JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

PPOAccel: A High-Throughput Acceleration
Framework for Proximal Policy Optimization

Yuan Meng, Sanmukh Kuppannagari, Rajgopal Kannan, Viktor Prasanna

Abstract—Reinforcement Learning (RL) is a major branch of Al that enables agents to learn optimal decision making via interaction
with the environment. Proximal Policy Optimization (PPO) is the state-of-the-art policy optimization based RL algorithm which achieves
superior overall performance on various benchmarks. A PPO agent iteratively optimizes its policy - a function which chooses optimal
actions approximated by a DNN, with each iteration consisting of two computationally intensive phases: Sample Generation - where
agents inference on its policy and interact with the environment to collect data, and Model Update - where the policy is trained using
the collected data. In this paper, we develop the first high-throughput PPO accelerator on CPU-FPGA heterogeneous platform. Our
unified systolic-array based design accelerates both the inference and the training of the deep neural network used in a RL algorithm,
and is generalizable to various MLP and CNN models across a wide range of RL applications. We develop novel optimizations to
simultaneously reduce data access and computation latencies, specifically: (a) optimal data flow mapping to systolic array, (b) novel
memory-blocked data layout to enable streaming stall-free data access in both forward and backward propagations, and, (c) a systolic
array compute sharing technique to mitigate load imbalance in the training of two networks. We evaluate our design on widely used
robotics and gaming benchmarks, achieving 1.4x—26x and 1.3x—2.7x improvements in throughput, respectively, when compared

with state-of-the-art CPU/CPU-GPU implementations.

Index Terms—Reinforcement Learning, Hardware Accelerators, FPGA

1 INTRODUCTION

EINFORCEMENT Learning (RL) is an area of Artificial In-
Rtelligence (AI) that constitutes a wide range of algorithms
which span the Observe, Orient, Decide and Act phases of au-
tonomous agents [1]. RL has found widespread success in the
implementation of autonomous agents in domains such as self-
driving cars [2], surveillance [3], wearable healthcare devices [4],
etc.

An important class of RL consists of policy optimization [5]
methods, where the policy is modeled as a function of probability
distribution of actions conditional on states. The agent learns
the policy by pushing up the probabilities of actions with high
rewards. Proximal Policy Optimization (PPO) [6] is considered
the state-of-the-art policy optimization method. PPO introduces a
clipped objective that discourages the new policy from stepping
far away from the old policy in each iteration. It achieves better
sample complexity (number of samples required for convergence)
and reliable performance [6].

Heterogeneous architectures consisting of CPUs and FPGAs
have become popular in accelerating memory and compute in-
tensive algorithms [7], [8]. Such platforms are integrated with
abundant high-bandwidth memory and Interconnections such as
CCIX [9] which provide coherent shared-memory access between
the processor and accelerators. PPO consists of several computa-
tional kernels some of which (e.g. neural network propagation) can
benefit from fine-grained parallelism of FPGAs, whereas others
(e.g. Advantage and surrogate loss calculation) are better suited
for CPUs.

PPO showcases better sample efficiency (the amount of envi-
ronments steps required for an agent to reach a certain reward)
compared with other policy optimization methods [6]. While this
suggests that PPO requires fewer iterations given fixed amount of

environmental steps in each iteration, each iteration is computa-
tionally intensive as it involves multiple epochs of neural network
training [6]. Additionally, hardware acceleration of PPO is chal-
lenging as PPO has different data access patterns in forward and
backward propagations requiring novel memory layout techniques
to enable streaming data access. Moreover, different iterations
needed for convergence in training the value and policy networks
may lead to imbalanced workload in hardware.

This work is an extension of [10] in which we develop
the first high-throughput PPO accelerator targeting CPU-FPGA
heterogeneous platforms for applications that use Multi-Layer
Perceptron (MLP) for policy representation, targeting both Sample
Generation and Model Update phases. In this work, we generalize
our design to support Convolutional Neural Networks (CNN)
based policies. To accomplish this, we use the im2col algorithm
and take advantage of the identical underlying computation kernel
between MLP and CNN - General Matrix-Matrix Multiplication
(GEMM). Additionally, we develop a novel technique to optimally
map data flow to the systolic array to improve overall hardware
utilization. Specifically, the major extended contributions of this
work are:

e We identify the key computation and memory require-
ments of kernels in MLP- and CNN- based PPO, and map
them onto CPU-FPGA platform.

e We design a unified systolic GEMM Core that accelerates
inference and training of both MLP and CNN models.

e We propose a Layout Transformation Module (LTM) to
convert input Tensor into Toeplitz matrix on-the-fly, effi-
ciently mapping convolution operations onto the GEMM
Core.

e We develop a design space exploration scheme that opti-
mally maps the GEMM Core dataflow to improve effective

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

hardware utilization across all layers of the DNN.

e We implement the PPO accelerator on a heterogeneous
platform consisting of state-of-the-art CPU and FPGA.
The accelerator achieves up to 27.1x and 26X improve-
ment in throughput compared with state-of-the-art CPU-
only and CPU-GPU implementations, respectively.

2 BACKGROUND & MOTIVATION
2.1 Proximal Policy Optimization (PPO)

We consider the standard RL setting defined as a Markov Decision
Process {S,A,R,P,”y,so} that specifies a sequence of states s; €
S, actions a; € A, rewards r; € R, and initial state sq [11].
Starting from s, we draw observations at current state s; € S,
actions a; from the policy 7(a¢|s;), rewards 7, and the next state
S¢4+1 from the environmental interaction. The objective is to find
a policy 7 that maximizes the expected rewards. Deep RL models
the agent’s decision-making objectives (state-value, policy, etc.)
with deep neural networks (DNN).

Typical implementations of PPO involve two DNN models,
the policy network g, and the value network Vy. The value
network approximates the value of a state using the expected
future reward, Rt = ZzT LY tr;. The objective of the value
network is to minimize the error between its value prediction
and actual R; collected from the Sample Generation phase:

LMSE _ Zte[o...T—l] {V¢(st) — Rt} . The policy network
represents a stochastic policy mg which returns a conditional
probability distribution of actions given a state. The value network
approximation is used in the objective of training the policy
network to guide the policy to output actions that lead to “high-
valued” states. To do this, an advantage function A is defined to
indicate the advantage of a specific action a; over average [6]:
A,re .= Ry — Vs (s¢). PPO prevents large changes to the action
distribution in a single update using a clipped objective function
for policy [6]:

. 2 1 + G)At At 2 O
Ay) = (i R
clip(e, 4¢) { 1-ed, A <0

L=E, {min (M(%&)At, clip (e,/lt)ﬂ
" 7o, (at]st)

where 7y, is the old policy before the update and 0 < € <

1 determines the update size. The function g(e, A) modifies the

objective b?/ removing the incentive for moving the probability

ratio ”(a’ st) y outside of the interval [1—¢€1+¢€][6]

In each 1terat10n PPO alternates between (1) Sample Gen-
eration phase: sample experiences through interaction with the
environment, where each agent performs inference using its model
and sequentially interacts with the environment to collect a fixed-
length trajectory of [s, g, (S¢),as,] and (2) Model Update
phase: optimize the objective functions for policy and value
networks by mini-batch Stochastic Gradient Update [12], using the
experience datasets collected from the Sample Generation phase.

In the following sections, we consistently use the same set
of hyper-parameters [V, T, M, K| to characterize computation
in one iteration: N is the number of parallel agents, T" is the
trajectory length of each agent, K denotes the number of training
epochs and M is the mini-batch size. Note that in each training
epoch, all N x T samples collected during Sample generation
phase are covered by performing N XT rounds of mini-batch
update.

6]

2.2 Deep RL in Real-World Applications

Training Deep RL agents in the field for most real-world appli-
cations such as robotics, medical services etc. is infeasible due to
the risk posed by unsafe policies as well as the large number of
environmental interactions needed [7]. Therefore, such agents are
trained using a simulation environment. Typically, multiple agents
interact with multiple environments simulated in parallel threads
to generate data (state, action, rewards) which is then used to train
the neural network [13]. This tight coupling of Sample Generation
with simulated environments and Model Update in each iteration
is called the “Training in Simulation” process [7], which is the
most time-consuming portion of Deep RL training, usually taking
millions of iterations to complete [5], [6].

2.3 DNN Models for Deep RL

The DNN model used in a Deep RL algorithm is determined by
the application domain. For robotics, simple MLPs are widely
used [14]. For vision-based applications such as gaming, CNNs
are used to extract higher level features from the input images [15].
MLPs and CNNs account for the vast majority of the applications
in Deep RL [16] and are hence the focus of this work.

GEMM is the core operation in both MLP and CNN models
(im2col method) allowing us to utilize most of the optimizations
developed in [10] for CNN based Deep RL. However, CNNs
impose some additional challenges: 1) They require additional
format transformation from feature maps to input matrices based
on im2col method. 2) The larger size of intermediate results
induces off-chip data traffic. To address these challenges, we
develop several CNN specific optimizations in this paper including
a lightweight data transformation module to support format trans-
formations along with double-buffering to overlap computation
and communication (Section 3).

2.4 Limitations in PPO acceleration on GPU

While several frameworks deploy Deep RL on GPU for acceler-
ation [17], [18], PPO computations suffer the following perfor-
mance bottlenecks on these devices:

(a) Tight Coupling between Inference and Training [6],
[10]: In PPO, the Sample Generation (requiring neural network in-
ference) and Model Update (requiring training of neural network)
have strict temporal interdependencies. Thus, neural network im-
plementations which can perform high throughput training as well
as low latency inferences are needed. GPUs are well suited for the
former but less suited for the latter.

(b) Batch-size limitations: In DNN computations, smaller
batch sizes lead to poorer utilization of massive GPU computing
resources as the computations cannot hide memory access latency
[19]. In theory, one can increase the batch size to improve
throughput and parallelism (e.g. distributed RL [16], [20], [21]). In
practice, however, large batch sizes adversely impact the quality of
training [22], [23] in terms of more environmental steps required
to achieve the target reward, prolonging the execution time of
each iteration. On FPGA platform, we customize the accelerator
to evenly minimize both computation and memory access latency.

(c) Kernel overheads: Each mini-batch training task requires
all-reduce over the Streaming-Multiprocessors(SM) for gradient
computation, which introduces synchronization overheads. Addi-
tionally, popular Deep Learning frameworks such as Tensorflow-
GPU [24] often introduces kernel-launch overheads. These over-
heads become more obvious when the amounts of computation are

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

small. In PPO, repeated typically small-batch kernel launches lead
to significant synchronization and kernel launch overheads which
cannot be hidden. In comparison, FPGA accelerator introduces no
kernel-launch overheads and negligible control overheads.

(d) High memory-access latency: Memory requirement of
training even smaller MLP based Deep RL (2.75Mbits) is typ-
ically larger than the local memory of GPU cores which can
be accessed with low latency. Thus, Deep RL on GPU relies
on data accessed from higher levels of GPU memory-hierarchy
which have higher latencies [25] (~20 cycles:shared memory,
~28 cycles:L1 cache, ~200 cycles:L2 cache). We take advantage
of FPGA’s larger available on-chip memory (~60Mbits BRAM)
as well its programmability to implement optimal data layout to
achieve ultra-low-latency access to DNN parameters.

When launching PPO traning tasks on a TITAN Xp GPU,
we observe more than 80% synchronization and kernel launch
overheads using small-sized MLP policies, and more than 55%
various overheads using larger CNN policies. The fine-grained
parallelism, and large and configurable on-chip memories offered
by state-of-the-art FPGA device make them a suitable candidate
to address the above mentioned challenges and implement high
performance accelerators for Deep RL.

3 FRAMEWORK OVERVIEW

PPO executes iteratively until certain convergence criteria is
met. We partition the tasks in each PPO iteration such that the
FPGA executes the computationally intensive DNN propagation
operations which can benefit from fine grained parallelism. The
computation of A;, R; and objective are executed on CPU as they
would occupy significant FPGA area and introduce non-trivial
communication overhead if mapped on FPGA, while having lower
computation intensity compared to the other operations (e.g., DNN
propagation). Fig. 1 shows the task scheduling on the CPU-
FPGA heterogeneous platform. The Host CPU communicates with

time
crU Env ENY Bode e VL WL

PCle \XN [xn' \ [\ \x M fx.’\f \XM \ f \

FPCA W Fw Fw BW wu Fw BW WU ..

L J L J
T Y

T rounds of FW+ENV, batch N

K % “T rounds of FW+LOSS+BW+WU, batch M

FW: (Batched) Forward Propagations ENV: Environment Interactions VL: DNN Loss Computation
BW: (Batched) Backward Propagations R,, A;: Expected Future Reward, Advantage Computation
WU: Gradients aggregation & Weights Update % B: CPU-CPU data communication with batch B

Fig. 1: CPU-FPGA Tasks Mapping and Scheduling

FPGA via PCle interconnection. In Sample Generation phase,
each inference request is initiated by /N parallel agents on CPU
by sending their states s; to FPGA. After executing forward
propagation (FW) using the states as inputs, /N output actions are
sent back to the host CPU for next-step environmental interactions.
At the end of Sample Generation, the CPU computes Ry, A; for
all N x T samples collected, and initiates a training request by
sending M states (sampled from N x T samples) to the FPGA.
The {FW-LOSS-BW-WU} process is repeated to cover all N x T
samples over K epochs, after which one iteration of the algorithm
is complete and it repeats the next iteration.

3.1 Architecture Overview

As shown in Fig. 2, the accelerator consists of two Compute Units
(CU), one for the value network and one for the policy network.
Outputs for both networks are sent to the CPU (the output of policy

3
FPGA Device Environment, FPGA Device
Host CPU External Memory Host %PU External Memory
+ -
. Values TM Action T™ L W —s
=3 Va(s:) S Gy|S; < datapath
=) nE
g < | activations gradients activations gradients = § BW —>
T W datapath
% o) t l I l Inter-Load I l I l =3
% »..E_ | Tensor Core: Value Network | Balancing | Tensor Core: Policy network | g g WU -
dul =
; iF [moste ¥ T X datapath
T
9 states s; Vg LM5E states s; Vg LELiP ~

Environment; Host CPU
Batched datasets

Environment/ Host CPU
Batched datasets

Fig. 2: Overview of Accelerator Design: CUs and their interactions
with the Host/ Device External Memory

network is used to derive the agent’s next-step action, and the
output of value network is sent to CPU for computing the policy
network Loss later in Model Update phase). CUs are re-used
for both Sample Generation and Model Update phases without
hardware reconfiguration. Sizes of DNNs used in RL applications
are typically less than the on-chip memory resources of data-
center FPGAs (~ 1.8Mbits for the largest MLP typically used [6],
[16] in Robotics benchmarks, and 54Mbits for CNN policy used
in [6], [18]). Thus, we keep all the DNN weights on-chip and reuse
them during all the inference and training processes. The memory
requirement for DNN intermediate results (e.g. activations and
gradients) is proportional to the inference/training batch sizes.
While we demonstrate our generalized design assuming activa-
tions and gradients are stored in external memory as shown in Fig.
2, when possible (e.g. small MLP based policies or small batch
sizes) we store all intermediate results on-chip to avoid unneces-
sary communication overhead. A Layout Transformation Modules
(LTM) is integrated in each CU to support layout transformation
in CNN.

3.2 Customized Compute Units

In this section, we show the detailed design for each component
of the CU. Fig. 3 shows the detailed architecture of a single CU. It
is composed of a 2D-systolic-array based GEMM Core to perform
(1) FW, (2) BW and (3) gradients computation for WU; activation
and activation derivative modules; and buffers to store network
weights and intermediate results (2! buffer for immediate matrix
products, a' buffers for FW generated activation results, and 8! for
BW generated local gradients). The GEMM Core is composed of
Psys x Psys Processing Elements (PE), each performing a MAC
(Multiply-Accumulate) operation. The WU module is an array of
adders that update the DNN weights using the gradients computed
by the GEMM Core. The Hadaard Multiplication Module is used
to calculate the Hadamard products of BW intermediate results
and activation results in FW.

In the following paragraphs, we consider both fully-connected
(FC) and CONYV layers. The propagation rules of FC layers can
be naturally expressed as GEMM operations. Similarly CONV
layer propagations are commonly represented as GEMM us-
ing im2col method as follows: Denote a CONV layer using
(}117 HQ, Ci'ru Fl» FQ, S, 01, 02, Cout)’ where Hl, Hg, Ozn are
dimensions of the input feature maps, F} X Fb is the size of each
kernel, S is the stride size, and O1, O, C,,; are dimensions of
the output feature map. The C;, F} X Fy sized kernels corre-
sponding to each output channel C,,; are concatenated together
into a row of the weight matrix of size (Coyt, Cin X F1 X F),

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

and each group of Cj,, corresponding windows of input feature
maps are stacked into a column of the input activation/gradient
Toeplitz matrix of size (Cy, X Fy X Fa, 01 x O3). Now, the
propagation of a FC layer (L'~!, L!), is mathematically equiv-
alent to a CONV layer with Cj, = |L'7Y|, Cour = |LY,
H, = Hy = F} = 5 = O1 = Oy = 1. Therefore, we
uniformly use the notations of dimensions for a CONV layer to
represent the GEMM computations for both types of DNN layers.

- s

BW data path

Weight Update
Module

| Weight gradients Buffer |

_— —
FW data path WU data path

Weight Buffer [

| — FPGA
Hadamard c

\ | Muitiplication Device

“|_module] Module Memory

1 Activation

Tensor Core: PE Array

4 . ™
Layout

Transformation
Module

Fig. 3: CU architecture

In the Sample Generation phase, only FWs are performed and
only the last layer results are collected and sent to CPU. Since
N agents perform FW independetly in each time stamp, to fully
utilize the resources of 2D systolic array and exploit parallelism
between input vectors or feature maps, we ‘vectorize’ the N input
state vectors/feature maps into a large matrix. According to feed
forward rule (Note: For simplicity, in Eq. (2)(3)(4), the general *
operator is used to represent both direct matrix multiplication in a
fully-connected MLP layer and im2col-GEMM in a CONV layer):

FW: 2zl =Wlxad™!; al = o(2)) 2

In each FC/CONV layer, a piplined matrix-matrix multiplica-
tion is performed by the systolic array. The outputs of each hidden
layer are buffered and sent to the GEMM Core as inputs of the
next layer. The output of the final layer is sent to the CPU.

In the Model Update phase, we use mini-batch Stochastic Gra-
dient Descent/Ascent (SGD/SGA) [26]. Each batched propagation
is composed of M independent samples. In the FW, BW and
weight gradient computation processes, we apply similar vector-
ization technique as that used in inference tasks. Error values are
back-propagated to all hidden layers and the activation gradients
of each hidden layer are calculated. In the case of CNN, local
activation gradients & of layer [can be obtained by convolving
the local gradients of the previous layer (I — 1) with its own
convolution kernel:

BW: &l = o (zz> ® (8w

® : Hadamard (element-wise) product [27];

©)

During the backward propagations (i.e. transposed convolutions),
the original kernel tensors are flipped and the number of in-
put/output channels are switched. In case of MLP or FC layer,
the weight matrices are transposed. Applying the basic chain rule,
weight gradients Aw can be obtained by convolving the local
gradients of the current layer with forward-pass activations of the
last layer. The WU process is composed of computing weight

4

gradients followed by updating the weights at a certain learning
rate.

oC
WU : Aw = = §lal!

owl (€]
w! = —aAw + w' ; «: Learning rate;

The WU can be performed after all the local gradient calcu-
lations (BW) are finished. In MLP networks or FC layers, the
WU process aggregates all products between every neurons in
adjacent layers, which is essentially another round of Matrix-
Matrix Multiplication of local activations and local gradients; In
CONV layers the WU process is essentially dilated convolution
[28], which can be transformed into GEMM operation with im2col
as well. Therefore we feed these data into the systolic array, with
data flow path shown in red color in Fig. 3.

3.2.1 Layout Transformation Module (LTM)

When accelerating convolutional (CONV) layers using im2col
[29] transformation from input 3D tensors to 2D Toeplitz data lay-
out is required. However, the output (activation/gradient) feature
maps of all hidden CONYV layers are in spatial 3D tensor layout,
which cannot be directly served as the input for the next layer
requiring 2D Toeplitz layout. To avoid sending them to CPU for

[BA < BAg; DA < DAy; |

c! =F,

State 1 State 2
BA += F,Fp; BA+=1DA+=1;
DA += Stride; c++;
o+ +

ry cz ::Fl

== 040 State 3
“ 102 BA+4=1;
¥ Ca——F DA += H, X Stride;
STOP : : et

Fig. 4: LTM Control Logic

pre-processing between every layer which introduces significant
PCle data transfer, we introduce a lightweight layout transforma-
tion module (LTM) in the downstream of the memory controller
and the upstream of the output buffer. As shown previously in
Fig. 3, we write all outputs directly into the external memory in
the original 3D tensor layout, then read them in the order of 2D
Toeplitz layout layout through LTM’s index conversion on-the-
fly. Essentially, LTM generates the external memory addresses
corresponding to each sliding window region in the flattened
3D tensor, and sends them to the memory controller. The data
fetched by the memory controller into on-chip buffer are tiles of
the converted 2D Toeplitz matrix. To realize this, we encode the
feature map, filter and stride sizes in the control logic of the LTM
(Fig. 4), such that it adapts to various CONV layer configurations.
In the finite state machine shown in Fig. 4, state 2 loops inside
each row (length F7) of a sliding window, state 3 iterates all F5
rows in a sliding window and state 1 steps over all overlapped
sliding windows in the 3D Tensor. BA and DA stands for on-
chip BRAM Address and external DDR Address, respectively. The
process of state transition for fetching next matrix tiles, along with
the communication time of fetching the next tiles, are overlapped
with the computation using the current matrix tiles.

3.2.2 GEMM Core: Flexible Parallelism & Dataflows
3.2.2.1 Non-stationary v.s. Stationary CU Dataflows

Several dataflow schemes for systolic arrays have been pro-
posed in the literature to perform GEMM [30]. Different dataflows

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

exploit different parallelism and therefore incur different trade-
offs in the systolic array, based on input matrices’ shapes. Our
accelerator designs support the deployment of three dataflows
summarized below and demonstrated in Fig. 5:

Non-stationary (NS) Dataflow: The input matrices A(a X b)
and B(b x c¢) are partitioned along the common dimension b into
tiles of size b X Pjy,. Each Processing Element (PE) computes
a vector-product that contributes to one output element in C
(in convolution, this is equivalent to computing parts of the
convolution that will contribute to one output pixel). In each
clock cycle each PE performs one multiply-accumulation (MAC)
and shifts down the input and weight along two directions. Once
all the MAC computations for an output element is finished, the
final result is written to an output buffer and the PE immediately
proceeds to work on a new pixel. Overall, the systolic array sized
at Pyys X Pyys computes a Py, x Psys partition of the output
matrix C' in each tiling pass, and the tiling passes are repeated by
feeding in all the tiles in the input matrices until all the block-
partitions of the output matrix are finished.

Stationary Dataflow: We categorize stationary dataflows into
Weight-Stationary (WS) and Input-Stationary (IS). In WS, in each
pass, the PEs pre-load a (stationary) block of the weight/kernel
matrix sized at Py, X Py into their local registers. Then
the input matrix, B, is fed as tiles of size Psys X c into the
systolic array horizontally in a pipelined fashion. In each clock
cycle each PE performs a MAC operation, shifting the input
to the next neighbor along horizontal direction and shifting the
partial result down to accumulate the partial sums. Each of such

—— passes produces an intermediate accumulation result of a
Psys X c-sized partition of the output matrix, accumulated at the
bottom pf the systolic array using an accumulators connected with
FIFOs of depth P,y + c, after which one round (P— passes) is
complete, writing back final results of one Psys X ¢ pamtlon of the
output matrix. Such rounds are repeated until the weight matrix is
completely covered. Note that although the WS-dataflow requires
an array of accumulators at the bottom, it does not consume more
accumulators than the NS-dataflow because the first row of PEs
of WS-dataflow only perform multiplications. IS dataflow is the
mirror of WS dataflow, where the input activation/gradient matrix
is partitioned into (stationary) blocks to pre-load into the PEs, and
the weight matrix is partitioned into tiles to be shifted through he
systolic array.

WSs-dataflow
PE(i,j — 1) acc. result

NS-dataflow
Weight PE(i,j — 1)

PE at
ith column,
jrow

(T +Dad

input
ng
M
]
(r+nad

new acc. result

PEGi,j+1)
Fig. 5: NS/WS dataflow: PE

3.2.2.2 Conflict-Free Data Layout

While training (in Model Update phase), the weight matrices
that need to be read in the BW passes are transpose of those
in FW passes. If we store the matrix entirely in either row- or
column- major order in FPy,; BRAM blocks, we cannot ensure
concurrent and consecutive accesses to the weight matrix by all

5

PEs in both FW and BW passes. This is because multiple PEs
requesting data from the same BRAM block in one of FW or BW

processes will result in bank conflicts, costing delay proportional

w cycles to read these rows into consecutive

streams before feeding into the systolic array. This issue happens
in all the NS, IS and pre-loading process of WS dataflows,
assuming a fixed dataflow for all taining phases.

—» FW Data Access 1BW Data Access Single Memory Bank

T 1 - Cin xcm‘r
R == I N N RN
K\ K, e Cin e Lsys Psys
: T 1 ==
o |5 > [=

Sl o \ L K.k,
[\ kernel size
By R . ()

out .
Flattened Weight Tensor [[Map tn}:}} Conflict-Free Data Layout
Fig. 6: Weights Data Layout

To address this issue, we design a new data layout to store
on-chip parameters and intermediate results of neural networks in
a memory-blocked fashion as illustrated in Fig. 6. We partition
the input (weight) matrix into —"1 X P::“f blocks each sized
at Pgys1 X Psyso along both dlménsmns (row and column), and
each element e; ; with size Fy X Fy in the block is stored in
an individual memory block (e.g. BRAM, LUT) indexed with
Block; j, such that we allocate Psys1 X FPgyso memory banks
each storing Cj, X Cyy. Fig. 6 shows such an example with
Psysi = Psys2 = 4,Ci, = 8,Coyt = 12. In each layer
of forward propagation, in each pass, if data from the weight
matrix is fed into systolic array in row-major order, P, data
among different columns are accessed in parallel, and since these
data are stored in different memory blocks, conflict-free parallel
accesses can be achieved. Same is true for each pass of each
layer in back propagation (data read in column major order), Py, s
data can be accessed in one clock cycle along different rows as
they are stored in separate memory blocks, and data can still be
streamed in continuously without BRAM conflicts. Furthermore,
to minimize bank consumption for very small weight matrices,
we can store corresponding blocks of different weight matrices
belonging to different layers into one memory block, such that a
total of P,y X Ps,s memory blocks store all the weight matrices
in the MLP instead of just one (Fig. 7).

Single Memory Bank

— FW Data Accesses
BW Data Accesses

Wlayer "3
Wlayerz 4

Wlayerl

Gint, Court Cin2 | Cour2

PR By Bovs i Boys Bays oL,
! A :

[}
! - i Layer 1
> [weights
N

Fig. 7: Weight Matrix Storage

As shown in Fig. 3, The WU process also needs to take the
transpose of a' matrices, which are the intermediate results in each
layer in the FW process of training, therefore both the weight
buffer and a! layers buffer are designed to support the blocked
memory data layout. An additional benefit of this data layout is
that matrix multiplications of consecutive layers in FW and BW
passes can be performed without any stalls between them. This is
enabled by stacking the data access pipelines of the two layers so

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

that as soon as the data of one layer is consumed, the data of the
next layer starts feeding into the systolic array.

3.3 Load Balancing Module

In PPO, typically, the policy and value networks have separate
parameters and are trained independently using two separate CUs.
This might lead to load-imbalance between CUs due to potentially
different number of epochs (and mini-batch sizes) required for
training the two networks. This difference stems from the follow-
ing: (1) Early stopping technique applied in PPO policy training
when the new policy has large deviation from the old (Equation 1),
and (2) different convergence rate between the networks. This may
lead to the undesired situations where, when the training for one
network is complete or stopped, the CU is completely idle waiting
for the training of the other network to complete.

To address this issue, we develop a Load Balancing Module
which off-loads the training of one network to both the CUs under
such situations (Fig. 8). Both the CUs have access to the buffers
storing the parameters of both the networks via multiplexers.
When both networks are training, each CU accesses their own
corresponding weight buffers. When one network finishes training,
the CU is switched to access the weights corresponding to the
other network, and the two CUs access the same weight buffer. The
mini-batch inputs from CPU are evenly divided into two sub-mini-
batches to feed into the two CUs concurrently. During FW and BW

Inter-Load Balancing module

257 Value Weight buffer 2
CU: Value Network S S CU: Policy network
2 Policy Weight buffer k—©

Value: End? Policy: End?

Fig. 8: Load Balance Module

processes, the PEs in systolic arrays of the two CUs simply read
from the selected buffers. However, for WU, the mechanism is
more complicated and requires the following additional logic: (i)
At the output end, an adder array of length P is needed to sum
up the weight updates produced by each CU before writing into
the weight buffer as both CUs will be updating the same memory
addresses of the weight buffer in any given clock cycle (Fig. 9b),
and (ii) at the input end, we allow only one of the CUs to read
the weights while the other reads 0 to avoid adding the original
weight twice (Fig. 9a).

0 CU: Value CU:VaI::e
Value é network Valie networl
network | g —' network {3
Weight > Weight =
buffer
Policy k;l;f“fcevr () Adder array
network £ network e ie—
Weight |, = Weight [2 -
buffer = CU: Policy buffer %
— network CU: Policy
0 network

(a) WU read operations (b) WU write operations

Fig. 9: Load Balance strategy for WU

4 DESIGN SPACE EXPLORATION

The dimensions of the systolic array as well as the choice of
dataflow have a significant impact on the performance of GEMM

6

operations of the FW/BW/WU processes. As the dimensions of
GEMM operations vary widely across the layers, design space
exploration to determine the optimal design choices — systolic
array dimensions, and dataflow is critical to obtain high perfor-
mance. We propose a Design Space Exploration (DSE) scheme
to obtain optimal values of the design choices given the FPGA
device specification, the DNN model and the hyper-parameters of
the RL algorithm.

To achieve this, we first construct accurate performance mod-
els for each dataflow (W) as follows: We define the GEMM
dimension for each layer as a, b, c where a X b, b X ¢ are the sizes
of weight and input matrices. Assuming a Pyys X Pgys systolic
array, for each dataflow described in Section 3.2.2.1, we model the
cycles required for a single GEMM operation:

¥ =NS: [P“} X (Pjys] X b+ 2Psys — 1,
U=WS: [5h] % [p5] x e+ 2Puys — 1,
U=1S: (%ys] X [p-] X a+ 2Py, — 1
®)
We use hyper-parameters N, M consistent with introduced
in Section 2.1. We use notations for a DNN CONV/FC layer
in accordance with Section 3.2, assuming a total of n layers in
the DNN model. In Eq. 6, the expressions for T,,,, replaces the
general matrix dimensions (a, b, ¢) with the input Toeplitz matirx
and weight matrix dimensions summarized in Sec. 3.2 (expressing
CONV as GEMM): (O1 X Oz, Cyy, X Fy X Fy, Cy,t). The ordering
of these dimensions are different in FW (Conv), BW (Transposed
Conv) and WU.

Tmm (\I/) -
(a,b,c)

i=n—1

3

Trw (D, V) = T (V) (D * 01037 FlFQi * Ciinv Céut)
=1
=2)]) _
TBW(quJ) = Tmm(m)(M*H1H57F1F2l*C;uﬂczln)
i=n
TWU(Ma\I/) = Tmm(\lj)(FlFQZ*Czbn7M*Oloé7C(1)ut)
i=1

(6)

where D can be N or M, depending on Inference or Training
phase. We further model the total execution time on FPGA for
inferences in Sample Generation phase and the training tasks in
Model Update phase:

7;nf(\ll) = pr(N, \I/) x T + 7’comm1 and (7)
N xT
ﬂrain(\:[l) - Tminibateh(\l}) x K x M + 77:omm2, where

Tminivaten(¥) = Tpw (M, ¥) 4+ Tpw (M, V) + Twy (M, ¥)

)
T.omm can be modeled with % + ovhd, where

BandW'idth is the theoretical streaming bandwidth of PCle link
or DDR access, and ovhd is a small constant initialization latency
for each bulk of data transfer. In practice, we use double buffering
to hide as much DDR communication time as possible. Ty,
required for each layer can be scaled with Required BandWidth
divided by Actual BandWidth to account for the DDR communi-
cation time left un-hidden when the required bandwidth is greater
than the available bandwidth. Note that while it is possible to
have a layerwise-switching dataflow, this will lead to additional
overheads in matrix transformations between layers. In this work,
we limit to finding a single dataflow for all layers of FW (or

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

BW, WU) to avoid such overheads and leave the exploration of
layerwise-switching dataflow for future.

Overall, our DSE can be formulated as the following optimiza-
tion problem:

minimize (Tt (V) + Tirain ()
Pyys, ¥)
subject to: Cpranr, Cpsp

where Cpsp : P2, X DSPpg + DSPyy st Modues <
DSPrpaga denotes DSP resource constraints on the systolic
array, and Cppras denotes the available BRAM blocks to enable

conflict-free data layout.

5 EXPERIMENTS & EVALUATIONS
5.1 Benchmark Experiments and Platforms Overview

We use two MuJoCo (Robotics) and an Atari (Gaming) bench-
marks from OpenAl Gym [13], [31] - which are widely used
to evaluate RL algorithms [14], [32], [33]. The Mujoco bench-
marks’ environmental states are represented in 1D vectors of posi-
tions/angles of robot joints, and the Atari benchmarks environmen-
tal states are compressed images of 4 successive game screenshots
stored in 3D tensors. In Mujoco - Hopper and Humanoid, we apply
PPO to learn the policy to control a robot to hop or run. We use the
same structure for value and policy networks except for the output
layer with relu() activation. We use a neural network of size 11
(input) - 64 - 64 - 3 (output) for Hopper and a neural network of
size 376 (input) - 128 - 64 - 17 (output) for Humanoid. For the
Atari - Pong, we use a CNN with 3 CONV layers and 2 FC layers,
which is consistent with those widely used in state-of-the-art Deep
RL works [20], [34], [35].

We compare our CPU-FPGA design against two platforms:
CPU-only and CPU-GPU. Our FPGA implementations follow the
same semantics (synchronous trajectories and training) and use the
same data type (float 32) as those on CPU and GPU baselines. We
focus on improving the PPO iteration speed without changing the
training quality (number of iterations required to achieve certain
reward). We use Intel Xeon 5120 as the Host CPU for all three
implementations. We use TITAN Xp GPU as the GPU and Xilinx
Alveo U200 as the FPGA. For comparisons on Mujoco, we use
two baseline implementations: (1) the OpenAl Spinningup imple-
mentation of PPO [17] which uses MPI [36] for parallel agents
on CPU along with training using mini-batch SGD/SGA [26];
(2) the OpenAl Baselines implementation of PPO2 [18], which
uses SubprocEnv library [37] for vectorized environmental steps
and optimized mini-batch SGD/SGA for training. For comparisons
on Atari, we use the OpenAl Baseline implementation only. All
baseline implementations are based on TensorFlow [38].

For the FPGA performance evaluation of PPO on Mujoco,
we implement the design consisting of two CUs for the two
networks (value and policy) and the load balancing module on
the FPGA. For PPO on Atari, consistent with the Baseline PPO2
implementations, the parameters are shared between the two
networks along the CONV layers and the first fully-connected
layer. A unified objective function for both network is minimized
- —c1 L9 + LMSE | entropy, with value coefficient ¢; and an
entropy term [21], [39].

5.2 DSE & FPGA Resource Utilizations

We first perform DSE as discussed in Section 4. As the typical
hyper-parameters and DNN layer/channel sizes considered are

7

powers of 2, we constrain Py, to be powers of 2 to mini-
mize the required zero-paddings on the systolic array(s). For all
three dataflows, performance increases monotonically with P,
therefore the optimal systolic array sizes returned are the same.
On Alveo board, we set Py, = 16 for Mujoco benchmarks
experiments and P, = 32 for Atari benchmark.

We implement the design consisting of two CUs, buffers (with
the data layout optimization) and the load balancing module on
the FPGA for Mujoco benchmarks. We use one large CU for CNN
inference and training on Atari baselines without load balancing
module (as the value and policy networks are shared). Using
Vivado 2018.3 for synthesis, our implementations for Mujoco
and Atari benchmarks sustain clock frequency of 285 MHz and
300MHz, respectively. Table 1 summarizes the resource usage
breakdown on the FPGA. Note that the three dataflows have the
same resource usage.

TABLE 1: FPGA Resource Utilizations: exp.1: Hopper; 2: Hu-
manoid; 3: Pong

exp. M=64 M=128 M=256 M=512

1 696(32%) 752(35%) 810(38%) 926(43%)
BRAM 2 638(30%) 926(43%) 1466(68%) 2160(100%)

3 3745 (72%)
DSP 1&2 | 3744 (55%) DSP exp.3 4227 (62%)
Logic 1&2 | 501k (42%) Logic exp.3 1061k (89%)
FlipFlop 1&2 | 708k (30%) FlipFlop exp.3 1392k (59%)

In Table 1, exp. 1,2 stand for experiments on Hopper and
Humanoid with MLP policies, and exp.3 stands for experiment on
Pong with CNN policy. The BRAM utilization for both Mujoco
benchmarks increases with mini-batch size M and MLP size as
we use on-chip memory entirely for the network propagations. The
utilization of the remaining resources do not vary with different
hyper-parameters for exp. 1& 2. For exp.3, we keep the CNN
parameters on-chip and use fixed sized z!,a' and &' buffers,
interfacing with DDR4 for streaming accesses to intermediate
activation and gradient feature maps, which are implemented
using double buffering technique to hide DRAM communication
overheads.

5.3 Performance
53.1

In accordance with the existing works, we use the metric: Number
of inferences processed per second (IPS) to measure the through-
put performance. IPS is the ratio of the total number of samples
collected in the Sample Generation phase (N x T) to the total
time taken in executing one complete PPO iteration.

Table 2 shows the IPS for the CPU-FPGA, CPU-only and
CPU-GPU implementations, using various benchmarks with dif-
ferent hyper-parameter combinations. To further visualize the
trends in speedups of inference and training tasks without con-
sidering the environmental simulation times, we plotted the total
inference & training execution time for each corresponding set of
hyper-parameters in Fig. 10 (compared only with OpenAl Base-
lines [39] implementation which has better training performance)
and 11. In each figure, the first row of subfigures show the total
training (Model Update phase) execution time on their y-axes;
The second row of subfigures show the total time of inferences
in the entire Sample Generation phase. The labels (ax,bXx)
above the CPU-GPU and CPU-FPGA bars indicate their amount
of speedups of inference/training execution time over CPU-only
implementations.

Inference & Training Execution Time, Throughput

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Ttrain ()

mmm CPU
mmm CPU-GPU
mmm CPU-FPGA

(a) Mujoco with MLP: scaling M

Ttrain (5)

== CPU

= CPU-GPU
=== CPU-FPGA
i

Mujoco, [T,M,K]=[512,128,10]

(b) Mujoco with MLP: scaling N

2.0 o cPU

s CPU-GPU

1.5 =mm CPU-FPGA

Ting (s)

Mujoco, [T,M,K]=[512,128,10]

(d) Mujoco with MLP: scaling N

== CPU
157 mm CPU-GPU

= CPU-FPGA N

5
.05+

Mujoco, [N,M,k]=[32,128,10]

(c) Mujoco with MLP: scaling T’

2.0

Tint (s)

== CPU
s CPU-GPU
mmm CPU-FPGA

Mujoco, [N,M,K]=[32,128,10]

(e) Mujoco with MLP: scaling T’

Fig. 10: Mujoco benchmarks: Execution time comparison of our design with baselines varying N, M, T

s CPU
= CPU-GPU
I CPU-FPGA

Ttrain ()

2.0

1.5

s CPU
s CPU-GPU
B CPU-FPGA

m CPU
= CPU-GPU
s CPU-FPGA

Ttrain (s)

Oy O &0 &0
S o v v
& &g &
Pong, [N,T,K]=[8,128,3] Pong, [T,M,K]=[128,128,3] Pong, [N,M,K]=[8,128,3]
(a) Pong with CNN: scaling M (b) Pong with CNN: scaling N (c) Pong with CNN: scaling T’
s CPU 2.5| mm CPU

0.8

s CPU-GPU
mm CPU-FPGA

s CPU-GPU
mm CPU-FPGA

Ting (s))

) o, S 0% 0 oy
S &% Sy £ £a? Y
PO N &Y &SP

Pong, [T,M,K]=[128,128,3] Pong, [N,M,K]=[8,128,3]

(d) Pong with CNN: scaling N (e) Pong with CNN: scaling T'

Fig. 11: Atari benchmark: Execution time comparison of our design with baselines varying N, M, T

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9
TABLE 2: IPS Comparison of CPU-FPGA Design with CPU and CPU-GPU Baselines
Benchmarks Varying Training Batch Sizes M Varying Inference Batch Sizes N Varying Trajectory Lengths T
& Baselines [N, T,K] =1[16,512,10] [T, M, K] =[512,512,10] [N,M, K] =[32,512,10]
M = 64 M = 128 M = 256 M = 512 N =4 N =8 N =16 T = 256 T = 512 T = 1024
Hopper- C 509 1.15k 2.31k 2.45k 2.71k 2.78k 2.8k 2.64k 2.7k 2.73k
SpinU C-G 539 1.27k 2771k 2.82k 2.86k 2.9k 3.3k 2.83k 278k 2.96k
pintp C-F 13.8k (26x) 17.1k 17.7k 18.7k (6.6x) 7k (2.4x) 13.1k 21.4k (6.5x) 26.4k 28.6k 29.8k
Human- C 443 720 1.17k 2k 1.62k 1.82k 1.9k 2.1k 2.15k 2.13k
SpinUp C-G 478 780 1.28k 2.18k 1.73k 2.1k 2k 2.2k 2.26k 2.2k
C-F 8.3k (17.4x) 9.2k 9.7k 10.1k (4.6x) 3.2k (1.8x) 5.6k 7.6k (3.8x) 8.24k 9.2k 9.48k
[N, T, K] =[16,512,10] [T, M, K] = [512,128,10] [N, M, K] = [32,128,10]
M =64 M = 128 M = 256 M =512 N =4 N =8 N =16 T = 256 T =512 T = 1024
Hopper- C 929 1.37k 1.76k 2k 646 964 1.39k 2k 2.11k 2.12k
Baselines | C-G 1.07k 1.43k 1.73k 2k 617 993 2.1k 2.2k 2.24k 2.26
C-F 3.63k (3.4x) 2.72k 276k 278k (1.4x) 1.07k (1.7x) 1.9k 4.12k (1.9x) 6.2k 6.85k 6.8k
Human- C 914 1.28k 1.59k 1.85k 437 724 1.12k 1.67k 1.64k 1.64k
E— C-G 936 1.32k 1.63k 1.8k 447 725 1.16k 1.71k 1.69k 1.7k
’ C-F 2.44k (2.6x) 2.52k 2.55k 2.57k (1.4x) 643 (1.44x) 1.18k 2.13k (1.8x) 373k 3.58k 319k
[N, T, K] = [4, 128, 3] [T, M, K] = [128, 128, 3] [N, M, K| = [8, 128, 3]
M = 32 M = 64 M =128 M = 256 N =4 N =8 N =16 T = 128 T = 256 T =512
Pong- C 326 406 453 512 365 541 687 507 501 488
Basline C-G 550 682 781 822 459 808 1.17k 797 768 776
C-F 870 (1.6x) 870 871 870 (1.1x) 561 (1.2x) 904 1.49k (1.3x) 1058 908 998

* SpinUp: Spinningup implementation; Human: Mujoco Humanoid Benchmark. * C: CPU; C-G: CPU-GPU; C-F: CPU-FPGA

For Mujoco experiments, we consistently observe higher IPS
on Hopper than Humanoid, and our FPGA-based design achieves
higher improvements against the baselines on Hopper than Hu-
manoid (Table 2, all rows labeled Hopper- compared to Human-
for the same implementation method and platforms). This is
because: (a) The Humanoid environment costs longer sequential
simulation time which leads to smaller room for speed-up after
parallelization; (b) Larger network is required for Humanoid than
Hopper. For comparisons with Spinningup implementations, we
observe higher increase in IPS than comparing with Baselines
implementations (Table 2, rows labeled -Baselines compared to
-SpinUp). This is because: (1) PPO2 (Baselines) share parameters
between policy and value networks) that results in (~ 2X) shorter
training time than that in PPO (Spinningup) implementation which
trains value and policy network separately; (2) the SubprocEnv
wrapper used for env.step() function in PPO2 (Baselines) imple-
mentation enables deploying multiple instances of environment in
the same CPU core, while the PPO (Spinningup) implementation
allow one simulation environment per CPU core to run in parallel
asynchronously. As a result, each environmental (ENV) step
of PPO2 (Baselines) is ~ 8x longer than ENV step in PPO
(Spinningup), thus the room for FPGA speedup is smaller when
comparing with PPO2 (Baselines) due to longer sequential ENV
time. If the ENV time with SubprocEnv wrapper gets further
optimized, we can get higher increase in IPS on FPGA compared
with Baselines implementation, as evident from the amount of
speedup on just the inference and training tasks as shown in Fig.
10.

In Fig. 10a, 11a and Table 2, column 1 for “Varying Training
Batch Sizes M”, we fix [N, T, K] and vary the training batch
size M. The inference comparisons are not shown as changes
in M only affect training. We observe that on both CPU and
CPU-GPU, as the mini-batch size drops, the IPS drops too (Table
2, rows for “C” and “C-G” under column 1). This is due to an
increase in the frequency of synchronizations & communications
between threads/processors for weight gradient aggregation oper-
ations in WU (with frequency oc & AET), as discussed in Section
2.4. Our fine-grained pipelined design, where synchronization
overheads are non-existent, does not suffer from such slowdowns
(Table 2, rows for “C-F”’ under column 1). This is also evident

from our performance model (Equation 8), where M contributes
to both numerator and denominator equally.

In Fig. 10b, 10d, 11b, 11d and Table 2, column 2 for “Varying
Inference Batch Sizes N, we fix [M, T, K] and vary the
inference batch size N. FPGA shows superior performance on
both inference and training tasks on Mujoco benchmarks. On
Atari benchamarks, although FPGA incurs slightly slower CNN
training, this slow down is offset by the larger amount of speedup
in inferences and we still observe higher IPS (Table 2, rows
labeled Pong- under column 2). On Mujoco benchmarks, FPGA
inference latencies do not show a significant increasing trend
(Fig. 10d because the PCle transfer request latency dominates
compared to computation (Equation 7). In training, such latencies
are incurred repeatedly as [V increases, so both computation and
communication times scale up. As shown in column 2 of Table
2, on all platforms, higher IPS is observed by increasing /N due
to increased parallelism. The highest performance improvement is
observed at N=16 implying that our design scales equivalent or
better than the baselines with increasing V.

In Fig. 10c, 10e, 11c, 11e and Table 2, column 3 for “Varying
Trajectory Lengths T, we fix [N, M, K] and vary each agent’s
trajectory length T'. Increasing 7" leads to increases in both number
of inferences processed per iteration and total iteration time (both
inference and training time are prolonged due to increasing 1) ,
therefore we observe that throughput remains roughly the same
on each platform with different values of 7' (Table 2 col. 10-
12). Overall, we observe 1.8x ~ 10.9x improvements on CPU-
FPGA platform over the baselines (not shown in table due to space
limitation).

5.3.2 Flexible Dataflow Optimization

To evaluate the effectiveness of our flexible dataflow dse scheme,
we consider a design [10] which performs DSE by fixing
¥ = NS, ie. only considers NS dataflow as baseline. The total
execution time of inferences and training tasks in one iteration
are displayed for a Mujoco benchmark (Fig. 12) and an Atari
benchamrk (Fig. 13) in red and orange plots. We also plot the
speedup in percentage (blue plots). We observe a constant increase
of performance in both benchmarks with varying M (Fig. 12a
and 13a). When N < P, we observe larger improvements on

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

smaller NV (Fig. 12b and 13b). This is due to the fact that in FW,
the NS dataflow parallelizes between the individual samples in
an inference batch sized at N, as confirmed in the performance
model in Section 4 (N is in a term in Equation 5, and b term is
usually larger than P, as shown in Equation 6). The smaller NV
is, the less utilized the systolic array remains, giving more room of
improvement for stationary dataflow which puts /N in the temporal
term and parallelizes along the two larger dimensions.

8 10%
7 Optimal 7 30 Optimal o
oy 2 20% o
§7 —+— Ns-dataflow |57 "\Q £ ;e NS-dataflow 4----=="% <
I [5% 2 £201 ,. E]
= v g s . p 10%@
P e g e @ - R £
te M ’ 2% & ‘1o N &
= £ e T 0%
0% [}
v\"zﬁ ‘A,-;sﬁ M,r,ﬂ— “4600 R LRCL ‘vy" @4‘1

[N, T,K]=[4,512,10] [T.M,K]=[512,128,10]

(a) Hopper, Scaling M (b) Hopper, Scaling N

Fig. 12: Dataflow optimization: Mujoco benchmark

5 12% _ g 075 —
£ Opt 8 Zo.7sfy 7 f20%R @ 2 0w
s250. 7 NS 10%35 § | y S fo.s0] O B 2
N T =050) - -
+ o+ X 0% + 0.25 10% g
X200 8% & F0.25) N\ & 3025 | &
¥ “x====X 0% - 0%
B o6 o >
"‘4&1;"41" "‘46‘;:4@ “41'“4"“43 4‘\34‘\"‘ Whe ‘\4‘5‘ ’%\64&1

IN,T,K]=[4,128,3] [T,M,K]=[128,128,3] [T.MK]=[128,128,3],Psys = 38

(a) Pong, Scaling M (b) Pong, Scaling N (c) Pong, Scaling N

Fig. 13: Dataflow optimization: Atari benchmark

Also, as most of DNN layer/channel sizes and P, we con-
sider are powers of 2, relatively small improvement is observed for
large N. Higher improvement can be expected when the systolic
array size or DNN layer sizes are not powers of 2, such that some
GEMM dimensions do not evenly divide Ps,s. As shown using
a theoretical analysis with 38 x 38 systolic array assuming same
clock rate (Fig. 13c), The performance difference from different
dataflows is more obvious in Fig. 13c compared to Fig. 13b since
parallelizing along different GEMM dimensions with a factor of
38 leads to higher variance in PE utilization. For any Pj,,, we
show that the optimal dataflow by our DSE always yields better or
equivalent performance than fixed NS dataflow.

5.3.3 Data Layout Optimization

To evaluate the effectiveness of data layout optimization, we
consider a baseline (no optimization) design where the weight
and activation matrices are stored in P,,; BRAM blocks such
that data can be streamed into systolic array in FW passes while
extra cycles are required in the BW and WU passes. We measure
the BW/WU latencies of one single mini-batch in clock cycles
and the overall IPS for this case on Mujoco benchmarks for the
set of hyper-parameters [NV, M, T, K] = [32, 512, 512, 10], and
compare with our optimized design using blocked data layout,
shown in Fig. 14. Our result shows 23.5% increase in overall
throughput (IPS) for Hopper and 21.2% increase for Humanoid
using memory blocked data layout (with Spinningup ENV time).
On Atari benmark, Pong, our result on [N, M, T, K] = [8, 128,
128, 3] shows 11.2% in IPS.

5.3.4 Inter-Load Balance Optimization

We compare implementations with and without load balance
optimization using the early stopping trick used in the OpenAl
Spinningup code [17] wherein load-imbalance occurs at the early
iterations of PPO as KL divergence is prone to be larger (resulting

10
¢ 25K @ 10K ©
— 45K = - = =M 2
Z 20K § 250K F K
S S
E 25K 15K E150|< 8K E M
> t >
g] i n g ‘
£ sk u B ik £ osok &« £ m 1K
= baseline blocked - baseline blocked - baseline blocked
WU mBW —IPS WU mBW —IPS EWU mBW —IPS
(a) Hopper (b) Humanoid (c) Pong

Fig. 14: Data layout optimization

in earlier stopping of policy training). We run the algorithm for
the first 6 iterations and measure the training latencies in every
iteration as well as the running average throughput, again with
hyper-parameters [N, M, T, K] = [32, 512, 512, 10]. The result
in Fig. 15 shows 9.3% to 5.8% and 28.3% to 22.5% increase in
overall running average throughput (IPS) in the first 6 iterations of
PPO for Hopper and Humanoid, respectively.

16M 10%

i
a
=}
<

30%.

H
~
<

120M 20%

10%

<
<

0%
1 2 3 4 5 6
Running iterations
B Training Latency (Baseline)
Training Latency (with LB)
—% Increase in IPS (Running Average)

1 2 3 4 5 6
Running iterations

B Training Latency (Baseline)
Training Latency (with LB)

—% Increase in IPS (Running Average)

Latnecy (Clock Cycles)
B o]
< <
I
I
n
X
Latnecy (Clock Cycles)
»
o O
< Z

(a) Hopper (b) Humanoid

Fig. 15: Load balance optimization

6 RELATED WORKS

Most of the existing works on accelerating RL on FPGAs focus
on Q-Learning algorithms such as Deep Q Learning [40], [41]
and Table based Q-Learning [42], [43]. Unlike policy optimization
methods which directly learns the policy, Q-Learning algorithms
learn the quality of state-action pairs. Due to the fundamentally
different approach in learning, these techniques cannot be directly
ported to policy optimization methods.

A few recent works have focused on accelerating policy
optimization methods. A preliminary version of this work [10]
focuses on accelerating PPO with MLP-based policies. A FPGA
implementation of the A3C algorithm is presented in [23] which
uses CNN policy targeting the application of Atari 2600 games.
Unlike PPO, A3C is an asynchronous algorithm requiring relaxed
dependency constraints between the inference and training, which
imposes different hardware requirement than the synchronous
semantics of PPO (e.g. asynchronous data transfers lead to com-
munication overhead if trivially adopted to batched execution in
PPO). In [33], an accelerator design is developed for Trust Region
Policy Optimization (TRPO). The TRPO accelerator design does
not exploit the advantage of parallel agents or batched training.
In [7], a CPU-FPGA architecture is proposed for Deep Determinis-
tic Policy Gradient (DDPG) that combines Deep Q-Learning with
policy optimization by deploying four DNN models. Due to the
intrinsically different inter-DNN-model dependencies in DDPG,
their methodology cannot be trivially adopted to accelerate PPO.

Additionally, we summarize existing work on CNN accel-
eration using heterogeneous platforms. [44] proposed a CNN
inference framework on embedded heterogeneous system-on-chip
(SoC) architectures. CNN training accelerators on FPGA are
proposed [45], [46]. These inference and training accelerators
target general CNN architecture, however, none of them address

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

the unique model interactions in the context of mapping CNN-
based RL on heterogeneous patforms.

To the best of our knowledge, our work is the first to propose
a FPGA-based framework targeting PPO acceleration with both
CNN and MLP policies.

7 LIMITATIONS AND FUTURE DIRECTIONS

In this work, we developed a framework for accelerating PPO on
CPU-FPGA platforms, and obtained consistent speedups across
different benchmarks and DNN models. Nevertheless, we point
out some limitations of the current work and future opportunities.
Limitations: For larger CNNs, due to the limited DDR-bandwidth
of FPGA platforms, communication overheads on FPGAs may not
be as efficiently hidden as in GPUs with higher global memory
bandwidth. Additionally, when kernel computation is small and
number of such kernel launch is frequent (small MLP and batch
sizes), limited PCle bandwidth may become a bottleneck due to
frequent CPU-FPGA (same for CPU-GPU) communication. To
address these limitations, in the future, we will integrate low-
memory optimization for convolution kernels [47] and utilize new
HBM technologies on FPGA [48].

Other Future Directions: One opportunity is to map our frame-
work on a TPU which has fixed systolic dataflow for GEMM.
A challenge in this context is realizing peripheral modules such
as data al}ocation, Load-Balancing Module, and computation of
A; and R; on CPU-TPU platform. While GEMM operations in
DRL policies can be efficiently performed using hardware systolic
arrays on FPGA or ASIC, recent advances in GPU architecture
are also promising for accelerating Deep Learning applications.
For example, GPU Tensor Cores are shown to bring ~ 10X
performance gain compared to traditional CUDA Cores in deep
learning training workloads. Another example is the recently-
proposed GPU Software Systolic Array (SSA) Model [49] that
improves GEMM kernels performance on GPUs by utilizing low-
latency register exchange operations. A promising future direction
is to port our framework on modern GPUs with each GEMM Core
replaced with Tensor Cores (or SSA), and to perform a CPU-
GPU task mapping (including layout transformation, objective
computation, inter load-balancing) with careful manipulation of
CPU/GPU thread-level synchronizations between the DNN mod-
els. This could lead to significant speedup in PPO Model Update
phase compared to existing GPU baseline implementations. An-
other research direction that we will pursue is to utilize cache-
coherent interconnect on a tightly-coupled CPU-FPGA compute
node. This will reduce CPU-FPGA communication overhead and
enable efficient parallelization over processor-FPGA supporting a
wider range of DRL algorithms including asynchronous or off-
policy algorithms. We will also extend our framework into an
overlay with complete compiler tool-chain exposed to higher-level
abstractions of DRL algorithms.

8 CONCLUSION

In this work, we accelerated PPO targeting CPU-FPGA heteroge-
neous platform. We developed novel optimizations and achieved
significant speedup over CPU and CPU-GPU implementations.
The optimizations developed have a broader applicability, and can
be easily extended to more policy models such as LSTM which
share similar GEMM kernels as MLP and CNN. While this paper
focus on current state-of-the-art implementations of PPO only,
we discovered future opportunities in deploying and optimizing

11

DRL worloads in general on both CPU-FPGA and CPU-GPU
heterogeneous platforms.

9 ACKNOWLEDGMENT

This work is supported by the U.S. National Science Foundation
under grant CNS-2009057 and Xilinx.

REFERENCES

[1] R. Sutton, M. Bowling, D. Schuurmans, and V. Bulitko, “Reinforcement
learning and artificial intelligence,” 2006.

[2] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv preprint
arXiv:1610.03295, 2016.

[3] P. Remagnino, A. Shihab, and G. A. Jones, “Distributed intelligence for
multi-camera visual surveillance,” Pattern recognition, vol. 37, no. 4, pp.
675-689, 2004.

[4] P. Hamet and J. Tremblay, “Artificial intelligence in medicine,”
Metabolism, vol. 69, pp. S36-S40, 2017.

[S] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, ‘“Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057-1063.

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[71 C. Guo, W. Luk, S. Q. S. Loh, A. Warren, and J. Levine, “Customisable
control policy learning for robotics,” in 2019 IEEE 30th International
Conference on Application-specific Systems, Architectures and Proces-
sors (ASAP), vol. 2160. IEEE, 2019, pp. 91-98.

[8] D. J. Moss, S. Krishnan, E. Nurvitadhi, P. Ratuszniak, C. Johnson,
J. Sim, A. Mishra, D. Marr, S. Subhaschandra, and P. H. Leong, “A
customizable matrix multiplication framework for the intel harpv2 xeon+
fpga platform: A deep learning case study,” in Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 2018, pp. 107-116.

[9] Ccix, 2017. [Online]. Available: https://www.ccixconsortium.com/

[10] Y. Meng, S. Kuppannagari, and V. Prasanna, “Accelerating proximal
policy optimization on cpu-fpga heterogeneous platforms,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 1EEE, 2020, pp. 19-27.

[11] W. S. Lovejoy, “A survey of algorithmic methods for partially observed
markov decision processes,” Annals of Operations Research, vol. 28,
no. 1, pp. 47-65, 1991.

[12] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400407, 1951.

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[14] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Interna-
tional Conference on Machine Learning, 2016, pp. 1329-1338.

[15] R. R. Torrado, P. Bontrager, J. Togelius, J. Liu, and D. Perez-Liebana,
“Deep reinforcement learning for general video game ai,” in 2018 IEEE
Conference on Computational Intelligence and Games (CIG). 1EEE,
2018, pp. 1-8.

[16] Y. Li, L.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang, “Accel-
erating distributed reinforcement learning with in-switch computing,” in
Proceedings of the 46th International Symposium on Computer Architec-
ture, 2019, pp. 279-291.

[17] Openai spinningup implementation of ppo, 2018. [Online]. Avail-
able: https://spinningup.openai.com/en/latest/algorithms/ppo.html, https:
//github.com/openai/spinningup/tree/master/spinup/algos/ppo

[18] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines,” https:
//github.com/openai/baselines, 2017.

[19] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the effi-
ciency of gpu algorithms for matrix-matrix multiplication,” in Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, 2004, pp. 133-137.

[20] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning et al., “Impala: Scalable
distributed deep-rl with importance weighted actor-learner architectures,”
arXiv preprint arXiv:1802.01561, 2018.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[21]

[22]

(23]

[24]
[25]
[26]
(27]
(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg, J. E.
Gonzalez, M. 1. Jordan, and I. Stoica, “Rllib: Abstractions for distributed
reinforcement learning,” arXiv preprint arXiv:1712.09381, 2017.

M. Andrychowicz, A. Raichuk, P. Stariczyk, M. Orsini, S. Girgin,
R. Marinier, L. Hussenot, M. Geist, O. Pietquin, M. Michalski et al.,
“What matters in on-policy reinforcement learning? a large-scale empir-
ical study,” arXiv preprint arXiv:2006.05990, 2020.

H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “Fa3c: Fpga-accelerated deep
reinforcement learning,” in Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems. ACM, 2019, pp. 499-513.

Tensorflow, 2015. [Online]. Available: https://github.com/tensorflow/
tensorflow

Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” 2018.

S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

M. A. Nielsen, Neural networks and deep learning. Determination press
San Francisco, CA, 2015, vol. 25.

V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv preprint arXiv:1603.07285, 2016.

Y. Bi, G. Chen, Q. Deng, and Y. Wang, Embedded Systems Technology:
15th National Conference, ESTC 2017, Shenyang, China, November 17-
19, 2017, Revised Selected Papers. Springer, 2018, vol. 857.

J. Cong and J. Wang, “Polysa: Polyhedral-based systolic array
auto-compilation,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1EEE, 2018, pp. 1-8.

Mujoco & atari gym environments, 2016. [Online]. Available:
https://gym.openai.com/envs/

E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and J. Ba, “Benchmarking
model-based reinforcement learning,” arXiv preprint arXiv:1907.02057,
2019.

S. Shao and W. Luk, “Customised pearlmutter propagation: A hardware
architecture for trust region policy optimisation,” in 2017 27th Interna-
tional Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2017, pp. 1-6.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al.,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529-533, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep re-
inforcement learning,” in International conference on machine learning,
2016, pp. 1928-1937.

W. Gropp, W. D. Gropp, E. Lusk, A. D. F. E. E. Lusk, and A. Skjellum,
Using MPI: portable parallel programming with the message-passing
interface. MIT press, 1999, vol. 1.

Subprocvecenv: Vectorized environments, 2019. [Online].
Available: https://github.com/openai/baselines/blob/master/baselines/
common/vec_env/subproc_vec_env.py

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265-283.
Openai baselines implementation of ppo2, 2019. [Online]. Available:
https://github.com/openai/baselines/tree/master/baselines/ppo2

J. Su, J. Liu, D. B. Thomas, and P. Y. Cheung, “Neural network based
reinforcement learning acceleration on fpga platforms,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 4, pp. 68-73, 2017.

P. R. Gankidi and J. Thangavelautham, “Fpga architecture for deep learn-
ing and its application to planetary robotics,” in 2017 IEEE Aerospace
Conference. 1EEE, 2017, pp. 1-9.

L. M. Da Silva, M. F. Torquato, and M. A. Fernandes, “Parallel imple-
mentation of reinforcement learning g-learning technique for fpga,” IEEE
Access, vol. 7, pp. 2782-2798, 2018.

R. Rajat, Y. Meng, S. Kuppannagari, A. Srivastava, V. Prasanna, and
R. Kannan, “Qtaccel: A generic fpga based design for g-table based rein-
forcement learning accelerators,” in The 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2020, pp. 323-323.
G. Zhong, A. Dubey, C. Tan, and T. Mitra, “Synergy: An hw/sw
framework for high throughput cnns on embedded heterogeneous soc,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 18,
no. 2, pp. 1-23, 2019.

W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, and G. Yang,
“F-cnn: An fpga-based framework for training convolutional neural
networks,” in 2016 IEEE 27Th international conference on application-

12

specific systems, architectures and processors (ASAP). 1EEE, 2016, pp.
107-114.

[46] S. K. Venkataramanaiah, Y. Ma, S. Yin, E. Nurvithadhi, A. Dasu,
Y. Cao, and J.-s. Seo, “Automatic compiler based fpga accelerator for cnn
training,” in 2019 29th International Conference on Field Programmable
Logic and Applications (FPL). 1EEE, 2019, pp. 166-172.

[47] W. Zhang, M. Jiang, and G. Luo, “Evaluating low-memory gemms
for convolutional neural network inference on fpgas,” in 2020 IEEE
28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). 1EEE, 2020, pp. 28-32.

[48] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Benchmarking
high bandwidth memory on fpgas,” in 2020 IEEE 28th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2020, pp. 111-119.

[49] P. Chen, M. Wahib, S. Takizawa, R. Takano, and S. Matsuoka, “A versa-
tile software systolic execution model for gpu memory-bound kernels,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1-81.

Yuan Meng obtained her BS degree in elec-
trical and computer engineering at Rensselaer
Polytechnic Institute and is currently a Ph.D. stu-
dent in Computer Engineering at the University
of Southern California. She is recipient of An-
nenberg Fellowship at Ming Hsieh Department
of Electrical and Computer Engineering. Her
research interests include parallel computing,
hardware acceleration, and machine learning.

Sanmukh R. Kuppannagari received the
B.Tech. degree in Computer Science and Engi-
neering from IT-Guwahati in 2011 and the PhD
degree in Computer Engineering from the Uni-
versity of Southern California (USC) in 2018. He
is currently a PostDoctoral Scholar at the De-
partment of Electrical and Computer Engineer-
ing, USC. His research interests include com-
binatorial optimization, parallel computing and
hardware acceleration of Al algorithms.

Rajgopal Kannan obtained his B. Tech degree
in Computer Science and Engineering from IIT-
Bombay in 1991 and the Ph.D. in Computer Sci-
ence from the University of Denver in 1996. He is
currently a Research Adjunct Professor in Elec-
trical Engineering at the University of Southern
California. He was formerly a Professor in the
! Dept. of Computer Science at Louisiana State
A University (2000-2015). His academic research

was funded by DARPA, NSF and DOE and he
has published over 150 research papers with
two patents awarded in the area of network optimization. His research
interests are at the intersection of Graph Analytics, Machine Learning
and Edge Computing - enabling application acceleration at the edge on
low power devices.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Viktor K. Prasanna received the BS degree
in electronics engineering from the Bangalore
University, the MS degree from the School of
Automation, Indian Institute of Science, and the
PhD degree in computer science from Pennsyl-
vania State University. He is Charles Lee Pow-
ell Chair in engineering in the Ming Hsieh De-
partment of Electrical Engineering and profes-
sor of computer science with the University of
Southern California. His research interests in-
clude high performance computing, parallel and
distributed systems, reconfigurable computing. He serves as the director
of the Center for Energy Informatics, USC. Currently, he is the editor-
in-chief of the Journal of Parallel and Distributed Computing. He was
the founding chair of the IEEE Computer Society Technical Committee
on Parallel Processing. He is the steering cochair of the |IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS) and
is the steering chair of the IEEE International Conference on High
Performance Computing (HiPC). He received the 2009 Outstanding
Engineering Alumnus Award from the Pennsylvania State University,
and the W. Wallace McDowell Award from the IEEE Computer Society
in 2015 for his contributions to reconfigurable computing.

13

