretation of the restriction operator associated to ⇠2 curves in R2. After
proving bounds for a two-parameter maximal restriction operator, they introduced the
operator

(1.2) "2⌘(G) = (" |⌘ |2)1/2(G)
to aid with bounds for a strong maximal restriction operator. Following their logic,
for the restriction operator R associated to the moment curve W , the case A = 2 in
Theorem 1.1 implies:

Corollary 1.2. Let 5 2 !? (R3 ) and 1  ? < 32+3+2
32+3 . With respect to arclength measure,

almost every G 2 � is a Lebesgue point for 5̂ and the regularized value of 5̂ at G coincides with
R5 (G).
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Later, Vitturi [9] proved similar maximal restriction estimates in the case of the unit
sphere in any dimension 3 � 3. Ramos [8] improved the known results on spheres in
all dimensions, and then in [7] focused on dimensions 3 = 2 and 3 = 3. In particular, he
generalized the operator (1.2) to

"A⌘ = (" |⌘ |A )1/A (G)
for 1  A < 1, and Theorem 2 in that paper was a maximal restriction result for this
operator on the unit circle for ? < 4

3 and A  2. Thus, in the case 3 = 2, Theorem 1.1 is
due to Ramos [7], since the arguments that apply to the circle also apply to the parabola.

Kova� [4] took a more general approach, proving maximal and variational restric-
tion estimates using restriction inequalities as a black box. Theorem 1, Remark 2, and
Remark 3 in that paper combine with Drury’s [2] restriction estimate to show that

| |"2 5̂ | |!@ (�)  ⇠? | |5 | |!? (R3 )

for 1  ? < 32+3+2
32+3+1 and ? 0 = 3 (3+1)

2 @. Theorem 1.1 extends this range of ? to the full
Drury range for"2 and gives estimates of the form (1.1) for A > 2. See also [3] for more
on variational restriction theorems.

In the case 3 � 3, the first two cases of Theorem 1.1 are distinct. When A = 2,
we obtain the full range given by Drury: ? < 32+3+2

32+3 . For A = 3+2
2 , the range of ?

corresponds to the Christ-Prestini ? < 32+23
32+23�2 (see [1] and [6]). Figure 1 illustrates

these ranges.

1
?

1
A

� 32+3
32+3+2 , 0

�
1

1

1
2

A = ? 0 � 32+3�2
2

A = ? 0
3

3
3+2

32+23�2
32+23

A = ? 0

(1.1) holds

(1.1) unknown

(1.1) fails

F����� 1. Range of A and ? for which the A-maximal restriction operator is bounded
from !? to !@ , where @ = 2

3 (3+1) ?
0.

Outline of Proof. The overall structure follows Drury’s induction scheme from [2].
To accomodate this, we prove the superficially stronger result:
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Proposition 1.3. Let 2  A < 3+2
2 . Denote by ":

A the :-fold composition of "A with itself.
Then for each : 2 N, 1  ? < 32+3+2(A�1)

32+3+2(A�2) , and ?
0 = 1

23 (3 + 1)@, we have

| |":
A 5̂ | |!@ (�)  ⇠?,A | |5 | |!? (R3 ) .

Indeed, for A � 3+2
2 , we can interpolate the above result with the bound

| |"1 5̂ | |!1 (�)  | |5 | |!1 (R3 ) ,

which follows from Hausdor�-Young. For 1  A < 2, we can apply Hölder’s inequality
to see that

"A 5̂ (G)  "2 5̂ (G).
Thus, Theorem 1.1 follows from Proposition 1.3. To prove Proposition 1.3, we first
linearize the operator 5 7! ":

A 5̂ |� (Section 2). Then, in Section 3, we apply the in-
duction hypothesis to prove a mixed-norm estimate for the 3-fold power of the linear
operator from Section 2. We interpolate this estimate with an !2 bound for that same
operator that comes from Plancherel. This interpolation allows us to increase the value
of ?, which completes the induction.

Acknowledgements. The author would like to thank Betsy Stovall for suggesting this
project and for advising throughout the process. He also thanks the anonymous referee
for their comments and suggestions. This work was supported by NSF grant DMS-
1653264.

2. K���������-S����������-P������� L������������

We first fix 2  A < 3+2
2 . This value of A will remain fixed throughout this section

and the next. The first step is to linearize the maximal operator given in Proposition 1.3.
The technique here is similar to [7], which built on the techniques of [5], [9], and [8].

Let j0 (G) be the !1-normalized characteristic function of the ball of radius 0; that is,

j0 (G) =
1
|⌫0 |

j

✓
G

0

◆
,

where ⌫0 is the ball centered at 0 with radius 0. Let d1, . . . , d: : R3 ! R>0 be measurable
and [ : R3 ⇥R3 ! C be a measurable function such that

(2.1) �
π
⌫d1 (G ) (G)

. . .�
π
⌫d: (~:�1 ) (~:�1)

|[ (G,~: ) |A
0d~: . . . d~1  1

for every G 2 R3 . Set
(2.2)
A:
G (I1, . . . , I: ) = [ (G, G � I1 � . . . � I: )jd1 (G) (I1)jd2 (G�I1) (I2) . . . jd: (G�I1�...�I:�1) (I: ).

and

(2.3) "A ,[,d,: 5 (G) =
π
R:3

5̂ (G � I1 � . . . � I: )A:
G (I1, . . . , I: )dI1 . . . dI: ,

or, equivalently,

(2.4) "A ,[,d,: 5 (G) = �
π
⌫d1 (G ) (G)

. . .�
π
⌫d: (I:�1 ) (I:�1)

5̂ (I: )[ (G, I: )dI: . . . dI1.
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Lemma 2.1. Suppose there is ⇠ > 0 such that for every [G and d1, . . . , d: as above, and for
all 5 Schwartz,

| |"A ,[,d,: 5 | |!@ (�)  ⇠ | |5 | |!? (R3 ) .

Then
| |":

A 5̂ | |!@ (�)  ⇠ | |5 | |!? (R3 ) .

for all Schwartz functions 5 .

Proof. Let 5 be a Schwartz function, and let

[ (G,~) = 5̂ (~) | 5̂ (~) |A�2✓
�
Ø
⌫d1 (G ) (G)

. . . �
Ø
⌫d: (I:�1 ) (I:�1)

|5 (I: ) |AdI: . . . dI1
◆ 1
A 0
.

Then for any G 2 R3 ,

�
π
⌫d1 (G ) (G)

. . .�
π
⌫d: (~:�1 ) (~:�1)

|[ (G,~: ) |A
0d~: . . . d~1

=
�
Ø
⌫d1 (G ) (G)

. . . �
Ø
⌫d: (~:�1 ) (~:�1)

|5 (~: ) |A
0 (A�1)d~: . . . d~1

�
Ø
⌫d1 (G ) (G)

. . . �
Ø
⌫d: (I:�1 ) (I:�1)

|5 (I: ) |AdI: . . . dI1
.

Since A 0(A �1) = A , the numerator and denominator are equal and hence [ satisfies (2.1).
Moreover, using (2.4), we have

"A ,[,d,: 5 (G) =
�
Ø
⌫d1 (G ) (G)

. . . �
Ø
⌫d: (I:�1 ) (I:�1)

| 5̂ (I: ) |AdI: . . . dI1
✓
�
Ø
⌫d1 (G ) (G)

. . . �
Ø
⌫d: (I:�1 ) (I:�1)

|5 (I: ) |AdI: . . . dI1
◆ 1
A 0
.

Thus, we obtain

"A ,[,d,: 5 (G) =
✓
�
π
⌫d1 (G ) (G)

. . .�
π
⌫d: (I:�1 ) (I:�1)

| 5̂ (I: ) |AdI: . . . dI1
◆ 1
A

.

For well-chosen d1, . . . , d: , this can be made arbitrarily close to ":
A 5̂ (G), so the claim

holds. ⇤

Hereafter, we will use the form of "A ,[,d,: given in (2.3). As is often the case, it
will be more convenient to work with an extension operator rather than the restriction.
Given 6 : R3 ! C and 5 : R ! C,

h"A ,[,d,:6, 5 i =
π
R

π
R:3

6̂(W (C) � I1 � . . . � I: )A:
W (C ) (I1, . . . , I: ) 5 (C)dI1 . . . dI:dC

=
π
R

π
R:3

π
R3

4�2c8b (W (C )�I1�...�I: )6(b)A:
W (C ) (I1, . . . , I: ) 5 (C)dbdI1 . . . dI:dC .

Hence the adjoint is given by

"⇤
A ,[,d,: 5 (b) =

π
R

π
R:3

42c8b (W (C )�I1�...�I: )A:
W (C ) (I1, . . . , I: ) 5 (C)dI1 . . . dI:dC

=
π
R
42c8bW (C )

ö
A:
W (C ) (b, . . . , b) 5 (C)dC .
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Setting Æb: = (b, . . . , b), we have

"⇤
A ,[,d,: 5 (b) =

π
R
42c8bW (C )

ö
A:
W (C ) ( Æb

: ) 5 (C)dC .

Proposition 1.3 now follows from the following lemma:

Lemma 2.2. Let 1  ? < 32+3+2(A�1)
2(A�1) , @ = 3 (3+1)

2 ? 0, and 2  A < 3+2
2 . There is ⇠ > 0 such

that for d1, . . . , d: and [ measurable satisfying (2.1), and for all Schwartz functions 5 ,

(2.5) | |"⇤
A ,[,d,: 5 | |!@ (R3 )  ⇠ | |5 | |!? (�) .

3. T�� I�������� A�������

The proof of Lemma 2.2 proceeds by induction. The base case is ? = 1 and @ = 1.
Here,

|"⇤
A ,[,d,: 5 (b) | =

���
π
R
42c8bW (C )

ö
A:
W (C ) ( Æb) 5 (b)dC

��� 
π
R
sup
G 2R3

| |A:
G | |!1 (R:3 ) |5 (C) |dC .

By (2.1), | |A:
G | |!1 (R3 )  1 for all G . Thus,

|"⇤
A ,[,d,: 5 (b) | 

π
R
|5 (C) |dC = | |5 | |!1 (�) .

This completes the base case. The following lemma, along with a little arithmetic, es-
tablishes the claimed range of ? and @:

Lemma 3.1. Assume for every 1  ? < ?0 < 32+3+2(A�1)
2(A�1) , @ = 3 (3+1)

2 ? 0, there is ⇠ > 0 such
that (2.5) holds for all : , all measurable d1, . . . , d: : R3 ! R>0, all measurable[ : R3⇥R3 ! C

satisfying (2.1) for every G 2 R3 , and all 5 . Then (2.5) holds for all such [ , d , : , and 5 , and for
all ? satisfying

3

?
>

2
(3 + 2)? 0

0(A 0 � 1) +
3

(3 + 2)?0
,

and @ = 3 (3+1)
2 ? 0.

To prove Lemma 3.1, we adapt Drury’s argument in [2]. Thus, we rewrite the
left-hand side of (2.5) as

| |"⇤
A ,[,d,: 5 | |!@ (R3 ) = | | ("⇤

A ,[,d,: 5 )3 | |
1/3
!@/3 (R3 ) .

Expanding gives

("⇤
A ,[,d,: 5 )3 (b) =

π
R3

42c8b
Õ3

9=1 W (G 9 )
3÷
9=1

õ�W (G 9 ) ( Æb: ) 5 (G 9 )dG .

Define

(3.1) )⌧ (b) =
π
�+···+�

42c8b~
3÷
9=1

õ
A:
W (G 9 ) (

Æb: )⌧ (~)d~,

where G = G (~) is uniquely determined by G1 < G2 < · · · < G3 and ~ =
Õ3

9=1 W (G 9 ). Let E
be the Vandermonde determinant,

|E (G) | =
÷

18< 93
|G8 � G 9 |.
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Then with the choice

⌧ (~) =
3÷
9=1

5 (G 9 ) |E (G) |�1,

we have

(3.2) )⌧ (b) = 1
3 !
("⇤

A ,[,d,: 5 )3 (b).

To apply the induction hypothesis, we will need to work with another change of vari-
ables. For ⌘ = (⌘1,⌘0) with ⌘1 = 0 < ⌘2 < · · · < ⌘3 , set G 9 = C +⌘ 9 and W⌘ (C) =

Õ3
9=1 W (G 9 ).

Define the auxiliary function

(3.3) ⌧̃ (C,⌘) = ⌧ (W⌘ (C)) =
3÷
9=1

5 (C + ⌘ 9 ) |E (⌘) |�1.

Finally, fix 0 < Y < 3+2
2 � A .

Lemma 3.2. For ) defined as in (3.1) and A + Y < 3+2
2 , we have

(3.4) | |)⌧ | |!A+Y  ⇠ | |⌧̃ | |
! (A+Y )0
⌘0 (! (A+Y )0

C ; |E (⌘) |) .

Proof. For any test function � , by (3.1) we have

|h)⌧,� i | =
����
π
R3

)⌧ (b)� (b)db
���� =

����
π
R3

π
�+···+�

42c8b~
3÷
9=1

õ
A:
W (G 9 ) (

Æb: )⌧ (~)� (b)d~db
����.

Changing the order of integration and applying Plancherel in b ,

|h)⌧,� i | =
����
π
�+···+�

⌧ (~)
π
R:3

3⇤
9=1

A:
W (G 9 ) (F1, . . . ,F: )b� (~ �F1 � . . . �F: )dF1 . . . dF:d~

����.
We can now apply the following lemma, which we will prove shortly.

Lemma 3.3. Let A:
I (F1, . . . ,F: ) be defined as in (2.2), and let �̂ be a test function. Then for

each =,: 2 N and I1, . . . , I= ,

(3.5)
π
R:3

| (A:
I1 ⇤ . . . ⇤ A

:
I= ) (F1, . . . ,F: )�̂ (~ �F1 � . . . �F: ) |dF1 . . . dF:  "=:

A �̂ (~) .

Using this lemma, we see that

|h)⌧,� i | 
π
�+···+�

|⌧ (~) |":3
A �̂ (~)d~.

By Hölder’s inequality, we obtain

|h)⌧,� i |  | |⌧ | |(A+Y)0 | |":3
A �̂ | |A+Y .

Since A < A + Y, we have
|h)⌧,� i |  | |⌧ | |(A+Y)0 | |�̂ | |A+Y .

Finally, A + Y > 2, so by Hausdor�-Young,

|h)⌧,� i |  | |⌧ | |(A+Y)0 | |� | |(A+Y)0 .
Thus, TG is bounded from ! (A+Y)0 to !A+Y , which, along with a change of variables,
proves the lemma. ⇤
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Now we prove Lemma 3.3.

Proof. Fix : � 1. We proceed by induction. The base case is = = 1. In this case, the
left-hand side of (3.5) isπ

R:3
|�̂ (~ �F1 � . . . �F: )[ (I, I �F1 � . . . �F: )

· jd1 (I) (F1) . . . jd: (I�F1�...�F:�1) (F: ) |dF1 . . . dF: .

Applying Hölder’s inequality, this is bounded by
✓ π

R:3
|�̂ (~ �F1 � . . . �F: ) |A

��jd1 (I) (F1)
�� . . . ��jd: (I�F1�...�F:�1) (F: )

��dF1 . . . dF:

◆ 1
A

·
✓ π

R:3
|[ (I, I �F1 � . . . �F: ) |A

0 ��jd1 (I) (F1)
�� . . . ��jd: (I�F1�...�F:�1) (F: )

��dF1 . . . dF:

◆ 1
A 0

.

Changing variables in each integral transforms the above into
✓
�
π
⌫d1 (I) (~)

. . .�
π
⌫d: (E:�1+I�~) (E:�1)

|�̂ (E: ) |AdE: . . . dE1
◆ 1
A

·
✓
�
π
⌫d1 (I) (I)

. . .�
π
⌫d: (I�E:�1 ) (E:�1)

|[ (I, E: ) |A
0dE: . . . dE1

◆ 1
A 0

By (2.1), the second term is bounded by 1. Moreover, the first term is bounded by
":

A �̂ (~), so the base case is done. Now, assumewe have (3.5) for some= and all functions
�̂ . We want to bound

(3.6)
π
R:3

| (A:
I1 ⇤ . . . ⇤ A

:
I=+1) (F1, . . . ,F: )�̂ (~ �F1 � . . . �F: ) |dF1 . . . dF: ,

with the convolution performed =+1 times. Split up the convolution as the convolution
of an =-fold convolution with �I=+1 to rewrite (3.6) asπ

R:3
| (A:

I1 ⇤ . . . ⇤ A
:
I= ) ⇤ A

:
I=+1 (F1, . . . ,F: )�̂ (~ �F1 � . . . �F: ) |dF1 . . . dF: .

Expanding this convolution, we can further rewrite (3.6) asπ
R:3

π
R:3

| (A:
I1 ⇤ . . . ⇤ A

:
I= ) (E1, . . . , E: )A

:
I=+1 (F1 � E1, . . . ,F: � E: )

· �̂ (~ �F1 � . . . �F: ) |dE1 . . . dE:dF1 . . . dF: .

With the change of variables D 9 = F 9 � E 9 , (3.6) becomesπ
R:3

π
R:3

| (A:
I1 ⇤ . . . ⇤ A

:
I= ) (E1, . . . , E: )A

:
I=+1 (D1, . . . ,D: )

· �̂ (~ � E1 � . . . � E: � D1 � . . . � D: ) |dE1 . . . dE:dD1 . . . dD: .
By the induction hypothesis, the above is bounded byπ

R:3
|A:

I=+1 (E1, . . . , E: )"
=:
A �̂ (~ � E1 � . . . � E: ) |dE1 . . . dE: .

Finally, another application of the induction hypothesis shows that (3.6) is bounded by
" (=+1):

A �̂ (~). ⇤
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Lemma 3.4. For ) defined as in (3.1), there is a constant ⇠?,A such that

(3.7) | |)⌧ | |!@  ⇠?,A | |⌧̃ | |!1
⌘0 (!

?
C ; |E (⌘) |) .

Proof. By Minkowski’s inequality for integrals,

| |)⌧ | |!@ =
����
����
π 1

0

π 1

⌘2

· · ·
π 1

⌘3�1

π
R
42c8bW⌘ (C )

3÷
9=1

ú
A:
W (C+⌘ 9 ) (

Æb: )⌧̃ (C,⌘)E (⌘)dCd⌘0
����
����
!@b


����
����
π
R
42c8bW⌘ (C )

3÷
9=1

ú
A:
W (C+⌘ 9 ) (

Æb: )⌧̃ (C,⌘)E (⌘)dC
����
����
!1⌘!

@
b

.

Define the operator

(⌘� (b) =
π
R
42c8bW⌘ (C )

3÷
9=1

ú
A:
W (C+⌘ 9 ) (

Æb: )� (C)dC,

whose adjoint is given by

(⇤⌘� (C) =
π
R3

4�2c8bW⌘ (C )
3÷
9=1

�A:
W (C+⌘ 9 ) (

Æb: )� (b)db

=
π
R:3

3⇤
9=1

A:
W (C+⌘ 9 ) (F1, . . . ,F: )�̂ (W⌘ (C) �F1 � . . . �F: )dF1 . . . dF: .

Using Lemma 3.3, we obtain the bound

|(⇤⌘� (C) |  ":
A �̂ (W⌘ (C)) .

Since each W⌘ is an a�ne transformation of the original curve, the induction hypothesis
yields

| |(⇤⌘� | |!?0  ⇠?,A | |� | |!@0 .
Hence, we have

| |(⌘� | |!@b  ⇠?,A | |� | |!? .

Setting � (C) = ⌧̃ (C,⌘)E (⌘) for each ⌘ and integrating in ⌘0 finishes the proof. ⇤

By interpolating (3.4) and (3.7), we obtain

(3.8) | |)⌧ | |!2  ⇠0,1,A | |⌧̃ | |!0
⌘0 (!

1
C ; |E (⌘) |)

for all (0�1,1�1) in the triangle with vertices (1, 1), (1, ?�10 ), and (((A +Y) 0)�1, ((A +Y) 0)�1),
with 2 satisfying

(3 + 2) (3 � 1)
2

0�1 + 1�1 + 3 (3 + 1)
2

2�1 =
3 (3 + 1)

2
.

Expanding out ⌧̃ using (3.3), we see that

| |⌧̃ | |!0
⌘0 (!

1
C ; |E (⌘) |) =

✓ π
R
|E (⌘) |�(0�1)

✓ π
R3�1

|5 (C + ⌘1) . . . 5 (C + ⌘3 ) |1dC
◆ 0
1

d⌘0
◆ 1
0

.
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As noted in [2], E (0,⌘0)�1 2 !
3
2 ,1
⌘0 , so we can apply Hölder’s inequality to obtain

(3.9) | |⌧̃ | |!0
⌘0 (!

1
C ; |E (⌘) |)  | |5 | |3

!?,1C

for 8>>>><
>>>>:

1 < 0 < 3+2
2 ,

0  1 < 20
3+2�30 , and

3
? = (3+2) (3�1)

2 0�1 + 1�1 � 3 (3�1)
2 .

Plugging (3.2) and (3.9) into (3.8),

(3.10) | |"A ,[,d,: 5 | |!@ . | |5 | |!?,1,
for

(3.11) 3

?
=

(3 + 2) (3 � 1)
2

0�1 + 1�1 � 3 (3 � 1)
2

,

where @ = 3 (3+1)
2 ? 0, and 0 and 1 satisfy (Figure 2):

8>>>>>><
>>>>>>:

3
3+2 < 0�1 < 1,
1�1  0�1,

(3 + 2)0�1 � 21�1 < 3, and
(?0 � (A + Y) 0)0�1 + ?0((A + Y) 0 � 1)1�1 � ?0 � 1.

3
3+2

1�1

0 0�1

1

1

1�1 = 0�1

(3 + 2)0�1 � 21�1 < 3

?0 � 1 = (?0 � (A + Y)0)0�1 + ?0 ( (A + Y)0 � 1)1�1

( 3
3+2 ,

2
(3+2)?00 ( (A+Y )

0�1) +
3

(3+2)?0 )

F����� 2. Range of 0 and 1 for which (3.10) holds with ? satisfying (3.11) and @ = 3 (3+1)
2 ? 0.

Since A + Y  3+2
2 , the point (0�1,1�1) = ( 3

3+2 ,
2

(3+2)?00 ( (A+Y)0�1)
+ 3

(3+2)?0 ) lies on the
boundary of this region and satisfies

(3 + 2) (3 � 1)
2

0�1 + 1�1 � 3 (3 � 1)
2

<
3

?0
.
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Taking (0�1,1�1) slightly inside of the region and using real interpolation, we obtain

| |"A ,[,d,: 5 | |!@ . | |5 | |!? , @ =
3 (3 + 1)

2
? 0,

3

?
>

2
(3 + 2)? 0

0((A + Y) 0 � 1) +
3

(3 + 2)?0
.

Since this is true for all 0 < Y < 3+2
3 � A , we have

| |"A ,[,d,: 5 | |!@ . | |5 | |!? , @ =
3 (3 + 1)

2
? 0,

3

?
>

2
(3 + 2)? 0

0(A 0 � 1) +
3

(3 + 2)?0
,

which proves Lemma 2.2 and hence Theorem 1.1.

4. B����� �� A

We are not able to show, nor do we believe, that the range of A is sharp. The fol-
lowing proposition shows that A  ? 0 is necessary in any bound of the form (1.1), which
corresponds to A  32+3+2

2 in the full Drury range. This counterexample in dimension
3 = 2 is due to Ramos [7].

Proposition 4.1. Suppose that for some ? , @, and A , and all 5 2 !? (R3 ), we have the bound

(4.1) | |"A 5̂ | |!@ (�)  ⇠?,A | |5 | |!? (R3 ) .

Then A  ? 0.

Proof. For 0 < C < 1, let 5̂C = j [�C,C ]3 , and let : = 1. We first compute 5C .

5C (G) =
π
R3

42c8Gb j [�C,C ] (b)db =
π C

�C
· · ·

π C

�C
42c8Gbdb

=
3÷
9=1

42c8G 9 C � 4�2c8G 9 C

2c8G 9
=

3÷
9=1

sin(2cG 9C)
cG 9

.

Thus, we have

| |5C | |!? (R3 ) =
✓ π

R3

����
3÷
9=1

sin(2cG 9C)
cG 9

����
?

dG
◆ 1
?

=
✓ π

R3

3÷
9=1

✓����2C sin(~ 9 )
~ 9

����
?

· 1
2cC

◆
dG

◆ 1
?

= ⇠C
3
?0 .

For G 2 [�1, 1]3 , by taking the ball centered at G with radius 10, we see that

"A 5̂C (G) & C
3
A .

Hence, we have
| |"A 5̂C | |!@ (�) & C

3
A .

Combining these estimates and (4.1) gives

C
3
A . C

3
?0 .

Sending C ! 0 shows that
3

A
� 3

? 0 ,

which means that A  ? 0. ⇤
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