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Adaptive Influence Maximization: If Influential Node

Unwilling to Be the Seed

JIANXIONG GUO and WEILI WU, The University of Texas at Dallas, USA

Influence maximization problem attempts to find a small subset of nodes that makes the expected influence
spread maximized, which has been researched intensively before. They all assumed that each user in the seed
set we select is activated successfully and then spread the influence. However, in the real scenario, not all
users in the seed set are willing to be an influencer. Based on that, we consider each user associated with a
probability with which we can activate her as a seed, and we can attempt to activate her many times. In this
article, we study the adaptive influence maximization with multiple activations (Adaptive-IMMA) problem,
where we select a node in each iteration, observe whether she accepts to be a seed, if yes, wait to observe the
influence diffusion process; if no, we can attempt to activate her again with a higher cost or select another
node as a seed. We model the multiple activations mathematically and define it on the domain of integer
lattice. We propose a new concept, adaptive dr-submodularity, and show our Adaptive-IMMA is the problem
that maximizing an adaptive monotone and dr-submodular function under the expected knapsack constraint.
Adaptive dr-submodular maximization problem is never covered by any existing studies. Thus, we summarize
its properties and study its approximability comprehensively, which is a non-trivial generalization of existing
analysis about adaptive submodularity. Besides, to overcome the difficulty to estimate the expected influence
spread, we combine our adaptive greedy policy with sampling techniques without losing the approximation
ratio but reducing the time complexity. Finally, we conduct experiments on several real datasets to evaluate
the effectiveness and efficiency of our proposed policies.
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1 INTRODUCTION

Online social networks (OSNs) were blossoming prosperously in recent decades and have be-
come the main means of communication between people such as Wechat, Facebook, Twitter, and
LinkedIn. More and more people participate to discuss the topics that they are interested in on
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these social platforms. Many companies or advertisers exploit the relations established in OSNs to
spread their products, opinions, or innovations. They provide those influential individuals (called
“seed nodes”) with free or discounted samples, in order to create widespread influence across the
whole network via word-of-mouth effect [7], [20]. Based on that, influence maximization (IM)

problem [17] was formulated, which selects a subset of users (called “seed set”) for an information
cascade to maximize the expected follow-up adoptions (influence spread). It is a general model for
a number of realistic scenarios, such as viral marketing. In [17], they created two discrete influence
diffusion models, independent cascade model (IC-model) and linear threshold model (LT-

model), where IC-model relies on peer-to-peer communication but LT-model computes the total
influence from user’s neighbors. Then, they proved that the IM problem is NP-hard and provided
a (1− 1/e )-approximate algorithm by simple the greedy strategy in the framework of submodular-
ity. After this groundbreaking work, a sequence of derivative problems appeared and were solved
under the different constraints and scenarios [2], [3], [11], [12], such as profit maximization [13],
community partition, and rumor blocking (detection).
Despite these developments, the existing research studies on the IM problem have a crucial

drawback. When selecting a seed set at the beginning, they all seem to take it for granted that
every user in their selected seed set can be activated successfully to become an active seed and
then spread the influence as they wish. However, there are some users unwilling, even impossible,
to be the influencers. For example, the hottest topic at the moment, Coronavirus in Wuhan, China.
Some non-profit organizations or official media are trying to make celebrities speak out to ease
the panic among the people. However, due to self-interest or other factors, some celebrities are not
willing to be their “seed nodes.” Then, we have two options, one is trying to persuade those who
stand on the opposite side sentimentally and rationally, the other is giving up and look for other
potential “seed nodes.” Based on that, we design a new IM with multiple activations (IMMA)

problem, where a node can be activated to be an influencer with a probability when we select it as
a seed and we can attempt to activate it many times. For the same node, each attempt is referred
to as a “trial” and each trial has a cost. If the first trial fails, we can conduct the second trial, the
third trial, and so on, but their cost is higher than the first.
Most existing techniques on the IM problem concentrate on non-adaptive strategies, which are

required to select all seed nodes at once without observing actual node status and diffusion process.
In other words, we need to point out the seed set and the number of trials for each node in this
seed set in one batch. As a result, it may return a seed that cannot be activated actually or assign
too many trials to this node. For example, we give a seed three trials and it is activated in the
first trial, so the remaining two waste our budget. Thus, the non-adaptive seeding strategy is not
the best choice to solve our IMMA problem. Golovin et al. [8] studies the IM problem under the
adaptive strategy, they select the (i + 1)-th node after observing the influence diffusion of the first
i nodes until all seed nodes are chosen. Based on that, the Adaptive-IMMA problem is proposed in
this article, which selects a seed and attempts to activate it in each iteration. If successful, wait to
observe its influence process; if failed, record this failed trial. Those nodes on which all the trials
are unsuccessful can be considered as seed again in a later step.
Golovin et al. [8] provided a (1 − 1/e )-approximate algorithm by an adaptive greedy policy for

the adaptive IM problem in the framework of adaptive monotonicity and adaptive submodularity.
However, for our Adaptive-IMMA problem, its solution is a seeding vector x ∈ ZV

+
, not a seed set

S ⊆ V , where each component x (u) means how many activation attempts we give to user u. It
will be executed sequentially. For example, x (u) = i , we will do trial 〈u, 1〉, trial 〈u, 2〉 until trial
〈u, i〉 on user u. The domain of the objective function is defined on integer lattice, not generally
on set. Thus, traditional analytical methods based on adaptive submodularity cannot be applied
to analyze our problem. The submodularity shows us with diminishing marginal gain property
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in set function. For functions defined on integer lattice, such a property exists as well, called dr-
submodularity. Based on that, we define the concepts of adaptive monotonicity on integer lattice
and adaptive dr-submodularity formally, which are extended from adaptive submodularity on set
function [8] and dr-submodularity on integer lattice [22]. Then, we formulate the objective func-
tion of our Adaptive-IMMA problem and prove it is adaptive monotone on integer lattice as well as
adaptive dr-submodular. Each trial 〈u, i〉 is associated with a cost c (〈u, i〉) and the costs of different
trials are different. Given a randomized policy π (κ), the total budget k is an expected knapsack
constraint such that the total cost of the seeding vector returned by π (κ) is less than k expectedly.
Then, we study the approximate performance of adaptive greedy policy for maximizing adaptive
monotone and adaptive dr-submodular functions under the expected knapsack constraint, which
is a non-trivial generalization of existing analysis about the approximate performance of adap-
tive submodular functions. Assume c (〈u, i〉) ≤ c (〈u, i + 1〉), it returns an acceptable solution with
(1 − 1/e )-approximate ratio.
Besides, it is #P-hard to compute the expected influence spread given a seed set under the IC-

model [4] and LT-model [6]. The complexity of our objective function is higher. In order to over-
come this shortcoming, we design an unbiased estimator of the conditional expected marginal
gain for our problem based on the reverse influence sampling (RIS) [1]. Adapted from state-of-
the-art EPIC algorithm [16] for the IM problem, combined it with our adaptive greedy policy, we
formulate a sampled adaptive greedy policy and achieve a (1−exp(−1+ε )) expected approximation
guarantee. Its time complexity is reduced significantly. Finally, we conduct several experiments to
evaluate the superiority of our adaptive policies over their corresponding non-adaptive algorithms
and the sampled adaptive greedy policy over other heuristic adaptive policies, which support the
effectiveness and efficiency of our approaches strongly.

2 RELATEDWORK

IM: The IM problem has been studied extensively. Kempe et al. [17] formulated IM as a combi-
natorial optimization problem, proposed the triggering model, including IC-model and LT-model,
and gave us a greedy algorithm with (1 − 1/e − ε )-approximation. It was implemented byMonte

Carlo (MC) simulations with high time complexity. Chen et al. [4], [6] followed Kempe’s work
and proved its #P-hardness to compute the expected influence spread. Thus, the running time was
too slow to apply to larger real networks. After those seminal works, a lot of researchers made an
effort to improve its time complexity. Brogs et al. [1] proposed the concept of RIS to estimate the
expected influence spread, which is scalable in practice and guaranteed theoretically at the same
time. Then, a series of more efficient randomized algorithms were arisen, such as TIM/TIM+ [30],
IMM [29], SSA/D-SSA [19], and OPIM-C [27]. Recently, Han et al. [14] provided us with an EPIC
algorithm with an expected approximation guarantee. Then, the EPIC was improved further based
on the OPIM-C [27], which is the most efficient algorithm to solve the IM problem until now [16].
They were scalable algorithms for the IM problem and can be adapted to other relative problems.
However, all of these are used to solve the IM problem under the non-adaptive setting.
Dr-submodular maximization and its applications in social networks: Defined on inte-

ger lattice, dr-submodular maximization problem is a hot topic that attracts a lot of researchers
recently. Soma et al. [22] formalized dr-submodularity on integer lattice inspired by the diminish-
ing return property on set and addressed a submodular cover problem. Soma et al. [24] studied the
monotone dr-submodular maximization problem on integer lattice systematically, where they pro-
posed a series of (1− 1/e − ε )-approximate algorithms for the cardinality constraint, the knapsack
constraint, and the polymatroid constraint. Applied to solve problems social networks, Chen et al.
[5] gave a lattice IM problem defined on integer lattice, whose objective function is monotone and
dr-submodular. Then, they proposed a scalable algorithmwith (1−1/e−ε ) approximation ratio that
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is adapted from the IMM [29]. Guo et al. [10] proposed a continuous activitymaximization problem
and provided a solution framework for maximizing a monotone but not dr-submodular function
by the sandwich approximation approach. Other literature and results about dr-submodular max-
imization and its applications are shown in [9], [23], [15].
Adaptive influencemaximization: Golovin et al. [8] extended the submodularity to adaptive

settings and obtained the same approximation ratio for the adaptive IM problem because its ob-
jective function is adaptive monotone and adaptive submodular under the full-adoption feedback
model where only one node can be selected in each iteration. However, the objective function of
the adaptive IM problem is not adaptive submodular under the myopic feedback model [8] or the
partial feedback model [32], [28]. Tong et al. [31] gave us a systematic framework about the adap-
tive IM problem when it is not adaptive submodular, where they designed a seeding strategy and
showed the approximation analysis by introducing the concept of regret ratio. Unfortunately, all
these works were based on a fact that the expected influence spread can be computed accurately
in polynomial time, which is an unrealistic assumption. To improve its scalability, Han et al. [14]
proposed an AdaptGreedy framework instantiated by scalable IM algorithms to solve the adaptive
IM problem where it can select a batch of seed nodes in each iteration, which returns a worst-case
approximation guarantee with high probability. Sun et al. [25] studied amulti-round influence

maximization (MRIM) problem where information diffuses in multiple rounds independently
from different seed sets. They considered MRIM problem under the adaptive setting and designed
an adaptive algorithmwith (1−exp(1/e−1)−ε ) approximation instantiated by the IMM [29]. Tang
et al. [26] considered the seed minimization problem under the adaptive setting and proposed an
ASTI algorithm that offers an expected approximation ratio. Recently, Huang et al. [16] pointed
out there are some mistakes in the approximation analysis of adaptive policies in [14], [25]. They
fixed the previous AdaptGreedy framework in [14] and proved it has a (1−exp(ρb (ε−1))) expected
approximation guarantee instantiated by their improved EPIC in [16].
Nevertheless, none of them considered a problem that is adaptive dr-submodular, especially

under the expected knapsack constraint. This is the main contribution in this article.

3 PROBLEM FORMULATION

In this section, we define the problem of our adaptive influence maximization on multiple activa-
tions formally and introduce some preliminary knowledges.

3.1 Influence Model and Graph Realization

A social network can be denoted by a directed graph G = (V ,E) where V = {v1,v2, . . . ,vn } is the
node (user) set with |V | = n, E = {e1, e2, . . . , em } is the edge set with |E | =m, which describes the
relationship between users. For any edge e = (u,v ) ∈ E,v is an outgoing neighbor of u and u is an
incoming neighbor of v . For any node v ∈ N , we denote by N − (v ) its set of incoming neighbors
and N + (v ) its set of outgoing neighbors. Each edge (u,v ) is associated with a diffusion probability
puv ∈ (0, 1]. Thus, the influence diffusion on this network is stochastic.

Let S ⊆ V be a given node set, the influence diffusion initiated by S can be described as a discrete-
time stochastic process under the IC-model [17]. Let Si ⊆ V be the active node set at time step ti .
At time step t0, all nodes in S are active, namely S0 := S . We call S0 the seed set, and node in this
set is the seed of this cascade. At time step ti , i ≥ 1, we set Si := Si−1 first; then, for those nodes
activated first at time step ti−1, u ∈ (St−1\St−2), it activates its each inactive outgoing neighbor v
with the probability puv by one chance. If u activates v at ti successfully, we add v into Si . The
influence diffusion terminates when no more inactive nodes can be activated.
The above influence diffusion process can be interpreted by sampling a graph realization. Given

a directed network G = (V ,E), we can decide whether an edge (u,v ) ∈ E is live or blocked with
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probability puv . To remove these blocked edges, the remaining graph is a subgraph д of G. This
subgraph д is called “graph realization.” These edges existed in д are known as live edges, or else
called blocked edges. For each edge (u,v ) ∈ E, it exists in a graph realizationдwith probabilitypuv
under the IC-model. There are 2m possible graph realizations altogether under the IC-model. Let
G be the set of all possible graph realizations with |G| = 2m , and д be a graph realization sampled
from G, denoted by д ← G, with probability as follows:

Pr[д |д ← G] =
∏

e ∈E (д)

pe

∏

e ∈E (G )\E (д)

(1 − pe ). (1)

Remark 1. Inmost references, they usually called “graph realization” as “realization” or “possible
world.” They all refer to an instance of a probabilistic social network. We will discuss a different
concept “realization” later. To avoid ambiguity, we use “graph realization” here.

The problem and algorithms discussed later in this article are based on the IC-model, because
the adaptive IM problem can be adaptive submodular only under the IC-model.

3.2 Adaptive Influence Maximization

Given a seed set S ⊆ V and a graph realization д ∈ G, the size of final active set that can be reached
by the seed set S under the graph realization д is denoted by σд (S ). Thus, the expected influence
spread σG (S ) under the IC-model can be defined as follows:

σG (S ) = Eд←G[σд (S )] =
∑

д∈G

σд (S ) · Pr[д |д ← G], (2)

where it is the weighted expectation of influence spread over all possible graph realizations. The
IM problem aims to find a seed set S ⊆ V , such that |S | ≤ k , to maximize the expected influence
spread σG (S ).
From the above, in this non-adaptive setting, the seed set S is selected once without the knowl-

edge of what graph realization happens in the actual diffusion process. Thus, the actual influence
spread of S may be much worse than our expectation. Instead, in an adaptive manner, we select a
node u fromV at a time and wait to observe the actual diffusion result. Relied on this observation,
we select the next node that could activate those inactive nodes as much as possible. It is called
full-adoption feedback model [8]. In other words, when we select a node u as seed, we are able
to know the status of all edges going out from those nodes that can be reached by u through live
edges in current graph realization. Golovin et al. [8] introduced two important concepts, adaptive
monotonicity and adaptive submodularity, and showed that the simple adaptive greedy policy has
a (1 − 1/e )-approximation guarantee.

3.3 Problem Definition

In the traditional IM problem, it assumes that each user in the seed set we select is activated
successfully and then spread our given information cascade. However, in the real scenario, not
all users in the seed set are willing to be an influencer. Based on that, we consider a user can be
activated as a seed with a certain probability and we can attempt to activate her many times. For
each useru ∈ V , there is a probability βu ∈ (0, 1]withwhich she can be activated successfullywhen
we select her as a seed. Let ZV

+
be the collection of non-negative integer vector, each component

is indexed by a node in V . For a vector x ∈ ZV
+
, if x (u) = i , it means that we select user u and try

to activate her as a seed i times.
Given a social graph G = (V ,E), we have a total budget k ∈ R+, a vector b ∈ ZV

+
, and a cost

function c : V × Z+ → R+. Here, for each user u ∈ V , we assume she can be tried to activate as
a seed at most b (u) times, and it costs c (〈u, i〉) when the i-th trial of activating user u as a seed
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happens. Given a seeding vector x and a graph realization д ∈ G, the expected number of active
nodes μд (x ) under the graph realization д can be defined as follows:

μд (x ) = ES←x [σд (S )] =
∑

S ⊆V

σд (S ) · Pr[S |S ← x] (3)

=

∑

S ⊆V

σд (S ) ·
∏

u ∈S

(

1 − (1 − βu )
x (u )
)

·
∏

u ∈V \S

(1 − βu )
x (u ) . (4)

Similar to Equation (2), we have

μG (x ) = Eд←G[μд (x )] =
∑

д∈G

μд (x ) · Pr[д |д ← G], (5)

where μG (x ) is the expected influence spread over all possible graph realizations given a seeding
vector x . The IMMA problem is formulated, which seeks a seeding vector x ∈ ZV

+
that maximizes

μG (x ) subject to c (x ) ≤ k and x ≤ b. Here, we denote c (x ) by c (x ) =
∑

u ∈V

∑

i ∈[x (u )] c (〈u, i〉),
where [j] = {1, 2, . . . , j}. Each trial is independent.

In the adaptive setting, the IMMAproblem can be transformed to find a policy π , wherewe select
seed nodes step by step. The parameter setting is the same as before. A seeding vector is initialized
to x = 0 ∈ ZV

+
. When selecting an inactive user u ∈ V with x (u) < b (u), we increase x (u) by 1

and attempt to activate u to be an active seed with probability βu . At this moment, we need to
observe two states as follows: (1) Node state: whether user u can be activated to be an active seed
successfully; and (2) Edge state: Ifu becomes an active seed, wait to observe the influence diffusion
process (related edges is live or blocked) until no new nodes can be activated. We repeated this
process until no remaining budget exists.
Next, we define the states of the given network. Given a social graphG = (V ,E), for each node

u ∈ V , the state ofu can be denoted byXu ∈ {0, 1, ?}b (u ) , whereXu (i ) = 1 means useru is activated
as a seed successfully in the i-th trial, or not succeed, Xu (i ) = 0. Xu (i ) =? if the result of i-th trial
is unknown. Similar, for each edge (u,v ) ∈ E, the state of (u,v ) can be denoted by Yuv ∈ {0, 1, ?},
where Yuv = 1 means edge (u,v ) is live, and Yuv = 0 means edge (u,v ) is blocked. Yuv =? if the
state of (u,v ) is unknown. At the beginning, the states of all nodes and edges are ?. After defining
the state variables, we have a function ϕ mapping like

ϕ : {Xu }u ∈V ∪ {Yuv }(u,v )∈E →
{
{0, 1}b (u )

}
u ∈V
∪ {0, 1}E , (6)

where ϕ is called a realization (full realization), where the states of all items are known. We say
that ϕ (u) ∈ {0, 1}b (u ) is the state of user u ∈ V , ϕ (u) (i ) ∈ {0, 1} is the state of the i-th trial for user
u, and ϕ ((u,v )) ∈ {0, 1} is the state of edge (u,v ) ∈ E under the realization ϕ. Let Φ be the set
of all possible realizations. We define ϕ as a realization sampled from Φ, denoted by ϕ ← Φ, with
probability Pr[ϕ |ϕ ← Φ]. That is

Pr[ϕ |ϕ ← Φ] =
∏

e∈E
ϕ (e )=1

pe

∏

e∈E
ϕ (e )=0

(1 − pe ) ·
∏

u ∈V

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∏

i∈[b (u )]
ϕ (u )(i )=1

βu

∏

i∈[b (u )]
ϕ (u )(i )=0

(1 − βu )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

In this adaptive seeding process, after the i-th trial to activate nodeu is finished, its state and the
states of those related edges could be updated. Our observation until now can be described by a
partial realizationψ . It is a function of observed items to their states. Foru ∈ V ,ψ (u) ∈ {0, 1, ?}b (u ) ,
andψ (u) (i ) =? if the result i-th trial to nodeu is not yet observed. For (u,v ) ∈ E,ψ ((u,v )) ∈ {0, 1, ?}
as well. The domain of a partial realization ψ can be defined as dom(ψ ) = {〈u, i〉|ψ (u) (i ) �?},
which is the trials that have been done. We say ψ is consistent with a realization ϕ if the states
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of items in the domain of ψ are equal between them, denoted by ϕ ∼ ψ . Given ψ , ψ ′ and ϕ, if
dom(ψ ) ⊆ dom(ψ ′) and ϕ ∼ ψ ,ψ ′, we sayψ is a subrealization ofψ ′, denoted byψ ⊆ ψ ′.
Let π (κ) be a randomized policy based on a random variable κ that represents a random source

of this randomized policy. The π (κ) is a function mapping from current seeding vector x and one
of its possible partial realizationsψ to a node u∗, then it executes the (x (u∗) + 1)-th trial that tries
to select node u∗ as a seed. Here, we denote by u∗ = π (κ,x ,ψ ) where u∗ is the next potential seed
that policy π (κ) will select based on x andψ . The influence spread gained from policy π (κ) under
the realization ϕ can be defined as follows:

f (η(π (κ),ϕ),ϕ) = σдϕ

(

{u |∃1≤j≤η (π (κ ),ϕ )(u )ϕ (u) (j ) = 1}
)

, (8)

whereдϕ ∈ {0, 1}E is the graph realizationд contained in realizationϕ and η(π (κ),ϕ) is the seeding
vector returned by policy π under the realization ϕ. The expected influence spread of policy π (κ)

can be shown as follows:

Eκ

[
favд (π (κ))

]
= Eκ

[
Eϕ←Φ

[

f (η(π (κ),ϕ),ϕ)
]

]
. (9)

Therefore, the adaptive IM on multiple activations (Adaptive-IMMA) problem is formulated,
which can be defined in Problem 1.

Problem 1 (Adaptive-IMMA Problem). Given a social graph G = (V ,E), a budget k ∈ R+, a

vector b ∈ ZV
+
, and a cost function c : V × Z+ → R+, it aims to find a policy π ∗ (κ) that maximizes

its expected influence spread defined in Equation (9), i.e., π ∗ ∈ argmaxπ Eκ [favд (π (κ))] subject to
η(π (κ),ϕ) ≤ b and Eκ [c (η(π (κ),ϕ))] ≤ k for all realizations ϕ.

Given a seed vector x ∈ ZV
+
, we say “increase x (u) by 1” is equivalent to execute the trial 〈u,x (u)+

1〉. For each node u ∈ V , we assume c (〈u, 1〉) ≤ c (〈u, 2〉) ≤ · · · ≤ c (〈u,b (u)〉). It is valid becuase in
general, we execute trial 〈u, i + 1〉 only when trial 〈u, i〉 fails to activate node u as a seed, thereby
the cost of trial 〈u, i + 1〉 is larger than the cost of 〈u, i〉.

4 THE PROPERTIES

In this section, we first introduce some concepts of submodularity on integer lattice, and then,
generalize several properties of our Adaptive-IMMA problem.

4.1 Submodular Function on Integer Lattice

Usually, for two sets S,T ⊆ V , a set function h : 2V → R+ is monotone if h(S ) ≤ f (T ) for
any S ⊆ T ⊆ V and submodular if h(S ) + h(T ) ≥ h(S ∪ T ) + h(S ∩ T ). The submodularity of
set function can be generalized by diminishing return property, in other words, submodular if
h(S ∪ {u}) − f (S ) ≥ f (T ∪ {u}) − f (T ) for any S ⊆ T ⊆ V and u � T . On integer lattice, for two
vectors s, t ∈ ZV

+
, let s ∨ t ∈ ZV

+
be defined as (s ∨ t ) (u) = max{s (u), t (u)}, and s ∧ t ∈ ZV

+
be

defined as (s ∧ t ) (u) = min{s (u), t (u)} for any u ∈ V . A vector function f : ZV
+
→ R+ is defined

on the integer lattice ZV
+
. This vector function f is monotone if f (s ) ≤ f (t ) for any s ≤ t ∈ ZV

+

and lattice submodular if f (s ) + f (t ) ≥ f (s ∨ t ) + f (s ∧ t ) for any s, t ∈ ZV
+
. When the domain

of vector are restricted to binary lattice {0, 1}V , the vector function f is reduced to set function h.
Thus, the submodularity on set function is a special case of submodularity on integer lattice.

Besides, we consider a vector function f : ZV
+
→ R+ is diminishing return submodular (dr-

submodular) if f (s + eu ) − f (s ) ≥ f (t + eu ) − f (t ) for any s ≤ t and u ∈ V , where eu ∈ ZV is the
u-th unit vector with theu-th component being 1 and others being 0. Here, there is a little different
from the submodularity on set function. f is lattice submodular does not mean it is dr-submodular
on integer lattice, but the opppsite is true. Thus, dr-submodularity is a stronger property than
lattice submodular. We consider the dr-submodularity later.
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4.2 Properties of the Adaptive-IMMA

Assume that βu = 1 for each nodeu ∈ V and seeding vector x ∈ {0, 1}V , the IMMA problem can be
reduced to the IM problem naturally. Therefore, the IMMA problem is more general and inherits
the NP-hardness of IM. In the traditional IM problem, the expected influence spread shown as
Equation (2) is monotone and submodular on the seed set [17]. In order to study the properties of
our Adaptive-IMMA problem, we define its marginal gain first, that is

Definition 1 (Conditional Expected Marginal Gain on Integer Lattice). Given a seeding vector x ∈
Z
V
+
and a partial realizationψ generated by it, the conditional expected marginal gain of increasing

x (u) by 1 is defined as

∆(u |x ,ψ ) = Eϕ∼ψ [f (x + eu ,ϕ) − f (x ,ϕ)], (10)

where the expectation is on Pr[ϕ |ϕ ∼ ψ ]. The conditional expected marginal gain of policy π (κ) is
defined as

∆(π (κ) |x ,ψ ) = Eϕ∼ψ [f (x ∨ η(π (κ),ϕ),ϕ) − f (x ,ϕ)]. (11)

Here, ∆(u |x ,ψ ) is the expected gain by increasing x (u) by 1 conditioned on current partial re-
alization ψ of x and ∆(π (κ) |x ,ψ ) is the expected gain by running π (κ) after observing partial
realization ψ but neglect it. Then, adapted from [8], the concepts of adaptive monotonicity and
adaptive submodularity are described as follows:

Definition 2 (Adaptive Monotonicity). A vector function f (·,ϕ) is adaptive monotone if the con-
ditional expected marginal gain with respect to distribution Pr[ϕ] of any node u, seeding vector x ,
and its possible partial realizationψ is nonnegative, that is

∆(u |x ,ψ ) ≥ 0. (12)

Definition 3 (Adaptive dr-submodularity). A vector function f (·,ϕ) is adaptive dr-submodular if
the conditional expected marginal gain with respect to distribution Pr[ϕ] of any node u, seeding
vectors x ,y with x ≤ y, and their possible partial realizations ψ (generated by x ), ψ ′ (generated
byψ ′) withψ ⊆ ψ ′ satisfies the following inequality, that is

∆(u |x ,ψ ) ≥ ∆(u |y,ψ ′). (13)

For our Adaptive-IMMA problem, the function f (·,ϕ) is adaptive monotone and adaptive submod-
ular according to Theorem 1 and 2.

Theorem 1. The objective function f (·,ϕ) is adaptive monotone.

Proof. To prove adaptive monotonicity, we are required to show ∆(u |x ,ψ ) ≥ 0. Given a seeding
vector x and its partial realization ψ , we denote the marginal gain under the realization ϕ ∼ ψ as
follows:

∆(u |x ,ϕ ∼ ψ ) = f (x + eu ,ϕ) − f (x ,ϕ). (14)

If node u has been activated as a seed under the partial realization ψ , there is no marginal gain.
Otherwise, it is possible to be activated by increasing x (u) by 1, namely trial 〈u,x (u)+1〉 succeeds.
Thus, we have ∆(u |x ,ϕ ∼ ψ ) ≥ 0. The conditional expected marginal gain ∆(u |x ,ψ ) is a linear
combination of all realizations ϕ ∼ ψ , thereby we have ∆(u |x ,ψ ) ≥ 0. �

Theorem 2. The objective function f (·,ϕ) is adaptive dr-submodular.

Proof. To prove its adaptive dr-submodularity, we are required to show ∆(u |x ,ψ ) ≥ ∆(u |y,ψ ′)

for any two partial realizations ψ , ψ ′ such that x ≤ y and ψ ⊆ ψ ′. Considering two fixed partial
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realizations withψ ⊆ ψ ′, which are generated by seeding vector x and y respectively. We defined
the generative active seed set S under the seeding vector x and its partial realizationψ as

S (x ,ϕ ∼ ψ ) =
{
u ∈ V |∃1≤j≤x (u )ϕ (u) (j ) = 1

}
. (15)

Obviously, we have S (x ,ϕ ∼ ψ ) ⊆ S (y,ϕ ′ ∼ ψ ′) because of x ≤ y and ψ ⊆ ψ ′. Here, we assume
two fixed realizations, ϕ ∼ ψ , ϕ ′ ∼ ψ ′, and d (u) = y (u) − x (u). For each 〈u, i〉 � dom(ψ ′), we have
ϕ (u) (i − d (u)) = ϕ ′(u) (i ); for each (u,v ) � д(ψ ′), we have ϕ ((u,v )) = ϕ ′((u,v )). We define the
area that these two fixed realizations ϕ, ϕ ′ share as α . To show ∆(u |x ,ϕ ∼ ψ ) ≥ ∆(u |y,ϕ ′ ∼ ψ ′),
we can consider these three cases:

(1) u ∈ S (x ,ϕ ∼ ψ ): We have S (x ,ϕ ∼ ψ ) = S (x + eu ,ϕ ∼ ψ ) and S (y,ϕ ′ ∼ ψ ′) = S (y + eu ,ϕ
′ ∼

ψ ′). Thus, ∆(u |x ,ϕ ∼ ψ ) = ∆(u |y,ϕ ′ ∼ ψ ′).
(2) u ∈ S (y,ϕ ′ ∼ ψ ′)\S (x ,ϕ ∼ ψ ): We have S (x ,ϕ ∼ ψ ) ⊆ S (x + eu ,ϕ ∼ ψ ) and S (y,ϕ ′ ∼ ψ ′) =

S (y + eu ,ϕ
′ ∼ ψ ′). Thus, ∆(u |x ,ϕ ∼ ψ ) ≥ ∆(u |y,ϕ ′ ∼ ψ ′).

(3) u ∈ V \S (y,ϕ ′ ∼ ψ ′): When x (u) = y (u) = i , we have S (x + eu ,ϕ ∼ ψ ) = S (x ,ϕ ∼ ψ ) ∪ {u}

and S (y + eu ,ϕ ′ ∼ ψ ′) = S (y,ϕ ′ ∼ ψ ′) ∪ {u} if ϕ (u) (i + 1) = ϕ ′(u) (i + 1) = 1. It inherits the
adaptive submodularity of the adaptive IM problem under the full-adoption feedback model
[8], thereby we have ∆(u |x ,ϕ ∼ ψ ) ≥ ∆(u |y,ϕ ′ ∼ ψ ′); or else there is no marginal gain if
ϕ (u) (i + 1) = ϕ ′(u) (i + 1) = 0. When x (u) = i < j = y (u) =, we have ∆(u |x ,ϕ ∼ ψ ) ≥

∆(u |y,ϕ ′ ∼ ψ ′) apparently as well if ϕ (u) (i + 1) = ϕ ′(j + 1) = 1; or else there is no marginal
gain if ϕ (u) (i + 1) = ϕ ′(j + 1) = 0.

From the above, we have known ∆(u |x ,ϕ ∼ ψ ) ≥ ∆(u |y,ϕ ′ ∼ ψ ′). According to Equation (10)
and Definition 1, we have as follows:

∆(u |x ,ψ ) =
∑

ϕ∼ψ

Pr[ϕ |ϕ ∼ ψ ]∆(u |x ,ϕ ∼ ψ ) (16)

=

∑

ϕ′∼ψ ′

Pr[ϕ ′ |ϕ ′ ∼ ψ ′]
∑

ϕ∼α

Pr[ϕ |ϕ ∼ α]∆(u |x ,ϕ ∼ ψ ). (17)

Since
∑

ϕ∼α Pr[ϕ |ϕ ∼ α] = 1, we have

(17) ≥
∑

ϕ′∼ψ ′

Pr[ϕ ′ |ϕ ′ ∼ ψ ′]
∑

ϕ∼α

Pr[ϕ |ϕ ∼ α]∆(u |y,ϕ ′ ∼ ψ ′) (18)

≥
∑

ϕ′∼ψ ′

Pr[ϕ ′ |ϕ ′ ∼ ψ ′]∆(u |y,ϕ ′ ∼ ψ ′)
∑

ϕ∼α

Pr[ϕ |ϕ ∼ α] (19)

=

∑

ϕ′∼ψ ′

Pr[ϕ ′ |ϕ ′ ∼ ψ ′]∆(u |y,ϕ ′ ∼ ψ ′) (20)

= ∆(u |y,ψ ′). (21)

Therefore, we have ∆(u |x ,ψ ) ≥ ∆(u |y,ψ ′) for any x ≤ y and their partial realizationsψ ⊆ ψ ′. The
proof of adaptive submodular is completed. �

5 ALGORITHM AND THEORETICAL ANALYSIS

In this section, we propose algorithms to solve our Adaptive-IMMA problem and give an approxi-
mation ratio with necessary theoretical analysis.

5.1 Adaptive Greedy Policy

We define a randomized adaptive greedy policy πд (κ) here. The seeding vector x is initial-
ized to x = 0 ∈ ZV

+
. In each iteration, the πд (κ) selects the node u∗ ∈ V that maximizes
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ALGORITHM 1: AdaptiveGreedy (G, f ,k,b, c )

Input: A graph G = (V ,E), a function f (·,ϕ), a budget k ∈ R+, a vector b ∈ ZV
+
and, a cost

function c : V × Z+ → R+
Output: A seeding vector x ∈ ZV

+
and f (x ,ψ )

1: Initialize: x := 0

2: Initialize:ψ :=
{
{?}b (u )

}
u ∈V
∪ {?}E

3: while c (x ) < k do

4: u∗ ∈ argmaxu ∈V ,x (u )<b (u ) ∆(u |x ,ψ )/c (〈u,x (u) + 1〉)
5: if c (x ) + c (〈u∗,x (u∗) + 1〉) > k then

6: break with probability 1 − (k − c (x ))/c (〈u∗,x (u∗) + 1〉)
7: end if

8: x (u∗) := x (u∗) + 1
9: Observe the state of 〈u∗,x (u∗)〉
10: Updateψ := ψ ∪ 〈u∗,x (u∗)〉
11: if ψ (u∗) (x (u∗)) = 1 then
12: Update the edge states ofψ observed by u∗’s actual influence diffusion
13: end if

14: end while

15: return x , f (x ,ψ )

∆(u |x ,ψ )/c (〈u,x (u) + 1〉) where x (u) < b (u) and ψ is the partial realization generated by the
current x , then increases x (u∗) by 1. Then, we need to observe the state of u∗ and update this
partial realizationψ . The πд (κ) repeats above procedure, terminates until c (x ) ≥ k , or terminates
with a probability. The main idea of adaptive greedy policy is shown in Algorithm 1. Shown as
lines 5–7 of Algorithm 1, it returns with a probability when the remaining budget is not sufficient
to do a trial on the selected node u∗. Thereby, the random source κ in this adaptive greedy policy
indicates whether contains the selected node in the last iteration. The adaptive greedy policy πд (κ)
shown as Algorithm 1 satisfies η(π (κ),ϕ) ≤ b and Eκ [c (η(π (κ),ϕ))] ≤ k for any realization ϕ.

5.2 Theoretical Analysis

To make the following analysis understandable, we introduce the operations of policy trunca-
tion and policy concatenation, which are adapted from [8] but suitable on integer lattice do-
main. We imagine a randomized policy π (κ) running over time. In each iteration, it selects node
u∗ = π (κ,x ,ψ ) under the current seeding vector x and its partial realization ψ . It runs trial
〈u∗,x (u∗) + 1〉 for c (〈u∗,x (u∗) + 1〉) units of time and increases x (u∗) by 1.

Definition 4 (Policy Truncation). Let the seeding vector x kept by π (κ), the policy truncation
π[t ] (κ) denotes the randomized policy that runs π (κ) for t units of time. If the last trial 〈u∗,x (u∗)+1〉
can only be run for 0 ≤ τ < c (〈u∗,x (u∗) + 1〉) time, it will increase x (u∗) by 1 with probability
τ \c (〈u∗,x (u∗) + 1〉). Under any realization ϕ, we have Eκ [c (η(π[t ] (κ),ϕ))] ≤ t .

Definition 5 (Policy Concatenation). For any two adaptive policies π (κ) and π ′(κ), the policy
concatenation π (κ)@π ′(κ) denotes the adaptive policy that runs policy π (κ) first, and then runs
π ′(κ) like a fresh start without information from the run of π (κ). Under any realization ϕ, we have
η(π (κ)@π ′(κ),ϕ) = η(π (κ),ϕ) ∨ η(π ′(κ),ϕ).

Lemma 1. The objective function f (·,ϕ) is adaptive monotone if and only if for any randomized

policies π (κ) and π ′(κ), we have

Eκ

[
favд (π (κ))

]
≤ Eκ

[
favд (π

′(κ)@π (κ))
]
. (22)
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Proof. Given a fixed random source κ, we have η(π ′(κ)@π (κ),ϕ) = η(π ′(κ),ϕ) ∨ η(π (κ),ϕ) =

η(π (κ)@π ′(κ),ϕ) under any realizationϕ. Therefore, favд (π (κ)) ≤ favд (π
′(κ)@π (κ)) holds if and

only if favд (π (κ)) ≤ favд (π (κ)@π ′(κ)). Then, we need to show favд (π (κ)) ≤ favд (π (κ)@π ′(κ)),
which can be inferred from LemmaA.8 in [8], thus we omit here. Take the expectation over random
source κ, Inequality (22) can be established. �

Lemma 2. Given a seeding vectorx and a partial realizationψ generated by it, f (·,ϕ) is an adaptive

monotone and adaptive dr-submodular function. For any policy π ∗ (κ) that satisfies η(π ∗ (κ),ϕ) ≤ b

and Eκ [c (η(π ∗ (κ),ϕ))] ≤ k for any realization ϕ, we have

∆(π ∗ (κ) |x ,ψ ) ≤ Eϕ∼ψ
[

c (η(π ∗ (κ),ϕ))
]

· max
u ∈V ,x (u )<b (u )

{

∆(u |x ,ψ )

c (〈u,x (u) + 1〉)

}

. (23)

Proof. Consider the seeding vector x ′ maintained by a policy π ′(κ), we can define this policy
π ′(κ) as follow. The seeding vector x ′ is initialized to x ′ = 0 ∈ ZV

+
. The policy π ′(κ) increases x ′(u)

from 0 to x (u) step by step for each node u ∈ V . It will terminate if the state of trial 〈u, i〉 with
i ≤ x (u) is different fromψ (u) (i ) or the state of edge (u,v ) is different fromψ ((u,v )). If reaching
x ′ = x and not stopping, it will begin to run policy π ∗ (κ) like a fresh start without information
from before. Here, we can imagine there is a virtual vector x∗ associated with π ∗ (κ) updated from
0 and x ′ = x ∨ x∗ under the realization ϕ ∼ ψ .
For each trial 〈u, i〉, we define w (〈u, i〉) = Pr[i ≤ η(π ′(κ),ϕ) (u) |ϕ ∼ ψ ] as the probability that u

is selected by π ′(κ) and increases x ′(u) from i − 1 to i . When the policy π ∗ (κ) selects a node u ∈ V
with x (u) ≤ x∗ (u) < b (u), namely 〈u,x∗ (u) + 1〉 � dom(ψ ), the partial realization ψ ′ generated
by current x ′ satisfies ψ ⊆ ψ ′, thereby we have ∆(u |x ′,ψ ′) ≤ ∆(u |x ,ψ ) because of adaptive
dr-submodularity. Thus, the total contribution to ∆(π ∗ (κ) |x ,ψ ) is bounded by ∆(π ∗ (κ) |x ,ψ ) ≤
∑

u ∈V ,x (u )<b (u )

∑b (u )−1
i=x (u )

w (〈u, i + 1〉) · ∆(u |x ,ψ ). From the above, we have

∆(π ∗ (κ) |x ,ψ ) ≤
∑

u ∈V ,x (u )<b (u )

b (u )−1
∑

i=x (u )

w (〈u, i + 1〉) · ∆(u |x ,ψ ) (24)

=

∑

u ∈V ,x (u )<b (u )

b (u )−1
∑

i=x (u )

w (〈u, i + 1〉) · c (〈u, i + 1〉) ·
∆(u |x ,ψ )

c (〈u, i + 1〉)
. (25)

Since c (〈u, i〉) ≤ c (〈u, i + 1〉), we have

(25) ≤
∑

u ∈V ,x (u )<b (u )

∆(u |x ,ψ )

c (〈u,x (u) + 1〉)

b (u )−1
∑

i=x (u )

w (〈u, i + 1〉) · c (〈u, i + 1〉) (26)

≤
�
�

∑

u ∈V ,x (u )<b (u )

b (u )−1
∑

i=x (u )

w (〈u, i + 1〉) · c (〈u, i + 1〉)��� · max
u ∈V ,x (u )<b (u )

{

∆(u |x ,ψ )

c (〈u,x (u) + 1〉)

}

(27)

≤ Eϕ∼ψ [c (η(π
∗ (κ),ϕ))] · max

u ∈V ,x (u )<b (u )

{

∆(u |x ,ψ )

c (〈u,x (u) + 1〉)

}

, (28)

where Inequality (28) is correct because it only count a subset of trials contained in η(π ∗ (κ),ϕ).
Thus, this lemma is proven. �

Theorem 3. The adaptive greedy policy πд (κ) shown as Algorithm 1 achieves a (1 − e−1) ex-

pected approximation guarantee. Thus, for any policy π ∗ (κ) that satisfies η(π ∗ (κ),ϕ) ≤ b and
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Eκ [c (η(π ∗ (κ),ϕ))] ≤ k for any realization ϕ, we have

Eκ

[
favд (π

д (κ))
]
≥
(

1 − e−1
)

· Eκ

[
favд (π

∗ (κ))
]
. (29)

Proof. Consider the policy π
д

[i+1] (κ) given any i ∈ [0,k − 1], its current seeding vector and

partial realization when it enters the last iteration before termination (line 3 of Algorithm 1) are
denoted by x and ψ . In the last iteration, the node u∗ is selected in line 4 of Algorithm 1. The
expected marginal gain of the last iteration is ∆(u∗ |x ,ψ ) · (i +1−c (x ))/c (〈u∗,x (u∗)+1〉). Consider
the policy π

д

[i] (κ), there are two cases could happen.

(1) If i ≥ c (x ), its execution will be the same as the policy π
д

[i+1] (κ) until entering the last

iteration. It updates x to x + eu∗ with probability (i − c (x ))/c (〈u∗,x (u∗) + 1〉), which has
∆(u∗ |x ,ψ ) · (i − c (x ))/c (〈u∗,x (u∗) + 1〉) expected marginal gain in the last iteration.

(2) If i ≤ c (x ), the πд[i] (κ) will not enter the last iteration of the policy π
д

[i+1] (κ) obviously.

According to the above analysis, the gap of the expected value of objective function returned
by π

д

[i+1] (κ) and π
д

[i] (κ) can be bounded. We have

Eκ

[
Eϕ∼ψ

[
f (η(π

д

[i+1] (κ),ϕ),ϕ)
] ]
− Eκ

[
Eϕ∼ψ

[
f (η(π

д

[i] (κ),ϕ),ϕ)
] ]
≥

∆(u∗ |x ,ψ )

c (〈u∗,x (u∗) + 1〉)
. (30)

Here, the x andψ are fixed, which are determined by potential realization ϕ. Take the expectation
over all realizations, we have

Eκ

[
favд (π

д

[i+1] (κ))
]
− Eκ

[
favд (π

д

[i] (κ))
]
≥ Eϕ←Φ

[
∆(u∗ |xϕ ,ψϕ )

c (〈u∗,xϕ (u∗) + 1〉)

]
, (31)

where the xϕ (ψϕ ) is the current seeding vector (partial realization) of the policy π
д

[i+1] (κ) at the
beginning of its last iteration under the potential realization ϕ and the node u∗ can be considered
as the one that is able to get the maximummarginal gain based on the seed vector xϕ and its partial
realizationψϕ .
Then, the definition of x andψ are the same as above. We can define the seeding vectory and its

partial realizationψ ′ as that returned by the policy πд[i] (κ), where we haveψ ⊆ ψ
′ and x ≤ y. Pol-

icy π
д

[i] (κ)@π ∗ (κ) increase the value of objective function of policy π
д

[i] (κ) by Eκ [∆(π
∗ (κ) |y,ψ ′)]

expectedly. Besides, we have Eκ [∆(π ∗ (κ) |y,ψ ′)] ≤ Eκ [∆(π ∗ (κ) |x ,ψ )] due to the adaptive dr-
submodularity of f (·,ϕ). Here, the x andψ are fixed, which are determined by potential realization
ϕ. Take the expectation over all realizations, we have

Eκ

[
favд (π

д

[i] (κ)@π ∗ (κ))
]
− Eκ

[
favд (π

д

[i] (κ))
]
≤ Eκ

[
Eϕ←Φ

[
∆(π ∗ (κ) |xϕ ,ψϕ )

] ]
. (32)

According to Inequality (23) in Lemma 2, we have

Eκ

[
∆(π ∗ (κ) |xϕ ,ψϕ )

]
≤ Eκ

[
Eϕ∼ψϕ

[

c (η(π ∗ (κ),ϕ))
]

]
· max
u ∈V ,x (u )<b (u )

{

∆(u |xϕ ,ψϕ )

c (〈u,xϕ (u) + 1〉)

}

(33)

≤ k · max
u ∈V ,x (u )<b (u )

{

∆(u |xϕ ,ψϕ )

c (〈u,xϕ (u) + 1〉)

}

= k ·
∆(u∗ |xϕ ,ψϕ )

c (〈u∗,xϕ (u∗) + 1〉)
, (34)

where Inequality (34) is from Eκ [Eϕ∼ψϕ [c (η(π
∗ (κ),ϕ))]] = Eϕ∼ψϕ [Eκ [c (η(π

∗ (κ),ϕ))]] ≤ k since
Eκ [c (η(π ∗ (κ),ϕ))] ≤ k for any realization ϕ. Thus, we have

(32) = Eϕ←Φ

[
Eκ

[
∆(π ∗ (κ) |xϕ ,ψϕ )

] ]
(35)

≤ k · Eϕ←Φ

[
∆(u∗ |xϕ ,ψϕ )

c (〈u∗,xϕ (u∗) + 1〉)

]
≤ k ·

(

Eκ

[
favд (π

д

[i+1] (κ))
]
− Eκ

[
favд (π

д

[i] (κ))
] )
. (36)
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Based on Lemma 1, we haveEκ [favд (π ∗ (κ))] ≤ Eκ [favд (π
д

[i] (κ)@π ∗ (κ))] because of its adaptive

monotonicity. According to Inequality (31), (32), and (36), we have

Eκ

[
favд (π

∗ (κ))
]
− Eκ

[
favд (π

д

[i] (κ))
]
≤ k ·

(

Eκ

[
favд (π

д

[i+1] (κ))
]
− Eκ

[
favд (π

д

[i] (κ))
] )
. (37)

Now, we can define θi := Eκ [favд (π ∗ (κ))]−Eκ [favд (π
д

[i] (κ))], which means θi ≤ k · (θi −θi+1) and

θi+1 ≤ (1 − 1/k ) · θi . Here, we have θk ≤ (1 − 1/k )k · θ0 ≤ (1/e ) · θ0, therefore Eκ [favд (π ∗ (κ))] −
Eκ [favд (πд (κ))] ≤ (e−1) · (Eκ [favд (π ∗ (κ))] − Eκ [favд (π

д

[0] (κ))]) when k is relatively large. That

is Eκ [favд (πд (κ))] ≥ (1 − e−1) · Eκ [favд (π ∗ (κ))]. The proof of this theorem is completed. �

6 SOLUTION FRAMEWORK BY SAMPLING

In the last section, our adaptive greedy policy shown asAlgorithm 1 can achieve a (1−1/e ) expected
approximation guarantee, which has been proved by Theorem 3. However, it is based on a basic
assumption that we are able to compute the exact value of ∆(u |x ,ψ ) and get the feasible node
with maximum unit marginal gain in line 4 of Algorithm 1 in each iteration. In fact, this is an
impossible task because it is #P-hard [4] to compute marginal gain ∆(u |x ,ψ ) for each node u ∈ V
under the IC-model. Thus, the true value of ∆(u |x ,ψ ) is difficult to obtain. MC simulations is a
general method to estimate this value, but its running time is unacceptable. To overcome that,
we are able to seek an estimator of ∆(u |x ,ψ ) through the RIS [1] then maximize this estimator.
If maximizing this estimator through sampling technique, it will be possible to get a extremely
worse node with some probability, even though very small. In other words, the selected nodeu∗ in
line 4 of Algorithm 1 is not optimal such that u∗ � argmaxu ∈V ,x (u )<b (u ) ∆(u |x ,ψ )/c (〈u,x (u) + 1〉)
in actual execution. Like this, the expected approximation ratio shown in Theorem 3 will not be
ensured.

6.1 Sampling Technique

Consider the traditional IM problem, we need to introduce the concept of reverse reachable sets
(RR-sets) first. Given a graph G = (V ,E), a random RR-set of G can be generated by selecting a
node u ∈ V uniformly and sampling a graph realization д from G, then collecting those nodes
can reach u in д. A RR-set rooted at u is a collection of nodes that are likely to influence u. A
larger expected influence spread a seed set S has, the higher the probability that S intersects with
a random RR-set is. Given a seed set S and a random RR-set R, we have σG (S ) = n · Pr[R ∩ S � ∅].
Let R = {R1,R2, . . . ,Rθ } be a collection of random RR-sets and z (S,R) be the indicator, where
z (S,R) = 1 if S ∩ R � ∅, or else z (S,R) = 0. Denoted by FR (S ) =

∑θ
i=1 z (S,Ri )/θ , the n · FR (S ) is an

unbiased estimator of the expected influence spread σG (S ). When the |R | is large, the n ·FR (S ) will
converge to the true value σG (S ). Thus, how to set the value of θ is flexible, we need to balance
between accuracy and running time carefully.
For our adaptive greedy policy, its current seeding vector and partial realization at the be-

ginning of each iteration (when entering line 3 of Algorithm 1) are denoted by x and ψ . Let
G (ψ ) = (V (ψ ),E (ψ )) be the subgraph induced by all inactive nodes under the current partial
realization ψ . Here, computing ∆(u |x ,ψ ) is equivalent to computing βu · σG (ψ ) ({u}). We can note
that ∆(u |x ,ψ ) = 0 if node u � V (ψ ). Thus, for a node u ∈ V (ψ ) and a random RR-sets R (ψ ) of
G (ψ ), we can get an unbiased estimator of ∆(u |x ,ψ ). That is

∆(u |x ,ψ ) = βu · σG (ψ ) ({u}) (38)

= βu · |V (ψ ) | · Pr[{u} ∩ R (ψ ) � ∅]. (39)

Then, we can reformulate our adaptive greedy policy through the above sampling, which is
shown in Algorithm 2. It is called “sampled adaptive greedy policy” and denoted by πдs (κ,ω),
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ALGORITHM 2: Sampled-AdaptiveGreedy (G, f ,k,b, c, ε )

Input: A graph G = (V ,E), a function f (·,ϕ), a budget k ∈ R+, a vector b ∈ ZV+ , a cost function
c : V × Z+ → R+, and an error parameter ε

Output: A seeding vector x ∈ ZV
+
and f (x ,ψ )

1: Initialize: x := 0

2: Initialize:ψ :=
{
{?}b (u )

}
u ∈V
∪ {?}E

3: Initialize: G (ψ ) := G
4: Initialize: r be defined as Equation (41)
5: while c (x ) < k do

6: u◦ ← Generalized-EPIC (G (ψ ),x ,b, c, ε )

7: if c (x ) + c (〈u◦,x (u◦) + 1〉) > k then

8: break with probability 1 − (k − c (x ))/c (〈u◦,x (u◦) + 1〉)
9: end if

10: x (u◦) := x (u◦) + 1
11: Observe the state of 〈u◦,x (u◦)〉
12: Updateψ := ψ ∪ 〈u◦,x (u◦)〉
13: if ψ (u◦) (x (u◦)) = 1 then
14: Update the edge states ofψ observed by u◦’s actual influence diffusion
15: Update G (ψ ) by removing all active nodes
16: end if

17: end while

18: return x , f (x ,ψ )

where the random variable ω indicates the random source of sampling for estimations. In each
iteration, it generates a collection of random RR-sets R (ψ ) = {R1 (ψ ),R2 (ψ ), . . . ,Rθ (ψ )} based
on current subgraph G (ψ ) first. Then, it select a feasible node u◦ ∈ V (ψ ) that maximizes
βu · |V (ψ ) | · FR (ψ ) ({u})/c (〈u,x (u) + 1〉) where x (u) < b (u) and increases x (u◦) by 1. Finally, we
need to observe the state of u◦, update this partial realization ψ , and update the subgraph G (ψ ).
The πдs (κ,ω) repeats above procedure, terminates until c (x ) ≥ k , or terminates with a probability.

6.2 Theoretical Analysis and Time Complexity

According to the current seeding vector x and its partial realization ψ at the beginning of each
iteration (line 5 of Algorithm 2), we can get a subgraph G (ψ ) and a collection of random RR-
sets R (ψ ). Now, we define a function HR (ψ ) ({u}|x ) = βu · FR (ψ ) ({u})/c (〈u,x (u) + 1〉), thereby the
|V (ψ ) | ·HR (ψ ) ({u}|x ) is an unbiased estimator of ∆(u |x ,ψ )/c (〈u,x (u)+1〉). Next, a natural question
is how to determine the number of RR-sets in R (ψ ). The procedure of generating enough random
RR-sets of G (ψ ) and returning the approximately optimal node u◦ ∈ V (ψ ) (line 7 of Algorithm 2)
in each iteration is shown in Algorithm 3. It is adapted from the sampling process of EPIC in [16],
but there are several differences: (1) The seed size is fixed to one; and (2) The targeted estimator
is the function HR (ψ ) ({u}|x ) we defined before instead of FR (ψ ) ({u}). Thus, the sampling process
shown as algorithm 3 is called “Generalized-EPIC.”

From line 1 to line 5 of Algorithm 3, it initializes those parameters similar to EPIC in [16] but
fixes the seed set to one, then generate two collections R1 (ψ ) and R2 (ψ ) of random RR-sets with
the same size. In each iteration, it select the feasible node u◦ ∈ V (ψ ) that maximizes the estimator
HR1 (ψ ) ({u}|x ), which can be computed in polynomial time. Denoted by u∗ the optimal feasible
node that maximizes the unit marginal gain ∆(u |x ,ψ )/c (〈u,x (u) + 1〉), the Hu ({u∗}) is an upper
bound on HR1 (ψ ) ({u

∗}|x ). Thus, we have Hu ({u∗}) = HR1 (ψ ) ({u
◦}|x ) ≥ HR1 (ψ ) ({u

∗}|x ). Moveover,
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ALGORITHM 3: Generalized-EPIC (G (ψ ),x ,b, c, ε ) [16]

Input: A graph G (ψ ) = (V (ψ ),E (ψ )), the current seeding vector x ∈ ZV
+
, a vector b ∈ ZV

+
, a cost

c : V × Z+ → R+, and an error parameter ε
Output: An approximately optimal node u◦ ∈ V (ψ )

1: Initialize: δ := 0.01 · ε/|V (ψ ) |

2: Initialize: ε̄ := (ε − δ · |V (ψ ) |)/(1 − δ · |V (ψ ) |)

3: Initialize: ε̂ := ε̄/(1 − ε̄ )

4: Initialize: imax :=
⌈
log2

(2+2·ε̂/3) · |V (ψ ) |

ε̂2

⌉
+ 1 and a = ln

(

2·imax

δ

)

5: Initialize: θ := ln
(

2
δ

)

+ ln
((

|V (ψ ) |
1

))

6: Generate two collections R1 (ψ ) and R2 (ψ ) of random RR-sets with |R1 (ψ ) | = |R2 (ψ ) | = θ

7: for i = 1 to imax do

8: u◦ ∈ argmaxu ∈V (ψ ),x (u )<b (u ) HR1 (ψ ) ({u}|x )

9: Hu ({u∗}) ← HR1 (ψ ) ({u
◦}|x )

10: H l ({u◦}) ←

(
√

HR2 (ψ ) +
2·a

9· |R2 (ψ ) |
−
√

a
2· |R2 (ψ ) |

)2
− a

18· |R2 (ψ ) |

11: if
H l ( {u◦ })
Hu ( {u∗ })

≥ 1 − ε̄ or i = imax then

12: return u◦

13: end if

14: Double the size of R1 (ψ ) and R2 (ψ ) with new random RR-sets
15: end for

the |V (ψ ) | · H l ({u◦}) gives an accurate lower bound on ∆(u◦ |x ,ψ )/c (〈u◦,x (u◦) + 1〉) with high
probability. After that, it checks whether the stopping condition in line 11 can be satisfied. If true,
it will return an approximate optimal node u◦ definitely.

Lemma 3. Given the current seeding vector x and its partial realization ψ , the feasible node u◦

returned by Algorithm 3 achieves a (1 − ε ) expected approximation guarantee within O (( |V (ψ ) | +

|E (ψ ) |) · (log( |V (ψ ) |) + log(1/ε ))/ε2) expected time. That is

Eω

[
∆(u◦ |x ,ψ )

c (〈u◦,x (u◦) + 1〉)

]
≥ (1 − ε ) · max

u ∈V (ψ ),x (u )<b (u )

{

∆(u |x ,ψ )

c (〈u,x (u) + 1〉)

}

(40)

Proof. Given the current seeding vector x and its partial realization ψ , let us look at the tar-
geted function HR (ψ ) ({u}|x ) = βu · FR (ψ ) ({u})/c (〈u,x (u) + 1〉). It is a weighted coverage on
the collection R (ψ ), where we can consider the βu/c (〈u,x (u) + 1〉) as the weight of each node
u ∈ V (ψ ). The weighted coverage function is submodular, thereby we can compute the node
u◦ ∈ argmaxu ∈V (ψ ),x (u )<b (u ) HR1 (ψ ) ({u}|x ) accurately shown as line 8 of Algorithm 3 in polyno-
mial time. Because of its submodularity, Lemma 3 can be obtained by adapting from the expected
approximation guarantee of EPIC in [16]. �

Let us look back at Algorithm 2. The actual number of activated seeds should be much less than
the number of actual iterations in Algorithm 2, since there are some iterations that fail to activate
its selected node. Based on that, we can make the following assumptions:

(1) Generate an active seed successfully in each iteration, namely we suppose βu = 1 for each
node u ∈ V .

(2) The node we select in each iteration has the lowest cost until now.
(3) We sort the node set V as {v ′1,v

′
2, . . . ,v

′
n } with c (〈v

′
1, 1〉) ≤ c (〈v ′2, 1〉) ≤ · · · ≤ c (〈v ′n , 1〉).
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Table 1. The Statistics of four Datasets in our Simulations (K = 103)

Dataset n m Type Avg. Degree

NetScience 0.4K 1.01K undirected 5.00
Wiki 1.0K 3.15K directed 6.20

HetHEPT 12.0K 118.5K undirected 19.8
Epinions 75.9K 508.8K directed 13.4

Given a graph G = (V ,E) and a budget k , we can define the maximum number of iterations in
Algorithm 2 as r . That is

r =
⎧⎪⎨⎪⎩
n if

∑n
i=1 c (〈v

′
i , 1〉) ≤ k

q else q = min{q |
∑q

i=1 c (〈v
′
i , 1〉) ≥ k }

(41)

By finding the smallest r such that
∑r

i=1 c (〈v
′
i , 1〉) ≥ k , it is obvious that the actual number of

iterations in Algorithm 2 must be less than r defined in Equation (41).

Theorem 4. The sampled adaptive greedy policy πдs (κ,ω) shown as Algorithm 2 achieved a (1 −
e−1+ε ) expected approximation guarantee within O (r · (n + m) · (log(n) + log(1/ε ))/ε2) expected
time. Thus, for any policy π ∗ (κ) that satisfies η(π ∗ (κ),ϕ) ≤ b and Eκ [c (η(π ∗ (κ),ϕ))] ≤ k for any

realization ϕ, we have

Eκ

[
Eω

[
favд (π

дs (κ,ω))
] ]
≥
(

1 − e−1+ε
)

· Eκ

[
favд (π

∗ (κ))
]

(42)

Proof. According to the above assumptions, the maximum number of iterations can be ex-
ecuted in Algorithm 2 is r . Based on Lemma 3, the selected node in each iteration satisfies
(1 − ε ) expected approximation. In this extreme case, the total expected error over all iterations is
ε = (1/r ) ·

∑r
i=1 ε . Actually, the total expected error will be much less than ε due to the βu ≤ 1 for

each node u ∈ V . Here, there is no node can be activated in many iterations. Based on Theorem 3
and Lemma 3, Theorem 4 holds by inferring from Theorem 6 in [16]. �

7 EXPERIMENT

In this section, we carry out several experiments on different datasets to validate the performance
of our proposed policy. It aims to test the efficiency of our sampled adaptive greedy policy shown
as Algorithm 2 and its effectiveness compared to other adaptive heuristic policies. All of our exper-
iments are programmed by python and run on a Windows machine with a 3.40 GHz, 4 core Intel
CPU and 16 GB RAM.

7.1 Dataset Description and Statistics

There are four datasets used in our experiments: (1) NetScience [21]: a co-authorship network,
co-authorship among scientists to publish papers about network science; (2) Wiki [21]: a who-
votes-on-whom network, which come from the collection Wikipedia voting; (3) HetHEPT [18]: an
academic collaboration relationship on high energy physics area; and (4) Epinions [18]: a who-
trust-whom OSN on Epinions.com, a general consumer review site. The statistics information of
these four datasets is represented in Table 1. For the undirected graph, each undirected edge is
replaced with two reversed directed edges.

7.2 Experimental Setting

The diffusion model used in our experiments relies on the IC-model. For each edge (u,v ) ∈ E,
we set puv = 1/|N − (v ) |, which is widely used by prior works about influence maximization [17],
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ALGORITHM 4: Greedy (G, μ,k,b, c )

Input: A graphG = (V ,E), a function μ (x ), a budget k ∈ R+, a vector b ∈ ZV+ and, a cost function
c : V × Z+ → R+

Output: A seeding vector x ∈ ZV
+
and μ (x )

1: Initialize: x := 0

2: while c (x ) < k do

3: u∗ ∈ argmaxu ∈V ,x (u )<b (u ) (μG (x + eu ) − μG (x ))/c (〈u,x (u) + 1〉)
4: if c (x ) + c (〈u∗,x (u∗) + 1〉) > k then

5: break with probability 1 − (k − c (x ))/c (〈u∗,x (u∗) + 1〉)
6: end if

7: x (u∗) := x (u∗) + 1
8: end while

9: return x , μ (x )

[1], [30], [29], [19]. There are several parameters associated with the objective function of our
Adaptive-IMMA problem. Here, we set the vector b = {5}V where each node can be attempted to
activate as a seed at most 5 times; the cost of each trial c (〈u, 1〉) = 1 and c (〈u, i+1〉) = 1.2×c (〈u, i〉);
and variable budget k ∈ {0, 10, 20, 30, 40, 50}. Besides, for each node u ∈ V , its probability βu is
sampled from a normal distribution within given a mean, variance and interval. For each adaptive
policies, we generate 20 realizations (test it 20 times) randomly and take the average of their results
as its final performance.
We perform two experiments with different purposes in this section. The first experiment is to

test the time efficiency of the adaptive greedy policy and sampled adaptive greedy policy (Algo-
rithm 2), then validate the superiority over their non-adaptive settings. The corresponding non-
adaptive versions of adaptive greedy policy and sampled adaptive greedy policy are referred to
as greedy and sampled greedy algorithm, respectively. Here, the greedy algorithm and adaptive
greedy policy are implemented by MC simulations. They can be shown as follows:

(1) Greedy algorithm: Shown as Algorithm 4, it selects a node u ∈ V with x (u) < b such that
maximizes the unit marginal gain (μG (x + eu ) − μG (x ))/c (〈u,x (u) + 1〉) in each iteration.
The selected node in the last iteration will be contained with a probability. To estimate the
value of μG (x ), we have

μG (x ) = σG̃ (Ṽ −V ) − |V |, (43)

where we need to create a constructed graph G̃ = (Ṽ , Ẽ) by adding a new node ũ and a new
directed edge (ũ,u) for each node u ∈ V to G, where (ũ,u) is with activation probability
pũu = 1 − (1 − βu )

x (u ) . Here, the σG̃ (Ṽ −V ) can be estimated by MC simulations, which is
an effective methods to estimate the value of μ (x ) [10].

(2) Adaptive greedy policy: Shown as Algorithm 1, we can compute the unit marginal gain
∆(u |x ,ψ )/c (〈u,x (u)+1〉) through βu ·σG (ψ ) ({u}) according to Equation (38), whereσG (ψ ) ({u})

can be estimated by MC simulations.
(3) Sampled greedy algorithm: Here, we require to obtain an unbiased estimator of μ (x ). Let R

be a collection of random RR-sets sampled from G, we have

μG (x ) = |V | · ER

⎡⎢⎢⎢⎢⎣1 −
∏

u ∈R

(1 − βu )
x (u )

⎤⎥⎥⎥⎥⎦ . (44)
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Let FR (x ) = (θ −
∑θ

i=1
∏

u ∈Ri (1 − βu )
x (u ) )/θ , thereby we have |V | · FR (x ) is an unbiased

estimator of μ (x ). Because there is no existing algorithm to determine the number of random
RR-sets in this case, we will guess a size of R according to datasets and budgets. Given
a collection R, it selects a node u◦ ∈ V with x (u) < b (u) such that maximizes the unit
marginal coverage (FR (x +eu )−FR (x ))/c (〈u,x (u)+1〉) in each iteration. The selected node
in the last iteration will be contained with a probability, which is similar to Algorithm 4.

(4) Sampled adaptive greedy policy: It can be implemented by Algorithm 2 with the error pa-
rameter ε = 0.5.

The second experiment is to test the performance of our sampled adaptive greedy policy com-
pared with other heuristic adaptive policies, which aims to evaluate its effectiveness. The differ-
ence between these heuristic adaptive policies and our sampled adaptive greedy policy lies in
how to select a node u◦ from the feasible node set that satisfies u ∈ V (ψ ) and x (u) < b (u) in
each iteration. Thus, the only difference is in line 6 of Algorithm 2 and other procedures are to-
tally identical. In other words, they are obtained by replacing line 6 of Algorithm 2 with these
heuristic strategies, summarized as follows: (1) Random: select a node u◦ from the feasible node
set uniformly in each iteration; (2) MaxDegree: select a node u◦ from the feasible node set that
maximizes N + (u)/c (〈u,x (u)+1〉) in each iteration; (3) MaxProb: select a nodeu◦ from the feasible
node set that maximizes βu/c (〈u,x (u)+1〉) in each iteration; and (4) MaxDegreeProb: select a node
u◦ from the feasible node set that maximizes βu · N + (u)/c (〈u,x (u) + 1〉) in each iteration.

7.3 Experimental Results

Figures 1 and 2 are the experimental results of the first experiment. Figure 1 draws the expected
influence spread achieved by the (sampled) greedy algorithm and (sampled) adaptive greedy policy
under the NetScience andWiki datasets. Here, the probability β ∼ N (a,b) means βu for each node
u ∈ V is sampled from a truncated normal distribution whose mean is a and variance is b within
the interval [0, 1]. Because the greedy algorithm and adaptive greedy policy are implemented by
MC simulations, and its time complexity is too high, thereby we only use these two small graphs
to test them in this experiment. Here, the number of MC simulations for each estimation is set to
300 in NetScience dataset and 600 in Wiki dataset. This is far from enough, just for performance
comparison. For the sampled greedy algorithm, the number of randomRR-sets is determined based
on experience, where we give |R | = 5000 + 1000 · (k/10) in NetScience dataset and |R | = 10000 +
2000 · (k/10) in Wiki dataset.

We note that the expected influence spread obtained by the adaptive greedy policy and sampled
adaptive greedy policy is very close, which proves the effectiveness of our sampling techniques.
Under the non-adaptive settings, the performance achieved by the sampled greedy algorithm is
better than that achieved by the greedy algorithm. This may be because the number of MC sim-
ulations we set for each estimation is not enough to get a precise estimation. Thus, we are more
inclined to think the results obtained by the sampled greedy algorithm are more precise. Com-
pare the performances shown as Figure 1, we find that the sampled adaptive greedy policy has an
obvious advantage, which is much better than the sampled greedy algorithm. This illustrates the
effectiveness of our proposed adaptive policy from one aspect. Besides, with the increase of the
mean of β , there is no doubt the expected influence spread will increase. However, we observe an
interesting phenomenon where the gap between the performance under the adaptive settings and
non-adaptive settings seems to be shrinking. This is because the uncertainty of nodes, whether to
be an active seed or not, decreases as the mean of β increases, thereby reducing the advantage of
our adaptive policies.
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(a) NetScience, β ~ N (0.4, 1)

(d) Wiki, β ~ N (0.6, 1)

(b) NetScience, β ~ N (0.6, 1)

(c) Wiki, β ~ N (0.4, 1)

Fig. 1. The expected influence spread achieved by the (sampled) greedy algorithm and (sampled) adaptive

greedy policy under the NetScience and Wiki datasets.

Figure 2 draws the running time achieved by the (sampled) greedy algorithm and (sampled)
adaptive greedy policy under the NetScience and Wiki datasets. Here, in order to compare the
running time of different strategies, we do not use parallel acceleration in our implementations.We
note that the running time of the sampled adaptive greedy policy is smaller than that of the sampled
greedy algorithm, which is counter-intuitive. This looks unreasonable because the sampled greedy
algorithm only needs to generate a collection of RR-sets once and selects seed nodes in one batch,
but the sampled adaptive greedy policy has to generate a new collection of RR-sets in each iteration.
Why does it happen? First, the estimator of μ (x ) shown as Equation (44) is more complicated than
the estimator of ∆(u |x ,ψ ) shown as Equation (38). Second, the number of RR-sets we give in the
sampled greedy algorithm may be too much, which exceeds actual needs. At last, the sampling
process will be faster and faster as the graph gets smaller in the sampled adaptive greedy policy.
Then, we can see that the running time of the sampled adaptive greedy policy is less than that
of the adaptive greedy policy even though the number of MC simulations is far from enough,
which proves the efficiency of our sampling techniques. Compare to the running times achieved
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(a) NetScience, β ~ N (0.4, 1)

(d) Wiki, β ~ N (0.6, 1)

(b) NetScience, β ~ N (0.6, 1)

(c) Wiki, β ~ N (0.4, 1)

Fig. 2. The running time achieved by the (sampled) greedy algorithm and (sampled) adaptive greedy policy

under the NetScience and Wiki datasets.

by the adaptive greedy policy, the greedy algorithm is very inefficient, nearly 10 times slower
than the adaptive greedy policy. There are two reasons to explain this phenomenon. First, the
graph that the adaptive greedy policy relies on is shrinking gradually as the number of iterations
increases. Secondly, the process of reverse breadth-first search in MC simulations will be more
time-consuming when the seed set is large.
Figure 3 draws the performance comparisons between our sampled adaptive greedy policy and

other heuristic adaptive policies under the four datasets. We can see that the expected influence
spread of any adaptive policy increases with budget k because attempting to select more seed re-
sults in a larger influence spread. The expected influence spread returned by our sampled adaptive
greedy policy outperforms all other heuristic adaptive policies under any dataset, thereby its per-
formance is the best undoubtedly. This illustrates the effectiveness of our proposed policy from
another aspect. Among these heuristic adaptive policies, the adaptive maxDegreeProb policy has
the largest expected influence spread, because it considers the node’s degree and probability to be
a seed comprehensively. The performance of other policies is unstable on different datasets. We
can observe that the sampled adaptive greedy policy can obtain at least 10% gain of the expected
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(a) NetScience, β ~ N (0.5, 1)

(d) Wiki, β ~ N (0.5, 1)

(b) NetScience, β ~ N (0.5, 1)

(c) Wiki, β ~ N (0.5, 1)

Fig. 3. The performance comparisons between our sampled adaptive greedy policy and other heuristic adap-

tive adaptive under the four datasets.

influence spread than the best heuristic adaptive policy. However, the gap between the sampled
adaptive greedy policy and other heuristic adaptive policies can be affected by the dataset itself,
since there are different topologies and graph realizations associated with different networks.

8 CONCLUSION

In this article, we have studied a variant of adaptive influence maximization, where the seed node
we select may be unwilling to be the influencer and we can activate her many times. Because its
objective function is defined on integer lattice, we propose the concepts of adaptive monotonicity
on integer lattice and adaptive dr-submodularity firstly. Then, we summarize the properties of this
problem and give a strict theoretical analysis about the approximation ratio of the adaptive greedy
policy. Our approach can be used as a flexible framework to address adaptive monotone and dr-
submodular function under the expected knapsack constraint. Combine with the-state-of-art EPIC
algorithms, the sampled adaptive greedy policy is formulated, which reduces its running time
significantly without losing the approximation guarantee. Eventually, we evaluate our proposed
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policies on four real networks and validate the effectiveness and efficiency comparing to their
corresponding non-adaptive algorithms and other heuristic adaptive policies.
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