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Abstract

Consider the adjoint restriction inequality associated with the hypersurface
{(⌧, ⇠) 2 Rd+1 : ⌧ = |⇠|2} [ {(⌧, ⇠) 2 Rd+1 : ⌧ � ⌧0 = |⇠ � ⇠0|2} for
any (⌧0, ⇠0) 6= 0. We prove that extremizers do not exist for this inequality and
fully characterize extremizing sequences in terms of extremizers for paraboloid
adjoint restriction inequality.

1 Introduction

Fix d 2 N and define

Ef(t, x) =
ˆ

e
i(t,x)(|⇠|2,⇠)

f(⇠)d⇠. (1)

It is conjectured that

sup
f2Lp

kEfkq
kfkp

= Ap < 1 (2)

for q > p and q = d+2
d p

0. We will call p and q for which (2) holds “valid.”
There are many recent results about the class of functions f for which kEfkq =

Apkfkp and the related question of sequences {fn} such that lim kEfnkq/kfnkp =
Ap. We will call f an extremizer for E and {fn} an extremizing sequence. Extremizers
were shown to exist in the case p = 2 in all dimensions by Shao ([8]) and this was
extended to all valid p, q in the interior of the set of all valid p, q by Stovall ([9]). Those
results also prove that extremizing sequences are precompact modulo the symmetries
of E , which will be an important tool in this paper.

As for the value of Ap and the extremizers themselves. Foschi proved that Gaus-
sians are the unique extremizers for E for p = 2 and d 2 {1, 2}, conjecturing that
this was the case for all dimensions ([3]). Christ and Quilodran ([1]) showed that this
conjecture is essentially sharp by proving that Gaussians are only critical points for the
functional f 7! kEfkq/kfkp if p = 2. There are similar results known for restric-
tion to the sphere (e.g. [2], [4], [6]). See Foschi and e Silva’s survey ([5]) for a more
comprehensive collection of known results.
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This paper will deal with the related operator

Ef(t, x) + E(⌧0,⇠0)g(t, x) :=
ˆ

e
i(t,x)·(|⇠|2,⇠)

f(⇠)d⇠ +

ˆ
e
i(t,x)·(|⇠�⇠0|2+⌧0,⇠)g(⇠)d⇠

Symmetries and Definitions

We define subgroups S ⇢ Iso(Lp(Rd)) and T ⇢ Iso(Lq(Rd+1)), which are related by
E � S = T � E . Let S and T be the subgroups generated by the following isometries,
which are distinguished by the fact that they generate non-compact subgroups in the
larger groups:

Sf(⇠) TEf(t, x)
Scaling �

d/p
f(�⇠) �

�(d+2)/qEf(��2
t,�

�1
x)

Frequency Translation f(⇠ � ⇠
0) e

i(t|⇠0|2+x·⇠0)Ef(t, x+ 2t⇠0)

Spacetime Translation e
i(t0,x0)(|⇠|2,⇠)f(⇠) Ef(t+ t0, x+ x0).

We can write any symmetry S 2 S as

Sf(⇠) = �
d/p

e
i(t0,x0)(|�⇠�⇠0|2,�⇠�⇠0)

f(�⇠ � ⇠
0), (3)

and the corresponding T 2 T as

TF (t, x) = �
�(d+2)/q

e
i(��2t|⇠0|2+��1x·⇠0)

F (��2
t+ t0,�

�1
x+ x0 + 2��2

t⇠
0), (4)

for some � 2 R+, (t0, x0) 2 R⇥ Rd, and ⇠0 2 Rd.
Let

E(⌧0,⇠0)f(t, x) =
ˆ

e
i(t,x)(|⇠�⇠0|2+⌧0,⇠)f(⇠)d⇠

be the extension operator associated with the surface P(⌧0,⇠0) = {(⌧, ⇠) : ⌧ = |⇠ �
⇠0|2+⌧0}. Then, although E(⌧0,⇠0) �S 6= T�E(⌧0,⇠0), the generators of T pass through
E(·,·) as

�
�(d+2)/qE(⌧0,⇠0)g(�

�2
t,�

�1
x) = E(��2⌧0,��1⇠0)(�

d/p
g(�⇠))(t, x)

e
i(t|⇠0|2+x·⇠0)E(⌧0,⇠0)g(t, x+ 2t⇠0) = E(⌧0+2⇠0·⇠0,⇠0)(g(⇠ � ⇠

0))(t, x)

E(⌧0,⇠0)g(t+ t0, x+ x0) = E(⌧0,⇠0)(e
i(t0,x0)(|⇠�⇠0|2+⌧0,⇠)g(⇠))(t, x).

(5)

Hence, for every T 2 T written in the form of (4) we have

TE(⌧0,⇠0)g(t, x)

= E(��2(⌧0+2⇠0·⇠0),��1⇠0)[�
d/p

e
i(t0,x0)·(|�⇠�⇠0�⇠0|2+⌧0,�⇠�⇠0)

g(�⇠ � ⇠
0)](t, x). (6)

Main Results

From now on we will assume p, q are exponents such that Ap < 1.
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Theorem 1.1. Assume |⌧0|+ |⇠0| 6= 0.

1.

sup
f,g2Lp

kEf + E(⌧0,⇠0)gkq
(kfkpp + kgkpp)1/p

= 21/p
0
Ap

2. For all f, g 2 L
p,

kEf + E(⌧0,⇠0)gkq
(kfkpp + kgkpp)1/p

< 21/p
0
Ap.

In other words, E + E(⌧0,⇠0) has no extremizers.

3. If the sequence (fn, gn) ⇢ L
p ⇥ L

p extremizes E + E(⌧0,⇠0), then there exists a
subsequence in n along which

fn(⇠) = Snf(⇠) + rn(⇠) and gn(⇠) = Snf(⇠) + wn(⇠)

such that f extremizes E , {Sn} ⇢ S written in the form of (3) satisfy

(a) �n ! 1,

(b) ��2
n ⇠0 · ⇠0n ! 0, and

(c) �ntn⇠0 ! 0,

and krnkp + kwnkp ! 0.

The proof is straightforward, essentially consisting of an exercise in distribution
theory and geometric considerations related to the separation of the two surfaces.

We prove Theorem 1.1 part 1 by considering a sequence of dilates of an extremizer
for E . Next, we use uniform convexity to prove that for any extremizing sequence
{(fn, gn)}, kEfn � E(⌧0,⇠0)gnkq ! 0. Using the separation and transversality of the
paraboloids, we also prove that fn * 0 and gn * 0 and deduce Theorem 1.1 part 2.
Finally, we use the results in [9] to find symmetries {Sn} such that Snfn ! f in L

p.
Theorem 1.1 part 3 follows from a direct computation.
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2 Operator Norm

First, we prove boundedness.

Proposition 2.1.

��Ef + E(⌧0,⇠0)g
��
q
 21/p

0
Ap

⇣
kfkpp + kgkpp

⌘1/p
(7)
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Proof. Since kE(⌧0,⇠0)g(t, x)kq = kei(t,x)·(⌧0,⇠0)E [g(·+ ⇠0)](t, x)kq  Apkgkp,
��Ef + E(⌧0,⇠0)g

��
q
=

��Ef + E(⌧0,⇠0)g
��
q
 kEfkq +

��E(⌧0,⇠0)g
��
q

 Ap (kfkp + kgkp)  21/p
0
Ap

�
kfkpp + kgkpp

�1/p
.

(8)

Next, we construct an extremizing sequence for E + E(⌧0,⇠0) : Lp ⇥ L
p ! L

q to
show that 21/p

0
Ap is the sharp constant.

Proposition 2.2. Let f 2 L
p be such that kEfkq = Apkfkp and let f�(⇠) :=

�
d/p

f(�⇠). Then

lim
�!0

kEf� + E(⌧0,⇠0)f�kq
21/pkfkp

= 21/p
0
Ap.

Proof. Let f 2 L
p be such that kfkp = 1 and kEfkq = Ap. By the scaling properties

of E we know that kf�kp = kfkp and kEf�kq = kEfkq for all � > 0. The identity

E(⌧0,⇠0)f�(t, x) = �
�(d+2)/qE(�2⌧0,�⇠)f(�

�2
t,�

�1
x).

applys to the translated paraboloid, so
��E(⌧0,⇠0)f� + Ef�

��
q
=

��E(�2⌧0,�⇠0)f + Ef
��
q
.

Moreover,
E(�2⌧0,�⇠0)f(t, x) = e

it�2(|⇠0|2+⌧0)Ef(t, x� 2�t⇠0).

By approximating Ef in C
1
cpct and applying dominated convergence, it is clear that

kE(�2⌧0,�⇠0)f � Efkq ! 0. Since f is an extremizer, this implies that kE(⌧0,⇠0)f +
Efkq ! 2Ap.

Proof of Theorem 1.1 part 1. This follows from Proposition 2.2 and Proposition 2.1.

3 Non-Existence of Extremizers

Now we use the operator norm to understand extremizing sequences. We begin by
proving that extremizing sequences of functions must converge weakly to zero.

Proposition 3.1. Assume that |⌧0| + |⇠0| > 0. Then for every bounded extremizing
sequence {(fn, gn)} for E + E(⌧0,⇠0),

1. {fn} extremizes E and {gn} extremizes E(⌧0,⇠0);

2. kfnkp � kgnkp ! 0 as n ! 1;

3. kEfn � E(⌧0,⇠0)gnkq ! 0 as n ! 1; and

4. fn, gn * 0 weakly.
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Proof. Since the constant in (7) is sharp, extremizing sequences must approach equal-
ity for every line of the computation

��Efn + E(⌧0,⇠0)gn
��
q
 kEfnkq +

��E(⌧0,⇠0)gn
��
q

 Ap (kfnkp + kgnkp)  21/p
0
Ap

�
kfnkpp + kgnkpp

�1/p
.

Let {(fn, gn)} ⇢ `
p(Lp ⇥ L

p) such that (kfnkpp + kgnkpp)1/p = 1 for all n and

lim
n!1

kEfn + E(⌧0,⇠0)gnkq = 21/p
0
Ap.

By the computation in the proof of Proposition 2.1, we must have

lim
n!1

��Efn + E(⌧0,⇠0)gn
��
q

kEfnkq +
��E(⌧0,⇠0)gn

��
q

= 1; (9)

lim
n!1

kEfnkq +
��E(⌧0,⇠0)gn

��
q

Ap (kfnkp + kgnkp)
= 1; (10)

and
lim

n!1

Ap (kfnkp + kgnkp)
21/p0

Ap (kfnkpp + kgnkpp)1/p
= 1. (11)

By (11) and the sharp Hölder inequality, kfnkp, kgnkp ! 2�1/p proving claim 2.
Combining this with (10) implies claim 1 and, in particular, kEfnkq, kE(⌧0,⇠0)gnkq !
2�1/p

Ap. In light of (9), we see that kEfn+E(⌧0,⇠0)gnkq�kEfnkq�kE(⌧0,⇠0)gnkq !
0. Since L

q is uniformly convex ([7, Theorem 2.5]), this proves claim 3.
Turning to claim 4, let  = b� 2 S and let d�(⌧, ⇠) be the measure on the paraboloid

centered at the origin given by the pullback of Lebesgue measure via the projection map
R⇥ Rd ! Rd. By definition, Ef = dfd� and since L

q ⇢ S 0, we may compute

hEfn,�i = hfnd�, b�i =
ˆ

fn(⇠) (|⇠|2, ⇠)d⇠.

In the same way, let d�0(⌧, ⇠) be the measure on the translated paraboloid so that

hE(⌧0,⇠0)gn,�i = hgnd�0
, b�i =

ˆ
gn(⇠) (|⇠ � ⇠0|2 + ⌧0, ⇠)d⇠.

Let ⌘ 2 Rd. As long as (|⌘|2, ⌘) 2 P isn’t on the intersection of the two paraboloids,
there exists r > 0 sufficiently small that B((|⌘|2, ⌘), r) is disjoint from P(⌧0,⇠0).
Let  : Rd+1 ! R be any smooth function supported on B((|⌘|2, ⌘), r). Since
 (|⇠ � ⇠0|2 + ⌧0, ⇠) = 0 for all ⇠ 2 Rd, hE(⌧0,⇠0)gn,�i = 0 for all n so we can
apply claim 3 to see that ˆ

fn(⇠) (|⇠|2, ⇠)d⇠ ! 0.

Since  (| · |2, ·) ranges over all smooth functions supported on B(⌘, r), fn * 0 weakly
on a neighborhood of almost every point. Hence fn * 0 weakly on all of Rd and the
statement for gn follows similarly. This proves claim 4.
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Proof of Theorem 1.1 part 2. An extremizing pair (f, g) is a constant extremizing se-
quence. Therefore non-zero extremizers do not exist.

4 Characterization of Extremizing Sequences

Let {(fn, gn)} ⇢ `
p(Lp ⇥ L

p) be an extremizing sequence for E + E(⌧0,⇠0) such that
kfnkpp + kgnkpp = 1 for all n. By Proposition 3.1, {fn} is an extremizing sequence
for E so by [9, Theorem 1.1] there exist {Sn} ⇢ S such that Snfn ! f in L

p along
some subsequence where f is an extremizer for E . Let {Tn} ⇢ T+ be such that
Tn � E = E � Sn for all n. Then

21/p
0
Ap = lim

n!1
kEfn + E(⌧0,⇠0)gnkq

= lim
n!1

kTnEfn + TnE(⌧0,⇠0)gnkq = lim
n!1

kEf + TnE(⌧0,⇠0)gnkq.

Since kEfkq = Apkfkp and Tn are Lq symmetries, uniform convexity implies that
TnE(⌧0,⇠0)gn ! Ef in L

q . From here we can deduce the behavior of Sngn.

Proposition 4.1. Let f 2 L
p(Rd) such that kfkp = 1 and {(⌧n, ⇠n)} ⇢ Rd+1. If

lim ⌧n = ⌧0 and lim ⇠n = ⇠0, then

lim kE(⌧0,⇠0)f � E(⌧n,⇠n)fkq = 0.

Conversely, if f 2 L
p(Rd) and {gn} ⇢ L

p(Rd) are such that kfkp = kgnkp = 1 for
all n and

lim kE(⌧0,⇠0)f � E(⌧n,⇠n)gnkq = 0,

then lim ⌧n = ⌧0 and lim ⇠n = ⇠0.

Proof. Assume that lim ⌧n = ⌧0 and lim ⇠n = ⇠0. First, we rearrange the expression:

kE(⌧0,⇠0)f � E(⌧n,⇠n)fkq

=

����
ˆ h

e
i(t,x)·(|⇠�⇠0|2+⌧0,⇠) � e

i(t,x)·(|⇠�⇠n|2+⌧n,⇠)
i
f(⇠)d⇠

����
q

=

����
ˆ h

e
it(�2⇠·⇠0+|⇠0|2+⌧0) � e

it(�2⇠·⇠n+|⇠n|2+⌧n)
i
e
i(t,x)·(|⇠|2,⇠)

f(⇠)d⇠

����
q

=

�����

ˆ
e
it(�2⇠·⇠0+|⇠0|2+⌧0)

h
1� e

it(�2⇠·(⇠n�⇠0)+|⇠n|2�|⇠0|2+⌧n�⌧0)
i
e
i(t,x)·(|⇠|2,⇠)

f(⇠)d⇠

�����
q

Let " > 0. Take g 2 C
1
cpct(Rd) such that kf � gkp = O("). Let R > 0 be large

enough that supp g ⇢ B(0, R) and
���kE(⌧0,⇠0)g � E(⌧n,⇠n)gkLq(Rd+1) � kE(⌧0,⇠0)g � E(⌧n,⇠n)gkLq(B(0,R))

��� = O(").
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Then by Minkowski’s integral inequality,

kE(⌧0,⇠0)f � E(⌧n,⇠n)fkLq(Rd+1)

= kE(⌧0,⇠0)g � E(⌧n,⇠n)gkLq(Rd+1) +O(")

= kE(⌧0,⇠0)g � E(⌧n,⇠n)gkLq(B(0,R)) +O(")

=

�����

ˆ
e
it(�2⇠·⇠0+|⇠0|2+⌧0)

h
1� e

it(�2⇠·(⇠n�⇠0)+|⇠n|2�|⇠0|2+⌧n�⌧0)
i
e
i(t,x)·(|⇠|2,⇠)

g(⇠)d⇠

�����
Lq(B(0,R))

+O(")

 kgk1 sup
|⇠|<R

k1� e
it(�2⇠·(⇠n�⇠0)+|⇠n|2�|⇠0|2+⌧n�⌧0)kLq(B(0,R)) +O(").

Furthermore, since d
d✓ (1� e

i✓) = �i,

lim
n!1

sup
|⇠|<R

k1� e
it(�2⇠·(⇠n�⇠0)+|⇠n|2�|⇠0|2+⌧n�⌧0)kLq(|(t,x)|<R)

. limR
d+1
q sup

|⇠|<R, |(t,x)|<R
|1� e

it(�2⇠·(⇠n�⇠0)+|⇠n|2�|⇠0|2+⌧n�⌧0)|

 limR
d+1
q sup |t(�2⇠ · (⇠n � ⇠0) + |⇠n|2 � |⇠0|2 + ⌧n � ⌧0)|

 limR
d+1
q R(2R|⇠n � ⇠0|+ ||⇠n|2 � |⇠0|2|+ |⌧n � ⌧0|)

= 0.

Hence lim supn!1 kE(⌧0,⇠0)f � E(⌧n,⇠n)fkLq(Rd+1) = O(") and, taking "! 0,

lim
n!1

kE(⌧0,⇠0)f � E(⌧n,⇠n)fkLq(Rd+1) = 0.

Conversely, assume lim ⌧n 6= ⌧0 or lim ⇠n 6= ⇠0.
Consider the signed vertical (⌧ ) distance between the two paraboloids, h(⇠) :=

|⇠ � ⇠0|2 � |⇠ � ⇠n|2 + ⌧0 � ⌧n. We rearrange to find h(⇠) = 2⇠ · (⇠n � ⇠0) + |⇠0|2 +
⌧0 � |⇠n|2 � ⌧n. Let An = {⇠ : h(⇠) = 0}. We claim that for any fixed d-ball R > 0,

lim sup
n

inf
{⇠:|⇠|<R, dist(⇠,An)>s}

|h(⇠)| =: cs,R > 0. (12)

Indeed, cs,R � lim supn 2s|⇠n � ⇠0| by differentiating h. If this quantity is zero, then
lim ⇠n = ⇠0 and therefore lim ⌧n 6= ⌧0 in this case. Let " > 0. There exists an N > 0
such that

sup
{⇠:|⇠|<R}

��|⇠ � ⇠0|2 � |⇠ � ⇠n|2
�� < "

for all n > N , so

cs,R � lim sup
n

inf
{⇠:|⇠|<R}

|h(⇠)| � lim sup
n

|⌧n � ⌧0|� ".
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Since lim supn |⌧n�⌧0| > 0 in the case we’re considering, we can take " small enough
to show that cs,R > 0, proving (12).

We would like to construct a function  2 C
1
cpct(Rd+1) such that after passing to

a subsequence in n,

1. |hfd�, i| > 1
2 , and

2. limn sup⇠2B(0,R) | (⇠, |⇠ � ⇠n|2 + ⌧n)| = 0.

Let ⌘ 2 C1
cpct(R) be a non-negative bump function with supp ⌘ ⇢ B(0, 1) and

⌘|B(0,1/2) ⌘ 1. Also let � 2 C
1
cpct(Rd) be such that k�kp0 = 1 and |hf,�i| > 3

4 ,
and take R > 0 so that supp� ⇢ B(0, R). Note that, since the zero set of h is a
(d� 1)-hyperplane,

|{⇠ : dist(⇠, An) < s} \B(0, R)|  cd�1R
d�1

s

where cd�1 is a dimensional constant. Therefore, there exists an s0 > 0 such that

k��

1� ⌘

✓
dist(⇠, An)

2s0

◆�
�kp0 <

1

4

and hence
|hf,


1� ⌘

✓
dist(⇠, An)

2s0

◆�
�i| > 1

2

for all n. Now let

 n(⌧, ⇠) := ⌘

✓
3
⌧ � ⌧0 � |⇠ � ⇠0|2

cs0,R

◆
1� ⌘

✓
dist(⇠, An)

2s0

◆�
�(⇠).

By (12),  n(|⇠ � ⇠n|2 + ⌧n, ⇠) = 0 for all ⇠ 2 B(0, R). In addition, |hfd�, ni| > 1
2

by construction.
Since the space of all (d�1)-planes intersecting the d-ball B(0, R+ 10s0) is com-

pact, either An \ B(0, R+ 10s0) = ; for sufficiently large n, or there exists a hyper-
plane A such that for a subsequence, An ! A in the sense that

lim
n

sup
⇠2A\B(0,R+10s0),

⇣2An\B(0,R+10s0)

|⇠ � ⇣| = 0.

In the first case, let

 (⌧, ⇠) := ⌘

✓
3
⌧ � ⌧0 � |⇠ � ⇠0|2

cs0,R

◆
�(⇠),

and in the second, pass to the subsequence mentioned above and let

 (⌧, ⇠) := ⌘

✓
3
⌧ � ⌧0 � |⇠ � ⇠0|2

cs0,R

◆
1� ⌘

✓
dist(⇠, A)

2s0

◆�
�(⇠).
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In either case, we see that n !  in C
1
cpct. Condition 1 holds since fd� 2 S 0(Rd+1)

and hence hfd�, ni ! hfd�, i. Condition 2 holds by the triangle inequality and
the fact that it’s satisfied for each  n individually.

By Plancherel and condition 1, |hE(⌧0,⇠0)f,
eb i| > 1

2 . On the other hand, by condi-

tion 2, limn |hE(⌧n,⇠n)gn,
eb i| = 0. Thus

lim
n!1

kE(⌧0,⇠0)f � E(⌧n,⇠n)gnkq � 1

2kb kq0
6= 0,

which is a contradiction and proves the proposition.

Proof of Theorem 1.1 part 3. By Proposition 3.1,

kEfnkq, kE(⌧0,⇠0)gnkq ! Ap and kEfn + E(⌧0,⇠0)gnkq ! 2Ap,

so uniform convexity implies that kEfn � E(⌧0,⇠0)gnkq ! 0.
Let � 2 C

1
cpct(Rd). Set

L = sup
⇠2supp�

��|⇠ � ⇠0|2 + ⌧0 � |⇠|2
��

and let ⌘ 2 C
1
cpct(R) be such that ⌘|B(0,2L) ⌘ 1. Now let  (⌧, ⇠) = �(⇠)⌘(⌧ � |⇠|2).

By construction of ⌘,

lim
n!1

|hfn � gn,�iL2(Rd)| = lim
n

|hfnd� � gnd�
0
, iL2(Rd+1)|

= lim
n

|hEfn � E(⌧0,⇠0)gn, b i|  lim
n

kEfn � E(⌧0,⇠0)gnkqk b kq0 = 0,

which proves that fn � gn * 0. Indeed, since kfnkp �kgnkp ! 0 by Proposition 3.1,
uniform convexity implies that the convergence is strong, kfn�gnkp ! 0. Since fn is
an extremizing sequence, by [9, Theorem 1.1] there exists a subsequence in n, {Sn} ⇢
S, and an extremizer f 2 L

p such that Snfn ! f so we have kf �Sngnkp ! 0 along
this subsequence as well.

Recall that the symmetries TnE(⌧0,⇠0)gn can be expressed in the form of (6) as

E(��2
n (⌧0+2⇠0·⇠0n),�

�1
n ⇠0)

�
d/p
n e

i(tn,xn)·(|�n⇠�⇠0n�⇠0|2+⌧0,�n⇠�⇠0n)gn(�n⇠ � ⇠
0
n)(t, x)

= E(��2
n (⌧0+2⇠0·⇠0n),�

�1
n ⇠0)

(eitn(�2�n⇠·⇠0+2⇠0·⇠0n+|⇠0|2+⌧0)Sngn)(t, x) (13)

for �n 2 R+, (tn, xn) 2 R ⇥ Rd and ⇠0n 2 Rd. Proposition 4.1 immediately implies
that (��2

n (⌧0+2⇠0 ·⇠0n),��1
n ⇠0) ! 0, which also implies �n ! 1 and ��2

n ⇠0 ·⇠0n ! 0
since we assumed |⌧0| + |⇠0| 6= 0. Since Sngn ! f in L

p, by the triangle inequality
and the forward part of Proposition 4.1,

���Ef � E(eitn(�2�n⇠·⇠0+2⇠0·⇠0n+|⇠0|2+⌧0)f)(t, x)
���
q
! 0
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as well. Since R/(2⇡Z) is compact, we may pass to a subsequence along which ✓ :=
lim tn(2⇠0 · ⇠0n + |⇠0|2 + ⌧0)/(2⇡Z) exists. By rearranging, applying the boundedness
of E , and invoking dominated convergence,

���Eei✓f(t, x� 2�ntn⇠0)� E(eitn(�2�n⇠·⇠0+2⇠0·⇠0n+|⇠0|2+⌧0)f)
���
q
! 0.

The two preceding limits imply that
��Eei✓f(t, x� 2�ntn⇠0)� Ef

��
q
! 0.

Hence the sequence {�ntn} must be bounded and there exists a subsequence along
which c := lim�ntn exists. Since �n ! 1, lim tn = 0. As translation is continuous
in L

q , ��Ef � Eei✓f(t, x� 2c⇠0)
��
q
= 0.

From this is is clear that c = 0 as |Ef(t, x)| = |Ef(t, x � 2c⇠0)| would imply that
Ef ⌘ 0 since Ef 2 L

q . We now also see that ei✓ = 1 by strict convexity.
This proves the claim.
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