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Abstract 
 

The visual system evolved and typically develops to process the scenes, faces, and objects of the natural 

world. We have adapted this powerful system to process data within an artificial world of visualizations. 

Viewers appear to use at least three types of perceptual tools to extract patterns in data from these 

artificial displays, including a tool that extracts global statistics, one that extracts shapes within the data, 

and one that produces sentence-like comparisons. A better understanding of the power, limits, and 

deployment of these tools would lead to better guidelines for display design and pedagogy, across 

classrooms, information dashboards, presentations, and public policy explanations. 

 

 

 

Keywords: Data visualization, Graphical Perception, Visual communication, Graph comprehension, 

Ensemble perception 
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Introduction 

The table at the top of Figure 1 shows four types of data for four countries in 2015: GDP per capita, life 

expectancy, population, and CO2 emissions per capita. Searching for patterns in those data feels sluggish, 

because you can only read in a handful of numbers per second. And as you compare one handful of 

numbers to another, your limited working memory capacity causes the original numbers seem to slip 

away, or to be overwritten by the new values. Now inspect the data for those same countries in the 

visualization at the center of Figure 1, which depicts all of those data, plus additional data for GDP and 

Life Expectancy for the year 1985 (via the ‘comet’ lines). You should feel the processing power of a 

visual system that occupies around 40% of your brain (Van Essen, 1992), allowing you to rapidly extract 

statistics across those countries (e.g., China and India have the highest populations; average life 

expectancy across all countries is around 74 years), to note the roughly linear shape of the arrangement of 

the bubbles (i.e., GDP is positively correlated with life expectancy), and to efficiently browse specific 

comparisons among them (e.g., Bangladesh shows a slightly faster rise in life expectancy compared to 

India).  

 

Data visualizations are powerful tools for thinking and communicating with data. Understanding and 

creating these visualizations are now critical skills for an educated public, even arguably similar in 

importance to reading and writing (Börner et al., 2019). To harness that power, a viewer must understand 

how a set of visual marks like bars, lines, or bubbles can depict data, and how patterns among those marks 

reflect patterns in the data. The following sections argue that viewers extract patterns and relationships 

from visualized data using at least three core perceptual tools – statistics, shapes and comparisons –  and 

demonstrate how the choice of perceptual tool can influence which patterns are seen and how they are 

understood.  
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Figure 1: At top, browsing 

patterns in data are slow 

within a table. The arrows 

below show how each 

column of the 2015 data is 

mapped to a visual channel 

in the visualization, which 

also adds more data about 

the GDP and Life 

Expectancy of each country 

for an earlier year of 1985, 

via the ‘comet tail’ lines. At 

bottom, examples of how 

each of the three perceptual 

tools could help a viewer 

extract patterns. Data 

courtesy of Gapminder.org. 

Inspired by the work of Hans 

Rosling, 

https://www.ted.com/talks/ 

Hans_rosling_the_best_ 

stats_you_ve_ever_seen/ 
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Perceptual Tool 1: Visual Statistics 

Data visualizations map numeric data to a set of visual channels, including position, length, area, 

numerosity, angle, and intensity (Munzner, 2014). Figure 1 highlights how a single visualization can 

recruit every one of these channels to depict several types of data simultaneously. Each of these channels 

has a natural mapping between its visual appearance and the data value that it reflects – for example, 

higher positions or longer lines are easily processed and understood as reflecting larger values (Tversky, 

2001).  

 

In Figure 1, you can quickly extract statistics across any of the channels. Among all of the plotted 

countries, what is the lowest GDP coded as horizontal position, the largest population coded as each 

bubble’s area, or the average angle of all of the tails of each ‘comet’ (Figure 1, lower left)? Within a split 

second, the visual system can process any of these channels in parallel across a two-dimensional page or 

screen, allowing a viewer to find values or regions in a visualization that differ from others (Wolfe & 

Horowitz, 2004) or to extract global statistics across those values with impressive precision (Alvarez, 

2010). These feats are possible because they adapt the existing ability of the visual system to quickly 

extract similar statistics from natural scenes, helping you identify the lowest apple on the tree, the largest 

slice of pie, or the average angle of ocean waves. These visual statistics, therefore, serve as a proxy for 

actual statistics, allowing you to extract statistical information from data values that have been mapped to 

visual channels (for review, see Szafir, et al., 2014). 

 

Note that for simple value ratio computations (Jacob, Vallentin & Nieder, 2012) some channels transmit 

data values more precisely than others (Cleveland & McGill, 1985). For example, in Figure 1 you can 

easily tell that the ratio of GDP/person between Bangladesh and Indonesia is around 1:3, because 

horizontal position is precisely extracted on a perceptual level. You are less sure of the ratio between the 

CO2 production of Mexico and China, because the color intensity channel does not allow for precise 
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perception of its underlying values. While this ranking may encourage visualization designers to prefer 

more precise channels (e.g., position) over less precise ones (e.g., grayscale intensity), this ranking was 

originally created based on performance in a single task: the precision of a ratio judgment task between 

values at a time. When the task is changed to statistical judgment that requires a viewer to isolate a single 

value (e.g., find the minimum or maximum) across data shown with a position channel (e.g., a line graph) 

or a color intensity channel (e.g., a heatmap), the ranking appears to hold. But for other more global 

statistical judgments of the mean or variance of data, the pattern of precision dominance disappears or 

even flips, with color intensity now beating position (Albers et al., 2014). Figure 2 depicts a real-world 

example of a design that purposely uses color intensity to focus the viewer on big-picture statistics, 

instead of a precise reading of individual values. 

 

Figure 2: At left, global climate data precisely encoded as a line graph. At right, the September 2019 

issue of The Economist used a color intensity channel to depict the same data with far less precision for 

each value, focusing the viewer toward the bigger picture.  

 

Despite a large research literature on the processing of visual statistics (see Alvarez, 2010 for review), 

most previous studies focus on human performance within the natural world of scenes, objects, and faces. 

Recent work in the data visualization field has begun to adopt these research paradigms to test 

performance in the artificial world of data visualizations, with the eventual goal of producing a holistic 
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understanding of the precision – and potential biases – of visually-recovered statistics (mean, variance, 

outliers) across actual visualization displays (Szafir, et al., 2014) 

Perceptual Tool 2: Shape Processing 

Viewers can also directly map known shapes to previously seen patterns in data. Figure 3 (left) depicts 

average temperatures across two cities. An experienced graph reader will immediately notice the X-

shaped pattern in the data, which lets them quickly understand that the seasons are ‘flipped’ in relative 

temperature across the cities. Similarly, in a scatterplot (Figure 1, bottom center panel) people appear to 

use the shape of the oval that encloses most of the points as a proxy for correlation (Yang et al., 2020).  

 

Shape processing can also lead less experienced graph readers astray. In Figure 3 (right), students were 

asked to give a real-world example that might produce the graphed data. A correct answer would be ‘an 

object does not move for a period of time, then it moves at a constant rate, and then it stops’. But shape 

processing led many students to see the graph as a natural scene of a hill, guiding them toward answers 

such as “An object rolls along a flat surface, then down a hill, and then it stops.’ (Kozhevnikov et al., 

2002).  

 

Figure 3: At left, graph depicting temperatures for 

Sydney and Chicago in January and June. Noticing 

an X-shape allows for quick judgment of a critical 

pattern in the data. At right, an example from 

Kozhevnikov et al., 2002 that shows how shape 

processing can lead students astray.  
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Figure 4 shows examples where shape processing can lead to misunderstandings of statistical uncertainty. 

The first column shows two examples where statistical estimates of uncertainty are depicted as shapes (a 

‘cone of uncertainty’ for a hurricane; error bars for an election forecast). Translating those shapes into an 

intuitive sense of uncertainty for the viewer requires specialized statistical training. Without training, 

these depictions can lead to serious misunderstandings, such that the viewer might interpret the graph as 

illustrating that the hurricane is getting larger, instead of having a more uncertain path (Padilla, et al., in 

press). The second column shows graphical redesigns that allow the viewer to leverage their perceptual 

statistics tool, and that communicates that uncertainty in a more naturalistic way (Padilla, et al., in press).  

 

Figure 4: On the top row (left), viewers can 

substantially misinterpret hurricane forecasts 

that convey model uncertainty with a shape 

envelope reflecting statistical variation among 

different models. Allowing observers to extract 

naturalistic statistics from a set of example model 

paths (top right) can lead to better understanding 

of that uncertainty (Liu, et al., 2018).  On the 

bottom row (left), uncertainty in election 

forecasts shown via similar shape envelopes (error bars) is tough to understand without statistical 

training. At bottom right, fivethirtyeight.com redesigned their forecast to depict a more naturalistic 

statistical metaphor of ‘possible outcomes’ for the 2020 US presidential election. This design leverages 

our natural ability to extract statistical summaries from collections of objects.  

 



Manuscript in press; Current Directions in Psychological Science    9 
 

Perceptual Tool 3: Comparisons 

Figure 1 allows you to efficiently browse specific comparisons among individual countries and groups of 

countries (e.g., Bangladesh has a faster rise in Life Expectancy compared to India; Mexico produces more 

GDP/person than India). Note that each of these comparisons is expressed as a sentence. The direction of 

each comparison sentence is psychologically important (Miller & Johnson-Laird, 1976). While logically 

equivalent, one is unlikely to say that ‘the building is to the right of the bike’ compared to ‘the bike is to 

the left of the building’. Or compare the excitement of “I met Barack Obama”, to the hubris of “Barack 

Obama met me” (Gleitman, et al., 1996). Visual comparisons, including those within data visualizations, 

appear to have a similar directional structure. Moving your eyes or attention from Mexico to India might 

tell you that, in 2015, Mexico had a higher GDP/person, while the opposite pattern might tell you that 

India had a lower GDP/person. When a viewer’s attention is dragged around a screen by animated cues 

(Roth & Franconeri, 2012), or freely roams but is monitored with an eyetracker (Michal & Franconeri, 

2016, 2017), viewers are faster to verify the truth of sentences (e.g., Mexico has a higher GPD/person 

than India) if their attention or eyes had traveled between the values in that directional order.  

 

How many unique sentences, and therefore unique comparisons, could you produce from Figure 1?  

Starting with only two countries, it is clear that there will be dozens of possible comparisons: (e.g., China 

is larger than Brazil, China has a lower GDP/person than Brazil) (see Michal & Franconeri, 2016 for 12 

sample comparisons from a single 2-bar graph).  The number of comparisons would be enormous, given 

the number of possible grouping combinations within the six displayed countries, the four data types, and 

the additional data for 1985. 

 

Most models of such relational comparisons predict that you can only process a handful of these relational 

comparisons at a time (Hummel & Biederman, 1992) or some predict that limit is only one at a time (see 

Franconeri, 2012 for review). One recent study validated that this severe capacity limitation extends to 
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data visualizations. Among pairs of 2-bar graphs (bar A & B) distinguishing bar pairs with one 

relationship (A>B) from the opposite relationship (A<B) was extremely slow, compared to processing the 

global statistics of similar displays (which single bar is largest?) which could be accomplished instantly 

(Nothelfer & Franconeri, 2019).  

 

Figure 5:  A viewer can make multiple 

comparisons within visualized data, and the 

choice of those comparisons may be as 

consequential as the choice of verbal 

descriptions for comparisons within data. 

These data can be seen from different 

perspectives, using unemployment rates 

under US president Obama as an example. A 

member of Obama’s party (blue) might 

highlight a positive pattern, while a member of the opposite party (red) might highlight a negative 

pattern. Adapted from  

https://archive.nytimes.com/www.nytimes.com/interactive/2012/10/05/business/economy/one-report-

diverging-perspectives.html  
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Because comparisons are so slow, visualization designers often try to help viewers compare the ‘right’ 

values. One strategy is to use visual grouping cues that encourage the viewer to process those values 

together (Shah & Hoeffner, 2002). Examples of grouping clues include placing the values to be compared 

close to one another, making them the same color, or connecting them with a line or contour (Brooks, 

2015). Because this practice still leaves a viewer with many potential comparisons to make, practitioner 

guides also encourage designers to highlight critical values with a unique color to draw attention to them, 

and furthermore to annotate that pattern with a single comparison ‘sentence’ (as in the ‘Bangladesh / 

Indonesia’ comparison in Figure 1).  

 

This practice is now widely used by professional data communicators across business and journalism. The 

power of these highlighting and annotation techniques should be clear from Figure 5, where competing 

designers might draw you toward different comparisons, which can lead you toward importantly different 

conclusions from the data. With this great power to frame the 'right' patterns for an audience comes great 

responsibility for doing so ethically. The research literature has examined the persuasive power of such 

manipulations, finding that highlighting and annotating a given pattern makes it far more likely to be 

remembered by a viewer (Adjani, et al., in press). A practitioner literature curates real-world examples, 

primarily from journalism, of more and less 'truthful' designs that vary across definitions of what 'truthful' 

means (Cairo, 2016).  
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Some creators of visualization might feel these additional steps are unnecessary – if they see the pattern in 

their own visualization, won’t others see it too? Unfortunately, designers, authors, teachers, and 

presenters can be afflicted with ‘curse of expertise’, where they fail to distinguish between what they 

understand, and what an audience understands (Birch & Bloom, 2007). Once an author recognizes an 

important comparison in a dataset, they focus on that comparison automatically and assume that new 

viewers do too. As evidence, in a recent study we told participants an interesting story about an data 

pattern in a simulated election polling dataset, either for the top two lines, or for the bottom two lines 

(Figure 6, left). They were then told to forget the story and to annotate the visual pattern that a naive 

viewer (who did not know the background story) would find most salient. If inhibiting their own 

knowledge were possible, there should be no difference in the annotated patterns across the 'top' and 

'bottom' story conditions. Instead, participants tended to report that naive viewers would find the same 

pattern (either top or bottom) most salient (actual participant drawings shown in Figure 6 at right) (Xiong, 

et al., 2019). Clearly, their expertise served as a 'curse' that affected their predictions of what others would 

see in the data. 

 

Figure 6: Stimuli (left) and Results 

(right) for Xiong et al.. (2019) 
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Conclusion 

The research reviewed here merges psychological theory, evidence, and methods with research and 

practice in data visualization. It suggests a set of at least three tools that we rely on to process visualized 

data: statistical extraction, shape processing, and relational comparison. Viewers can effectively use these 

tools to explore data, and clearly communicate patterns within it – but only when the visualization is 

designed to effectively leverage these tools, and when the viewer is properly trained to know which tool 

to use, and when to use them.  

 

Understanding the power, limits, and deployment of these tools can help inspire guidelines for display 

designs and pedagogy that should lead to faster perception and deeper understanding of the critical 

patterns depicted by a data visualization. A better understanding would help even more. The statistics tool 

allows viewers to rapidly extract means or outliers, but we lack a full understanding of the precision and 

potential biases of those operations. When deployed appropriately, the shape tool can provide fast and 

holistic view of the data for simple shapes, yet we currently have almost no understanding of how we 

process complex shapes like the dance of a line graph of a company's stock price. The comparison tool 

extracts single comparisons at a time, and understanding visual grouping should help guide those 

comparisons, in theory – but almost no work validates that advice across the complexities of real-world 

visualizations. These are important – and solvable – problems that are being addressed by a new 

generation of researchers meeting at the intersection of data visualization and cognitive science fields.  
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Suggestions for Further Reading 

 

For a review of the ‘statistics’ tool, see: 

Szafir, D. A., Haroz, S., Gleicher, M., & Franconeri, S. L. (2015). Four types of ensemble encoding in 

data visualizations. Journal of Vision. 

 

For more information on the ‘comparison’ tool, see:  

Nothelfer, C., & Franconeri, S. (2019). Measures of the benefit of direct encoding of data deltas for data 

pair relation perception. IEEE Transactions on Visualization and Computer Graphics, 26(1), 311-

320. 

 

For more information on how people correctly and incorrectly reason with graphs, see:  

Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. 

Educational Psychology Review, 14(1), 47-69. 

 

For a review of visual uncertainty representation, see: 

Padilla, L. M., Kay, M., & Hullman, J. (in press). Uncertainty Visualization. To appear in, Handbook of 

Computational Statistics and Data Science. 

 

For a brief review of prescriptions for clear visual data communication, see:  

Zacks, J. M., Franconeri, S. L. (2020). Designing Graphs for Decision-Makers. Policy Insights from the 

Behavioral and Brain Sciences. 

 


