
F1: A Fast and Programmable Accelerator
for Fully Homomorphic Encryption

Axel Feldmann1∗, Nikola Samardzic1∗, Aleksandar Krastev1,
Srini Devadas1, Ron Dreslinski2, Christopher Peikert2, Daniel Sanchez1

1 Massachusetts Institute of Technology 2 University of Michigan
{axelf, nsamar, alexalex, devadas, sanchez}@csail.mit.edu {dreslin, cpeikert}@umich.edu

ABSTRACT

Fully Homomorphic Encryption (FHE) allows computing on en-
crypted data, enabling secure offloading of computation to un-
trusted servers. Though it provides ideal security, FHE is expensive
when executed in software, 4 to 5 orders of magnitude slower than
computing on unencrypted data. These overheads are a major bar-
rier to FHE’s widespread adoption.

We present F1, the first FHE accelerator that is programmable,
i.e., capable of executing full FHE programs. F1 builds on an in-
depth architectural analysis of the characteristics of FHE compu-
tations that reveals acceleration opportunities. F1 is a wide-vector
processor with novel functional units deeply specialized to FHE
primitives, such as modular arithmetic, number-theoretic trans-
forms, and structured permutations. This organization provides so
much compute throughput that data movement becomes the key
bottleneck. Thus, F1 is primarily designed to minimize data move-
ment. Hardware provides an explicitly managed memory hierarchy
and mechanisms to decouple data movement from execution. A
novel compiler leverages these mechanisms to maximize reuse and
schedule off-chip and on-chip data movement.

We evaluate F1 using cycle-accurate simulation and RTL synthe-
sis. F1 is the first system to accelerate complete FHE programs, and
outperforms state-of-the-art software implementations by gmean
5,400× and by up to 17,000×. These speedups counter most of FHE’s
overheads and enable new applications, like real-time private deep
learning in the cloud.

CCS CONCEPTS

· Computer systems organization → Parallel architectures;
· Security and privacy → Cryptography.

KEYWORDS

fully homomorphic encryption, hardware acceleration.

∗ A. Feldmann and N. Samardzic contributed equally to this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MICRO’21, October 18ś22, 2021, Virtual Event, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8557-2/21/10.
https://doi.org/10.1145/3466752.3480070

ACM Reference Format:

Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini Devadas, Ron

Dreslinski, Christopher Peikert, Daniel Sanchez. 2021. F1: A Fast and Pro-

grammable Accelerator for Fully Homomorphic Encryption. In MICRO ’21:

54th Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO ’21), October 18ś22, 2021, Virtual Event, Greece. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3466752.3480070

1 INTRODUCTION

Despitemassive efforts to improve the security of computer systems,
security breaches are only becoming more frequent and damaging,
as more sensitive data is processed in the cloud [43, 69]. Current
encryption technology is of limited help, because servers must
decrypt data before processing it. Once data is decrypted, it is
vulnerable to breaches.

Fully Homomorphic Encryption (FHE) is a class of encryption
schemes that address this problem by enabling generic computation

on encrypted data. Fig. 1 shows how FHE enables secure offloading
of computation. The client wants to compute an expensive function
𝑓 (e.g., a deep learning inference) on some private data 𝑥 . To do
this, the client encrypts 𝑥 and sends it to an untrusted server, which
computes 𝑓 on this encrypted data directly using FHE, and returns
the encrypted result to the client. FHE provides ideal security prop-
erties: even if the server is compromised, attackers cannot learn
anything about the data, as it remains encrypted throughout.

Tr
u

st
 b

a
rr

ie
r

Server F1 FHE

Accelerator

Encrypted(x)

Encrypted(f(x))
Decrypt

Encrypt

f(x)

x
1 2 3

45
Client

Figure 1: FHE allows a user to securely offload computation

to an untrusted server.

FHE is a young but quickly developing technology. First real-
ized in 2009 [33], early FHE schemes were about 109 times slower
than performing computations on unencrypted data. Since then,
improved FHE schemes have greatly reduced these overheads and
broadened its applicability [2, 59]. FHE has inherent limitationsÐ
for example, data-dependent branching is impossible, since data
is encryptedÐso it won’t subsume all computations. Nonetheless,
important classes of computations, like deep learning inference [17,
25, 26], linear algebra, and other inference and learning tasks [40]
are a good fit for FHE. This has sparked significant industry and
government investments [4, 9, 23] to widely deploy FHE.

https://doi.org/10.1145/3466752.3480070
https://doi.org/10.1145/3466752.3480070

MICRO’21, October 18–22, 2021, Virtual Event, Greece Axel Feldmann, Nikola Samardzic, et al.

Unfortunately, FHE still carries substantial performance over-
heads: despite recent advances [15, 25, 26, 61, 66], FHE is still
10,000× to 100,000× slower than unencrypted computation when
executed in carefully optimized software. Though this slowdown is
large, it can be addressed with hardware acceleration: if a special-
ized FHE accelerator provides large speedups over software execution,

it can bridge most of this performance gap and enable new use cases.

For an FHE accelerator to be broadly useful, it should be pro-
grammable, i.e., capable of executing arbitrary FHE computations.
While prior work has proposed several FHE accelerators, they do
not meet this goal. Prior FHE accelerators [20, 22, 27, 65, 66, 71]
target individual FHE operations, and miss important ones that they
leave to software. These designs are FPGA-based, so they are small
and miss the data movement issues facing an FHE ASIC accelerator.
These designs also overspecialize their functional units to specific
parameters, and cannot efficiently handle the range of parameters
needed within a program or across programs.

In this paper we present F1, the first programmable FHE acceler-
ator. F1 builds on an in-depth architectural analysis of the charac-
teristics of FHE computations, which exposes the main challenges
and reveals the design principles a programmable FHE architecture
should exploit.
Harnessing opportunities and challenges in FHE: F1 is tai-
lored to the three defining characteristics of FHE:
(1) Complex operations on long vectors: FHE encodes informa-
tion using very large vectors, several thousand elements long, and
processes them using modular arithmetic. F1 employs vector pro-
cessing with wide functional units tailored to FHE operations to
achieve large speedups. The challenge is that two key operations
on these vectors, the Number-Theoretic Transform (NTT) and au-
tomorphisms, are not element-wise and require complex dataflows
that are hard to implement as vector operations. To tackle these
challenges, F1 features specialized NTT units and the first vector
implementation of an automorphism functional unit.
(2) Regular computation: FHE programs are dataflow graphs of
arithmetic operations on vectors. All operations and their depen-
dences are known ahead of time (since data is encrypted, branches
or dependences determined by runtime values are impossible). F1
exploits this by adopting static scheduling: in the style of Very Long
Instruction Word (VLIW) processors, all components have fixed
latencies and the compiler is in charge of scheduling operations and
data movement across components, with no hardware mechanisms
to handle hazards (i.e., no stall logic). Thanks to this design, F1 can
issue many operations per cycle with minimal control overheads;
combined with vector processing, F1 can issue tens of thousands of
scalar operations per cycle.
(3) Challenging data movement: In FHE, encrypting data in-
creases its size (typically by at least 50×); data is grouped in long
vectors; and some operations require large amounts (tens of MBs)
of auxiliary data. Thus, we find that data movement is the key chal-

lenge for FHE acceleration: despite requiring complex functional
units, in current technology, limited on-chip storage and memory
bandwidth are the bottleneck for most FHE programs. Therefore, F1
is primarily designed to minimize data movement. First, F1 features
an explicitly managed on-chip memory hierarchy, with a heavily
banked scratchpad and distributed register files. Second, F1 uses
mechanisms to decouple data movement and hide access latencies

by loading data far ahead of its use. Third, F1 uses new, FHE-tailored
scheduling algorithms that maximize reuse andmake the best out of
limited memory bandwidth. Fourth, F1 uses relatively few functional

units with extremely high throughput, rather than lower-throughput
functional units as in prior work. This reduces the amount of data

that must reside on-chip simultaneously, allowing higher reuse.
In summary, F1 brings decades of research in architecture to bear,

including vector processing and static scheduling, and combines
them with new specialized functional units (Sec. 5) and scheduling
algorithms (Sec. 4) to design a programmable FHE accelerator. We
implement the main components of F1 in RTL and synthesize them
in a commercial 14nm/12nm process. With a modest area budget of
151mm2, our F1 implementation provides 36 tera-ops/second of 32-
bit modular arithmetic, 64MB of on-chip storage, and a 1 TB/s high-
bandwidthmemory.We evaluate F1 using cycle-accurate simulation
running complete FHE applications, and demonstrate speedups of
1,200×ś17,000× over state-of-the-art software implementations.
These dramatic speedups counter most of FHE’s overheads and
enable new applications. For example, F1 executes a deep learning
inference that used to take 20 minutes in 240 milliseconds, enabling
secure real-time deep learning in the cloud.

2 BACKGROUND

Fully Homomorphic Encryption allows performing arbitrary arith-
metic on encrypted plaintext values, via appropriate operations
on their ciphertexts. Decrypting the resulting ciphertext yields the
same result as if the operations were performed on the plaintext
values łin the clear.ž

Over the last decade, prior work has proposed multiple FHE

schemes, eachwith somewhat different capabilities and performance
tradeoffs. BGV [14], B/FV [13, 28], GSW [35], and CKKS [17] are
popular FHE schemes.∗ Though these schemes differ in how they
encrypt plaintexts, they all use the same data type for ciphertexts:
polynomials where each coefficient is an integer modulo 𝑄 . This
commonality makes it possible to build a single accelerator that
supports multiple FHE schemes; F1 supports BGV, GSW, and CKKS.

We describe FHE in a layered fashion: Sec. 2.1 introduces FHE’s
programming model and operations, i.e., FHE’s interface; Sec. 2.2
describes how FHE operations are implemented; Sec. 2.3 presents
implementation optimizations; and Sec. 2.4 performs an architec-

tural analysis of a representative FHE kernel to reveal acceleration
opportunities.

For concreteness, we introduce FHE using the BGV scheme, and
briefly discuss other FHE schemes in Sec. 2.5.

2.1 FHE programming model and operations

FHE programs are dataflow graphs: directed acyclic graphs where
nodes are operations and edges represent data values. Data values
are inputs, outputs, or intermediate values consumed by one or
more operations. All operations and dependences are known in
advance, and data-dependent branching is impossible.

In FHE, unencrypted (plaintext) data values are always vectors;
in BGV [14], each vector consists of 𝑁 integers modulo an integer
𝑡 . BGV provides three operations on these vectors: element-wise

∗These scheme names are acronyms of their authors’ last names. For instance, BGV is
Brakerski-Gentry-Vaikuntanathan.

F1: A Fast and Programmable Accelerator

for Fully Homomorphic Encryption MICRO’21, October 18–22, 2021, Virtual Event, Greece

addition (mod 𝑡), element-wise multiplication (mod 𝑡), and a small
set of particular vector permutations.

We stress that this is BGV’s interface, not its implementation:
it describes unencrypted data, and the homomorphic operations
that BGV implements on that data in its encrypted form. In Sec. 2.2
we describe how BGV represents encrypted data and how each
operation is implemented.

At a high level, FHE provides a vector programming model with
restricted operations where individual vector elements cannot be
directly accessed. This causes some overheads in certain algorithms.
For example, summing up the elements of a vector is non-trivial,
and requires a sequence of permutations and additions.

Despite these limitations, prior work has devised reasonably
efficient implementations of key algorithms, including linear alge-
bra [38], neural network inference [15, 36], logistic regression [39],
and genome processing [11]. These implementations are often
coded by hand, but recent work has proposed FHE compilers to
automate this translation for particular domains, like deep learn-
ing [25, 26].

Finally, note that not all data must be encrypted: BGV provides
versions of addition and multiplication where one of the operands
is unencrypted. Multiplying by unencrypted data is cheaper, so
algorithms can trade privacy for performance. For example, a deep
learning inference can use encrypted weights and inputs to keep
the model private, or use unencrypted weights, which does not
protect the model but keeps inputs and inferences private [15].

2.2 BGV implementation overview

We now describe how BGV represents and processes encrypted
data (ciphertexts). The implementation of each computation on
ciphertext data is called a homomorphic operation. For example,
the homomorphic multiplication of two ciphertexts yields another
ciphertext that, when decrypted, is the element-wise multiplication
of the encrypted plaintexts.
Data types: BGV encodes each plaintext vector as a polynomial
with 𝑁 coefficients mod 𝑡 . We denote the plaintext space as 𝑅𝑡 , so

𝔞 = 𝑎0 + 𝑎1𝑥 + ... + 𝑎𝑁−1𝑥
𝑁−1 ∈ 𝑅𝑡

is a plaintext. Each plaintext is encrypted into a ciphertext con-
sisting of two polynomials of 𝑁 integer coefficients modulo some
𝑄 ≫ 𝑡 . Each ciphertext polynomial is a member of 𝑅𝑄 .
Encryption and decryption: Though encryption and decryption
are performed by the client (so F1 need not accelerate them), they
are useful to understand. In BGV, the secret key is a polynomial
𝔰 ∈ 𝑅𝑄 . To encrypt a plaintext 𝔪 ∈ 𝑅𝑡 , one samples a uniformly
random 𝔞 ∈ 𝑅𝑄 , an error (or noise) 𝔢 ∈ 𝑅𝑄 with small entries, and
computes the ciphertext 𝑐𝑡 as

𝑐𝑡 = (𝔞, 𝔟 = 𝔞𝔰 + 𝑡𝔢 +𝔪) .

Ciphertext 𝑐𝑡 = (𝔞, 𝔟) is decrypted by recovering 𝔢′ = 𝑡𝔢 +𝔪 =

𝔟 − 𝔞𝔰 mod 𝑄 , and then recovering 𝔪 = 𝔢
′ mod 𝑡 . Decryption is

correct as long as 𝔢′ does not łwrap aroundž modulo 𝑄 , i.e., its
coefficients have magnitude less than 𝑄/2.

The security of any encryption scheme relies on the ciphertexts
not revealing anything about the value of the plaintext (or the se-
cret key). Without adding the noise term 𝔢, the original message
𝔪 would be recoverable from 𝑐𝑡 via simple Gaussian elimination.

Including the noise term entirely hides the plaintext (under crypto-
graphic assumptions) [49].

As we will see, homomorphic operations on ciphertexts increase
their noise, so we can only perform a limited number of operations
before the resulting noise becomes too large and makes decryption
fail. We later describe noise management strategies (Sec. 2.2.2) to
keep this noise bounded and thereby allow unlimited operations.

2.2.1 Homomorphic operations.

Homomorphic addition of ciphertexts 𝑐𝑡0 = (𝔞0, 𝔟0) and 𝑐𝑡1 =

(𝔞1, 𝔟1) is done simply by adding their corresponding polynomials:
𝑐𝑡add = 𝑐𝑡0 + 𝑐𝑡1 = (𝔞0 + 𝔞1, 𝔟0 + 𝔟1).
Homomorphic multiplication requires two steps. First, the four
input polynomials are multiplied and assembled:

𝑐𝑡× = (𝔩2, 𝔩1, 𝔩0) = (𝔞0𝔞1, 𝔞0𝔟1 + 𝔞1𝔟0, 𝔟0𝔟1) .

This 𝑐𝑡× can be seen as a special intermediate ciphertext encrypted
under a different secret key. The second step performs a key-switch-
ing operation to produce a ciphertext encrypted under the original
secret key 𝔰. More specifically, 𝔩2 undergoes this key-switching
process to produce two polynomials (𝔲1, 𝔲0) = KeySwitch(𝔩2). The
final output ciphertext is 𝑐𝑡mul = (𝔩1 + 𝔲1, 𝔩0 + 𝔲0).

As we will see later (Sec. 2.4), key-switching is an expensive
operation that dominates the cost of a multiplication.
Homomorphic permutations permute the 𝑁 plaintext values
(coefficients) that are encrypted in a ciphertext. Homomorphic
permutations are implemented using automorphisms, which are
special permutations of the coefficients of the ciphertext polynomi-
als. There are 𝑁 automorphisms, denoted 𝜎𝑘 (𝔞) and 𝜎−𝑘 (𝔞) for all
positive odd 𝑘 < 𝑁 . Specifically,

𝜎𝑘 (𝔞) : 𝑎𝑖 → (−1)𝑠𝑎𝑖𝑘 mod 𝑁 for 𝑖 = 0, ..., 𝑁 − 1,

where 𝑠 = 0 if 𝑖𝑘 mod 2𝑁 < 𝑁 , and 𝑠 = 1 otherwise. For example,
𝜎5 (𝔞) permutes 𝔞’s coefficients so that 𝑎0 stays at position 0, 𝑎1 goes
from position 1 to position 5, and so on (these wrap around, e.g.,
with 𝑁 = 1024, 𝑎205 goes to position 1, since 205 · 5 mod 1024 = 1).

To perform a homomorphic permutation, we first compute an
automorphism on the ciphertext polynomials: 𝑐𝑡𝜎 = (𝜎𝑘 (𝔞), 𝜎𝑘 (𝔟)).
Just as in homomorphic multiplication, 𝑐𝑡𝜎 is encrypted under
a different secret key, requiring an expensive key-switch to pro-
duce the final output 𝑐𝑡perm = (𝔲1, 𝜎𝑘 (𝔟) + 𝔲0), where (𝔲1, 𝔲0) =

KeySwitch(𝜎𝑘 (𝔞)).
We stress that the permutation applied to the ciphertext does not

induce the same permutation on the underlying plaintext vector.
For example, using a single automorphism and careful indexing, it
is possible to homomorphically rotate the vector of the 𝑁 encrypted
plaintext values.

2.2.2 Noise growth and management.

Recall that ciphertexts have noise, which limits the number of oper-
ations that they can undergo before decryption gives an incorrect
result. Different operations induce different noise growth: addition
and permutations cause little growth, but multiplication incurs
much more significant growth. So, to a first order, the amount of
noise is determined by multiplicative depth, i.e., the longest chain
of homomorphic multiplications in the computation.

Noise forces the use of a large ciphertext modulus𝑄 . For example,
an FHE programwith multiplicative depth of 16 needs𝑄 to be about

MICRO’21, October 18–22, 2021, Virtual Event, Greece Axel Feldmann, Nikola Samardzic, et al.

512 bits. The noise budget, and thus the tolerable multiplicative
depth, grow linearly with log𝑄 .

FHE uses two noise management techniques in tandem: boot-
strapping and modulus switching.
Bootstrapping [33] enables FHE computations of unbounded depth.
Essentially, it removes noise from a ciphertext without access to the
secret key. This is accomplished by evaluating the decryption func-
tion homomorphically. Bootstrapping is an expensive procedure
that consists of many (typically tens to hundreds) homomorphic
operations. FHE programs with a large multiplicative depth can be
divided into regions of limited depth, separated by bootstrapping
operations.

Even with bootstrapping, FHE schemes need a large noise bud-
get (i.e., a large 𝑄) because (1) bootstrapping is computationally
expensive, and a higher noise budget enables less-frequent boot-
strapping, and (2) bootstrapping itself consumes a certain noise
budget (this is similar to why pipelining circuits hits a performance
ceiling: registers themselves add area and latency).
Modulus switching rescales ciphertexts from modulus 𝑄 to a
modulus 𝑄 ′, which reduces the noise proportionately. Modulus
switching is usually applied before each homomorphic multiplica-
tion, to reduce its noise blowup.

For example, to execute an FHE program of multiplicative depth
16, we would start with a 512-bit modulus 𝑄 . Right before each
multiplication, we would switch to a modulus that is 32 bits shorter.
So, for example, operations at depth 8 use a 256-bit modulus. Thus,
beyond reducing noise, modulus switching reduces ciphertext sizes,
and thus computation cost.

2.2.3 Security and parameters.

The dimension 𝑁 and modulus 𝑄 cannot be chosen independently;
𝑁 /log𝑄 must be above a certain level for sufficient security. In
practice, this means that using a wide modulus to support deep
programs also requires a large 𝑁 . For example, with 512-bit 𝑄 ,
𝑁 = 16𝐾 is required to provide an acceptable level of security,
resulting in very large ciphertexts.

2.3 Algorithmic insights and optimizations

F1 leverages two optimizations developed in prior work:
Fast polynomialmultiplication viaNTTs:Multiplying two poly-
nomials requires convolving their coefficients, an expensive (naively
𝑂 (𝑁 2)) operation. Just like convolutions can be made faster with
the Fast Fourier Transform, polynomial multiplication can be made
faster with the Number-Theoretic Transform (NTT) [54], a variant
of the discrete Fourier transform for modular arithmetic. The NTT
takes an 𝑁 -coefficient polynomial as input and returns an 𝑁 -ele-
ment vector representing the input in the NTT domain. Polynomial
multiplication can be performed as element-wise multiplication in
the NTT domain. Specifically,

𝑁𝑇𝑇 (𝔞𝔟) = 𝑁𝑇𝑇 (𝔞) ⊙ 𝑁𝑇𝑇 (𝔟),

where ⊙ denotes component-wise multiplication. (For this relation
to hold with 𝑁 -point NTTs, a negacyclic NTT [49] must be used
(Sec. 5.2).)

Because an NTT requires only 𝑂 (𝑁 log𝑁) modular operations,
multiplication can be performed in𝑂 (𝑁 log𝑁) operations by using
two forward NTTs, element-wise multiplication, and an inverse

1 def keySwitch(x: RVec[L],
2 ksh0: RVec[L][L], ksh1: RVec[L][L]):
3 y = [INTT(x[i],𝑞𝑖) for i in range(L)]
4 u0: RVec[L] = [0, ...]
5 u1: RVec[L] = [0, ...]
6 for i in range(L):
7 for j in range(L):
8 xqj = (i == j) ? x[i] : NTT(y[i], 𝑞 𝑗)
9 u0[j] += xqj * ksh0[i,j] mod 𝑞 𝑗

10 u1[j] += xqj * ksh1[i,j] mod 𝑞 𝑗

11 return (u0, u1)

Listing 1: Key-switch implementation. RVec is an 𝑁 -element
vector of 32-bit values, storing a single RNS polynomial in
either the coefficient or the NTT domain.

NTT. And in fact, optimized FHE implementations often store poly-
nomials in the NTT domain rather than in their coefficient form
across operations, further reducing the number of NTTs. This is
possible because the NTT is a linear transformation, so additions
and automorphisms can also be performed in the NTT domain:

𝑁𝑇𝑇 (𝜎𝑘 (𝔞)) = 𝜎𝑘 (𝑁𝑇𝑇 (𝔞))

𝑁𝑇𝑇 (𝔞 + 𝔟) = 𝑁𝑇𝑇 (𝔞) + 𝑁𝑇𝑇 (𝔟)

Avoiding wide arithmetic via Residue Number System (RNS)

representation: FHE requires wide ciphertext coefficients (e.g., 512
bits), but wide arithmetic is expensive: the cost of a modular multi-
plier (which takes most of the compute) grows quadratically with
bit width in our range of interest. Moreover, we need to efficiently
support a broad range of widths (e.g., 64 to 512 bits in 32-bit incre-
ments), both because programs need different widths, and because
modulus switching progressively reduces coefficient widths.

RNS representation [31] enables representing a single polyno-
mial with wide coefficients as multiple polynomials with narrower
coefficients, called residue polynomials. To achieve this, the mod-
ulus 𝑄 is chosen to be the product of 𝐿 smaller distinct primes,
𝑄 = 𝑞1𝑞2 · · · 𝑞𝐿 . Then, a polynomial in 𝑅𝑄 can be represented as
𝐿 polynomials in 𝑅𝑞1 , . . . , 𝑅𝑞𝐿 , where the coefficients in the 𝑖-th
polynomial are simply the wide coefficients modulo 𝑞𝑖 . For exam-
ple, with𝑊 = 32-bit words, a ciphertext polynomial with 512-bit
modulus 𝑄 is represented as 𝐿 = log𝑄/𝑊 = 16 polynomials with
32-bit coefficients.

All FHE operations can be carried out under RNS representation,
and have either better or equivalent bit-complexity than operating
on one wide-coefficient polynomial.

2.4 Architectural analysis of FHE

We now analyze a key FHE kernel in depth to understand how we
can (and cannot) accelerate it. Specifically, we consider the key-
switching operation, which is expensive and takes the majority of
work in all of our benchmarks.

Listing 1 shows an implementation of key-switching. Key-switch-
ing takes three inputs: a polynomial x, and two key-switch hint

matrices ksh0 and ksh1. x is stored in RNS form as 𝐿 residue poly-
nomials (RVec). Each residue polynomial x[i] is a vector of 𝑁
32-bit integers modulo 𝑞𝑖 . Inputs and outputs are in the NTT do-
main; only the y[i] polynomials (line 3) are in coefficient form.
Computation vs. data movement: A single key-switch requires
𝐿2 NTTs, 2𝐿2 multiplications, and 2𝐿2 additions of 𝑁 -element
vectors. In RNS form, the rest of a homomorphic multiplication

F1: A Fast and Programmable Accelerator

for Fully Homomorphic Encryption MICRO’21, October 18–22, 2021, Virtual Event, Greece

(excluding key-switching) is 4𝐿 multiplications and 3𝐿 additions
(Sec. 2.2), so key-switching is dominant.

However, the main cost at high values of 𝐿 and 𝑁 is data move-
ment. For example, at 𝐿 = 16, 𝑁 = 16𝐾 , each RNS polynomial
(RVec) is 64 KB; each ciphertext polynomial is 1MB; each cipher-
text is 2MB; and the key-switch hints dominate, taking up 32MB.
With F1’s compute throughput, fetching the inputs of each key-
switching from off-chip memory would demand about 10 TB/s of
memory bandwidth. Thus, it is crucial to reuse these values as much
as possible.

Fortunately, key-switch hints can be reused: all homomorphic
multiplications use the same key-switch hint matrices, and each
automorphism has its own pair of matrices. But values are so large
that few of them fit on-chip.

Finally, note that there is no effective way to decompose or tile
this operation to reduce storage needs while achieving good reuse:
tiling the key-switch hint matrices on either dimension produces
many long-lived intermediate values; and tiling across RVec ele-
ments is even worse because in NTTs every input element affects
every output element.
Performance requirements: We conclude that, to accommodate
these large operands, an FHE accelerator requires a memory system
that (1) decouples data movement from computation, as demand
misses during frequent key-switches would tank performance; and
(2) implements a large amount of on-chip storage (over 32MB in
our example) to allow reuse across entire homomorphic operations
(e.g., reusing the same key-switch hints across many homomorphic
multiplications).

Moreover, the FHE accelerator must be designed to use the mem-
ory system well. First, scheduling data movement and computation
is crucial: data must be fetched far ahead of its use to provide de-
coupling, and operations must be ordered carefully to maximize
reuse. Second, since values are large, excessive parallelism can in-
crease footprint and hinder reuse. Thus, the system should use
relatively few high-throughput functional units rather than many
low-throughput ones.
Functionality requirements: Programmable FHE accelerators
must support a wide range of parameters, both 𝑁 (polynomial/vec-
tor sizes) and 𝐿 (number of RNS polynomials, i.e., number of 32-bit
prime factors of𝑄). While 𝑁 is generally fixed for a single program,
𝐿 changes as modulus switching sheds off polynomials.

Moreover, FHE accelerators must avoid overspecializing in order
to support algorithmic diversity. For instance, we have described
an implementation of key-switching, but there are others [34, 45]
with different tradeoffs. For example, an alternative implementation
requires much more compute but has key-switch hints that grow
with 𝐿 instead of 𝐿2, so it becomes attractive for very large 𝐿 (∼20).

F1 accelerates primitive operations on large vectors: modular arith-
metic, NTTs, and automorphisms. It exploits wide vector processing
to achieve very high throughput, even though this makes NTTs
and automorphisms costlier. F1 avoids building functional units for
coarser primitives, like key-switching, which would hinder algo-
rithmic diversity.
Limitations of prior accelerators: Prior work has proposed sev-
eral FHE accelerators for FPGAs [20, 22, 27, 52, 53, 65, 66, 71]. These
systems have three important limitations. First, they work by accel-
erating some primitives but defer others to a general-purpose host

processor, and rely on the host processor to sequence operations.
This causes excessive data movement that limits speedups. Second,
these accelerators build functional units for fixed parameters 𝑁 and
𝐿 (or log𝑄 for those not using RNS). Third, many of these systems
build overspecialized primitives that limit algorithmic diversity.

Most of these systems achieve limited speedups, about 10× over
software baselines. HEAX [65] achieves larger speedups (200× vs.
a single core). But it does so by overspecializing: it uses relatively
low-throughput functional units for primitive operations, so to
achieve high performance, it builds a fixed-function pipeline for
key-switching.

2.5 FHE schemes other than BGV

We have so far focused on BGV, but other FHE schemes provide
different tradeoffs. For instance, whereas BGV requires integer
plaintexts, CKKS [17] supports łapproximatež computation on fixed-
point values. B/FV [13, 28] encodes plaintexts in a way that makes
modulus switching before homomorphic multiplication unneces-
sary, thus easing programming (but forgoing the efficiency gains
of modulo switching). And GSW [35] features reduced, asymmetric
noise growth under homomorphic multiplication, but encrypts a
small amount of information per ciphertext (not a full 𝑁 /2-element
vector).

Because F1 accelerates primitive operations rather than full ho-
momorphic operations, it supports BGV, CKKS, and GSW with the
same hardware, since they use the same primitives. Accelerating
B/FV would require some other primitives, so, though adding sup-
port for themwould not be too difficult, our current implementation
does not target it.

3 F1 ARCHITECTURE

Fig. 2 shows an overview of F1, which we derive from the insights
in Sec. 2.4.
Vector processing with specialized functional units: F1 fea-
tures wide-vector execution with functional units (FUs) tailored to
primitive FHE operations. Specifically, F1 implements vector FUs
for modular addition, modular multiplication, NTTs (forward and
inverse in the same unit), and automorphisms. Because we leverage
RNS representation, these FUs use a fixed, small arithmetic word
size (32 bits in our implementation), avoiding wide arithmetic.

FUs process vectors of configurable length 𝑁 using a fixed num-
ber of vector lanes 𝐸. Our implementation uses 𝐸 =128 lanes and
supports power-of-two lengths 𝑁 from 1,024 to 16,384. This covers
the common range of FHE polynomial sizes, so an RNS polynomial
maps to a single vector. Larger polynomials (e.g., of 32K elements)
can use multiple vectors.

All FUs are fully pipelined, so they achieve the same throughput
of 𝐸 =128 elements/cycle. FUs consume their inputs in contiguous
chunks of 𝐸 elements in consecutive cycles. This is easy for element-
wise operations, but hard for NTTs and automorphisms. Sec. 5
details our novel FU implementations, including the first vector
implementation of automorphisms. Our evaluation shows that these
FUs achieve much higher performance than those of prior work.
This is important because, as we saw in Sec. 2.4, having fewer high-
throughput FUs reduces parallelism and thus memory footprint.

MICRO’21, October 18–22, 2021, Virtual Event, Greece Axel Feldmann, Nikola Samardzic, et al.

Vector Register

File (banked)M
e

m
o

ry
 h

ie
ra

rch
y

x128 lanes

NTT

D
istrib

u
te

d
 co

n
tro

l

Automorphism

V
e

cto
r fu

n
ctio

n
a

l u
n

its

Compute cluster

Mem ctrlMem ctrlMem ctrlMem ctrl

High-Bandwidth Memory

Scratchpad

banks (x16)

On-chip network

(3 16x16 crossbars)

Compute clusters

(x16)

Mod mult

...

x x x

...

... ...

Mod mult

...

x x x

Mod add

...

+ + +

Mod add

...

+ + +

...

...

Figure 2: Overview of the F1 architecture.

Compute clusters: Functional units are grouped in compute clus-

ters, as Fig. 2 shows. Each cluster features several FUs (1 NTT,
1 automorphism, 2 multipliers, and 2 adders in our implementa-
tion) and a banked register file that can (cheaply) supply enough
operands each cycle to keep all FUs busy. The chip has multiple
clusters (16 in our implementation).
Memory system: F1 features an explicitly managed memory hier-
archy. As Fig. 2 shows, F1 features a large, heavily banked scratch-
pad (64MB across 16 banks in our implementation). The scratchpad
interfaces with both high-bandwidth off-chip memory (HBM2 in
our implementation) and with compute clusters through an on-chip
network.

F1 uses decoupled data orchestration [60] to hide main memory
latency. Scratchpad banks work autonomously, fetching data from
main memory far ahead of its use. Since memory has relatively
low bandwidth, off-chip data is always staged in scratchpads, and
compute clusters do not access main memory directly.

The on-chip network connecting scratchpad banks and compute
clusters provides very high bandwidth, which is necessary because
register files are small and achieve limited reuse. We implement
a single-stage bit-sliced crossbar network [58] that provides full
bisection bandwidth. Banks and the network have wide ports (512
bytes), so that a single scratchpad bank can send a vector to a
compute unit at the rate it is consumed (and receive it at the rate
it is produced). This avoids long staging of vectors at the register
files.
Static scheduling: Because FHE programs are completely regular,
F1 adopts a static, exposed microarchitecture: all components have
fixed latencies, which are exposed to the compiler. The compiler
is responsible for scheduling operations and data transfers in the
appropriate cycles to prevent structural or data hazards. This is in
the style of VLIW processors [30].

Static scheduling simplifies logic throughout the chip. For ex-
ample, FUs need no stalling logic; register files and scratchpad
banks need no dynamic arbitration to handle conflicts; and the
on-chip network uses simple switches that change their configura-
tion independently over time, without the buffers and arbiters of
packet-switched networks.

Because memory accesses do have a variable latency, we assume
the worst-case latency, and buffer data that arrives earlier (note that,
because we access large chunks of data, e.g., 64 KB, this worst-case
latency is not far from the average).

Homomorphic

Operation

Compiler

Data

Movement

Scheduler

Cycle-Level

Scheduler

Cycle 37:

move RF1[0] <- B3[2]

issue NTT3 (RF3[2])

Architecture

Description

numClusters = 10;

numBanks = 16;

Static Schedule

Instruction DFG

1 2
x = InputCT()

y = InputCT()

prod = Mul(x, y)

FHE DSL

Data Mov. DFG

MUL

NTT

ADD tmp

load

store

1 2

Figure 3: Overview of the F1 compiler.

Distributed control: Though static scheduling is the hallmark of
VLIW, F1’s implementation is quite different: rather than having a
single stream of instructions with many operations each, in F1 each
component has an independent instruction stream. This is possible
because F1 does not have any control flow: though FHE programs
may have loops, we unroll them to avoid all branches, and compile
programs into linear sequences of instructions.

This approach may appear costly. But vectors are very long, so
each instruction encodes a lot of work and this overhead is mini-
mal. Moreover, this enables a compact instruction format, which
encodes a single operation followed by the number of cycles to
wait until running the next instruction. This encoding avoids the
low utilization of VLIW instructions, which leave many operation
slots empty. Each FU, register file, network switch, scratchpad bank,
and memory controller has its own instruction stream, which a
control unit fetches in small blocks and distributes to components.
Overall, instruction fetches consume less than 0.1% of memory
traffic.
Register file (RF) design: Each cluster in F1 requires 10 read ports
and 6 write ports to keep all FUs busy. To enable this cheaply, we
use an 8-banked element-partitioned register file design [5] that
leverages long vectors: each vector is striped across banks, and
each FU cycles through all banks over time, using a single bank
each cycle. By staggering the start of each vector operation, FUs
access different banks each cycle. This avoids multiporting, requires
a simple RF-FU interconnect, and performs within 5% of an ideal
infinite-ported RF.

4 SCHEDULING DATA AND COMPUTATION

We now describe F1’s software stack, focusing on the new static
scheduling algorithms needed to use hardware well.

Fig. 3 shows an overview of the F1 compiler. The compiler takes
as input an FHE program written in a high-level domain specific
language (Sec. 4.1). The compiler is structured in three stages. First,
the homomorphic operation compiler orders high-level operations
to maximize reuse and translates the program into a computation

dataflow graph, where operations are computation instructions
but there are no loads or stores. Second, the off-chip data move-

ment scheduler schedules transfers between main memory and the
scratchpad to achieve decoupling and maximize reuse. This phase
uses a simplified view of hardware, considering it as a scratchpad
directly attached to functional units. The result is a dataflow graph
that includes loads and stores from off-chip memory. Third, the
cycle-level scheduler refines this dataflow graph. It uses a cycle-
accurate hardware model to divide instructions across compute
clusters and schedule on-chip data transfers. This phase determine

F1: A Fast and Programmable Accelerator

for Fully Homomorphic Encryption MICRO’21, October 18–22, 2021, Virtual Event, Greece

ciphertext (16K slots)

cip
h

e
rte

xt (1
6

K
 slo

ts)

ciphertext (16K slots)

ciphertext (16K slots)

ciphertext (16K slots)

Matrix

V
e
c
to
r

M[0]

M[1]

M[2]

M[3]

V

M[0] V

Rotate(1)

Rotate(14)

Dot-products

M[0] V..

M[1] V..

M[2] V..

M[3] V..

…
…

Figure 4: Example matrix-vector multiply using FHE.

the exact cycles of all operations, and produces the instruction
streams for all components.

This multi-pass scheduling primarily minimizes off-chip data
movement, the critical bottleneck. Only in the last phase do we
consider on-chip placement and data movement.
Comparisonwith priorwork:We initially tried static scheduling
algorithms from prior work [7, 12, 37, 50, 57], which primarily
target VLIW architectures. However, we found these approaches
ill-suited to F1 for multiple reasons. First, VLIW designs have less-
flexible decoupling mechanisms and minimizing data movement
is secondary to maximizing compute operations per cycle. Second,
prior algorithms often focus on loops, where the key concern is to
find a compact repeating schedule, e.g., through software pipelin-
ing [47]. By contrast, F1 has no flow control and we can schedule
each operation independently. Third, though prior work has pro-
posed register-pressure-aware instruction scheduling algorithms,
they targeted small register files and basic blocks, whereas we must
manage a large scratchpad over a much longer horizon. Thus, the
algorithms we tried either worked poorly [37, 50, 57] or could not
scale to the sizes required [7, 10, 70, 77].

For example, when considering an algorithm such as Code Sched-
uling to Minimize Register Usage (CSR) [37], we find that the sched-
ules it produces suffer from a large blowup of live intermediate
values. This large footprint causes scratchpad thrashing and re-
sults in poor performance. Furthermore, CSR is also quite computa-
tionally expensive, requiring long scheduling times for our larger
benchmarks. We evaluate our approach against CSR in Sec. 8.3.

We also attempted to frame scheduling as a register allocation
problem. Effectively, the key challenge in all of our schedules is data
movement, not computation. Finding a register allocation which
minimizes spilling could provide a good basis for an effective sched-
ule. However, our scratchpad stores at least 1024 residue vectors
(1024 at maximum 𝑁 = 16𝐾 , more for smaller values of 𝑁), and
many of our benchmarks involve hundreds of thousands of instruc-
tions, meaning that register allocation algorithms simply could not
scale to our required sizes [7, 10, 70, 77].

4.1 Translating the program to a dataflow
graph

We implement a high-level domain-specific language (DSL) for
writing F1 programs. To illustrate this DSL and provide a running
example, Listing 2 shows the code for matrix-vector multiplication.
This follows HELib’s algorithm [38] , which Fig. 4 shows. This toy
4×16𝐾 matrix-vector multiply uses input ciphertexts with𝑁 = 16𝐾 .
Because accessing individual vector elements is not possible, the
code uses homomorphic rotations to produce each output element.

1 p = Program(N = 16384)
2 M_rows = [p.Input(L = 16) for i in range(4)]
3 output = [None for i in range(4)]
4 V = p.Input(L = 16)
5
6 def innerSum(X):
7 for i in range(log2(p.N)):
8 X = Add(X, Rotate(X, 1 << i))
9 return X
10
11 for i in range(4):
12 prod = Mul(M_rows[i], V)
13 output[i] = innerSum(prod)

Listing 2: (4 × 16𝐾) matrix-vector multiply in F1’s DSL.

As Listing 2 shows, programs in this DSL are at the level of
the simple FHE interface presented in Sec. 2.1. There is only one
aspect of the FHE implementation in the DSL: programs encode
the desired noise budget (𝐿 = 16 in our example), as the compiler
does not automate noise management.

4.2 Compiling homomorphic operations

The first compiler phase works at the level of the homomorphic
operations provided by the DSL. It clusters operations to improve
reuse, and translates them down to instructions.
Ordering homomorphic operations seeks to maximize the reuse
of key-switch hints, which is crucial to reduce data movement
(Sec. 2.4). For instance, the program in Listing 2 uses 15 different
sets of key-switch hint matrices: one for the multiplies (line 12),
and a different one for each of the rotations (line 8). If this pro-
gram was run sequentially as written, it would cycle through all 15
key-switching hints (which total 480MB, exceeding on-chip stor-
age) four times, achieving no reuse. Clearly, it is better to reorder
the computation to perform all four multiplies, and then all four
Rotate(X, 1), and so on. This reuses each key-switch hint four
times.

To achieve this, this pass first clusters independent homomorphic
operations that reuse the same hint, then orders all clusters through
simple list-scheduling. This generates schedules with good key-
switch hint reuse.
Translation: Each homomorphic operation is then compiled into
instructions, using the implementation of each operation in the
target FHE scheme (BGV, CKKS, or GSW). Each homomorphic
operation may translate to thousands of instructions. These instruc-
tions are also ordered to minimize the amount of intermediates.
The end result is an instruction-level dataflow graph where every
instruction is tagged with a priority that reflects its global order.

The compiler exploits algorithmic choice. Specifically, there are
multiple implementations of key-switching (Sec. 2.4), and the right
choice depends on 𝐿, the amount of key-switch reuse, and load
on FUs. The compiler leverages knowledge of operation order to
estimate these and choose the right variant.

4.3 Scheduling data transfers

The second compiler phase consumes an instruction-level dataflow
graph and produces an approximate schedule that includes data
transfers decoupled from computation, minimizes off-chip data
transfers, and achieves good parallelism. This requires solving an
interdependent problem: when to bring a value into the scratchpad

MICRO’21, October 18–22, 2021, Virtual Event, Greece Axel Feldmann, Nikola Samardzic, et al.

and which one to replace depends on the computation schedule;
and to prevent stalls, the computation schedule depends on which
values are in the scratchpad. To solve this problem, this scheduler
uses a simplified model of the machine: it does not consider on-
chip data movement, and simply treats all functional units as being
directly connected to the scratchpad.

The scheduler is greedy, scheduling one instruction at a time.
It considers instructions ready if their inputs are available in the
scratchpad, and follows instruction priority among ready ones. To
schedule loads, we assign each load a priority

𝑝 (load) = max{𝑝 (𝑢) |𝑢 ∈ 𝑢𝑠𝑒𝑟𝑠 (load)},

then greedily issue loads as bandwidth becomes available. When
issuing an instruction, we must ensure that there is space to store
its result. We can often replace a dead value. When no such value
exists, we evict the value with the furthest expected time to reuse.
We estimate time to reuse as the maximum priority among unissued
users of the value. This approximates Belady’s optimal replacement
policy [8]. Evictions of dirty data add stores to the dataflow graph.
When evicting a value, we add spill (either dirty or clean) and fill
instructions to our dataflow graph.

4.4 Cycle-level scheduling

Finally, the cycle-level scheduler takes in the data movement sched-
ule produced by the previous phase, and schedules all operations
for all components considering all resource constraints and data de-
pendences. This phase distributes computation across clusters and
manages their register files and all on-chip transfers. Importantly,
this scheduler is fully constrained by its input schedule’s off-chip
data movement. It does not add loads or stores in this stage, but it
does move loads to their earliest possible issue cycle to avoid stalls
on missing operands. All resource hazards are resolved by stalling.
In practice, we find that this separation of scheduling into data
movement and instruction scheduling produces good schedules in
reasonable compilation times.

This stage works by iterating through all instructions in the
order produced by the previous compiler phase (Sec. 4.3) and deter-
mining the minimum cycle at which all required on-chip resources
are available. We consider the availability of off-chip bandwidth,
scratchpad space, register file space, functional units, and ports.

During this final compiler pass, we finally account for store
bandwidth, scheduling stores (which result from spills) as needed.
In practice, we find that this does not hurt our performance much,
as stores are infrequent across most of our benchmarks due to
our global schedule and replacement policy design. After the final
schedule is generated, we validate it by simulating it forward to
ensure that no clobbers or resource usage violations occur.

It is important to note that because our schedules are fully static,
our scheduler also doubles as a performance measurement tool. As
illustrated in Fig. 3, the compiler takes in an architecture description
file detailing a particular configuration of F1. This flexibility allows
us to conduct design space explorations very quickly (Sec. 8.4).

5 FUNCTIONAL UNITS

In this section, we describe F1’s novel functional units. These in-
clude the first vectorized automorphism unit (Sec. 5.1), the first

Input Permute column Transpose Transpose
Permute row

(i.e., transposed column)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

3

2

1

4

7

6

5

8

11

10

9

12

15

14

13

0

4

8

12

3

7

11

15

2

6

10

14

1

5

9

13

0

11

6

1

12

7

2

13

8

3

14

9

4

15

10

5

0

12

8

4

11

7

3

15

6

2

14

10

1

13

9

5

Figure 5: Applying 𝜎3 on an RNS polynomial of four 4-

element chunks byusing only permutations local to chunks.

fully-pipelined flexible NTT unit (Sec. 5.2), and a new simplified
modular multiplier adapted to FHE (Sec. 5.3).

5.1 Automorphism unit

Because F1 uses 𝐸 vector lanes, each residue polynomial is stored
and processed as 𝐺 groups, or chunks, of 𝐸 elements each (𝑁 =

𝐺 · 𝐸). An automorphism 𝜎𝑘 maps the element at index 𝑖 to index
𝑘𝑖 mod 𝑁 ; there are 𝑁 automorphisms total, two for each odd 𝑘 <

𝑁 (Sec. 2.2). The key challenge in designing an automorphism unit
is that these permutations are hard to vectorize: we would like this
unit to consume and produce 𝐸 =128 elements/cycle, but the vectors
are much longer, with 𝑁 up to 16K, and elements are permuted
across different chunks. Moreover, we must support variable 𝑁 and

all automorphisms.
Standard solutions fail: a 16 K×16 K crossbar is much too large; a

scalar approach, like reading elements in sequence from an SRAM,
is too slow (taking 𝑁 cycles); and using banks of SRAM to increase
throughput runs into frequent bank conflicts: each automorphism
łspreadsž elements with a different stride, so regardless of the bank-
ing scheme, some automorphisms will map many consecutive ele-
ments to the same bank.

We contribute a new insight that makes vectorizing automor-
phisms simple: if we interpret a residue polynomial as a 𝐺 × 𝐸

matrix, an automorphism can always be decomposed into two inde-
pendent column and row permutations. If we transpose this matrix,
both column and row permutations can be applied in chunks of

𝐸 elements. Fig. 5 shows an example of how automorphism 𝜎3 is
applied to a residue polynomial with 𝑁 = 16 and 𝐸 = 4 elements/-
cycle. Note how the permute column and row operations are local
to each 4-element chunk. Other 𝜎𝑘 induce different permutations,
but with the same row/column structure.

cyclic shift

sign flip

transpose

aut𝜎

P
e
rm

u
te

 c
o
lu

m
n
s

P
e
rm

u
te

 ro
w

s

aut𝜎

transpose

Figure 6: Au-

tomorphism

unit.

Our automorphism unit, shown in Fig. 6, uses
this insight to be both vectorized (consuming 𝐸 =

128 elements/cycle) and fully pipelined. Given a
residue polynomial of 𝑁 = 𝐺 · 𝐸 elements, the au-
tomorphism unit first applies the column permu-
tation to each 𝐸-element input. Then, it feeds this
to a transpose unit that reads in the whole residue
polynomial interpreting it as a 𝐺 × 𝐸 matrix, and
produces its transpose 𝐸 ×𝐺 . The transpose unit
outputs 𝐸 elements per cycle (outputting multiple
rows per cycle when 𝐺 < 𝐸). Row permutations
are applied to each 𝐸-element chunk, and the re-
verse transpose is applied.

Further, we decompose both the row and col-
umn permutations into a pipeline of sub-permutations that are fixed
in hardware, with each sub-permutation either applied or bypassed
based on simple control logic; this avoids using crossbars for the
𝐸-element permute row and column operations.

F1: A Fast and Programmable Accelerator

for Fully Homomorphic Encryption MICRO’21, October 18–22, 2021, Virtual Event, Greece

8x8

Quadrant

Swap

A B

DC

A C

DB

S
w

a
p

?

top 4x4

buffer

bottom

4x4

buffer

S
w

a
p

?

1

0

Bypass line

8x8 Quadrant Swap

swap if N == 64

swap if N >= 16

4x4

Quadrant

Swap

2x2

QS

2x2

QS

4x4

Quadrant

Swap

2x2

QS

2x2

QS

swap if N >= 32

Transpose Unit

Figure 7: Transpose unit (right) and its component quadrant-

swap unit (left).

Transpose unit: Our quadrant-swap transpose unit transposes an
𝐸 × 𝐸 (e.g., 128 × 128) matrix by recursively decomposing it into
quadrants and exploiting the identity

[

A B

C D

]T

=

[

AT CT

BT DT

]

.

The basic building block is a 𝐾 × 𝐾 quadrant-swap unit, which
swaps quadrants B and C, as shown in Fig. 7(left). Operationally,
the quadrant swap procedure consists of three steps, each taking
𝐾/2 cycles:

(1) Cycle i in the first step reads A[i] and C[i] and stores them
in top[i] and bottom[i], respectively.

(2) Cycle i in the second step reads B[i] and D[i]. The unit
activates the first swap MUX and the bypass line, thus storing
D[i] in top[i] and outputing A[i] (by reading from top[i])
and B[i] via the bypass line.

(3) Cycle i in the third step outputs D[i] and C[i] by reading
from top[i] and bottom[i], respectively. The second swap
MUX is activated so that C[i] is on top.

Note that step 3 for one input can be done in parallel with step 1
for the next, so the unit is fully pipelined.

The transpose is implemented by a full 𝐸 × 𝐸 quadrant-swap
followed by log2 𝐸 layers of smaller transpose units to recursively
transpose A, B, C, and D. Fig. 7 (right) shows an implementation for
𝐸 = 8. Finally, by selectively bypassing some of the initial quadrant
swaps, this transpose unit also works for all values of 𝑁 (𝑁 = 𝐺 ×𝐸

with power-of-2 𝐺 < 𝐸).
Priorwork has implemented transpose units for signal-processing

applications, either using registers [76, 78] or with custom SRAM
designs [68]. Our design has three advantages over prior work:
it uses standard SRAM memory, so it is dense without requiring
complex custom SRAMs; it is fully pipelined; and it works for a
wide range of dimensions.

5.2 Four-step NTT unit

There are many ways to implement NTTs in hardware: an NTT is
like an FFT [19] but with a butterfly that uses modular multipliers.
We implement 𝑁 -element NTTs (from 1K to 16K) as a composi-
tion of smaller 𝐸=128-element NTTs, since implementing a full
16K-element NTT datapath is prohibitive. The challenge is that
standard approaches result in memory access patterns that are hard
to vectorize.

M
u

lt
ip

ly

D
IT

 N
T

T Twiddle

SRAM

Tr
a

n
sp

o
se

Inverse?

16-element NTT/Inverse NTT

D
IF

 N
T

T

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

Figure 8: Example of a four-step NTT datapath that uses 4-

point NTTs to implement 16-point NTTs.

To that end, we use the four-step variant of the FFT algorithm [6],
which adds an extra multiplication to produce a vector-friendly
decomposition. Fig. 8 illustrates our four-step NTT pipeline for 𝐸 =

4; we use the same structure with 𝐸 = 128. The unit is fully pipelined
and consumes 𝐸 elements per cycle. To compute an 𝑁 = 𝐸 ×𝐸 NTT,
the unit first computes an 𝐸-point NTT on each 𝐸-element group,
multiplies each group with twiddles, transposes the 𝐸 groups, and
computes another 𝐸-element NTT on each transpose. The same
NTT unit implements the inverse NTT by storing multiplicative
factors (twiddles) required for both forward and inverse NTTs in a
small twiddle SRAM.

Crucially, we are able to support all values of 𝑁 using a single
four-step NTT pipeline by conditionally bypassing layers in the sec-
ond NTT butterfly. We use the same transpose unit implementation
as with automorphisms.

Our four-step pipeline supports negacyclic NTTs (NCNs), which
are more efficient than standard non-negacyclic NTTs (that would
require padding, Sec. 2.3). Specifically, we extend prior work [49,
62, 67] in order to support both forward and inverse NCNs using
the same hardware as for the standard NTT. Namely, prior work
shows how to either (1) perform a forward NCN via a standard
decimation-in-time (DIT) NTT pipeline, or (2) perform an inverse
NCN via a standard decimation-in-frequency (DIF) NTT pipeline.
The DIF and DIT NTT variants use different hardware; therefore,
this approach requires separate pipelines for forward and inverse
NCNs. Prior work [49] has shown that separate pipelines can be
avoided by adding a multiplier either before or after the NTT: doing
an inverse NCN using a DIT NTT requires a multiplier unit after
the NTT, while doing a forward NCN using a DIF NTT requires a
multiplier unit before the NTT.

We now show that both the forward and inverse NCN can be done
in the same standard four-step NTT pipeline, with no additional

hardware. This is because the four-step NTT already has amultiplier
and two NTTs in its pipeline. We set the first NTT to be decimation-
in-time and the second to be decimation-in-frequency (Fig. 8). To
do a forward NTT, we use the forward NCN implementation via
DIT NTT for the first NTT; we modify the contents of the Twiddle
SRAM so that the multiplier does the pre-multiplication necessary
to implement a forward NCN in the second NTT (which is DIF and
thus requires the pre-multiplication). Conversely, to do an inverse
NTT, we modify the Twiddle SRAM contents to do the post-multi-
plication necessary to implement an inverse NCN in the first NTT
(which is DIT); and we use the inverse NCN implementation via
DIF NTT for the second NTT.

The NTT unit is large: each of the 128-element NTTs requires
𝐸 (log(𝐸) − 1)/2=384 multipliers, and the full unit uses 896 multi-
pliers. But its high throughput improves performance over many
low-throughput NTTs (Sec. 8). This is the first implementation of a

MICRO’21, October 18–22, 2021, Virtual Event, Greece Axel Feldmann, Nikola Samardzic, et al.

Multiplier Area [𝜇m2] Power [mW] Delay [ps]

Barrett 5, 271 18.40 1,317
Montgomery 2, 916 9.29 1,040
NTT-friendly 2, 165 5.36 1,000

FHE-friendly (ours) 1, 817 4.10 1,000

Table 1: Area, power, and delay of modular multipliers.

fully-pipelined four-step NTT unit, improving NTT performance
by 1,600× over the state of the art (Sec. 8.1).

5.3 Optimized modular multiplier

Modular multiplication computes 𝑎 · 𝑏 mod 𝑞. This is the most ex-
pensive and frequent operation. Therefore, improvements to the
modular multiplier have an almost linear impact on the computa-
tional capabilities of an FHE accelerator.

Prior work [51] recognized that a Montgomery multiplier [55]
within NTTs can be improved by leveraging the fact that the possi-
ble values of modulus𝑞 are restricted by the number of elements the
NTT is applied to. We notice that if we only select moduli 𝑞𝑖 , such
that 𝑞𝑖 = −1 mod 216, we can remove a mutliplier stage from [51];
this reduces area by 19% and power by 30% (Table 1). The additional
restriction on 𝑞 is acceptable because FHE requires at most 10s of
moduli [34], and our approach allows for 6,186 prime moduli.

6 F1 IMPLEMENTATION

Wehave implemented F1’s components in RTL, and synthesize them
in a commercial 14/12nm process using state-of-the-art tools. These
include a commercial SRAM compiler that we use for scratchpad
and register file banks.

We use a dual-frequency design: most components run at 1 GHz,
but memories (register files and scratchpads) run double-pumped at
2 GHz. Memories meet this frequency easily and this enables using
single-ported SRAMs while serving up to two accesses per cycle.
By keeping most of the logic at 1GHz, we achieve higher energy
efficiency. We explored several non-blocking on-chip networks
(Clos, Benes, and crossbars).We use 3 16×16 bit-sliced crossbars [58]
(scratchpad→cluster, cluster→scratchpad, and cluster→cluster).

Table 2 shows a breakdown of area by component, as well as
the area of our F1 configuration, 151.4mm2. FUs take 42% of the
area, with 31.7% going to memory, 6.6% to the on-chip network,
and 19.7% to the two HBM2 PHYs. We assume 512GB/s bandwidth
per PHY; this is similar to the NVIDIA A100 GPU [18], which has
2.4 TB/s with 6 HBM2E PHYs [56]. We use prior work to estimate
HBM2 PHY area [24, 63] and power [32, 63].

This design is constrained by memory bandwidth: though it has
1 TB/s of bandwidth, the on-chip network’s bandwidth is 24 TB/s,
and the aggregate bandwidth between RFs and FUs is 128 TB/s. This
is why maximizing reuse is crucial.

7 EXPERIMENTAL METHODOLOGY

Modeled system:We evaluate our F1 implementation from Sec. 6.
We use a cycle-accurate simulator to execute F1 programs. Because
the architecture is static, this is very different from conventional
simulators, and acts more as a checker: it runs the instruction

Component Area [mm2] TDP [W]

NTT FU 2.27 4.80
Automorphism FU 0.58 0.99
Multiply FU 0.25 0.60
Add FU 0.03 0.05
Vector RegFile (512 KB) 0.56 1.67
Compute cluster 3.97 8.75
(NTT, Aut, 2× Mul, 2× Add, RF)
Total compute (16 clusters) 63.52 140.0

Scratchpad (16×4MB banks) 48.09 20.35
3×NoC (16×16 512 B bit-sliced [58]) 10.02 19.65
Memory interface (2×HBM2 PHYs) 29.80 0.45
Total memory system 87.91 40.45

Total F1 151.4 180.4

Table 2: Area and Thermal Design Power (TDP) of F1, and

breakdown by component.

stream at each component and verifies that latencies are as expected
and there are no missed dependences or structural hazards. We
use activity-level energies from RTL synthesis to produce energy
breakdowns.
Benchmarks: We use several FHE programs to evaluate F1. All
programs come from state-of-the-art software implementations,
which we port to F1:
Logistic regression uses the HELR algorithm [40], which is based
on CKKS. We compute a single batch of logistic regression train-
ing with up to 256 features, and 256 samples per batch, starting at
computational depth 𝐿 = 16; this is equivalent to the first batch of
HELR’s MNIST workload. This computation features ciphertexts
with large log𝑄 (𝐿 = 14, 15, 16), so it needs careful data orchestra-
tion to run efficiently.
Neural network benchmarks come from Low Latency CryptoNets
(LoLa) [15]. This work uses B/FV, an FHE scheme that F1 does not
support, so we use CKKS instead. We run two neural networks:
LoLa-MNIST is a simple, LeNet-style network used on the MNIST
dataset [48], while LoLa-CIFAR is a much larger 6-layer network
(similar in computation to MobileNet v3 [42]) used on the CIFAR-10
dataset [46]. LoLa-MNIST includes two variants with unencrypted
and encrypted weights; LoLa-CIFAR is available only with unen-
crypted weights. These three benchmarks use relatively low 𝐿 val-
ues (their starting 𝐿 values are 4, 6, and 8, respectively), so they are
less memory-bound. They also feature frequent automorphisms,
showing the need for a fast automorphism unit.
DBLookup is adapted fromHELib’s BGV_country_db_lookup [41].
A BGV-encrypted query string is used to traverse an encrypted
key-value store and return the corresponding value. The original
implementation uses a low security level for speed of demonstra-
tion, but in our version, we implement it at 𝐿 =17, 𝑁 =16K for
realism. We also parallelize the CPU version so it can effectively
use all available cores. DB Lookup is both deep and wide, so running
it on F1 incurs substantial off-chip data movement.
Bootstrapping: We evaluate bootstrapping benchmarks for BGV
and CKKS. Bootstrapping takes an 𝐿 = 1 ciphertext with an ex-
hausted noise budget and refreshes it by bringing it up to a chosen

F1: A Fast and Programmable Accelerator

for Fully Homomorphic Encryption MICRO’21, October 18–22, 2021, Virtual Event, Greece

Execution time (ms) on CPU F1 Speedup

LoLa-CIFAR Unencryp. Wghts. 1.2 × 106 241 5, 011×
LoLa-MNIST Unencryp. Wghts. 2, 960 0.17 17, 412×
LoLa-MNIST Encryp. Wghts. 5, 431 0.36 15, 086×
Logistic Regression 8, 300 1.15 7, 217×
DB Lookup 29, 300 4.36 6, 722×
BGV Bootstrapping 4, 390 2.40 1, 830×
CKKS Bootstrapping 1, 554 1.30 1, 195×

gmean speedup 5, 432×

∗LoLa’s release did not include MNIST with encrypted weights, so
we reimplemented it in HELib.

Table 3: Performance of F1 and CPU on full FHE bench-

marks: execution times in milliseconds and F1’s speedup.

top value of 𝐿 = 𝐿𝑚𝑎𝑥 , then performing the bootstrapping compu-
tation to eventually obtain a usable ciphertext at a lower depth (e.g.,
𝐿𝑚𝑎𝑥 − 15 for BGV).

For BGV, we use Sheriff and Peikert’s algorithm [3] for non-
packed BGV bootstrapping, with 𝐿𝑚𝑎𝑥 = 24. This is a particu-
larly challenging benchmark because it features computations at
large values of 𝐿. This exercises the scheduler’s algorithmic choice
component, which selects the right key-switch method to balance
computation and data movement.

For CKKS, we use non-packed CKKS bootstrapping from HEA-
AN [16], also with 𝐿𝑚𝑎𝑥 = 24. CKKS bootstrapping has many
fewer ciphertext multiplications than BGV, greatly reducing reuse
opportunities for key-switch hints.
Baseline systems: We compare F1 with a CPU system running
the baseline programs (a 4-core, 8-thread, 3.5 GHz Xeon E3-1240v5).
Since prior accelerators do not support full programs, we also in-
clude microbenchmarks of single operations and compare against
HEAX [65], the fastest prior accelerator.

8 EVALUATION

8.1 Performance

Benchmarks: Table 3 compares the performance of F1 and the
CPU on full benchmarks. It reports execution time in millisec-
onds for each program (lower is better), and F1’s speedup over the
CPU (higher is better). F1 achieves dramatic speedups, from 1,195×
to 17,412× (5,432× gmean). CKKS bootstrapping has the lowest
speedups as it’s highly memory-bound; other speedups are within

a relatively narrow band, as compute and memory traffic are more
balanced.

These speedups greatly expand the applicability of FHE. Consider
deep learning: in software, even the simple LoLa-MNIST network
takes seconds per inference, and a single inference on the more
realistic LoLa-CIFAR network takes 20 minutes. F1 brings this down
to 241 milliseconds, making real-time deep learning inference prac-
tical: when offloading inferences to a server, this time is comparable
to the roundtrip latency between server and client.
Microbenchmarks: Table 4 compares the performance of F1, the
CPU, and HEAX𝜎 on four microbenchmarks: the basic NTT and
automorphism operations on a single ciphertext, and homomorphic
multiplication and permutation (which uses automorphisms). We
report three typical sets of parameters. We use microbenchmarks
to compare against prior accelerators, in particular HEAX. But
prior accelerators do not implement automorphisms, so we extend
each HEAX key-switching pipeline with an SRAM-based, scalar
automorphism unit. We call this extension HEAX𝜎 .

Table 4 shows that F1 achieves large speedups over HEAX𝜎 ,
ranging from 172×to 1,866×. Moreover, F1’s speedups over the
CPU are even larger than in full benchmarks. This is because mi-
crobenchmarks are pure compute, and thus miss the data movement
bottlenecks of FHE programs.

8.2 Architectural analysis

To gain more insights into these results, we now analyze F1’s data
movement, power consumption, and compute.
Data movement: Fig. 9a shows a breakdown of off-chip memory
traffic across data types: key-switch hints (KSH), inputs/outputs,
and intermediate values. KSH and input/output traffic is broken into
compulsory and non-compulsory (i.e., caused by limited scratchpad
capacity). Intermediates, which are always non-compulsory, are
classified as loads or stores.

Fig. 9a shows that key-switch hints dominate in high-depthwork-
loads (LogReg, DB Lookup, and bootstrapping), taking up to 94%
of traffic. Key-switch hints are also significant in the LoLa-MNIST
variants. This shows why scheduling should prioritize them. Sec-
ond, due our scheduler design, F1 approaches compulsory traffic
for most benchmarks, with non-compulsory accesses adding only
5-18% of traffic. The exception is LoLa-CIFAR, where intermedi-
ates consume 75% of traffic. LoLa-CIFAR has very high reuse of
key-switch hints, and exploiting it requires spilling intermediate
ciphertexts.

𝑁 = 212, log𝑄 = 109 𝑁 = 213, log𝑄 = 218 𝑁 = 214, log𝑄 = 438
F1 vs. CPU vs. HEAX𝜎 F1 vs. CPU vs. HEAX𝜎 F1 vs. CPU vs. HEAX𝜎

NTT 12.8 17,148× 1,600× 44.8 10,736× 1,733× 179.2 8,838× 1,866×
Automorphism 12.8 7,364× 440× 44.8 8,250× 426× 179.2 16,957× 430×

Homomorphic multiply 60.0 48,640× 172× 300 27,069× 148× 2,000 14,396× 190×
Homomorphic permutation 40.0 17,488× 256× 224 10,814× 198× 1,680 6,421× 227×

Table 4: Performance on microbenchmarks: F1’s reciprocal throughput, in nanoseconds per ciphertext operation (lower is

better) and speedups over CPU and HEAX𝜎 (HEAX augmented with scalar automorphism units) (higher is better).

MICRO’21, October 18–22, 2021, Virtual Event, Greece Axel Feldmann, Nikola Samardzic, et al.

CIFA
R-10

MNIST
 UW

MNIST
 EW
Log

Reg

DB Lo
oku

p

BGV Bstr
ap

CKK
S B

str
ap

0.0

0.2

0.4

0.6

0.8

1.0

Of
f-C

hi
p

Da
ta

 M
vm

t B
re

ak
do

wn

81GB 130MB 228MB 702MB 1GB 727MB 721MB

KSH Comp
Input Comp
Interm Ld

KSH NoComp
Input NoComp
Interm St

CIFA
R-10

MNIST
 UW

MNIST
 EW
Log

Reg

DB Lo
oku

p

BGV Bstr
ap

CKK
S B

str
ap

0.0

0.2

0.4

0.6

0.8

1.0

Po
we

r B
re

ak
do

wn

93W 76W 82W 88W 96W 67W 59W

HBM Accs
Scratchpad
NoC Traffic

Reg Files
FUs

(a) (b)

Figure 9: Per-benchmark breakdowns of (a) data movement

and (b) average power for F1.

0 20 40 60 80 100 120 140 160
Time (s)

0

10

20

30

Fu
nc

tio
na

l U
ni

ts
 A

ct
iv

e

NTT Units
Automorphism Units
Adders
Multipliers
HBM Utilization %

0

20

40

60

80

100

HB
M

 U
til

iza
tio

n
%

Figure 10: Functional unit andHBMutilization over time for

the LoLa-MNIST PTW benchmark.

Power consumption: Fig. 9b reports average power for each bench-
mark, broken down by component. This breakdown also includes
off-chip memory power (Table 2 only included the on-chip compo-
nent). Results show reasonable power consumption for an accelera-
tor card. Overall, computation consumes 20-30% of power, and data
movement dominates.
Utilization over time: F1’s average FU utilization is about 30%.
However, this doesn’t mean that fewer FUs could achieve the same
performance: benchmarks have memory-bound phases that weigh
down average FU utilization. To see this, Fig. 10 shows a break-
down of FU utilization over time for LoLa-MNIST PlaintextWeights.
Fig. 10 also shows off-chip bandwidth utilization over time (black
line). The program is initially memory-bound, and few FUs are
active. As the memory-bound phase ends, compute intensity grows,
utilizing a balanced mix of the available FUs. Finally, due to decou-
pled execution, when memory bandwidth utilization peaks again,
F1 can maintain high compute intensity. The highest FU utilization
happens at the end of the benchmark and is caused by processing
the final (fully connected) layer, which is highly parallel and already
has all inputs available on-chip.

8.3 Sensitivity studies

To understand the impact of our FUs and scheduling algorithms,
we evaluate F1 variants without them. Table 5 reports the slowdown

Benchmark LT NTT LT Aut CSR

LoLa-CIFAR Unencryp. Wghts. 3.5× 12.1× Ð∗

LoLa-MNIST Unencryp. Wghts. 5.0× 4.2× 1.1×
LoLa-MNIST Encryp. Wghts. 5.1× 11.9× 7.5×
Logistic Regression 1.7× 2.3× 11.7×
DB Lookup 2.8× 2.2× Ð∗

BGV Bootstrapping 1.5× 1.3× 5.0×
CKKS Bootstrapping 1.1× 1.2× 2.7×

gmean speedup 2.5× 3.6× 4.2×

∗CSR is intractable for this benchmark.
Table 5: Speedups of F1 over alternate configurations: LTNT-

T/Aut = Low-throughput NTT/Automorphism FUs; CSR =

Code Scheduling to minimize Register Usage [37].

(higher is worse) of F1 with: (1) low-throughput NTT FUs that
follow the same design as HEAX (processing one stage of NTT
butterflies per cycle); (2) low-throughput automorphism FUs using
a serial SRAMmemory, and (3) Goodman’s register-pressure-aware
scheduler [37].

For the FU experiments, our goal is to show the importance of
having high-throughput units. Therefore, the low-throughput vari-
ants use many more (NTT or automorphism) FUs, so that aggregate
throughput across all FUs in the system is the same. Also, the sched-
uler accounts for the characteristics of these FUs. In both cases,
performance drops substantially, by gmean 2.6× and 3.3×. This is
because achieving high throughput requires excessive parallelism,
which hinders data movement, forcing the scheduler to balance
both.

Finally, the scheduler experiment uses register-pressure-aware
scheduling [37] as the off-chip data movement scheduler instead,
operating on the full dataflow graph. This algorithm was proposed
for VLIW processors and register files; we apply it to the larger
scratchpad. The large slowdowns show that prior capacity-aware
schedulers are ineffective on F1.

8.4 Scalability

50 75 100 125 150
Design Area mm2

0.0

0.2

0.4

0.6

0.8

1.0

gm
ea

n
No

rm
al

ize
d

Pe
rfo

rm
an

ce F1 configuration

Figure 11: Performance vs.

area across F1 configurations.

Finally, we study how F1’s per-
formance changes with its area
budget: we sweep the number
of compute clusters, scratchpad
banks, HBM controllers, and
network topology to find the
most efficient design at each
area. Fig. 11 shows this Pareto
frontier, with area in the 𝑥-
axis and performance in the
𝑦-axis. This curve shows that,
as F1 scales, it uses resources
efficiently: performance grows
about linearly through a large range of areas.

9 RELATEDWORK

We now discuss related work not covered so far.

F1: A Fast and Programmable Accelerator

for Fully Homomorphic Encryption MICRO’21, October 18–22, 2021, Virtual Event, Greece

FHE accelerators: Prior work has proposed accelerators for indi-
vidual FHE operations, but not full FHE computations [20, 21, 22,
27, 52, 53, 65, 66, 71]. These designs target FPGAs and rely on a
host processor; Sec. 2.4 discussed their limitations. Early designs
accelerated small primitives like NTTs, and were dominated by
host-FPGA communication. State-of-the-art accelerators execute
a full homomorphic multiplication independently: Roy et al. [66]
accelerate B/FV multiplication by 13× over a CPU; HEAWS [71]
accelerates B/FV multiplication, and uses it to speed a simple bench-
mark by 5×; and HEAX [65] accelerates CKKS multiplication and
key-switching by up to 200×. These designs suffer high data move-
ment (e.g., HEAX does not reuse key-switch hints) and use fixed
pipelines with relatively low-throughput FUs.

We have shown that accelerating FHE programs requires a differ-
ent approach: data movement becomes the key constraint, requiring
new techniques to extract reuse across homomorphic operations;
and fixed pipelines cannot support the operations of even a single
benchmark. Instead, F1 achieves flexibility and high performance
by exploiting wide-vector execution with high-throughput FUs.
This lets F1 execute not only full applications, but different FHE
schemes.
Hybrid HE-MPC accelerators: Recent work has also proposed
ASIC accelerators for some homomorphic encryption primitives in
the context of oblivious neural networks [44, 64]. These approaches
are very different from FHE: they combine homomorphic encryp-
tion with multi-party computation (MPC), executing a single layer
of the network at a time and sending intermediates to the client,
which computes the final activations. Gazelle [44] is a low-power
ASIC for homomorphic evaluations, and Cheetah [64] introduces
algorithmic optimizations and a large ASIC design that achieves
very large speedups over Gazelle.

These schemes avoid high-depth FHE programs, so server-side
homomorphic operations are cheaper. But they are limited by client-
side computation and client-server communication: Cheetah and
Gazelle use ciphertexts that are up to ∼ 40× smaller than those used
by F1; however, they require the client to re-encrypt ciphertexts
every time they aremultiplied on the server to prevent noise blowup.
CHOCO [72] shows that client-side computation costs for HE-MPC
are substantial, and when they are accelerated, network latency
and throughput overheads dominate (several seconds per DNN
inference). By contrast, F1 enables offloading the full inference
using FHE, avoiding frequent communication. As a result, a direct
comparison between these accelerators and F1 is not possible.

F1’s hardware also differs substantially fromCheetah andGazelle.
First, Cheetah and Gazelle implement fixed-function pipelines (e.g.,
for output-stationary DNN inference in Cheetah), whereas F1 is
programmable. Second, Cheetah, like HEAX, uses many FUs with
relatively low throughput, whereas F1 uses few high-throughput
units (e.g., 40× faster NTTs). Cheetah’s approach makes sense for
their small ciphertexts, but as we have seen (Sec. 8.3), it is impracti-
cal for FHE.
GPU acceleration: Finally, prior work has also used GPUs to ac-
celerate different FHE schemes, including GH [74, 75], BGV [73],
and B/FV [1]. Though GPUs have plentiful compute and band-
width, they lack modular arithmetic, their pure data-parallel ap-
proach makes non-element-wise operations like NTTs expensive,
and their small on-chip storage adds data movement. As a result,

GPUs achieve only modest performance gains. For instance, Badawi
et al. [1] accelerate B/FV multiplication using GPUs, and achieve
speedups of around 10× to 100× over single-thread CPU execution
(and thus commensurately lower speedups over multicore CPUs,
as FHE operations parallelize well).

10 CONCLUSION

FHE has the potential to enable computation offloading with guar-
anteed security. But FHE’s high computation overheads currently
limit its applicability to narrow cases (simple computations where
privacy is paramount). F1 tackles this challenge, accelerating full
FHE computations by over 3-4 orders of magnitude. This enables
new use cases for FHE, like secure real-time deep learning inference.

F1 is the first FHE accelerator that is programmable, i.e., capa-
ble of executing full FHE programs. In contrast to prior accelera-
tors, which build fixed pipelines tailored to specific FHE schemes
and parameters, F1 introduces a more effective design approach:
it accelerates the primitive computations shared by higher-level
operations using novel high-throughput functional units, and hard-
ware and compiler are co-designed to minimize data movement, the
key bottleneck. This flexibility makes F1 broadly useful: the same
hardware can accelerate all operations within a program, arbitrary
FHE programs, and even multiple FHE schemes. In short, our key
contribution is to show that, for FHE, we can achieve ASIC-level
performance without sacrificing programmability.

ACKNOWLEDGMENTS

We especially thank Nicholas Genise and Karim Eldefrawy for
detailed explanations of state-of-the-art FHE techniques and bench-
marking. Unfortunately, publication restrictions and approval de-
lays prevented Nicholas and Karim from becoming authors of this
paper. An extended version of this work [29] includes their contribu-
tions. We also thank the anonymous reviewers, Maleen Abeydeera,
Hyun Ryong Lee, Quan Nguyen, Yifan Yang, Victor Ying, Guowei
Zhang, and Joel Emer for feedback on the paper; Tutu Ajayi, Austin
Rovinski, and Peter Li for help with the HDL toolchain setup; Shai
Halevi, Wei Dai, Olli Saarikivi, and Madan Musuvathi for email
correspondence; and Luka Dojcilovic for feedback on the code-
base. This research is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract No.
HR0011-21-C-0035. Any opinions, findings and conclusions or rec-
ommendations expressed in this research are those of the authors
and do not necessarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA). Nikola Samardzic was partially
supported by the Jae S. and Kyuho Lim Graduate Fellowship at MIT.

REFERENCES
[1] Ahmad Qaisar Ahmad Al Badawi, Yuriy Polyakov, Khin Mi Mi Aung, Bharadwaj

Veeravalli, and Kurt Rohloff. 2021. Implementation and performance evaluation
of RNS variants of the BFV homomorphic encryption scheme. IEEE Transactions
on Emerging Topics in Computing 9, 2 (2021).

[2] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org.

[3] Jacob Alperin-Sheriff and Chris Peikert. 2013. Practical bootstrapping in quasi-
linear time. In Annual Cryptology Conference.

[4] Dave Altavilla. 2021. Intel and Microsoft Collaborate on DARPA
Program that Pioneers A New Frontier Of Ultra-Secure Computing.

MICRO’21, October 18–22, 2021, Virtual Event, Greece Axel Feldmann, Nikola Samardzic, et al.

https://www.forbes.com/sites/davealtavilla/2021/03/08/intel-and-microsoft-
collaborate-on-darpa-program-that-pioneers-a-new-frontier-of-ultra-secure-
computing/?sh=60db31567c1a archived at https://perma.cc/YYE6-5FT4.

[5] Krste Asanovic. 1998. Vector Microprocessors. Ph. D. Dissertation. EECS Depart-
ment, University of California, Berkeley.

[6] David H Bailey. 1989. FFTs in external of hierarchical memory. In Proceedings of
the 1989 ACM/IEEE conference on Supercomputing.

[7] Gergö Barany. 2011. Register reuse scheduling. In 9th Workshop on Optimizations
for DSP and Embedded Systems (ODES-9).

[8] Laszlo A. Belady. 1966. A study of replacement algorithms for a virtual-storage
computer. IBM Systems journal 5, 2 (1966).

[9] Flavio Bergamaschi. 2020. IBM Releases Fully Homomorphic Encryption
Toolkit for MacOS and iOS. https://www.ibm.com/blogs/research/2020/06/ibm-
releases-fully-homomorphic-encryption-toolkit-for-macos-and-ios-linux-
and-android-coming-soon/ archived at https://perma.cc/U5TQ-K49C.

[10] David A Berson, Rajiv Gupta, and Mary Lou Soffa. 1993. URSA: A Unified Re-
Source Allocator for Registers and Functional Units in VLIW Architectures. In
Proceedings of the IFIP WG10.3 Working Conference on Architectures and Compila-
tion Techniques for Fine and Medium Grain Parallelism (PACT’93).

[11] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser. 2020. Se-
cure large-scale genome-wide association studies using homomorphic encryption.
Proceedings of the National Academy of Sciences 117, 21 (2020).

[12] Guy E Blelloch, Phillip B Gibbons, and Yossi Matias. 1999. Provably efficient
scheduling for languages with fine-grained parallelism. Journal of the ACM
(JACM) 46, 2 (1999).

[13] Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Annual Cryptology Conference.

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)
fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT) 6, 3 (2014).

[15] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. 2019. Low latency privacy
preserving inference. In Proceedings of the International Conference on Machine
Learning (ICML).

[16] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song.
2018. Bootstrapping for approximate homomorphic encryption. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.

[17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and Information Security.

[18] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. 2021. NVIDIA A100 Tensor Core GPU: Performance and innovation.
IEEE Micro 41, 2 (2021).

[19] James W Cooley and John W Tukey. 1965. An algorithm for the machine calcula-
tion of complex Fourier series. Mathematics of computation 19, 90 (1965).

[20] David Bruce Cousins, John Golusky, Kurt Rohloff, and Daniel Sumorok. 2014. An
FPGA co-processor implementation of Homomorphic Encryption. In Proceedings
of the IEEE Conference on High Performance Extreme Computing (HPEC).

[21] David Bruce Cousins, Kurt Rohloff, Chris Peikert, and Rick Schantz. 2012. An
update on SIPHER (Scalable Implementation of Primitives for Homomorphic
EncRyption) - FPGA implementation using Simulink. In Proceedings of the IEEE
Conference on High Performance Extreme Computing (HPEC).

[22] D. B. Cousins, K. Rohloff, and D. Sumorok. 2017. Designing an FPGA-Accelerated
Homomorphic Encryption Co-Processor. IEEE Transactions on Emerging Topics
in Computing 5, 2 (2017).

[23] DARPA. 2021. DARPA Selects Researchers to Accelerate Use of Fully Homomor-
phic Encryption. https://www.darpa.mil/news-events/2021-03-08 archived at
https://perma.cc/6GHW-2MSN.

[24] Sal Dasgupta, Teja Singh, Ashish Jain, Samuel Naffziger, Deepesh John, Chetan
Bisht, and Pradeep Jayaraman. 2020. Radeon RX 5700 Series: The AMD 7nm
Energy-Efficient High-Performance GPUs. In Proceedings of the IEEE International
Solid-State Circuits Conference (ISSCC).

[25] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi, Wei Dai, Kim Laine, and
Madan Musuvathi. 2020. EVA: An encrypted vector arithmetic language and
compiler for efficient homomorphic computation. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation.

[26] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing
compiler for fully-homomorphic neural-network inferencing. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation.

[27] Yarkin Doröz, Erdinç Öztürk, and Berk Sunar. 2015. Accelerating Fully Homo-
morphic Encryption in Hardware. IEEE Trans. Computers 64, 6 (2015).

[28] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homomor-
phic encryption. IACR Cryptol. ePrint Arch. (2012).

[29] Axel Feldmann, Nikola Samardzic, Aleksandar Krastev, Srini Devadas, Ron
Dreslinski, Karim Eldefrawy, Nicholas Genise, Christopher Peikert, and Daniel
Sanchez. 2021. F1: A Fast and Programmable Accelerator for Fully Homomorphic
Encryption (Extended Version). arXiv (2021).

[30] Joseph A Fisher. 1983. Very long instruction word architectures and the ELI-
512. In Proceedings of the 10th annual international symposium on Computer
architecture.

[31] Harvey L Garner. 1959. The residue number system. In Papers presented at the
the March 3-5, 1959, Western Joint Computer Conference.

[32] Wei Ge, Mengnan Zhao, ChengWu, and Jun He. 2011. The Design and Implemen-
tation of DDR PHY Static Low-Power Optimization Strategies. In Communication
Systems and Information Technology.

[33] Craig Gentry et al. 2009. A fully homomorphic encryption scheme. Vol. 20. Stanford
University.

[34] Craig Gentry, Shai Halevi, and Nigel P Smart. 2012. Homomorphic evaluation of
the AES circuit. In Annual Cryptology Conference.

[35] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Annual Cryptology Conference.

[36] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In Proceedings of the International
Conference on Machine Learning (ICML).

[37] James R Goodman and W-C Hsu. 1988. Code scheduling and register alloca-
tion in large basic blocks. In Proceedings of the 2nd International Conference on
Supercomputing (ICS).

[38] Shai Halevi and Victor Shoup. 2014. Algorithms in HElib. In Annual Cryptology
Conference.

[39] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. 2018.
Efficient Logistic Regression on Large Encrypted Data. IACR Cryptol. ePrint Arch.
(2018).

[40] Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. 2019.
Logistic regression on homomorphic encrypted data at scale. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 33.

[41] HElib. 2019. HElib Country Lookup Example. https://github.com/homenc/HElib/
tree/master/examples/BGV_country_db_lookup archived at https://perma.cc/
U2MW-QLRJ.

[42] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-
ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenet v3. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision.

[43] IBM. 2020. Cost of a Data Breach Report. Technical Report.
[44] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

GAZELLE: A low latency framework for secure neural network inference. In
27th USENIX Security Symposium (USENIX Security 18).

[45] Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang. 2018.
Secure logistic regression based on homomorphic encryption: Design and evalu-
ation. JMIR medical informatics 6, 2 (2018).

[46] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report. University of Toronto.

[47] Monica S Lam. 1988. Software pipelining. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI).

[48] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998).

[49] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2010. On ideal lattices and
learning with errors over rings. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques.

[50] Loris Marchal, Bertrand Simon, and Frédéric Vivien. 2019. Limiting the memory
footprint when dynamically scheduling DAGs on shared-memory platforms. J.
Parallel and Distrib. Comput. 128 (2019).

[51] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2019. Design and implemen-
tation of a fast and scalable NTT-based polynomial multiplier architecture. In
2019 22nd Euromicro Conference on Digital System Design (DSD).

[52] Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2019. Design and Implementa-
tion of Encryption/Decryption Architectures for BFV Homomorphic Encryption
Scheme. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2019).

[53] Vincent Migliore, Cédric Seguin, Maria Mendez Real, Vianney Lapotre, Arnaud
Tisserand, Caroline Fontaine, Guy Gogniat, and Russell Tessier. 2017. A High-
Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm.
ACM Trans. Embedded Comput. Syst. 16, 5s (2017).

[54] Robert T Moenck. 1976. Practical fast polynomial multiplication. In Proceedings
of the third ACM symposium on Symbolic and algebraic computation.

[55] Peter L Montgomery. 1985. Modular multiplication without trial division. Math-
ematics of computation 44, 170 (1985).

[56] NVIDIA. 2021. NVIDIA DGX Station A100 System Architecture.
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-
dgx-station-a100-system-architecture-white-paper.pdf archived at
https://perma.cc/3CSS-PXU7.

[57] Emre Ozer, Sanjeev Banerjia, and Thomas M Conte. 1998. Unified assign and
schedule: A new approach to scheduling for clustered register file microarchitec-
tures. In Proceedings of the 31st annual ACM/IEEE International Symposium on
Microarchitecture.

https://www.forbes.com/sites/davealtavilla/2021/03/08/intel-and-microsoft-collaborate-on-darpa-program-that-pioneers-a-new-frontier-of-ultra-secure-computing/?sh=60db31567c1a
https://www.forbes.com/sites/davealtavilla/2021/03/08/intel-and-microsoft-collaborate-on-darpa-program-that-pioneers-a-new-frontier-of-ultra-secure-computing/?sh=60db31567c1a
https://www.forbes.com/sites/davealtavilla/2021/03/08/intel-and-microsoft-collaborate-on-darpa-program-that-pioneers-a-new-frontier-of-ultra-secure-computing/?sh=60db31567c1a
https://perma.cc/YYE6-5FT4
https://www.ibm.com/blogs/research/2020/06/ibm-releases-fully-homomorphic-encryption-toolkit-for-macos-and-ios-linux-and-android-coming-soon/
https://www.ibm.com/blogs/research/2020/06/ibm-releases-fully-homomorphic-encryption-toolkit-for-macos-and-ios-linux-and-android-coming-soon/
https://www.ibm.com/blogs/research/2020/06/ibm-releases-fully-homomorphic-encryption-toolkit-for-macos-and-ios-linux-and-android-coming-soon/
https://perma.cc/U5TQ-K49C
https://www.darpa.mil/news-events/2021-03-08
https://perma.cc/6GHW-2MSN
https://github.com/homenc/HElib/tree/master/examples/BGV_country_db_lookup
https://github.com/homenc/HElib/tree/master/examples/BGV_country_db_lookup
https://perma.cc/U2MW-QLRJ
https://perma.cc/U2MW-QLRJ
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-station-a100-system-architecture-white-paper.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-station-a100-system-architecture-white-paper.pdf
https://perma.cc/3CSS-PXU7

F1: A Fast and Programmable Accelerator

for Fully Homomorphic Encryption MICRO’21, October 18–22, 2021, Virtual Event, Greece

[58] Giorgos Passas, Manolis Katevenis, and Dionisios Pnevmatikatos. 2012. Crossbar
NoCs are scalable beyond 100 nodes. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 31, 4 (2012).

[59] Chris Peikert. 2016. A decade of lattice cryptography. Foundations and Trends in
Theoretical Computer Science 10, 4 (2016).

[60] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,
Rangharajan Venkatesan, Stephen W Keckler, Christopher W Fletcher, and Joel
Emer. 2019. Buffets: An efficient and composable storage idiom for explicit
decoupled data orchestration. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems.

[61] Yuriy Polyakov, Kurt Rohloff, and Gerard W Ryan. 2017. Palisade lattice cryptog-
raphy library user manual. Cybersecurity Research Center, New Jersey Institute
ofTechnology (NJIT), Tech. Rep 15 (2017).

[62] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. 2015. High-performance
ideal lattice-based cryptography on 8-bit ATxmega microcontrollers. In Interna-
tional Conference on Cryptology and Information Security in Latin America.

[63] Rambus Inc. 2020. White paper: HBM2E and GDDR6: Memory Solutions for AI.
[64] Brandon Reagen, Wooseok Choi, Yeongil Ko, Vincent Lee, Gu-Yeon Wei, Hsien-

Hsin S Lee, and David Brooks. 2021. Cheetah: Optimizations and methods for
privacy preserving inference via homomorphic encryption. In Proceedings of the
27th IEEE international symposium on High Performance Computer Architecture
(HPCA-27).

[65] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX: An architec-
ture for computing on encrypted data. In Proceedings of the 25th international
conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXV).

[66] Sujoy Sinha Roy, Furkan Turan, Kimmo Järvinen, Frederik Vercauteren, and
Ingrid Verbauwhede. 2019. FPGA-Based High-Performance Parallel Architecture
for Homomorphic Computing on Encrypted Data. In Proceedings of the 25th IEEE
international symposium on High Performance Computer Architecture (HPCA-25).

[67] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen,
and Ingrid Verbauwhede. 2014. Compact ring-LWE cryptoprocessor. In Interna-
tional workshop on cryptographic hardware and embedded systems.

[68] Qing Shang, Yibo Fan, Weiwei Shen, Sha Shen, and Xiaoyang Zeng. 2014. Single-
port SRAM-based transpose memory with diagonal data mapping for large size
2-D DCT/IDCT. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
22, 11 (2014).

[69] Zhanna Malekos Smith, Eugenia Lostri, and James A. Lewis. 2020. The Hidden
Costs of Cybercrime. Technical Report. Center for Strategic and International
Studies.

[70] Sid-Ahmed-Ali Touati. 2005. Register saturation in instruction level parallelism.
International Journal of Parallel Programming 33 (2005).

[71] Furkan Turan, Sujoy Roy, and Ingrid Verbauwhede. 2020. HEAWS: An Accelerator
for Homomorphic Encryption on the Amazon AWS FPGA. IEEE Trans. Comput.
(2020).

[72] McKenzie van der Hagen and Brandon Lucia. 2021. Practical Encrypted Comput-
ing for IoT Clients. arXiv preprint arXiv:2103.06743 (2021).

[73] Wei Wang, Zhilu Chen, and Xinming Huang. 2014. Accelerating leveled fully
homomorphic encryption using GPU. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS).

[74] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar. 2012. Ac-
celerating fully homomorphic encryption using GPU. In Proceedings fo the IEEE
conference on High Performance Extreme Computing (HPEC).

[75] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and Berk Sunar. 2013. Ex-
ploring the feasibility of fully homomorphic encryption. IEEE Trans. Comput. 64,
3 (2013).

[76] Yunxiang Wang, Zhenguo Ma, and Feng Yu. 2018. Pipelined algorithm and
modular architecture for matrix transposition. IEEE Transactions on Circuits and
Systems II: Express Briefs 66, 4 (2018).

[77] Weifeng Xu and Russell Tessier. 2007. Tetris: a new register pressure control
technique for VLIW processors. ACM SIGPLAN Notices 42, 7 (2007).

[78] Bo Zhang, Zhenguo Ma, and Feng Yu. 2020. A Novel Pipelined Algorithm and
Modular Architecture for Non-square Matrix Transposition. IEEE Transactions
on Circuits and Systems II: Express Briefs (2020).

	Abstract
	1 Introduction
	2 Background
	2.1 FHE programming model and operations
	2.2 BGV implementation overview
	2.3 Algorithmic insights and optimizations
	2.4 Architectural analysis of FHE
	2.5 FHE schemes other than BGV

	3 F1 Architecture
	4 Scheduling Data and Computation
	4.1 Translating the program to a dataflow graph
	4.2 Compiling homomorphic operations
	4.3 Scheduling data transfers
	4.4 Cycle-level scheduling

	5 Functional Units
	5.1 Automorphism unit
	5.2 Four-step NTT unit
	5.3 Optimized modular multiplier

	6 F1 Implementation
	7 Experimental Methodology
	8 Evaluation
	8.1 Performance
	8.2 Architectural analysis
	8.3 Sensitivity studies
	8.4 Scalability

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

