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Abstract

Consider the adjoint restriction inequality associated with the hypersurface
(1) € R™ .7 = [ePYU{(r,6) € Rt 7 — 70 = |6 - &) for
any (70,&0) # 0. We prove that extremizers do not exist for this inequality and
fully characterize extremizing sequences in terms of extremizers for paraboloid
adjoint restriction inequality.

1 Introduction

Fix d € N and define

Ef(t,x) = / et IR0 f(£)de (1)
It is conjectured that
sup 1€ /1lq =A, <oo 2
rece [Ifllp

forqg > pandq = %p’. We will call p and ¢ for which (2) holds “valid.”

There are many recent results about the class of functions f for which ||Ef|, =
Ap|l fllp and the related question of sequences { f,,} such that lim ||€ f,, |4/l frllp
Ap. We will call f an extremizer for £ and { f,, } an extremizing sequence. Extremizers
were shown to exist in the case p = 2 in all dimensions by Shao ([8]) and this was
extended to all valid p, ¢ in the interior of the set of all valid p, ¢ by Stovall ([9]). Those
results also prove that extremizing sequences are precompact modulo the symmetries
of £, which will be an important tool in this paper.

As for the value of A, and the extremizers themselves. Foschi proved that Gaus-
sians are the unique extremizers for £ for p = 2 and d € {1,2}, conjecturing that
this was the case for all dimensions ([3]). Christ and Quilodran ([1]) showed that this
conjecture is essentially sharp by proving that Gaussians are only critical points for the
functional f — ||Ef|4/|If]lp if p = 2. There are similar results known for restric-
tion to the sphere (e.g. [2], [4], [6]). See Foschi and e Silva’s survey ([5]) for a more
comprehensive collection of known results.



This paper will deal with the related operator

E(t,2) + Emen(tia) i= [ DU fepdg + [ etrtealsmeg g

Symmetries and Definitions

We define subgroups S C Iso(LP(R9)) and T C Iso(L?(R4*1)), which are related by
Eo0S=To&. LetS and T be the subgroups generated by the following isometries,
which are distinguished by the fact that they generate non-compact subgroups in the
larger groups:

Sf(E) TEf(t, x)
Scaling AP F(NE) A@+2)/ag f(A2¢, A7)
Frequency Translation f(§ — &) ei(t‘5/‘2+’3'5/)5f(t, x + 2t¢")

Spacetime Translation ei(to:@0)(€%.6) £(&) £ f(t + to, x + 20).
We can write any symmetry S € S as
SF(€) = AU/Peiltomo) (M€ PAEE) p(\e _ ¢!y, 3)
and the corresponding T' € T as
TF(t,z) = A\~ (@+2/agi O I 0 ) 3 =24 4 g Ao 4 29 + 20728, (4)

for some A € RT, (tg,79) € R x R%, and ¢’ € R,
Let

e (1) = [ S8 p(6)ag

be the extension operator associated with the surface P, ¢y = {(7,§) : 7 = [§ —
&|?+70}. Then, although E(r0,60) ©S # T o0&+ ¢,)» the generators of T pass through
5(.7.) as

ATIE 69N AT10) = Epany a-16) AP (AE) (8, )

. 72 el

ez(t|£ I"ta-g )8(7'0750)9(753 T+ Qt&'/) = 5(7—0-}-250.5/,&,)(9(5 - f/))(tv ZL’) (5)
, PRET
5(70750)9(75 +to,x + x0) = 5(70750)(62(%’%0)('& Sol™+ O’E)g(f))(t, .’L‘)

Hence, for every T' € T written in the form of (4) we have

Tg(‘l’[),go)g(t7 x)
. 7 2 ’
= 5()\72(To+2§0'€'),)\*1§0) [/\d/pez(to,zo)-(\)\gfﬁ —Eal™ 0. AE=¢ )g()‘g - 5/)](75’ x) (6)

Main Results

From now on we will assume p, ¢ are exponents such that A4, < oco.



Theorem 1.1. Assume |7o| + |£o| # 0.

1.

& Eir /
sup ” f:_ ( o,&;)QIUq —2l/P' 4,
raere (1f1p + llgllz)/®

2. Forall f,g € LP,
||gf + E(To,éo)gnq

(LF17 + llglz) 7
In other words, £ + £+, ¢,) has no extremizers.

< 2P 4,

3. If the sequence (fy,gn) C LP x LP extremizes £ + &£, ¢,)» then there exists a
subsequence in n along which

fn(8) = Snf(§) +rn(§) and  gn(§) = Snf(§) + wn(§)
such that f extremizes &, {S,,} C S written in the form of (3) satisfy

(@) Ap — o0,
(b) A\;%& - &, — 0, and
(©) Antrnéo — 0,

and ||y |, + [Jwn|l, — 0.

The proof is straightforward, essentially consisting of an exercise in distribution
theory and geometric considerations related to the separation of the two surfaces.

We prove Theorem 1.1 part 1 by considering a sequence of dilates of an extremizer
for £. Next, we use uniform convexity to prove that for any extremizing sequence
{(frs9n)} |Efn — E(ro,60)9nllq — 0. Using the separation and transversality of the
paraboloids, we also prove that f, — 0 and ¢g,, — 0 and deduce Theorem 1.1 part 2.
Finally, we use the results in [9] to find symmetries {S,,} such that S,, f,, — f in L?.
Theorem 1.1 part 3 follows from a direct computation.
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2 Operator Norm

First, we prove boundedness.

Proposition 2.1.

, v
1Ef + Eroenall, < 27 4, (Ilflli + ”9”5) ' @



Proof. Since [[€(r, ¢)g(t 7)llq = [l T E[g(- + )] (L, 2) g < Apllgllp-

Hgf +g("’o,§o)qu = Hgf +g(‘ro,§o)qu < Hgf”q + Hg(To’go)qu
< Ay (IFllp + lglls) < 27 A, (1F12 + 1g12) "
O

Next, we construct an extremizing sequence for £ + £ ¢,y : LP X LP — L% to
show that 21/#' A, is the sharp constant.

Proposition 2.2. Let f € LP be such that [|Ef||; = A, fll, and let fi(§) =
AU/P f(AE). Then
IESX + Eroe0) frllg

=2/ 4,
o 277 f]), ’

Proof. Let f € LP be such that || f||, = 1 and ||€ f||; = Ap. By the scaling properties
of & we know that || fx[|, = || f[|, and [|€ fxllg = [[€f|l4 for all A > 0. The identity

5(T0,§0)f)\(ta 3:) = /\7(d+2)/q8(>\27'0’>\€)f(/\72t7 /\711‘)'

applys to the translated paraboloid, so ||€;, ¢,)/x + EfAHq = [|€xzro neo) f + ngq'
Moreover, . .
5(>\270,>\50)f(t7 z) = eitA* (1ol +To)gf(t7 T — 2M&).

By approximating £ f in C¢;,, and applying dominated convergence, it is clear that

E€2rone0)f — EfIlg = 0. Since f is an extremizer, this implies that ||, ¢ f +
Efllg = 24,. O

Proof of Theorem 1.1 part 1. This follows from Proposition 2.2 and Proposition 2.1.
O

3 Non-Existence of Extremizers

Now we use the operator norm to understand extremizing sequences. We begin by
proving that extremizing sequences of functions must converge weakly to zero.

Proposition 3.1. Assume that |7g| + |£o| > 0. Then for every bounded extremizing
sequence {(fn,gn)} for & 4+ & o)

1. {fn} extremizes £ and {g,, } extremizes £, ¢,
2. an”p - ”gan — 0asn — oo;
3. lEfn = Erore0)9nllg — 0 as n — oo; and

4. fn,gn — 0 weakly.



Proof. Since the constant in (7) is sharp, extremizing sequences must approach equal-
ity for every line of the computation

1€ fr + Ecro.019nll, < NE Fully + |Ero 019,
’ 1/
< Ap (I fallp + llgally) < 27 Ap (I£all? + llgnlls) ™"
Let {(fn, gn)} C P(LP x LP) such that (|| f,||2 + [lgn[|2)'/? = 1 for all n and
Jm |€fn + Er ) 9nlla = 2V/7 Ay
By the computation in the proof of Proposition 2.1, we must have

Hgf" + g(To’Eo)g”Hq

im =1; ©)
n—oo Hgfn”q + Hg(TOa'EO)gan
Hgf’n”q + Hg(To,ﬁo)gan _ 1 (10)
n—oo Ap ([l fullp + llgnllp) ’
and A
Ayl + llgall) o

n—o00 / 1 =
=% 2" A, (| fullb + llgnllB) "

By (11) and the sharp Holder inequality, || f ||, [|gnll, — 27 /7 proving claim 2.
Combining this with (10) implies claim 1 and, in particular, ||€ fy.[|q, [|E(ry,¢0)Inllq —
2*1/?’Ap. In light of (9), we see that || fr, + &y e\ Inllg — 1€ fullg = 1Ecro,c0)gnllg —
0. Since L9 is uniformly convex ([7, Theorem 2.5]), this proves claim 3.

Turning to claim 4, let) = ¢ € S and let do (1, €) be the measure on the paraboloid
centered at the origin given by the pullback of Lebesgue measure via the projection map
R x R? — R?. By definition, £ f = fdo and since L? C S’, we may compute

wmwzmw@=/n@ww@%

In the same way, let do”’(7, ) be the measure on the translated paraboloid so that

<8(707§0)gn7¢> = <gndo—/’$> = /gn(ﬁ)w(\ﬁ - §0|2 + 7—075)d£'

Letn € R Aslongas (|7|2,7) € Pisn’ton the intersection of the two paraboloids,
there exists 7 > 0 sufficiently small that B((|n|?,n),r) is disjoint from P, ¢).
Let ¢ : R4 — R be any smooth function supported on B((|n|?,1),r). Since
(1€ — &f* + 70,6) = 0forall & € R, (E7y ¢0)9n, @) = 0 for all n so we can
apply claim 3 to see that

/h@WMﬁO%%O

Since v(|-|?, -) ranges over all smooth functions supported on B(n, ), f, — 0 weakly
on a neighborhood of almost every point. Hence f,, — 0 weakly on all of R? and the
statement for g,, follows similarly. This proves claim 4. U



Proof of Theorem 1.1 part 2. An extremizing pair (f, g) is a constant extremizing se-
quence. Therefore non-zero extremizers do not exist. O

4 Characterization of Extremizing Sequences

Let {(fn,9n)} C €P(LP x LP) be an extremizing sequence for £ 4 £, ¢,) such that
[ full2 + llgnl|5 = 1 for all n. By Proposition 3.1, {f,} is an extremizing sequence
for £ so by [9, Theorem 1.1] there exist {S,,} C S such that S,, f,, — f in L? along
some subsequence where f is an extremizer for £. Let {T,,} C Ty be such that
T,0& =E& oS, forall n. Then
2!/ Ap = nh_{go € fn + Ero.60)9nllq
= nlggo ”Tngfn + T”g(Tmfo)gn“q = nlggo ”gf + Tng(-ro,fo)gnHQ'
Since ||E f|lq = Apl| fl|p and T}, are L symmetries, uniform convexity implies that

Tn&(ry.0)9n — € f in L. From here we can deduce the behavior of .S, gy,.

Proposition 4.1. Let f € LP(RY) such that ||f]|, = 1 and {(7,,,&,)} C R4 If
lim7,, = 19 and lim &,, = &, then

Hm [|Ery ¢0)f = Ernen) [llg = 0.

Conversely, if f € LP(R?) and {g,} C LP(R?) are such that || f||, = ||gn|l, = 1 for
all n and

Hm (|7, ¢0)f = Ern ey nlla =0,

then lim 7, = 79 and lim &,, = &.

Proof. Assume that lim 7,, = 7 and lim &,, = . First, we rearrange the expression:
1€cr0.60)f = Erenr Flla

= / [ei(t,x)-(\ﬁfﬁolufo,i) _ ei(t@)-(\E*EnIQJrTmé)] F(&)de

q

_ / [et2eeotieolthm) _ git(-2etntienler) | oilt) (679 f(¢)ag

q

— /eit(—2§'§0+\§0|2+70)

[1 - eit(—2§‘(£n—fo)+|€n\2—‘§°|2+7n_70)} e/t (€159 f () de

q

Lete > 0. Take g € CZ5,,(R?) such that ||f — g||, = O(e). Let R > 0 be large
enough that supp g C B(0, R) and

’”5(70750)9 = Erpem 9l aarty = [|Er.60)9 — S(Tmén)g”L‘?(B(O,R))’ =0(e).

6



Then by Minkowski’s integral inequality,

1€ro.e0) f = Ern ) FllLaratr)
= 1€(r0.60)9 = E(rn ) Il Laa+ry + O()
= €009 — Etrn ) 9llLa(B(0.RY) + O(E)

_ H /eit(—2§'£o+\§o\2+m)

|:1 _ eit(_2£‘(€n_§0)+|€n‘2_‘50‘2+Tn—7'0):| ei(t,x)~(|§|2,§)g(€)d€ + O(&‘)
La(B(0,R))
< |lgll1 sup |1 — eit(_2§'(fn_£O)+|fn|2_|£0‘2+7'n—7'0)HLq(B(O’R)) +0(e).
lEl<R
Furthermore, since %(1 — ew) = —1q,
lim sup [|1 — (26 En€o)HEnl —leo traro))
SJ lim R% sup ‘1 _ eit(_Qg’(gn_£U)+|fn|2_|£O‘2+Tn—7'0)|

[E]<R, |(t,z)|[<R
. a+1 2 2
<lmR 7 sup|t(=2¢ - (& — &) + [&al® — [&0* + T — T0)|

. dil
<UHm R R2R[E — &of + |I€a]® — [&0l*] + |70 — 70])
=0.

Hence limsup,, o, |Ery.¢0)f — Ern.e) fllLara+1y = O(e) and, taking € — 0,
Jim {|Er,¢0)f = Erpgn) fllLoqasry = 0.

Conversely, assume lim 7,, # 79 or lim &,, # &.

Consider the signed vertical (7) distance between the two paraboloids, h(§) :=
1€ — &of2 — 1€ — &2 + 7o — . We rearrange to find h(€) = 2€ - (€, — &o) + |&|? +
70 — |€n]? — 7. Let Ay, = {€ : h(€) = 0}. We claim that for any fixed d-ball R > 0,

lim sup

inf h(&)| =t csr > 0. 12)
n {§1|§|<R,dist(§7,4n)>s}‘ 3] R (

Indeed, ¢; g > limsup,, 25|¢,, — &o| by differentiating h. If this quantity is zero, then
lim¢,, = & and therefore lim 7,, # 7 in this case. Let € > 0. There exists an N > 0
such that

sup [|€ — &of* — [€ — &al?| < ¢
{Elel<R}

forall n > N, so

cs.p > limsu inf |k > limsup |1, — 10| — €.
cn = lmsup inf | [B(E)] > lmsup|r, — 7y



Since lim sup,, |7, — 70| > 0 in the case we’re considering, we can take ¢ small enough
to show that c5 g > 0O, proving (12).

We would like to construct a function ¥ € C’j;ct(Rd“) such that after passing to
a subsequence in n,

L. [(fdo,¥)| > L, and

2. lim,, SUP¢eB(0,R) |‘Ij(§7 ‘5 - §n|2 + Tn)‘ =0.

Let n € C2.(R) be a non-negative bump function with suppn C B(0,1) and

NlBo,1/2) = 1. Also let ® € CZ5.(R?) be such that || ®||,, = 1 and |[(f, )| > 2,

and take R > 0 so that supp® C B(0, R). Note that, since the zero set of h is a
(d — 1)-hyperplane,
[{€ : dist(£, A,) < sy N B(0,R)| < cq_1R* s

where c4_1 is a dimensional constant. Therefore, there exists an sg > 0 such that

dist(€. A,) 1
o= 1 (SR o, < g

1= (B o>

280

and hence

for all n. Now let

WAnfwzn(3T‘““*f‘&“)[1—n(m““’&”)]¢@»

CSQ,R 230

By (12), W, (|€ — &u|? + 7, €) = O for all € € B(0, R). In addition, |(fdo, ¥,,)| >
by construction.

Since the space of all (d — 1)-planes intersecting the d-ball B(0, R + 10s¢) is com-
pact, either A,, N B(0, R + 10s¢) = 0 for sufficiently large n, or there exists a hyper-
plane A such that for a subsequence, 4,, — A in the sense that

lim sup € —¢|=0.
" ¢cANB(0,R+10s0),
¢€A,NB(0,R+10s0)

In the first case, let

T — 10 — |€ — &l

CSQ}R

¥(r.6)i= 3 ) 2(6)

and in the second, pass to the subsequence mentioned above and let

birg) = (322 OE [y (BG4 g,

Cso,R 250




In either case, we see that ¥,, — ¥ in C25,,. Condition 1 holds since fdo € S'(R4)

and hence (fdo, ¥,,) — (fdo, ¥). Condition 2 holds by the triangle inequality and
the fact that it’s satisfied for each W, individually.

(Eroea) > Y| > 1. On the other hand, by condi-
tion 2, limy, |(€(, ¢.)9n, ¥)| = 0. Thus

By Plancherel and condition 1,

Wm {|Er e0)f = Ere)Inlle = = # 0,
noee 2[|%llq
which is a contradiction and proves the proposition. O

Proof of Theorem 1.1 part 3. By Proposition 3.1,
€ nllg: 1€cro,60)9nlla = Ap and  [[Efn 4 Ery 0 9nlla = 24,

so uniform convexity implies that ||£ f,, — &7, .¢0)9nllq — 0.
Let ¢ € O, (RY). Set

L= sup ||§—§0|2+7’0—‘f|2‘
§€Esupp ¢

and let n € Cg5.,(R) be such that | g 21y = 1. Now let ¢)(7, &) = ¢(&)n(T — [€]?).
By construction of 7,

Jim |(fr = gny @) 2| = lim [(frdo — Indo’ ) p2(ra+1)|

= h}ln |<gfn - g(‘ro,éo)gmwﬂ < 1i7an € fr — 5(To,§o)gn||q||w”q’ =0,

which proves that f,, — g,, — 0. Indeed, since || f,,||, — ||gn||, — 0 by Proposition 3.1,
uniform convexity implies that the convergence is strong, || f, — gn ||, — 0. Since f,, is
an extremizing sequence, by [9, Theorem 1.1] there exists a subsequence in n, {S,,} C
S, and an extremizer f € L? such that S, f, — f so we have || f — S,gn ||, — 0 along
this subsequence as well.

Recall that the symmetries TnE(TO’SO) gn can be expressed in the form of (6) as

. . el 2 -
E i (4260 1) A5 Loy M P/ ) e =Sl 0 AnE =60 g, (X6 — €7, (8, 2)

= E(A;2(To+2§o-§;’)7)\;1§0) (eitn(*2)\715‘504’250-5”4"50‘ +T0)Sngn)(t’ ZE) (13)
for A, € RT, (t,,7,) € R x R? and ¢/, € R?. Proposition 4.1 immediately implies
that (\,,2(70+2&0 &), A, *€o) — 0, which also implies A, — oo and A\, 2£y-€/, — 0
since we assumed |7o| + |£o| # 0. Since S, g, — f in LP, by the triangle inequality
and the forward part of Proposition 4.1,

Hgf _ g (eitn (Pt b2t o P 4m0) ) 4 m)” =0
q



as well. Since R/(277Z) is compact, we may pass to a subsequence along which 6 :=
lim t,,(2&o - £, + |£0]? + 70)/(27Z) exists. By rearranging, applying the boundedness
of £, and invoking dominated convergence,

— 0.

Hg&@f(m & — 2\ntno) — E (e (F2An€Eo+260-E HEol +70) p)
q

The two preceding limits imply that
€€ f(t, 2 — 2Xntno) — Ef||, — 0.

Hence the sequence {\,t,} must be bounded and there exists a subsequence along
which ¢ := lim A\, t,, exists. Since \,, — oo, limt,, = 0. As translation is continuous
in L9,

|EF = € f(t,x — 2c€o)]|, = 0.

From this is is clear that ¢ = 0 as |Ef (¢, z)| = |Ef(t,x — 2¢&y)| would imply that
Ef = 0since £f € L9. We now also see that e’ = 1 by strict convexity.
This proves the claim. O
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