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Abstract

The structure of contact networks affects the likelihood of disease spread at the population

scale and the risk of infection at any given node. Though this has been well characterized

for both theoretical and empirical networks for the spread of epidemics on completely sus-

ceptible networks, the long-term impact of network structure on risk of infection with an

endemic pathogen, where nodes can be infected more than once, has been less well char-

acterized. Here, we analyze detailed records of the transportation of cattle among farms in

Turkey to characterize the global and local attributes of the directed—weighted shipments

network between 2007-2012. We then study the correlations between network properties

and the likelihood of infection with, or exposure to, foot-and-mouth disease (FMD) over the

same time period using recorded outbreaks. The shipments network shows a complex com-

bination of features (local and global) that have not been previously reported in other net-

works of shipments; i.e. small-worldness, scale-freeness, modular structure, among others.

We find that nodes that were either infected or at high risk of infection with FMD (within one

link from an infected farm) had disproportionately higher degree, were more central (eigen-

vector centrality and coreness), and were more likely to be net recipients of shipments com-

pared to those that were always more than 2 links away from an infected farm. High in-

degree (i.e. many shipments received) was the best univariate predictor of infection. Low in-

coreness (i.e. peripheral nodes) was the best univariate predictor of nodes always more

than 2 links away from an infected farm. These results are robust across the three different

serotypes of FMD observed in Turkey and during periods of low-endemic prevalence and

high-prevalence outbreaks.
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Author summary

Contact network epidemiology has been extensively used in the context of infectious dis-

eases, primarily focusing on epidemic diseases. In this paper we use detailed recorded data

about cattle exchange between farms in Turkey from 2007 to 2012, to build, analyze and

characterize the directed-weighted complex network of shipments of cattle. Additionally,

using outbreaks data about recorded cases of foot-and-mouth disease (FMD) in Turkey,

we assess the correlation between the “farm’s” position in the network (importance) and

the risk of being infected with FMD, which has been endemic in Turkey for a long time.

We find some network measures that are more likely to identify high-risk and low-risk

farms (in-degree and in-coreness, respectively) when proposing strategies for surveillance

or containment of an infectious disease.

Introduction

The contact structure of a population, in particular heterogeneity in the number or rate of

potential contacts between individuals, is an important predictor of infectious disease trans-

mission [1–6]. The theoretical relationship between contact structure and disease transmission

dynamics has been illustrated using a variety of epidemiologically relevant contact databases

[7–10]. Theory suggests that measures of contact structure are predictive of infection risk and

the potential to transmit to others. Different global (eigenvector centrality, degree, coreness,

betweenness) and local (random acquaintance [11]) network measures have been used to pro-

pose surveillance and vaccination strategies in static [8, 12, 13] and temporally varying [9, 14]

networks. Thus, a priori network characterization can be used to identify candidate sites for

detecting outbreaks, either in static [1, 2, 5, 15–17], temporal [18, 19], dynamic [20] or adap-

tive networks [21]. Moreover, these measures and their correlations are predictive of epidemic

spread and can facilitate rapid targeting of interventions once an outbreak starts [22, 23]. The

role of contact structure on the initial spread of infection in a naive population has been well

characterized, including for the current pandemic of COVID-19 [24]. The relationship

between contact structure and long-term infection risk for an endemic disease is less well char-

acterized [25–31]. An endemic infection may experience the network topology differently

from a novel outbreak [27, 32, 33], as prior infection (e.g. immunity) or interventions may

alter risk and transmission of infection [34].

Livestock transportation records provide a rich resource for describing characteristics of

livestock movement networks, including source location, destination, date, and batch size.

Such records have been analyzed to characterize networks of interactions [35–43], and the

potential consequences of network structure on the spreading of infection between farms [36,

44, 45]. However, the lack of reliable data about the infection of farms combined with detailed

shipment data, has hindered our ability to build data driven models to appropriately assess the

relationship between disease incidence and contact network structure in a single population,

with few exceptions [46]. Instead, the impact of the interrelation between transportation net-

work topology and disease has only been explored through theoretical simulations [13, 35, 37–

40, 42, 44, 47], or through the reconstruction of who-infected-whom networks [48, 49], which

describe the network of realized transmission of a specific outbreak rather than the network of

potential transmission. In addition, other sources of transmission can occur through other

mechanisms, including cross-border spread between premises, sharing of machinery, move-

ment of farm workers and other forms of fomite transmission [50–54]. The development of

reliable surveillance systems, both for learning about and for managing emerging or endemic
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diseases remains challenging. There are many unknown characteristics of transmission and

control that hamper accurate decision making, including the connectivity between farms, the

duration of immunity following infection, the role of multiple serotypes circulating in the live-

stock population and the use (and efficacy) of vaccines for spreading diseases, such as foot-

and-mouth disease. Foot-and-mouth disease (FMD) is a highly contagious viral disease of clo-

ven-hoofed species (such as cattle, 4, and pigs). In Turkey, FMD was eliminated in the Thrace

region in 2010, but remains endemic in Anatolian Turkey. There are 7 immunologically dis-

tinct serotypes of FMD; two serotypes, A and O, have been endemic in Turkey continuously.

A third serotype, Asia-1, has been present intermittently and re-emerged in Turkey in 2011

after going unrecorded since 2001.

Here, we use records of shipments of cattle (source, destination, date, batch size) among

farms in Turkey to create an aggregated directed—weighted network. We first characterize the

structure of the underlying network that may influence FMD spread. We then, analyze the

occurrence of 3718 outbreaks of FMD in Turkey between 2007 and 2012 relative to the net-

work defined by the livestock movement records. Over this time period, we compare the distri-

bution of node-level measures for farms that were infected, farms at high risk (neighbors of

infected farms) and farms at low risk (without neighbors that were infected), with any serotype

or each serotype individually. Subsequently, by means of statistical models we quantify the

relationship between node-level network measures and the odds of experiencing an outbreak.

We compare the differences of these relationships between the endemic and epidemic periods

of FMD, for all outbreaks (regardless of serotype) and for each serotype independently. We

show that while all metrics were correlated with outbreak risk in the direction expected by the-

ory, some metrics are significantly more correlated with either the occurrence, or absence, of

outbreaks in both the endemic and epidemic phase.

Materials and methods

Shipment network

The data. The data on cattle shipments was provided by the Turkish Veterinary authori-

ties, facilitated by the European Commission for foot-and-mouth disease (EuFMD), who

granted the access to data from the TurkVet database. The highest resolution of cattle farming

unit in Turkey is the holding, of which there are over 2.9 million. In each holding, birth, move-

ment, and death data are recorded. The number of animals on these holdings can range from

fewer than 5 to over 500. Since many of these holdings are small, the basic epidemiological

unit for recording FMD outbreaks in Turkey is the epiunit (a village or a neighbourhood com-

prised of several holdings [55]); there were 49850 epiunits in Turkey (Fig 1a) after aggregation.

The data did not identify which epiunits were markets or abattoirs, and therefore all epiunits

were treated as similar. (A more detailed description in Tables A and B, Section A in S1

Appendix).

Network construction. We created the livestock movement (shipments) network, where

each epiunit is represented by a node, and an edge is placed between two epiunits if there

existed a shipment of cattle between them. In general, a graph G can be defined as a pair (V,

E), where V is a set of vertices, and E is a set of edges between the vertices E � (u, v)|u, v 2 V. A

graph or network can be represented as an adjacency matrix A, defined as

A ¼
Aij ¼ wij if i is connected to j

0 otherwise:

(

ð1Þ

PLOS COMPUTATIONAL BIOLOGY Endemic and epidemic infectious diseases on complex networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010354 August 19, 2022 3 / 16

https://doi.org/10.1371/journal.pcbi.1010354


The network considered here is an aggregation of all shipments between epiunits, which

created a static—aggregated network (from here on called the shipments network). The ship-

ments network is directed (there is information about origin—destination of shipments) and

weighted; the weights, wij, are calculated using the frequency of unique shipments, regardless

of the number of animals in the shipment, between epiunits, due to the fast-spreading nature

of FMD within premises [56].

Network description

Among the many of statistics used to characterize a complex network, we focused on those

that have been used in previous studies and shown to be related to spreading dynamics; partic-

ularly epidemics [38, 42, 44, 57–65]. Further details about each of these measures in Section B

in S1 Appendix).

We calculated the following global measures, which summarized properties over all nodes:

density (d), average shortest path length (L); diameter (D); degree assortativity (ρ); giant

strongly connected components (GSCC); giant weakly connected components (GWCC); larg-

est eigenvalue of the adjacency matrix (λ1); reciprocity (r); the global clustering coefficient (C);

and modularity (Q) using the Louvain community detection algorithm [66, 67]. We compared

the global attributes of our network with an ensemble of 100 random equivalent networks as

null models [68] using the Z-score of each measure. Due to the large size of the shipments net-

work and computational limitations, the calculation of L and D were performed in the

directed—unweighted version of the network (lower bound); while C and Q were calculated

on the undirected—weighted version of the network which gives and upper bound [57, 69,

70].

Additionally, we calculated local (node-level) measures, which describe the characteristics

of each epiunit in the network: in/out degree (kin=out
i ); in/out strength (sin=out

i ); in/out k-coreness

(kCin=out
i ) and eigenvector centrality (ec(i)) (we also calculated the relative betweenness central-

ity (Bi) in Section D to Section F in S1 Appendix—which did not present significant differ-

ences with the measures shown here). In each measure i refers to epiunits and in/out refers to

the direction of the shipments used to calculate the measure.

Fig 1. Location of epiunits in Turkey. Each purple dot represents the location of an epiunit in the map. b. Schematic representation for the definition

infectious state of epiunits: Infected (red); high-risk (blue) and low-risk (green). Base layer of map available from https://gadm.org/download_country.

html with license https://gadm.org/license.html.

https://doi.org/10.1371/journal.pcbi.1010354.g001
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Furthermore, for all measures with in and out modes (degree, coreness, strength), we intro-

duced a simple measure that compares the balance between in and out shipments for each

epiunit. We defined the “transmission flux” (ϕ) of epiunit i as

�
i
X2fdegree;strength;corenessg ¼

Xi
in � Xi

out

Xi
in þ Xi

out

; ð2Þ

where X 2 {degree, strength, coreness} are measures that were calculated using in and out

modes. Note that �
i
X 2 ½�1; 1�. When an epiunit i has �

i
X ¼ �1, Xin = 0 and Xout 6¼ 0, it is a net

“source” of shipments. A value of �
i
X ¼ 1, Xout = 0 and Xin 6¼ 0, identifies net “sink” epiunits.

An epiunit i with �
i
X ¼ 0 and Xin, Xout 6¼ 0, interacts with its neighborhood reciprocally (Xin =

Xout). Our transmission flux (�
i
X) discriminates between epiunits according to their vulnerabil-

ity to get infected from a spreading disease (sinks) and their ability to transmit infection

(sources) [23].

Lastly, we compared our shipments network with conventional well studied networks, cal-

culating the Spearman correlation between the matrices of correlation of node-level measures.

All calculations were performed in R, and those related to complex networks statistics with the

R package igraph [71].

FMD spreading in Turkey

In addition to the data of shipments between epiunits, 6112 outbreaks of FMD (with identified

serotypes) were reported to TurkVet between January 2001 and July 2012. The data included

epiunits’ locations and dates of detected outbreaks. We focused our analysis to the period of

time which overlapped with the shipments data (from 2007 to 2012), which included 3718 out-

breaks. Our study assumes transmission due to exchange of shipments; however, transmission

can occur through other mechanisms, i.e. cross-border spread between premises, sharing of

machinery, movement of farm workers, and other forms of fomite transmission [50–54].

Here, these additional sources of transmission would be attributed to background risk of

infection.

We first compared the distribution of local network measures for nodes that experienced

outbreaks to those that did not. Then we estimated the relative effect of local measures on the

odds of experiencing out outbreak. We repeated these steps for all serotypes in combination

and for each serotype independently.

Descriptive analysis of outbreak risk. For each epiunit in the shipments network we

assigned the following state labels (Fig 1b):

1. Infected epiunits (I) (red); epiunits that experienced at least one outbreak of FMD.

2. High-risk epiunits (Hr) (blue); epiunits that were directly connected (through at least one

shipment) to an epiunit that experienced a FMD outbreak.

3. Low-risk epiunits (Lr) (green); epiunits that were at least at distance two (two degrees of

separation) from an infected epiunit.

We then compared the distribution of local network measures of each epiunit as a function

of these states, by creating several correlation planes of node-level features.

Statistical models of outbreak risk. To estimate the relative correlation between local

network measures and outbreak risk we fitted univariate logistic regressions for each variable

of interest (coreness, degree, strength, transmission flux of degree and coreness, and eigenvec-

tor centrality), in addition to a multivariate model including all these variables. We dichoto-

mized the node states into infected nodes = 1 and all others = 0 (as defined above), to estimate
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the odds of infection associated with each local measure independently (univariate models)

and collectively (multivariate model). Similarly we repeated these analysis with the node state

dichotomized into low-risk epiunits = 1 and all others = 0 to estimate the odds of avoiding

exposure associated with each local measure. Due to the high degree of skewness of the local

network measures we log-transformed each of them (Fig A in Section G of S1 Appendix). We

fitted these models to different temporal epochs within the time series (Table A in Section G of

S1 Appendix); for each period we recalculated local network measures for the network of ship-

ments and used the infection status during that period. Specifically, considering all outbreaks

regardless of serotype, we considered the “complete” time series of all FMD outbreaks between

2007–2012; the “endemic” period, defined as before 15 February 2010 (moment when the

number of outbreaks exceeded their average number for more than four consecutive days); the

“epidemic” period, after 15 February 2010. Because there were many more outbreaks during

the epidemic period we also considered an “epi-partial” period defined as the time period that

contains all outbreaks from 15 February 2010 until the total number of outbreaks in the epi-

partial period was equal than that of the total number of infected epiunits in the endemic

regions (19 September 2010).

We then repeated the above for serotypes O and A independently, defining each epoch

accordingly (Table A and Fig B in Section G of S1 Appendix). Using the aggregated shipments

within each period defined above, we built directed-weighted networks and calculated node-

level measures for each epiunit and fitted logistic regressions to the epidemic state of the node

during each defined epoch. For serotype Asia-1 we considered all time points when outbreaks

were present as epidemic. We classified and selected models according to the Bayesian Infor-

mation Criteria (BIC).

Results

Characterization of the shipments network

The shipments network is a directed-weighted network which consists of N = 49, 580 nodes

(epiunits) that are connected with E = 4, 746, 035 edges. The shipments network is a “complex

network”; it shows a combination of features that are significantly different from random

equivalent networks which are shown by the Z-scores calculated for each global measure

(Table 1—Complete set of measures Table A in Section B of S1 Appendix).

Specifically, the shipments network shows strong evidence of small-worldness (large clus-

tering coefficient and small shortest path length), along with a diameter that covers the com-

plete network in 20 steps; as well as a strong modular structure (Q = 0.67) (much larger that

expected for a random network). There were � 110 modules with more than 10 epiunits.

(Table 1). The exchange of cattle occurs at many scales (Fig A in Section B of S1 Appendix)

Table 1. Network measures for the shipments network (�Calculated using the directed-unweighted version of the

network. ��Calculated using the undirected-weighted version of the network).

Measure Value Z-score

Shortest path length (L) 2.86� 0.01

Diameter (D) 20� 0.32

GSCC 97% -

GWCC 100% -

Largest eigenvalue (λ1) 3280.40 195.03

Clustering coeff. (C) 0.51�� 23.69

Modularity(Q) 0.67�� 1540.97

https://doi.org/10.1371/journal.pcbi.1010354.t001
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with a typical distance around 5 km and few long distance shipments (*120 km) that connect

otherwise geographically separated regions.

The degree distribution of the shipments network is strongly right-skewed. It is best-fit by a

log-normal distribution (Tables A and B and Fig A in Section C of S1 Appendix), but illus-

trates scale-free behavior for nodes of intermediate degree (Fig 2a—yellow dashed lines) and

an exponential cut-off for nodes with large degree (Fig 2a and inset) [72]. The strength of each

edge (i.e. the number of shipments to (in-strength) and from (out-strength) each epiunit) is

strongly correlated with degree but grows faster than degree, implying that high degree nodes

also receive disproportionately more frequent shipments (Fig 2b). The nucleus [59] of the ship-

ments network (all epiunits in the highest k-shell; i.e. largest coreness) is formed by 0.8% and

0.9% of all epiunits for the in and out coreness, respectively (Fig 2c). Together, the high degree

of variability in node-level measures suggests that we should see highly heterogeneous out-

break risk.

Lastly, after removing all epiunits ever infected from the shipment network, along with

their connections, the GSCC of the residual network is 0.96; thus, 96% of epiunits in the resid-

ual network can be reached from any other epiunit through directed connections. A full

description of the features of the network and comparison to other families of network models

is presented in Section D in S1 Appendix.

FMD outbreaks in Turkey

Serotypes O and A were present in Turkey throughout 2001–2012, with large outbreaks in

2006 and 2011 (serotype A) and 2007 and 2010 (serotype O). Additionally, there were two

incursions of serotype Asia-1 in 2001 and 2012. (Fig 3a). The serotypes A and O were present

across all Turkey, while the serotype Asia-1 outbreaks were disproportionately concentrated in

the west of the country(Fig 3b).

Of all 49, 580 epiunits in the shipments network, 3437 were involved in at least one out-

break of any serotype between January, 2007 to July, 2012. Serotype O was detected in 1637

epiunits, 1356 epiunits were infected with serotype A, and 444 epiunits infected with serotype

Asia-1. Most epiunits experienced only 1 outbreak of any serotype; though 1 epiunit had 8 out-

breaks of serotype A, 1 epiunit had 5 outbreaks of serotype O, and one epiunit had 3 outbreaks

of serotype Asia-1. Of all epiunits, 19 experienced outbreaks of all three serotypes.

Fig 2. a. Log-Log plot of the complement of the cumulative distribution of in (red) and out (blue) degrees. Yellow dashed lines show the scale-free

region of in/out degree. The inset shows the exponential decay of the tail for both distributions and the exponential fit. b. Average strength �sðkÞ of

epiunits with degree k for in/out degree/strength, as indicated in panels. Dashed line indicates si = ki c. Frequency of epiunits in each (in—red/out—

blue) k-shell in the network.

https://doi.org/10.1371/journal.pcbi.1010354.g002
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Infected nodes were disproportionately central to the network, and low-risk nodes were

disproportionately peripheral. Epiunits infected by serotypes O and A accounted for � 10% of

the total sum of normalized centrality (the sum of the ratio between the centrality of each epiu-

nit and the total sum of centrality in the network; Fig A in Section E of S1 Appendix) of the

shipments network regardless of the measure, despite being 3.2%, 2.6% of all nodes, respec-

tively (Fig 3c). In contrast, epiunits infected with the Asia-1 serotype (0.8% of all epiunits; Fig

3c) comprise approximately 1% of total sum of normalized centrality. Low-risk epiunits are

under-represented with respect to network centrality. For serotypes O and A, low-risk epiunits

accounted for � 30% of all epiunits(Fig 3c); these epiunits reflect � 0.1% of eigenvector cen-

trality and � 10% out-coreness centrality, implying that these epiunits are disproportionately

on the periphery of the shipments network. Epiunits that were low-risk with respect to the

Asia-1 serotype were also disproportionately non-central in the shipments network, though

less so than the O and A serotypes (Fig A in Section E of S1 Appendix).

Descriptive analysis of outbreak risk. For all serotypes, there is a positive correlation

between in-degree (kini ) and eigenvector centrality (ec; Fig 4a; correlation value considering all

epiunits, regardless of infectious state 0.69). Low-risk epiunits had disproportionately lower

in-degree (kini ) and eigenvector centrality (ec) than infected epiunits, with nearly all low-risk

epiunits below the mean value for both measures (Fig 4a). Infected epiunits had a similar dis-

tribution of in-degree and eigenvector centrality as high-risk (neighbors of infected) epiunits

for serotypes O and A (Fig 4 marginal plots). Epiunits infected with serotype Asia-1 tend to

have higher eigenvector centrality than the mean for the network. In-coreness (Fig 4b) was

positively correlated with eigenvector centrality. Low- and high-risk epiunits occur across the

range of values of in-coreness; but, low-risk epiunits disproportionately had low values of in-

coreness. Infected epiunits had disproportionately high values of in-coreness. Thus infection

with all three serotypes was more likely in the nucleus of the network. The flux in degree and

Fig 3. a. Incidence (accumulated by month) of each strain of FMD in Turkey. The gray region shows the time range where the outbreak data and the

shipments data overlap (2007—2012). The red dashed vertical line delineates the endemic (left) and epidemic (right) regions, regardless of serotype, at

February 15, 2010. b. Maps of Turkey showing the location of each of the epiunits (red points) where there occurred an outbreak of FMD. Each panel

shows the location of epiunits where occurred at least one outbreak, according to serotype. c. Fraction of epiunits in each state (infected (red), High risk

(blue) and Low risk (green), for each FMD serotype. Base layer of maps available from https://gadm.org/download_country.html with license https://

gadm.org/license.html.

https://doi.org/10.1371/journal.pcbi.1010354.g003
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coreness was neither correlated with ec (0.12 and 0.06, respectively), nor different among node

states (Fig A in Section F of S1 Appendix).

Statistical models of outbreak risk. The odds of being infected (with any serotype) was

significantly positively correlated (OR > 1, Fig 5a) with all node level measures for the com-

plete time series and in all 3 subset periods (endemic, epidemic and epi-partial). Similarly, the

odds of being a low-risk node (greater than 1 edge from an infected node) was significantly

negatively correlated with all measures. In-degree was the best fit among univariate models

(determined by BIC) for predicting epiunits with an infected state (Fig 5a). The best predictor

of low-risk state (given by lowest BIC) was the in-coreness (Fig 5b).

For a multivariate model including all variables, in-degree is the only variable that is consis-

tently significant and positively correlated with infection of epiunits in all epochs (Fig 5c).

Both in-degree and in-coreness are significant and negatively correlated with low-risk epiunits

(Fig 5d). These results hold when considering independent serotypes and the different regions

(Fig C in Section G of S1 Appendix).

Discussion

Here we used a large and detailed database of cattle shipments between epiunits in Turkey, to

build and characterize an aggregated directed-weighted network. Over a 6 year period from

Fig 4. Correlation planes for different network measures of epiunits, by infectious state; i.e. eigenvector centrality (ec), in-degree (kini ), in-coreness

(kCin
i ). a. Correlation plane (ec,kini ). Marginal plots correspond to densities of kini . b. Correlation plane (ec; kCin

i ). Marginal plot corresponds to the

densities of kCin
i . c. Density plots for ec for each of the three serotypes. kini , kCin

i and ec have been re-scaled using their corresponding mean value in the

complete network. Horizontal lines show, for kin and kCin
i , the mean value for reference. In all panels colors correspond to low-risk (green), high-risk

(blue), and infected (red) epiunits for each of the three serotypes (rows) (a and b). Vertical lines show the location of the mean value for the ec in all

plots. Different strains of FMD are as labeled.

https://doi.org/10.1371/journal.pcbi.1010354.g004
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2007–2012 the occurrence of FMD outbreaks in Turkey were correlated with node-level net-

work characteristics. Specifically, using univariate models, in-degree (i.e. receiving many ship-

ments) was the variable with the best fit when predicting outbreaks, while epiunits with low

in-coreness (nodes on the periphery of the network) were better predicted to have low risk.

These behaviors hold when considering multivariate models (in-degree is in the correct direc-

tion of association when predicting the odds of having an outbreak; and in-coreness is also still

predictive of low-risk epiunits), nonetheless, the individual contribution of each variable has

an unexpected behavior. Notably, these results are consistent regardless of serotype and of the

different periods considered (complete, endemic, epidemic, epi-partial).

The Turkey shipments network is complex, with a combination of global measures that has

not been reported for other similar networks [38, 39]. The directed nature of the network is

given by the identification of origin-destination epiunits; and the weight of each edge is given

by the frequency of shipments between epiunits, due to the fast-spreading nature of FMD

within premises [56]. The shipments network is small-world (small shortest path length,

and large clustering coefficient), also showing that in an ideal case, an infectious disease

Fig 5. a and b) and multivariate (c and d) models. Complete network, aggregated in the corresponding period considered (2007–2012), endemic

region (before February 15, 2010, epidemic region (after February 15, 2010), and epi-partial, (after February 15, 2010, until the aggregated number of

outbreaks is similar to the number of outbreaks in the whole endemic region). The best univariate predictor (based on BIC) is indicated with “���” in

panels (a and b). Results for each independent serotype in Section G in S1 Appendix.

https://doi.org/10.1371/journal.pcbi.1010354.g005
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could reach a large fraction of the epiunits (GSCC = 97%) in a small number of generations

(D = 20) [3].

Notably, even after removing all epiunits that experienced outbreaks and their connections,

the GSCC of the residual network remains high (96%), a property shared among scale-free-like

networks (robust under random failure), which at the same time makes them vulnerable to

intentional and targeted attacks [1]. Consequently, the relatively limited penetration of FMD

into the shipments network may reflect the effect of local mitigation efforts (e.g. reactive vacci-

nation and movement controls) and structural elements of the network itself. In particular, we

find that the network is highly modular Q = 0.67; such modularity has been shown to reduce

the risk of large outbreaks [73, 74]. It is important to mention that one limitation of our data is

the lack of distinction of epiunits; i.e. regular epiunits, markets or abattoirs. This may poten-

tially underestimate transmission risk [53]; however, we are not able to estimate the scale of

this underestimation. Despite this, we believe that our analysis provides strong evidence of the

risk associated with transmission through the livestock network. We note that our flux mea-

sures could identify the importance of nodes that are strong “sinks” of shipments, such as abat-

toirs. Flux in degree and coreness did have large effect size for association with infection in the

endemic epochs, but were not the best fit univariate measure and reversed direction. Addition-

ally, even when other mechanisms of transmission may be in play (cross-border spread

between premises, sharing of machinery, movement of farm workers, and other forms of

fomite transmission) we only focused on the transmission that may occur due to the exchange

of shipments [50–54].

Though FMD outbreaks between 2007–2012 were broadly distributed across the country

(Fig 3b), there were distinct relationships between node-level network properties and the like-

lihood of an epiunit experiencing an outbreak; or, conversely that an epiunit was at low-risk

for exposure to an FMD outbreak. Primarily, considering each metric independently, epiunits

that recorded outbreaks (of any serotype) had disproportionately higher in-coreness and in-

degree, were more likely to be net recipients of shipments, and had higher eigenvector central-

ity compared to epiunits that never recorded an outbreak; and the converse was true for epiu-

nits that were greater than 1 edge away from outbreaks (Fig 4). Among all univariate models,

in-degree was the best predictor of infection in the network (Fig 5a); the more shipments

received by an epiunit, the more risk of infection. On the other hand, even when all univariate

models predicted that low-risk epiunits would have the lowest scores regardless of the node-

level measure used, in-coreness was the best predictor of epiunits that were safe from an ongo-

ing outbreak (Fig 5b).

The univariate correlations were robust both across serotypes and during low and high

prevalence periods in the time series. This observation is important as it implies a broad con-

sistency in dynamics of exposure outbreaks. Further, analysis of risk during low-prevalence,

endemic periods (e.g. 2008–2010) would give qualitatively similar assessment of the risk of

outbreak (similar odds ratio) as would be expected during high-prevalence outbreaks. Simi-

larly, analysis of any one serotype (or all serotypes combined) would give a similar assessment

of risk as for any individual serotype; e.g. the re-emergence of the Asia-1 serotype in 2011 (Sec-

tion G in S1 Appendix).

It is customary that strategies for surveillance and control in networks are implemented

using individual network measures [8–12, 75–79]. Combining measures to better identify

high-risk epiunits seems a reasonable avenue. However, we found that a multivariate model

led to counter-intuitive effects. The best univariate predictors remained significant and in the

expected direction in the multivariate model, but the coefficients on many of the other predic-

tors switched direction (Fig 5c and 5d). We note that there is high correlation among the

node-level measures themselves (Fig A in Section D of S1 Appendix) and their interactions
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with respect to outbreak risk are unlikely to be simple or linear. The intricacies of the appropri-

ate combination of measures in a multivariarte model is an interesting avenue for further

study.

Our results suggest that a plausible strategy for the placement of sensors for surveillance in

the network could be applied in two sequential steps: given the complex network (1) calculate

the in-coreness of the network and discard all nodes in the periphery of the network; (2) in the

residual network, select an appropriate fraction f of the best ranked nodes according to in-

degree. Furthermore, our results show that in the shipment network discarding epiunits with

low in-coreness could be a potential criteria for vaccination campaigns (path to optimal alloca-

tion of resources); while the in-degree could be used to identify epiunits with high spreading

impact in an ongoing outbreak (placement of sensors for surveillance).

The analysis of the aggregated shipments network opens questions which can be

approached in future research. For instance, the robustness of epiunits’ importance using a

temporal network approach [80]. Additionally, the possibility of implementing, proposing and

evaluating current and novel strategies for control and surveillance of infectious diseases.

Supporting information

S1 Appendix. Supplemental material. File containing supplementary explanation and addi-

tional tables and figures to complement results shown.
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13. Schirdewahn F, Lentz HHK, Colizza V, Koher A, Hövel P, Vidondo B (2021) Early warning of infectious

disease outbreaks on cattle-transport networks. PLOS ONE, 16(1):1–14, https://doi.org/10.1371/

journal.pone.0244999 PMID: 33406156

14. Holme P, Saramaki J (2012) Temporal networks. Physics Reports, 519(3):97–125, https://doi.org/10.

1016/j.physrep.2012.03.001

15. Lloyd AL, May RM (2001). How viruses spread among computers and people. Science, 292

(5520):1316–1317. https://doi.org/10.1126/science.1061076 PMID: 11360990

16. Keeling MJ, Eames KT (2005) Networks and epidemic models. J. R. Soc. Interface, 2:295–307, http://

doi.org/10.1098/rsif.2005.0051 PMID: 16849187

17. Newman MEJ (2002b) Spread of epidemic disease on networks. Phys. Rev. E, 66:016128, https://link.

aps.org/doi/10.1103/PhysRevE.66.016128

18. Rocha LEC, Masuda N (2016) Individual-based approach to epidemic processes on arbitrary dynamic

contact networks. Sci Rep 6, 31456. https://doi.org/10.1038/srep31456 PMID: 27562273

19. Karsai M, Perra N (2017) Control Strategies of Contagion Processes in Time-Varying Networks, pages

179–197. Springer Singapore, Singapore, https://doi.org/10.1007/978-981-10-5287-3_8.

20. Kao R, Danon L, Green D, Kiss I (2006) Demographic structure and pathogen dynamics on the network

of livestock movements in great britain. Proc. R. Soc. B, 273:1999–2007, http://doi.org/10.1098/rspb.

2006.3505 PMID: 16846906

21. Gross T, D’Lima CJD, Blasius B (2006) Epidemic Dynamics on an Adaptive Network. Phys. Rev. Lett.,

96(20):208701. https://doi.org/10.1103/PhysRevLett.96.208701 PMID: 16803215

22. Schwartz N, Cohen R, ben Avraham D, Barabási AL, Havlin S (2002) Percolation in directed scale-free

networks. Phys. Rev. E, 66:015104. https://doi.org/10.1103/PhysRevE.66.015104 PMID: 12241410
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