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Abstract—Due to the need for computing models that can
process large quantities of data efficiently and with high through-
put in many state-of-the-art machine learning algorithms, the
processing-in-memory (PIM) paradigm is emerging as a potential
replacement for standard digital architectures on these work-
loads. In this tutorial, we review the progress of PIM technology
in recent years, at both the circuit and architecture level. We
further present an analysis of when and how PIM technology
surpasses the performance of conventional architectures. Finally,
we outline our vision for the future of PIM technology.

Index Terms—Processing-in-memory, machine learning accel-
erator, analogcomputation, dataflow optimization.

I. INTRODUCTION

ROCESSING today’s state-of-the-art machine learn-

ing (ML) algorithms with high throughput in low-power
and resource constrained environments requires innovation
at both the circuit level and the architecture level. At the
architecture level, the largest optimization space is the substan-
tial amount of data movement (including both feature maps
and model weights) between memory and processing ele-
ments (PEs). At the circuit level, the largest optimization space
is PE computational density. Processing-in-memory (PIM)
technology capitalizes on both of these optimization spaces by
executing operations on data directly in high-density memory
to reduce data transfer costs and employ the large spatial
parallelism for higher throughput. In recent years, PIM tech-
nology has become an increasingly attractive technology for
providing an energy-efficient platform for processing ML algo-
rithms such as deep neural networks (DNN), convolutional
neural networks (CNN), support vector machines (SVM), and
so on. The design of PIM-based systems is versatile and cov-
ers many memory technologies, computational mechanisms,
and peripheral circuitry. In this tutorial brief, we will present
key techniques for integrating each of these key facets into
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high performance systems. In Section II, we will explore the
operation of analog PIM technology for both emerging and
conventional memories. Section III will discuss techniques
for digital PIM technology, while Section IV reviews PIM
architecture design. Finally, Section V will quantitatively ana-
lyze PIM performance and Section VI will present potential
research directions.

II. ANALOG PIM TECHNOLOGY

Analog PIM is characterized by the use of a memory tech-
nology to execute multiply-accumulate (MAC) operations by
using the values in memory to directly modulate analog input
signals into weighted analog output signals [1]. MAC oper-
ations are fundamentally multi-row operations that condense
the accessing of ML models into single read operations for
exceptionally improved energy efficiency and computational
density. However, these kinds of multi-row operations have
implications on factors such as data precision, sensing margin,
and circuit complexities. Furthermore, the nature of this opera-
tion varies according to memory technology, weight encoding,
input encoding, and output decoding scheme. Input data can
take the form of analog voltages, modulated pulse-widths or
voltage spikes, while output signals can be converted into dig-
ital values or spiking waveforms. The most commonly used
memory technologies in analog PIM include RRAM, MRAM,
and other emerging resistive memories, but an increasing num-
ber of analog SRAM-enabled PIM works are being developed.
Weight encoding is often based on memory type and desired
precision (i.e., SRAM cells can store single bits while RRAM
cells can store one or more bits). Figure 1 features a breakdown
of these analog PIM system components. In the following sec-
tion, we separate analog PIM systems into RRAM/MRAM and
SRAM systems, describing their key differences and benefits.

A. RRAM/MRAM PIM Operation

Resistive and magnetoresistive random-access memories
(RRAM/MRAM) store weights as conductances in a crossbar
array. Voltage signals are driven to each row of the array, and
the conductance of each cell produces a proportional current
that is accumulated along the column. The resulting current
represents a dot-product of the column’s weights and voltage
signals [2]. Due to the crossbar structure, the voltages across
each column of the array allow many dot-products to be exe-
cuted in parallel. Executing massively parallel dot-products
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with a simple read operation contributes to the incredible
throughput and energy efficiency of resistive PIM.

Encoding weights as conductances can take several forms:
multi-level, multi-cell, or a mixture of the two. Although
resistive memories can adopt different resistive states for
multi-level weights, the precision of a single device is lim-
ited by the margin of error for achieving a desired state [3].
Furthermore, incorporating a transistor into each cell can
add a control “knob” that assists in high-precision tuning of
cells [2], [4]. However, even for high-precision resistive mem-
ories, the desired weight precision is sometimes higher. As
the number of states achieved by a device and the number of
devices in a column increase, the sensing margin decreases,
requiring larger and more powerful output circuits. Therefore,
many systems use multiple cells spread over several columns
to represent a single weight. Columns with larger sensing
margins can achieve higher precision when results from each
column are shifted and added to produce a final result. For best
sensing margins, it is common for each column to have devices
representing one or two bits only [5], [6]. Furthermore, as con-
ductances are positive only, negative weights are commonly
represented by the difference of two arrays [7].

Another key distinction between systems is the nature of the
input signal. A few widely used cases include digital-to-analog
(DAC), pulse-width, binary, and spiking-based inputs. DAC-
based inputs are the most straight-forward [8], [9], but higher
precision DACs require high area and power consumption and
have decreased sensing margins. One solution is to drive a sin-
gle DC voltage and vary the pulse-width, such that the MAC
result is measured in accumulated charge and proportional to
conductance multiplied by pulse duration [10]. High-precision
inputs can also be split into sequential voltage signals, where
outputs are buffered for each set of input bits. One exam-
ple is binary inputs, including bit-wise serial MACs [5] or
binary neural networks [11], [12], [13]. Binary inputs are
especially area and energy efficient, requiring simple buffers
instead of DACs and have larger sensing margins. Spiking
neural networks (SNN) are very similar to binary inputs, but
information is conveyed through relative timing or frequency
of the signal rather than a digital interpretation [14], [15].

How the output current is decoded has a large impact
on the precision and efficiency of a resistive PIM system.

Breakdown of analog PIM circuit and system components, including various memory technologies, input encoding, and output decoding schemes.

The most straight-forward method involves analog-to-digital
converters (ADC), but these consume large amounts of energy
and area [5], [16], [17]. SNNs provide an alternative by con-
verting the current into a spiking voltage signal with the use
of an integrate-and-fire circuit (IFC). In an IFC, the current is
integrated by a capacitor, which uses a comparator in a feed-
back loop to emit a spike and discharge the capacitor when a
threshold voltage is reached [15], [18], [19], [20].

Despite the benefits of analog PIM, certain nonidealities can
affect performance. The voltage drop across a resistive array,
or IR-drop, can diminish voltage across cells farthest from the
drivers and introduce errors into the dot-products. Solutions for
IR-drop include decreasing required array sizes or compensat-
ing for IR-drop in training [21]. Sneak path, or inadvertent
current paths through an array, can also skew dot-product
results and contribute to the perturbation of cells away from
their target conductances. Inclusion of selectors in each cell
is often used to minimize this inadvertant current [22], [23].
Linear scaling has also been used to counteract sneak path and
IR-drop effects on dot-products [2]. Finally, resistive memories
suffer from lower endurance compared to conventional tech-
nologies, resulting in orders-of-magnitude fewer write cycles
before performance drops. To reduce currents and extend
device lifetime, weights are trained to have low weights and
mapped to underused devices when possible [24].

B. SRAM PIM Operation

Due to issues mentioned in the previous section, more con-
ventional memories, such as static random-access memory
(SRAM), are being examined for analog PIM. Most SRAM-
based systems execute MAC operations of single-bit inputs
multiplied by single-bit weights. While SRAM requires much
more area than RRAM or MRAM systems, the benefits of
SRAM include improved endurance and reliability.

Analog SRAM-based PIMs, which perform either current-
domain computation or charge-domain computation, differ
slightly in execution from resistive PIMs. In typical current-
domain PIMs, analog voltages are applied to the word-lines
(WL) of the SRAM array for nonzero inputs to activate
cells. A stored “1” will discharge bit-line bar (BLB), while
a stored “0” discharges the bit-line (BL), creating voltage

Authorized licensed use limited to: Duke University. Downloaded on August 21,2022 at 15:14:17 UTC from IEEE Xplore. Restrictions apply.



2600

differences [25], [26], [27]. The output circuitry for SRAM-
based PIM is designed to maximize sensing margins and
collate the results for each column into a final result. In
one work, most-significant bit (MSB) cells have larger access
transistors to generate larger voltage differences than least-
significant bit (LSB) cells to reduce post-processing logic [26].
In some works, switched-capacitor circuits are used to interpret
the column outputs, with the MSB column attached to a larger
capacitor, decreasing in factors of two down to the LSB col-
umn [26], [27]. To increase sensing margins, it has been
proposed that columns are split into even and odd cells to
reduce parasitics and decrease cells per column [26]. If MAC
results are expected to be small, BL header resistors can also
be changed to increase sensing margin at the cost of linearity
for large MAC results [27].

There also exist SRAM-based PIMs that exploit charge-
domain computation [28], [29], [30], which leverage charge
sharing of local capacitors within multiple SRAM cells to
perform MAC operations. Charge-domain SRAM-based PIMs
outperform current-domain counterparts in terms of compu-
tation accuracy, but they require additional in-cell capacitors
that increase the cell area. Moreover, the implementation of
MAC operations with multi-bit weights is also challenging.
Another recent solution to the limited sensing margin and
computation accuracy of current-domain PIMs is time-domain
computation [31], where an inter-cell inverter chain generates
time delays controlled by input voltages and weights stored in
multiple cells to perform MAC operations. The time delay is
then converted into a digital quantity by low-power timing-to-
digital converters (TDCs) instead of power-hungry ADCs and
DAC:s, leading to higher energy efficiency.

III. DIGITAL PIM TECHNOLOGY

Analog PIM designs manifest significant improvement
in terms of power efficiency and computational efficiency.
However, analog circuits are subject to noise and process-
voltage-temperature (PVT) variations, and thus result in com-
putational errors. Digital PIM designs provide an alternative
solution to leverage the efficient PIM paradigm while main-
taining high circuit reliability. In the literature, there are two
main forms of digital PIM implementations, i.e., near-memory-
computing (NMC) and in-memory-logic. Here, in-memory-
logic designs demonstrate more circuit level innovation, and
NMC solutions focus on architecture level innovations.

Generally, in-memory-logic designs can be categorized
into “read-based logic” and ‘“‘write-based logic”. In read-
based logic, simple logic gates are integrated within the
memory array. Representative SRAM-based in-memory-logic
designs [32], [33] read the stored data from the bit-lines
and perform logic computations with bit-serial inputs within
the array. Subsequent shift-and-add operations and post-
processing are completed outside the array. Compared to ana-
log SRAM-based PIM designs, SRAM-based in-memory-logic
designs eliminate DACs/ADCs, and thus save considerable
power and peripheral area. Given the same SRAM array size,
the SRAM-based in-memory-logic designs cannot compete
with analog counterparts in terms of throughput due to its
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Fig. 2. An example of RRAM-based in-memory NOR logic.

bit-serial computation paradigm. Moreoever, since the direc-
tion of SRAM reading is fixed, the patterns of data mapping
and processing are also restricted. This degrades the hard-
ware utilization rate and requires carefully reorganizing the
data alignment when switching to different layers in DNNs.

There also exist nonvolatile memory (NVM) based in-
memory-logic designs [34], [35], [36], using binary NVM cells
to perform simple logic such as NOR or XOR operations.
These designs use mainly write-based logic, which differs
from read-based logic in that it involves writing memory cells
based on the data stored in other cells. Basic write-based logic
operations involve one or two cycles of voltage input and cell
programming. For example, Figure 2 depicts the execution of
a simple NOR operation implemented by RRAM-based in-
memory-logic. In the initialization cycle, the output cell is
programmed to the low resistance state (LRS), representing
“1” by applying a set voltage Vi, to its p terminal. In the com-
putation cycle, two input cells, A and B, take in an execution
voltage V. The voltage on the n terminal of the output cell
is high when at least one of the input cells are in LRS, pro-
gramming the output cell to the high resistance state (HRS),
representing “0”. Complex logic can be implemented through
a combination of these simple operations. Such write-based
in-memory-logic designs leverage the dense memory crossbar
structure to achieve extremely low area and power consump-
tion. There is no need for additional logic circuits integrated in
the memory array compared to read-based in-memory-logic.
The drawback of write-based in-memory-logic comes from the
large number of cycles required to implement the logic, which
prolongs the computation latency [37]. Furthermore, the mas-
sive number of write operations leads to degraded endurance
of NVM cells.

IV. PIM-BASED ARCHITECTURE DESIGN

Processing-in-memory circuits construct powerful primi-
tives for machine learning applications. However, proper
architecture design is required to organize these primitives and
provide an interface for programmers. The objective of PIM-
based architecture design is to minimize the data movement
cost during computation while maintaining normal memory
functions when no computation tasks are assigned. Analog
PIM-based architectures are an attractive solution thanks to
their high computational density and power efficiency. Most
analog PIM sub-arrays provide vector-matrix multiplication
(VMM) as a primitive. An analog PIM-based accelerator is
designed hierarchically, with a network of tiles, each of which
can integrate several PIM arrays. The target DNN workload
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is partitioned layer-wise and mapped to each tile spatially.
An additional buffer, implemented by eDRAM or SRAM, is
added into each tile to buffer the intermediate results [5].
Another design methodology is to use the memory arrays to
buffer the intermediate results, as proposed by PRIME [8].
The weights are mapped into the PIM-arrays and the inputs
are fetched from the input buffer to the PIM-arrays. The out-
put results are stored back to the intermediate data buffer.
Optimized data flow is explored within the sub-arrays for dif-
ferent tasks. For example, a layer-wise pipeline is used in [5]
to reduce the buffer size overhead. Feature map reuse schemes
are explored in [38] to reduce memory accesses for convolu-
tional neural networks. PipeLayer [9] demonstrates a pipelined
design to support the training of deep neural network models.
ZARA [16] further utilizes the sparsity of generative adversar-
ial networks to reduce the computational cost. A specialized
pipeline is proposed in [36] to reduce intermediate data writes
in a transformer model.

Other than accelerator design, SRAM-based PIM can also
be integrated into modern processors as a complement to
the main processing engine for memory-intensive operations.
References [39] and [40] demonstrate digital SRAM CIM
engines integrated into the processor’s cache for logic oper-
ations, while [41] further supports DNN inference with bit-
serial arithmetic. Since the data stored as a binary value in each
cell, only logic operations or bit-serial arithmetic are allowed,
which greatly limits the capability of this type of PIM design.

NMC solutions are mostly explored at the architecture level
since the custom logic layer provides great flexibility. The key
advantage of NMC-based solutions compared to conventional
accelerators is that the high internal bandwidth can be effec-
tively exploited. A processing engine is inserted between each
channel and the original interface so that each memory channel
can operate simultaneously. NMC-based commodity prod-
ucts [42] are also demonstrated providing programmability and
high performance.

V. QUANTITATIVE ANALYSIS

In this section, we will present a comparison of results
for the energy efficiency and throughput among PIM-based
accelerators and non-PIM accelerators. We choose a sys-
tolic array as the baseline non-PIM accelerator, with spatial
dimensions of [N, N], and take a simple convolutional layer
with input dimensions of [/, H, W], weight dimensions of
[/, O, K, K], and output dimensions of [O, H, W] as a bench-
mark. We assume that the size of the input, output, and weight
memory (PIM memory) is enough to buffer this convolutional
layer.

Memory accesses directly affect energy efficiency of a
design since memory access energy dominates the whole of
energy consumption. The number of weight, input and output
memory accesses can be expressed as follows:

Nyeighr = O x I x K x K (D
OxIxHxWxKxK
Ninput: N (2)
OxIxHxWxKxK
Noutput:2X N (3)
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Temporal Loop
for (0=0;0<0;0+=N}{ / \\‘ for (h=0;h<H;h+=1)
for (i=0;i<l;i+=N) Data Movement for (w=0;w<W;w+=1)
for(kx=0;kx<K;kx+=1) for(kx=0;kx<K;kx+=1)
for(ky=0;ky<K;ky+=1) »/ for(ky=0;ky<K;ky+=1)
fetch weight[o:0+N][i:i+N][kx][ky]; \\ for(i=0;i<l;i+=N)
for(h=0;h<H;h+=1) fetch x[i:i+N][h+kx][w+ky];

for(w=0;w<W;w+=1) Onecycle  for(0=0;0<0;0+=N)
fetch x[i:i+N][h+kx][w+ky]; . hardware  active weighto:o+N][i:i+N][kx][ky];
para_for(ip=0;ip<N;ip++) " qperation | Para_for(ip=0;ip<N;ip++)

para_for(op=0;0p<N;op++)
out += matMul(x,weight);
save out[o:0+N][h][w];

\ Para_for(op=0;0p<N;op++)
out += inMemMatMul(x,weight);
save out[o:0+N][h][w];

non-PIM design PIM design

Fig. 3. Pseudo code for a convolutional layer on PIM and non-PIM designs.

Pseudo code for execution of a CNN layer on PIM and non-
PIM-based accelerators is shown in Figure 3. Here, we assume
the PIM macro has the same spatial parallelism as the base-
line non-PIM accelerator. In this case, the number of memory
accesses can be expressed as follows.

Nweight =0 €]
Nigpur =1 x Hx W x K x K 5)
Nautput =0xHxW (6)

The elimination of weight transfer in the PIM-based acceler-
ator is clearly observed, as the weights are stored in memory
and left undisturbed throughout the computation. The reduc-
tion in input memory accesses is attributed to the large
memory capacity of PIM-based accelerators compared to reg-
ister files in PEs of the non-PIM accelerator. Buffering all
weights for one layer in memory allows us to reuse the input
over all output channels and therefore reorder the temporal
O loop below input fetching operations. In terms of output
memory accesses, the PIM-based design achieves minimum
data movement. Due to the constraint of weight reuse, the
temporal H and W loops are below the weight fetching opera-
tion in non-PIM based designs. However, these two loops can
be moved to the top in a PIM-based design as there are no
weight fetching operations.

In terms of throughput, we argue that PIM-based accelera-
tors could not provide significant improvement over non-PIM
accelerators. In the throughput optimized non-PIM design, N
is usually a relatively large number (256 in TPU [43]), and it
is compatible with the layer configurations. Thus, PIM-based
designs could not deliver higher parallelism than non-PIM
designs. In addition, the clock speed of PIM-based acceler-
ators (SOMHz [25] to 300MHz [26]) is usually smaller than
non-PIM accelerators (100MHz [44] to 800MHz [43]). Thus,
unfortunately, a state-of-the-art PIM macro could not achieve
significantly higher throughput than a non-PIM design, even
with area-normalized throughput. For example, [45] could pro-
vide a 88.6 GOPS/mm? area-normalized throughput at 28
nm CMOS, while a non-PIM design in [46] could achieve
90.72 GOPS/mm2 at 40 nm CMOS. However, PIM designs
can provide significant throughput improvement over non-PIM
design if computational accuracy requirements are relaxed.
Reference [47] achieves over 12 TOPS/mm? at 22 nm CMOS
by designing a ternary-weight PIM core, which comes at the
expense of reduced computational accuracy. Customized ML
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models should be used when using this type of PIM macro to
build up a system-on-chip (SoC) [48].

VI. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

Due to PIM’s inherent dependence on novel and emerging
memories as well as machine learning algorithms, continued
collaboration between circuit designers, computer scientists,
material scientists, and neuroscientists is crucial for the con-
tinued success of PIM. This tutorial is unique in its efforts to
examine the topic of PIM circuits from various viewpoints:
analog vs. digital domains, nonvolatile vs. SRAM memo-
ries, and circuit level vs. overall architectural implications.
From our analysis from these various perspectives, we believe
several obstacles require immediate attention.

Firstly, the training of DNN and ML models, usually exe-
cuted by servers before deployment to PIM systems, should
be supported with much less resources by PIM macros, and
in real-time. This could eliminate the need for edge devices
to maintain communication with servers for updated models,
as well as reduce the increasing dependency on warehouse
computing. This further requires software-hardware co-design
to minimize the lossiness of deployed ML models and ensure
that training techniques optimally utilize the benefits and high
parallelism of PIM systems.

Secondly, dual-mode PIM macros and compilers for map-
ping workloads to them should enable general-purpose work-
loads and integration with more conventional von Neumann
architectures. This will improve the flexibility and accessibil-
ity of PIM systems, enabling their use in a broader range of
applications for improved overall energy efficiency. Striking a
balance between flexibility and performance will be implicit
to this brief direction. Making PIM more usable is arguably
an important step in garnering support of expanding PIM
research.

Finally, continued improvement in nonvolatile memory reli-
ability and 3D integration of technologies at the device and
computer-aided design layers of the stack is indispensable for
efficient utilization of many of the techniques mentioned in
this brief. Reliability and 3D integration are both imperative
for increasing memory density and, consequently, improving
energy efficiency and performance. Furthermore, development
of computer-aided design tools for incorporation of nonvolatile
memories can further expand the accessibility of PIM systems.

In summary, we examined key processing-in-memory
architectures and circuit techniques that contribute to the
high throughput and energy-efficient nature of this emerg-
ing paradigm. We further analyzed and compared PIM
performance to non-PIM architectures and explained future
potential research directions for the field. The emergence of
PIM was facilitated by advances in memory technology and
the need for a new computing model that can process large
quantities of data. We believe, for these reasons and the shrink-
ing resource constraints of intelligent systems, that PIM will
be ubiquitous in future systems.
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