
Affine Body Dynamics:
Fast, Stable and Intersection-free Simulation of Stiff Materials
LEI LAN, Clemson University & University of Utah, USA
DANNY M. KAUFMAN, Adobe Research, USA
MINCHEN LI, University of California, Los Angeles & TimeStep Inc., USA
CHENFANFU JIANG, University of California, Los Angeles & TimeStep Inc., USA
YIN YANG, Clemson University, University of Utah & TimeStep Inc., USA

Fig. 1. Geared system.We propose an affine body dynamics (ABD) framework to efficiently and robustly simulate close-to-rigid contacting objects. ABD
eases collision and contact processing costs over rigid body modeling while obtaining high-quality, intersection-free trajectories leveraging barrier-based
frictional contact modeling. In this challenging stress-test benchmark we simulate a complex geared system composed of 28 toothed gears with frictional
contact resolving all interactions. The combined gear set mesh is comprised of over 2.45M surface triangles. A torque applied to the actuated gear (red arrow)
drives the motion of the entire system via contact, with over a quarter of all surface elements in active contact in every time step. Here we find that all the
existing rigid body simulation algorithms, including rigid-IPC, fail to make progress, while ABD robustly simulates the example to completion. ABD enables large
time step sizes (e.g., with Δ� = 1/50 sec) even for such challenging, large displacement (rotation) contact processing. For a time step size of 1/100 sec, ABD
simulates each step in less than 12 sec on an intel i9 CPU (multi-threaded), while the simulation runs interactively on a 3090 GPU (5-10 steps per second).

Simulating stiff materials in applications where deformations are either not
significant or else can safely be ignored is a fundamental task across fields.
Rigid body modeling has thus long remained a critical tool and is, by far,
the most popular simulation strategy currently employed for modeling stiff
solids. At the same time, rigid body methods continue to pose a number of
well known challenges and trade-offs including intersections, instabilities,
inaccuracies, and/or slow performances that grow with contact-problem
complexity. In this paper we revisit the stiff body problem and present
ABD, a simple and highly effective affine body dynamics framework, which
significantly improves state-of-the-art for simulating stiff-body dynamics.
We trace the challenges in rigid-body methods to the necessity of linearizing
piecewise-rigid trajectories and subsequent constraints. ABD instead relaxes

Authors’ addresses: Lei Lan, Clemson University & University of Utah, USA, lan6@
clemson.edu; Danny M. Kaufman, Adobe Research, USA, dannykaufman@gmail.com;
Minchen Li, University of California, Los Angeles & TimeStep Inc., USA, minchernl@
gmail.com; Chenfanfu Jiang, University of California, Los Angeles & TimeStep Inc.,
USA, chenfanfu.jiang@gmail.com; Yin Yang, Clemson University, University of Utah &
TimeStep Inc., USA, yin5@clemson.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART67 $15.00
https://doi.org/10.1145/3528223.3530064

the unnecessary (and unrealistic) constraint that each body’s motion be
exactly rigid with a stiff orthogonality potential, while preserving the rigid
body model’s key feature of a small coordinate representation. In doing so
ABD replaces piecewise linearization with piecewise linear trajectories. This,
in turn, combines the best of both worlds: compact coordinates ensure small,
sparse system solves, while piecewise-linear trajectories enable efficient
and accurate constraint (contact and joint) evaluations. Beginning with this
simple foundation, ABDpreserves all guarantees of the underlying IPCmodel
we build it upon, e.g., solution convergence, guaranteed non-intersection,
and accurate frictional contact. Over a wide range and scale of simulation
problems we demonstrate that ABD brings orders of magnitude performance
gains (two- to three-orders on the CPU and an order more when utilizing
the GPU, obtaining 10, 000× speedups) over prior IPC-based methods, while
maintaining simulation quality and nonintersection of trajectories. At the
same time ABD has comparable or faster timings when compared to state-of-
the-art rigid body libraries optimized for performance without guarantees,
and successfully and efficiently solves challenging simulation problems
where both classes of prior rigid body simulation methods fail altogether.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: Rigid body dynamics, Reduced model,
CCD, Barrier function

ACM Reference Format:
Lei Lan, Danny M. Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang.
2022. Affine Body Dynamics: Fast, Stable and Intersection-free Simulation

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

HTTPS://ORCID.ORG/0000-0001-5743-9987
https://orcid.org/0000-0001-5743-9987
https://doi.org/10.1145/3528223.3530064

67:2 • Lan L. et al

of Stiff Materials. ACM Trans. Graph. 41, 4, Article 67 (July 2022), 14 pages.
https://doi.org/10.1145/3528223.3530064

1 INTRODUCTION
The simulation of highly stiff and so close-to-rigid materials remains
a critical task in diverse applications ranging from animation and
computer vision to robotics and geomechanics. A long-standing and
natural strategy then is to model these bodies at the limit of stiffness
and so treat them as exactly rigid. Equipped with just rotational
and translational degrees of freedom (DOFs) this simplification
enables the computational efficiency of rigid body methods as they
utilize orders of magnitude fewer DOFs when deformations can be
excluded.
At the same time this minimal representation for rigid bodies

poses several fundamental challenges of its own in exchange for
small system size. The first being that moving from a flat continuum
model to rigid (SE(3)) coordinates introduces significant nonlineari-
ties that must be resolved. The second being that infinite stiffness
implies applied forces, and especially contact responses, are commu-
nicated instantaneously across the material domain. In combination
these two issues have long challenged both rigid body models (e.g.,
Painlevé’s paradox) and the downstream simulation methods de-
rived from them. State-of-the-art rigid body methods have long
focused on efficient velocity (twist) level solutions. However, in do-
ing so, these methods tend to generate undesired positional errors
in the form of intersections and instabilities.
To address these issues a position-level barrier method for rigid

bodies was recently introduced by Ferguson and colleagues [2021].
Applying the incremental potential contact (IPC) model [Li et al.
2020] to the rigid body model, the resulting rigid-IPC method pro-
vides robust intersection-free simulation of rigid solids with fric-
tional contact. However, here a third challenge posed by rigid body
models limits the efficiency and applicability of rigid-IPC: accurately
tracing a piecewise-rigid trajectory is much more difficult than
for a piecewise-linear trajectory. This is required across numerous
continuous-collision detection (CCD) operations throughout com-
putation in order to ensure non-intersection. Rigid-IPC addresses
this third challenge by conservatively subdividing rigid transforma-
tions into piecewise-linear subsequences to solve the curved CCD.
While viable, the expense for this curved CCD remains substantial –
especially as CCD is invoked heavily throughout each simulation
step. As a result, the overall performance of rigid-IPC is close to
(and occasionally slower than) comparable (appropriately stiffened)
full-space finite element method (FEM) IPC simulations [Li et al.
2020]. Here the curved CCD in rigid-IPC severely undermines the
advantage of its small DOF representation.
Beginning with this analysis, our takeaway is that the key ad-

vantage of rigid body models is not the rigidity assumption but
rather the compact representation. Indeed, the rigidity assumption
is neither necessary, efficient, nor particularly accurate since no ma-
terial is perfectly rigid. Following this reasoning, we approach the
stiff-body problem from a different perspective: we remove the con-
straint (and resultant limitations) that the motion be exactly rigid.
Specifically, we construct an affine-body dynamics (ABD) model,
directly stiffened to obtain close-to-rigid trajectories and augmented
with an IPC-type barrier. ABD preserves all guarantees of the IPC

model including solution convergence, guaranteed non-intersection,
and accurate frictional contact. However, discrete steps in ABD are
now, as in the FEM case, piecewise linear, enabling us to utilize
efficient linear CCD routines. Likewise ABD remains compact, uti-
lizing 12 DOFs per body – a bit more than rigid bodies but still
compact enough for efficient system solves. In turn the relaxation
from the rigidity constraint allows ABD to significantly outperform
the rigid-IPC method across all benchmarks (ranging from two- to
three-order speedups for side-by-side comparison on the CPU, and
an order-of-magnitude further improvement enabled by our GPU
implementation), and to likewise successfully simulate problems
where rigid-IPC fails.

At the same time, by combining compact representation and
efficient collision processing, ABD also exhibits clear advantages in
quality, reliability and even performance when compared to off-the-
shelf rigid body simulation libraries. Here these libraries (we use
Bullet [Coumans 2015] as our baseline for comparison; see Section
5 for a discussion of this choice) are often optimized for speed over
robustness and guarantees. Nevertheless, without requiring the
precomputation of collision proxies (e.g., the convex decompositions
required by Bullet, Mujoco [Todorov et al. 2012], and PhysX [Nvidia
2011]), ABD remains closely competitive in performance on small-
scale examples, while obtaining significantly faster simulations on
larger and/or more challenging scenarios.
ABD is also able to simulate a wide range of challenging model-

ing problems where existing rigid body methods and libraries fail
altogether. As an example, in Fig. 1 we demonstrate a driven me-
chanical system with all gear-to-gear interactions processed directly
via frictional contact. As we apply an external torque to the driving
gear, the entire mechanism moves with well over a quarter of the
mesh’s 2.45M triangles actively in contact during each time step.
Here we find rigid-IPC (curved CCD failures) and Bullet (severe
intersections) are both unable to simulate this mechanism even
as we adjust algorithm settings and time step sizes conservatively.
ABD simulates the scene robustly without algorithm tuning. Under
a time step of Δ𝑡 = 1/100 sec, ABD simulates each step/frame in
12 sec on the CPU (multi-threaded) and reaches an interactive speed
on the GPU ranging from 5 to 10 FPS.
In a nutshell, ABD provides a new stiff-body simulation frame-

work suitable for all rigid-body-type modeling problems that offers
similar (or improved) performance when compared to existing rigid
body libraries (optimized for performance), while providing guaran-
tees of non-intersection, accurate contact, and convergent implicit
solves that they do not. ABD does not require pre-computed con-
vex part proxies for simulation geometries; frees users from time-
consuming per-scene parameter sweeps to find parameters that
work; and ensures successful simulation completion in challenging
cases where prior methods fail altogether.

2 RELATED WORK
Forces and impulses are propagated rapidly across highly stiff mate-
rials, largely eliminating relative deformations. Rigid body models
are then an idealization simplifying stiff objects. Here extreme stiff-
ness is handled kinematically by directly formulating rigid body

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

https://doi.org/10.1145/3528223.3530064

Affine Body Dynamics:
Fast, Stable and Intersection-free Simulation of Stiff Materials • 67:3

models with SE(3) coordinates. Rigid body models have been ex-
tensively studied by the graphics community dating back to the
pioneering work of Baraff [1989]. We refer the reader to the com-
prehensive survey from Bender an colleagues [2014], which covers
the wide spectrum of rigid body simulation methods.
The primary focus of rigid body research is typically the resolu-

tion of frictional contact. Intuitively, objects should never intersect
with each other during the simulation. Enforcing this requirement
often leads to algorithms based on linear complementarity program-
ming (LCP) [Baraff 1994, 1995; Stewart 2000; Trinkle et al. 2001].
One needs to carefully search within the combinatorial space for
an approximation of a feasible configuration, while the interaction
among bodies in contact is generally based on impulses rather than
forces [Baraff 1989]. The LCP-based contact problem is known to be
NP-Hard due to the indeterminacy of which contacting nodes are
contributing the collision impulse [Baraff 1991]. Alternate solvers
formulated on approximations of velocity-level LCPs have been pop-
ular [Anitescu and Potra 1997; Erleben 2007; Kaufman et al. 2005].
Yet, the resulting system remains nonconvex and challenging to
solve for complex scenes. Irrespective of the accuracy of the solution,
here the required constraint linearization means that intersections
leading downstream to artifacts like drifting and tunneling can and
will result. To reduce these artifacts, additional constraint stabi-
lizations are often employed [Baumgarte 1972; Cline and Pai 2003;
Moreau 1988] however this, in turn, can introduce new instability
artifacts like popping and explosions. In addition to rigid bodies,
LCP models are also widely used for contact modeling among non-
rigid objects [Duriez et al. 2005; Hauser et al. 2003; Otaduy et al.
2007; Pauly et al. 2004; Song and Kumar 2003].
For small-scale problems, a direct LCP solver could be used.

When the complexity and the dimensionality increase, iterative
LCP solvers stand as a more efficient option. Here successful de-
signs of various iterative methods for LCP-based contacts such as
Gauss-Seidel [Erleben 2007], PROX (iterative proximal operator) [Er-
leben 2017], surrogate constraints [Kaufman et al. 2005], accelerated
gradient descent [Mazhar et al. 2015], staggered projections [Kauf-
man et al. 2008], and adaptive merging [Coevoet et al. 2020] have
all been applied.
Penalties are also another popular option widely used to pro-

cess collisions [Cundall and Strack 1979; Terzopoulos et al. 1987;
Teschner et al. 2005]. Instead of imposing inequality constraints, a
penalty method often chooses a spring-like repulsion mechanism
based on the penetration depth between two objects [Drumwright
2007; Fisher and Lin 2001; Hasegawa et al. 2004]. While computa-
tionally simple, the penalty method fails for fast-moving models or
simulations under large time steps and often requires significant
manual tuning of stiffness parameters per scene. Its stability can
be significantly enhanced using implicit formulations coupled with
CCD [Tang et al. 2012; Xu et al. 2014]. Nevertheless, interpenetra-
tion still can and will result. This defect limits its wider use beyond
graphics, where visual plausibility is not the only concern. Recently,
Müller and colleagues also proposed a position-based rigid body
framework [Müller et al. 2020]. Unlike classic rigid body algorithms,
this method uses PBD-like constraint projection [Macklin et al. 2016;
Müller et al. 2007] to process multiple-body dynamics.

Collision detection is another important procedure for modeling
rigid bodies with contacts. In general, a collision can occur between
any triangle pair of two objects, and an exhaustive triangle-based
collision detection is infeasible for high-resolution models. To this
end, a commonly adopted method is to use some bounding volume
hierarchy (BVH) [Zachmann and Langetepe 2003] to avoid excessive
triangle-triangle intersection tests. This pre-screening procedure is
known as collision culling. Different BV types have been explored
including AABB [Bergen 1997], OBB [Gottschalk et al. 1996], bound-
ing sphere [Hubbard 1995; James and Pai 2004], Boxtree [Zachmann
2002], spherical shell [Krishnan et al. 1998]. As the geometry of
the model does not change in rigid body models, BVH updates be-
come particularly convenient – the per-body rigid transformation
can be directly applied to update the BVH instead of re-building it
from scratch (as opposed to deformable objects). In some existing
rigid body packages e.g., Bullet library [Coumans 2015], collision
detection does not apply directly to surface meshes but rather to
a volumetric proxy of the model, formed of convex components –
most often obtained by via a convex decomposition. While meth-
ods like Bullet require these convex proxies for robust processing
this proxy also helps as an acceleration for collision detection. In
this paper, we provide a new culling method to accelerate collision
detection for rigid bodies and ABD. Our method leverages the fact
that the colliding region between two rigid bodies often constitutes
a very small fraction of their surfaces. Based on this observation, we
create a BVH only covering the overlapping region of two bodies
for a more effective culling.
Discrete collision detection (DCD) checks for collisions or pene-

trations at a specific time instance. This method could miss inter-
penetrations if the detection is not performed frequently enough.
Alternatively, CCD checks the possible overlap of the trajectories of
the surface primitives and returns the first time of impact (TOI) [Brid-
son et al. 2002; Redon et al. 2005]. The overlap test for triangle-vertex
and edge-edge becomes a cubic polynomial, and several root-finding
algorithms are available for solving the TOI [Brochu et al. 2012; Re-
don et al. 2005; Tang et al. 2014]. In a recent contribution from
Wang and colleagues [2021], a more stable root-finding algorithm
was proposed based on an improved inclusion.

Lastly, the most closely related work to ABD is on rigid-IPC from
Ferguson and colleagues [2021]. Rigid-IPC features a new rigid body
formulation, where contact is modeled with a barrier-based poten-
tial i.e., the IPC [Li 2020; Li et al. 2020] model. Conceptually, IPC is
similar to the implicit penalty method (e.g., as in [Tang et al. 2012]),
which produces a repulsion force pushing apart two contacting ob-
jects. However, due to the dedicated design of the barrier function,
IPC provides guaranteed intersection-free collision resolution when
appropriately combined with a CCD-filtered line search. When com-
pared to existing contact handling methods, IPC has demonstrated
a superior performance – it is significantly faster than LCP-based
solutions for complicated contacts where LCP-based methods often
fail altogether and much more robust than regular penalty methods
with user-specified accuracy bounds. This method has been broadly
applied to elastodynamics simulation [Li et al. 2020], codimensional
models [Li et al. 2021b], embedded interfaces [Zhao et al. 2022],
FEM-MPM coupling [Li et al. 2021a], deformation processing [Fang
et al. 2021], and reduced models [Lan et al. 2021]. Rigid-IPC extends

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

67:4 • Lan L. et al

rigid body modeling to IPC and so provides significantly improved
reliability in contact processing. Unfortunately, this also comes at a
cost – strictly rigid motion imposes significant computational chal-
lenges as the trajectory for CCD evaluation in rigid-IPC is curved.
In order to successfully compute TOI in curved CCD, Ferguson and
colleagues [2021] subdivide the rigid trajectory into piece-wise line
segments, which becomes the new bottleneck of the simulation. We
observe that IPC already demonstrates the advantages of smooth (al-
beit stiff) approximation in-place of hard constraints. Here we then
consider another smooth approximation, this time for the rigidity
constraint in rigid body modeling. ABD is then constructed follow-
ing this intuition with a substantial performance gain. ABD provides
stiff compliance (as in real-world stiff materials) enabling tight, al-
most rigid parts to robustly conform together in contact – even in
cases where find that a strictly rigid modeling approach can fail.
Finally, as in rigid-IPC, ABD provides user-controllable physical and
geometric accuracies with solutions that reliably reach specified
tolerances.

3 ABD KINEMATICS
We begin by constructing a flat kinematics via affine coordinates.
We equip each simulated body 𝑏 in our domain with a time-varying
linear transform A𝑏 (𝑡) ∈ R3×3, and a translation 𝑝𝑏 (𝑡) ∈ R3. In the
following we often store per-body configuration in vector form as:
𝑞 = (𝑝𝑇 , 𝑎𝑇1 , 𝑎

𝑇
2 , 𝑎

𝑇
3)

𝑇 ∈ R12, with the transform A = [𝑎1, 𝑎2, 𝑎3]𝑇 ,
then stored in row order.
Each material point 𝑘 in body 𝑏 has a body frame (equivalently

rest) position 𝑥𝑘 with its corresponding world frame coordinates
given by the affine map:

𝑥𝑘 = A𝑏𝑥𝑘 + 𝑝𝑏 = J(𝑥𝑘)𝑞, (1)

and its velocity,

¤𝑥𝑘 = ¤A𝑏𝑥𝑘 + ¤𝑝𝑏 = J(𝑥𝑘) ¤𝑞. (2)

Here note that J(𝑥) = [I3, I3 ⊗ 𝑥] is constant across all configuration
changes, where I3 is a 3 by 3 identity matrix.

3.1 Kinetic Energy
Given a mass density distribution, 𝜌 , over the body domain, Ω, the
kinetic energy of each affine body is then

1
2

∫
Ω
𝜌 ¤𝑥𝑇 ¤𝑥 dΩ =

1
2

∫
Ω
𝜌 (¤A𝑥 + ¤𝑝)𝑇 (¤A𝑥 + ¤𝑝) dΩ

=
1
2 ¤𝑞𝑇

(∫
Ω
𝜌 J(𝑥)𝑇 J(𝑥) dΩ

)
¤𝑞,

(3)

with the generalized mass matrix for each affine body defined as:

M =

∫
Ω
𝜌 J(𝑥)𝑇 J(𝑥) dΩ. (4)

Here we note an additional convenience of ABD: for flat affine
coordinates we obtain a constant mass matrix. In turn this ensures
that the equations of motion for affine bodies, unlike rigid bodies,
do not add nonlinear Coriolis-type forces.

The equations of motion for ABD are then simply

M ¥𝑞 = −∇𝑉 (𝑞) + 𝑓 , (5)

where 𝑉 is the total potential energy, and external forces 𝑓𝑘 ∈ R3,
applied at material points 𝑘 , are included as 𝑓 =

∑
𝑘 J(𝑥𝑘)𝑇 𝑓𝑘 .

3.2 Orthogonality Potential
In place of SE(3) coordinates we rigidify each affine body with a
stiff orthogonality potential

𝑉⊥ (𝑞) = 𝜅𝜈 ∥AA𝑇 − I3∥2
𝐹 , (6)

scaled by the stiffness 𝜅 and the body’s volume 𝜈 . We apply a large
stiffness (𝜅 > 100GPa) to ensure the deformation on the body is
sufficiently suppressed and negligible.
As we relax the rigidity constraint, we instead apply a highly

stiff penalty term. Generally engineering rule of thumb suggests
that stiff penalties should be avoided in simulation, as they tend to
exacerbate the numerical difficulties of computing with nonlinear
potentials. However, we observe that contact and collision forces
(irrespective of whether they are treated via constraints, penalties
springs, or barriers) introduce a much more dominant stiffness to
the system. In our case this already requires handling system solves
with a robust Newton-type algorithm so that the overhead of a
single, additional stiff orthogonality potential per body is negligible.
In practice, as we show in Section 5, directly stiffened affine systems
significantly improve in performance over comparable systems that
resolve rigid motion explicitly.

The stiff potential itself provides the effective constitutive model
for the affine bodies – modulating their collision response upon im-
pact (and so intrinsically handling restitution). While𝑉⊥ is a natural
energy choice for close-to-rigid motion [Moser and Veselov 1991],
many other alternatives are certainly reasonable. Indeed affine bod-
ies could alternately be equipped with the ARAP energy [Alexa et al.
2000; Igarashi et al. 2005; Sorkine and Alexa 2007], i.e., ∥A−R(A)∥2

𝐹
with polar decomposition A = RS, to enforce rigidity, or else neo-
Hookean, or any number of other rotation-invariant hyperelastic
energies [Bonet and Wood 1997]. However, we find that the orthog-
onality potential is both effective and efficient. Unlike ARAP, 𝑉⊥
does not require an expensive decomposition – it can be computed
as a polynomial

𝑉⊥ = 𝜅𝜈
©­«
∑︁

(𝑎𝑖 · 𝑎𝑖 − 1)2 +
∑︁
𝑖≠𝑗

(𝑎𝑖 · 𝑎 𝑗)2ª®¬ , (7)

leading to more efficient evaluations of energy gradient and Hessian:

𝜕𝑉⊥
𝜕𝑎𝑖

= 2𝜅𝜈
(
2(𝑎𝑖 · 𝑎𝑖 − 1)𝑎𝑖 + 2

∑︁
(𝑎 𝑗 ⊗ 𝑎 𝑗)𝑎𝑖

)
,

𝜕2𝑉⊥
𝜕𝑎2

𝑖

= 2𝜅𝜈
(
4𝑎𝑖 ⊗ 𝑎𝑖 + 2(∥𝑎𝑖 ∥2 − 1)I3 + 2

∑︁
𝑎 𝑗 ⊗ 𝑎 𝑗

)
.

(8)

In comparison, energy operations for affine bodies with𝑉⊥ are over
43% and 178% faster than applying ARAP and neo-Hookean models.

4 AFFINE IPC
We simulate systems of affine bodies with triangulated boundaries.
For each affine body 𝑏 ∈ B, we construct a discrete incremental
potential (IP) [Li et al. 2020], 𝐸𝑏 , whose stationary points give the

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

Affine Body Dynamics:
Fast, Stable and Intersection-free Simulation of Stiff Materials • 67:5

unconstrained time step update:

𝑞𝑡+1
𝑏

= arg min
𝑞𝑏

𝐸𝑏 (𝑞𝑏), 𝐸𝑏 =
1
2 ∥𝑞𝑏 − 𝑞𝑏 ∥2

M + Δ𝑡2𝑉⊥ (𝑞𝑏), (9)

Here Δ𝑡 is the time step size, 𝑞𝑏 = 𝑞𝑡
𝑏
+Δ𝑡 ¤𝑞𝑡

𝑏
+Δ𝑡2M−1 𝑓 𝑡+1

𝑏
a known

vector composed from the prior step’s state, and 𝑓𝑏 are per-body
external forces (see Eq. (5)). Unlike rigid body dynamics1, ABD’s flat
equations of motion allow us to directly construct IPs for a broad
range of standard implicit time-integration methods [Li et al. 2020,
2021b].
Overloading 𝑞 =

(
𝑞𝑇1 , · · · , 𝑞

𝑇
|B |

)𝑇 as the stacked vector of all
affine body DOF, we construct IPC potentials for contact, 𝑉𝐶 (𝑞),
and dissipative friction, 𝑉𝐹 (𝑞), to model inter-body contact forces.
The contact potential

𝑉𝐶 (𝑞) = 𝜅𝑐

∑︁
𝑖∈C

𝐵 (𝑑𝑖 (𝑞)) , (10)

(with contact stiffness 𝜅𝑐) resolves contacts between all pairings
𝑖 ∈ C of inter-body surface geometry primitives (e.g., edge-edge
and vertex-face pairs between body meshes) while leaving out intra-
body surface pairs as there is no self-contact (high-stiffness). The
smoothly clamped logarithmic barrier function,

𝐵(𝑑,𝑑) =

−(𝑑 − 𝑑)2 ln

(
𝑑

𝑑

)
, 0 < 𝑑 < 𝑑

0 𝑑 ≥ 𝑑

, (11)

evaluates unsigned distances, 𝑑 for all primitive pairs in C. Smooth
clamping ensures that proximities beyond 𝑑 can be safely culled
from evaluation without harming convergence, while surface pairs
within the small, prescribed contact accuracy, 𝑑 , generate contact
forces.
The friction potential is then

𝑉𝐹 (𝑞) =
∑︁
𝑗 ∈F

𝜇𝜆 𝑗𝑚 𝑗 (𝑞), (12)

where F ⊆ C is the active subset of contact pairs with positive
contact force magnitude 𝜆 𝑗 = −𝜅𝑐∇𝑞𝐵

(
𝑑 𝑗 (𝑞)

)
, 𝜇 is the coefficient

of friction, and𝑚 𝑗 returns a mollified norm of the relative sliding
velocity, orthogonal to the distance vector, between geometric pairs
𝑗 . See Li et al. [2020] for details and analysis demonstrating that
𝑉𝐹 provides smooth approximation of the nonsmooth Coulomb
frictionmodel with controllable accuracy. In turn, this frictionmodel
effectively and accurately captures frictional stick and slip behaviors
for both maximal and reduced body models [Ferguson et al. 2021; Li
et al. 2020]. At each time step we then construct a global IP for the
full contact-coupled system as 𝐸 (𝑞) = 𝑉𝐶 (𝑞) +𝑉𝐹 (𝑞) +

∑
𝑏∈B 𝐸𝑏 (𝑞𝑏).

We then minimize, 𝑞𝑡+1 = argmin𝐸 (𝑞), with line-search filtered
Newton and update system configuration.

Restitutionmodels are applied to impose collision-induced energy
dissipation for physical systems that do not include internal forces.
As ABD has both a constitutive model and local contact deformation
(via contact barriers) its restitution behavior is implicitly controlled
jointly by 𝜅𝑐 , 𝑑 , and Δ𝑡 , as well as the time integration method
applied.We can estimate howmuchwork/energy the barrier-penalty
1Rigid body models require Poisson or constrained Lagrangian methods for numerical
time integration [Hairer and Vilmart 2006].

Input geometry A three-level i-AABB Full-body BVHs

Fig. 2. i-AABB. Intersection-AABB (i-AABB) is a simple and more effective
culling strategy than per-object BVHs often employed for rigid bodies. In
this example, we collide helicopter and ship models with well over 343K
surface triangles for the system. Culling with full-body BVHs leads to 1.3M
AABB intersection tests. Instead, we build a shallow, three-level i-AABB
based on the overlapping AABB volume, and the total number of intersection
tests reduces to 120K, 90% fewer than regular BVH-based culling.

will store and release within the 𝑑 region to compute collision and
time step parameters that target a desired restitution.

4.1 Affine CCD
To ensure that every Newton iterate maintains nonintersection, a
significant (and for rigid bodies dominant) cost of each timestep’s
solve is the repeated CCD evaluation of surface primitive pairs in
C during line-search filtering. Edge-edge and vertex-face pairs are
defined on vertices 𝑥 𝑗 ∈ R3, 𝑗 = 1 to 4, each belonging to one of
two bodies in B. At every iteration ℓ of each Newton solve new
tentative positions for these vertices, Aℓ

𝑏
𝑥 𝑗 + 𝑝ℓ

𝑏
, are proposed per

vertex 𝑗 and participating body 𝑏. We then perform CCD search
along the directions formed by ΔAℓ

𝑏
= Aℓ

𝑏
− Aℓ−1

𝑏
and Δ𝑝ℓ

𝑏
= 𝑝ℓ

𝑏
−

𝑝ℓ−1
𝑏

. Equivalently, the corresponding trajectories to apply CCD to
are then just (Aℓ−1

𝑏
+ 𝛼ΔAℓ

𝑏
)𝑥 𝑗 + 𝑝ℓ

𝑏
+ 𝛼Δ𝑝ℓ−1

𝑏
, with 𝛼 ∈ [0, 1]. In

other words, we can simply test displacements (from 0 to 1) along
ΔAℓ

𝑏
𝑥 𝑗 + Δ𝑝ℓ

𝑏
starting from 𝑥 ℓ−1

𝑗
= Aℓ−1

𝑏
𝑥 𝑗 + 𝑝ℓ−1

𝑏
, i.e., the previous

iteration’s position, and so can apply standard linear CCD rather
than the expensive, curved CCD required for rigid-body trajectories.
Throughout we employ the Additive CCD (ACCD) method [Li et al.
2021b] for all affine body CCD evaluations.

4.2 Contact Culling via i-AABB
The IPC framework inverts current contact-processing practices
by integrating collision detection within every iterate, inside each
nonlinear time step solve Above we have already seen the implica-
tions of this choice on CCD and the advantages for ABD. We next
address culling of contact pair evaluations and then below, in the
following section, an integrated approach to efficiently compute the
local energy Hessian evaluations and their assembly.

To further cull inter-body surface pairs from downstream collision
processing, rigid body methods commonly employ precomputed
per-body (or per unique mesh instance) BVH which only requires a
rigid (or, in our setting, affine) transform to evaluate at each con-
figuration update. To further improve collision detection queries,

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

67:6 • Lan L. et al

most popular rigid body libraries (e.g., Bullet, Mujoco, PhysX) ad-
ditionally require that all nonconvex surface meshes be replaced by
approximations – convex decompositions [Mamou et al. 2016] so
that evaluations can utilize convexity assumptions.
In the context of stiff-body models where self-collisions can be

safely ignored, we propose a simple strategy that significantly en-
hances contact-pair culling. We start with the observation that
contact-dense regions between close-to-rigid meshes are most often
local. Unlike deforming meshes, we see that a large portion of each
body’s surface remains free of contacts. A BVH evaluation over each
body’s full surface is then a bit too aggressive (and a potentially
unnecessarily expensive precomputation cost) – especially as we
consider higher-resolution models and/or increasing numbers of
bodies.

We instead begin with a coarse AABB per body, offset to account
for the barrier’s small 𝑑 parameter. While clearly not providing a
tight bound we only need to evaluate potential contacts in each
pairwise overlap between these initial, intersecting AABB (i-AABB)
volumes. Before the simulation, we organize these AABBs into a
binary tree T. Each leaf node of T hosts one body’s AABB, and
the geometry of the AABB is updated directly by applying the
current affine transformation. The construction of T is in a bottom-
up fashion. Two nearby bodies are merged into an upper-level tree
node. Here we use a 30-bit Morton code [Morton 1966] to determine
which two bodies are grouped as siblings. During the simulation,
the i-AABB culling builds the list of overlapping pairs. Specifically,
we would like to know if AABBs of two bodies intersect given
their respective affine coordinates. This is done by performing a
level-order traversal of T, and it is parallelized at all the bodies. In
our implementation, we require that the index of the first body is
always bigger than the second one in an overlapping pair to avoid
redundant intersection tests. With stiff affine transformations the
overlap volume of each i-AABB is most often sufficiently small – the
total number of surface primitives within our i-AABB is often one
order smaller than that obtained from full-mesh BVH queries. Then,
utilizing the guarantee that i-AABBs will not intersect one another,
this already provides effective culling for us to directly proceed with
parallel (multi-threaded) primitive-pair collision-check evaluations
within each i-AABB.

In the most extreme, heavily entangled configurations, e.g., see
Fig. 2, we find i-AABB volumes can be too conservative for CPU
implementations. Here we simply build a shallow, three-level AABB
hierarchy (a binary AABB tree) for each i-AABB. Our observation is
that for GPU implementations and most (even contact-intense) CPU
examples the single-level i-AABB is highly effective (and exceed-
ingly simple to implement). We utilize the i-AABB hierarchies solely
for CPU examples where dense, entangled contacts are consistently
encountered, such as the geared system in Fig. 1 and the interlocked
collision of complex models in Fig. 2. As a representative improve-
ment we note that in the latter example the ship and the helicopter
models have 227K and 116K surface triangles respectively; here the
three-level hierarchical i-AABB is over 90% more efficient in culling
surface pairs in comparison to per-body BVH.

4.3 Contact-Aware Hessian Construction
It is, by far, most efficient to simulate a set of noncontacting affine
bodies. Along with reduced cost for collision detection, the global
(system-wide) Hessian for 𝐸 is then simply a 12|B| × 12|B| block-
diagonal matrix with just a separable 12 × 12 block for each affine
body’s mass and orthogonality energy (𝑉⊥) contributions. When the
system includes contacts, however, off-diagonal terms from active,
inter-body contact and friction potentials necessarily pollute the
Hessian to account for contact coupling.
Standard FEM-type evaluation and assembly would suggest it-

erating across all active contact potentials. However, here the sur-
face mesh resolution, and so the corresponding number of surface
pairs forming contact potentials, is generally much larger than the
number of affine bodies we simulate. Current assembly, in this
contact-oblivious way, is neither necessary nor efficient. We instead
integrate our Hessian evaluation and assembly with the i-AABB
hierarchy for contact-aware parallelization in both multi-core CPU
and GPGPU implementations.
We start with the easiest part. The global Hessian’s default non-

zero diagonal blocks are given by a constant mass term and the
orthogonality potentials’ Hessian (Eq. (8)). This can be computed
trivially in parallel. Next comes the expensive part. The Hessian of
the contact potential, 𝑉𝐶 , then has an unpredictable pattern which
varies widely with contact states. Recall that, when bodies 𝑖 and 𝑗

are sufficiently close (≤ 𝑑), barrier and friction forces between them
activate, resulting in non-zero contributions to both their respective
𝑖-th and 𝑗-th 12 × 12 diagonal blocks and to the off-diagonal blocks
linking the corresponding body coordinates in the Hessian.
Here we observe that the configuration-varying sparsity of the

global Hessian is effectively determined by our i-AABB culling. If
the leaves of the i-AABB tree between bodies 𝑖 and 𝑗 are empty, they
certainly do not contact, and the barrier and friction potentials make
no contribution to the Hessian. Otherwise, we can conservatively
allocate space for the corresponding 12 × 12 off-diagonal blocks
to store all potential (active contacts are not yet certain) non-zero
contact Hessian contributions between bodies 𝑖 and 𝑗 . Thus, utilizing
the i-AABB structures we apply a two-pass strategy to compute
and assemble barrier and friction terms for the global Hessian. The
first pass iterates across all surface primitives pairs within each
i-AABB; their local Hessians are computed in parallel and cached.
Here we also account for the Hessian’s symmetry to reduce total
memory consumption. Our second pass then accumulates the local
Hessians from the surface pairs. Here, as each culled i-AABB is
independent and non-intersecting, accumulation is parallelized at
each corresponding non-zero element of the global Hessian.

We find that i-AABB Hessian construction is significantly faster
than default sequential parallelization of Hessian computation (e.g.,
as applied in rigid-IPC). We observe speedups of up to two orders,
especially when the contacting system is composed of large numbers
of bodies. Here, for example, the simulation in Fig. 3 provides a
representative example, with a 188× speedup over contact-oblivious,
sequential Hessian construction.

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

Affine Body Dynamics:
Fast, Stable and Intersection-free Simulation of Stiff Materials • 67:7

Fig. 3. Wrecking ball. A metal ball linked to a chain of rigid rings hits a stack of 560 wooden blocks. There are in total 575 bodies including the ball, rings on
the chain, and blocks in this example. ABD and rigid-IPC yield nearly identical simulation results but ABD is 124× faster than rigid-IPC (both on CPU). The
time step is Δ = 1/100 sec. We also tested ABD using Δ = 1/50 sec and Δ = 1/25 sec respectively. The results are similar – all are free of inter-penetration.

5 EVALUATION
Our implementation platform is a desktop PC with an intel i9
11900K CPU (8 cores, 3.5GHZ), 64G memory and an nVidia 3090
GPU. An overall flowchart of ABD is illustrated in Fig. 4. All the
numerical methods were implemented using C++ on CPU, and we
chose Eigen [Guennebaud et al. 2010] as our primary linear algebra
library, including all sparse linear system solves. Our CPU paral-
lelization utilizes intel TBB. We understand that some other BLAS
libraries may be better optimized for our hardware (e.g., intel
MKL [Wang et al. 2014]). Our choice is to ensure an objective com-
parison with rigid-IPC, whose multi-thread CPU implementation is
also based on Eigen and TBB.

i-AABB culling/CCD

ABD in variational form

Newton iterate

Displacement update
Truncate

displacement Next stepCurrent time step

Convergence
check

Update potentials

Yes

No

Fig. 4. An overview of ABD pipeline. The overall algorithmic flowchart of
ABD is similar to the IPC framework. With the aim of optimizing the global
variational function (Eq. (9)), each displacement update from a Newton solve
undergoes the triangle-level CCD to ensure bodies are interpenetration-free.

For benchmarking we focus on rigid-IPC [Ferguson et al. 2021]
for comparison to a “quality-oriented” rigid-body simulator with
comparable guarantees to ABD and, as a representative baseline for

Fig. 5. Small chain net.We simulate a small-size chain net consisting of
8 by 8 rings using both ABD and rigid-IPC. The exterior rings are bound
with a loop of fixed blue rings. In this simple test, ABD is 34× faster than
rigid-IPC on the CPU. An increase of the time step size from 1/100 sec
to 1/50 sec does not noticeably slow down our method (from 0.059 sec to
0.065 sec per frame), but rigid-IPC will be significantly slower (by 350%).

comparison to state-of-the-art, optimized rigid-body libraries we use
Bullet [Coumans 2015]. There are certainly numerous other, highly
effective rigid-body libraries with varying capabilities. However,
trade-offs with respect to Bullet among alternatives have been
extensively documented by Ferguson et al. [2021]. In their com-
prehensive analysis and benchmark testing of rigid body libraries
Bullet most consistently succeeds across challenging examples
and, at the same time, we also note that Bullet is likely the most
widely deployed rigid body simulation solution.

5.1 Comparison with Rigid-IPC
Both ABD and rigid-IPC [Ferguson et al. 2021] utilize the IPC [Li et al.
2020] model for contact processing and friction modeling. Here we
carefully compare ABD with rigid-IPC across several representative
simulation scenarios of varying complexities, as illustrated in Figs. 3.
5, 6, 8, and 7.
The snapshots of the first comparison are given in Fig. 3. In this

test, a heavy ball linked by a chain of metal rings collides into a stack
of wooden blocks, which are scattered by the collision. There are in
total 575 bodies in this example. Both rigid-IPC and ABD produce
high-quality simulation results without inter-penetration. However,
ABD is 124× faster. The performance of ABD is not sensitive to
time step size. Doubling or even quadrupling the time step size
(from 1/100 sec to 1/50 sec and 1/25 sec) lead to similar results and
performance with ABD. Detailed timing statistics can be found in
Section 5.6. We observe similar behavior for the chain net examples.
Finally, for the smallest chain net example (Fig. 5), we have few
bodies, and here the relative velocities among bodies are small. In
this “entry-level” test, ABD offers a 34× speedup.

We report an “upgraded” experiment in Fig. 6, where the resolu-
tion of the chain net is set to 16×16 and we drop a heavy ball, which
bounces back and forth on the net triggering interesting dynamics.
The collisions and contacts then become more complex than in the
simple chain net test in Fig. 5. Here the difference between our ABD
and rigid-IPC becomes more significant. At some instances, when
sharp collisions occur under high relative velocities, rigid-IPC can
take multiple hours to simulate a single frame (Δ� = 1/100 sec). On
the other hand, ABD requires seconds at most. Here, on average,
ABD is over 1, 200× faster than rigid-IPC. This speedup exceeds

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

67:8 • Lan L. et al

Fig. 6. Big chain net. We increase the resolution of the chain net to 16 × 16 and drop a ball to the net. The ball hits the net and bounces back, which leads to
interesting dynamical responses of the net. While both ABD and rigid-IPC are able to handle this simulation robustly, our method is 1, 200× faster on average.
The speedup could reach over 10, 000× on GPU with CUDA.

Fig. 7. House of cards. The 10-level stack of cards is initially balanced by frictions among cards. Two falling boxes break the balance and crash the stack. This
experiment mixes static and dynamic frictions involving 158 bodies. Our method is 103× faster than rigid-IPC.

Fig. 8. Friction test. While ABD and rigid-IPC use the same barrier-based
friction processing method, ABD is much faster than rigid-IPC under the
same simulation settings. The screw example (left) is a representative demon-
stration of dynamic friction/contact. Our speedup is 30×. On the other hand,
the arch example (right) is dominated by static frictions, and ABD is 77×
faster than rigid-IPC.

4, 000× from time to time during the simulation. In ABD, affine
CCD, i-AABB, as well as the integrated Hessian assembly are all
parallelization-ready. Therefore, ABD typically receives one addi-
tional order of performance gain on CUDA, gaining a total 10, 000×
speed-up over rigid-IPC (albeit CPU-based) in Fig. 6.
ABD and rigid-IPC both use the IPC-based variational friction

model [Li et al. 2020]. Nevertheless, ABD still exhibits superior
performance in simulations dominated by friction. We here consider
three experiments with significant frictional contact in Figs. 8 and 7.
In these tests, both ABD and rigid-IPC use the same simulation
settings with a time step of 1/100 sec. The screw example (Fig. 8
left) is relatively simple – the surface geometry has just 7K triangles
and 5K edges. Here the bolt rotates into the fixed nut. On average,
rigid-IPC takes 2.59 sec to simulate one step, while ABD takes just
87 ms. The arch (Fig. 8 right) consists of 100 blocks. In this example,
we mainly resolve static friction and here Rigid-IPC runs faster than
the screw case, taking 0.67 sec to simulate one step. ABD, however,

uses just 8.7 ms. Finally, the house of cards example starts with a 10-
level stack of 155 cards. The stack is first stands stable with friction
and is then collapsed by two falling boxes. In this example, rigid-IPC
takes approximately 8.9 sec per step, while ABD uses 86 ms.

5.2 ABD under various stiffness
Our use of the potential, �⊥, to maintain stiff material behavior is
key for ABD. If�⊥ is not strong enough, affine deformations become
noticeable on the model. On the other hand, making�⊥ unecessarily
stiff certainly slows convergence. In our implementation we set
� in �⊥ (Eq. (7)) between 100 – 200GPA based on common stiff
materials like bronze and steel. Under this setting, affine deformation
is negligible and well matches the behavior of real-world stiff objects.
Nevertheless, we note that ABD is flexible in choice of �, and the
system convergence is relatively consistent across a wide range of
stiff � settings.

κ = 100MPA κ = 1GPA κ = 100GPA κ = 1TPA
#it. = 3, 478 #it. = 1, 333 #it. = 1, 528 #it. = 1, 841

Fig. 9. ABD with different � .We use ABD to simulate a pair of coupled
gears under different � values. The time step size is Δ� = 1/100 sec, and
�̂ = 0.001 m. A small � leads to observable affine deformations. Increasing
� quickly eliminates this artifact. The convergence is lightly impacted by
increased stiffness. Fortunately even if we set the � 10× bigger than the
default value of 100GPA, the convergence slow remains reasonable.

In Fig. 9, we simulate a pair of gears coupled at their teeth with
ABD. Both gears have a diameter of 0.5 meter with �̂ and Δ� being
1 millimeter and 1/100 sec. When � is small (i.e., � = 100MPA),

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

Affine Body Dynamics:
Fast, Stable and Intersection-free Simulation of Stiff Materials • 67:9

ABD ������

L
ight

M
edium

Full

Fig. 10. ABD vs. Bullet.We compare simulation results using ABD and
Bullet with varying numbers of bodies and time step sizes. Bullet often
produces interpenetrations between bodies even under small time steps.
Interpenetrations becomes increasingly severe with growing body counts
and/or time step size. On the other hand, ABD remains intersection-free
across changing parameters and scene complexities. All timing statistics are
reported in Tab. 1.

we clearly see affine deformation in the orange gear. Such large
deformations also contribute to amore expensive CCD and therefore
a slower convergence. The total iteration count for simulating 500
time steps is 3, 478. Increasing � to 1GPA effectively suppresses this
artifact, and the total iteration count reduces to 1, 333, which is
slightly more than two iterations per step. Under our default setting
with � = 100GPA, the total number of iterations increases to 1, 528
barely hurts the overall simulation performance. We further escalate
the stiffness to � = 1TPA i.e., an order larger than the default setting.
ABD is still able to efficiently simulate such a highly stiff scene, and
the total iteration count reaches 1, 841.

5.3 Comparison with Bullet

Bullet is a popular and optimized rigid-body engine based on
velocity-level LCP modeling. Bullet primarily relies on contact-
resolution via proxies of surface geometries formed by convex de-
composition. It is then not surprising to see Bullet failures in sim-
ulations under persistent and/or intensive collisions and contacts.
We have demonstrated that our method is orders of magnitude
faster than rigid-IPC with further improved robustness. For smaller
simulation problems, ABD is nearly as efficient as Bulletwhile pre-
serving guarantees. As scene complexity increases in then quickly
outperforms Bullet from almost all perspectives.

We compare ABD and Bullet using the wrecking ball setup (see
Fig. 3) but under different block counts and time step sizes. In this
set of comparisons the ball is no longer attached to the chain as
in Fig. 3. This is because under high-velocity movements, collision
resolution in Bullet frequently fails, with the rings on the chain
breaking so that the ball can not hit the stack. Results are reported

Table 1. ABD vs. Bullet timing.We record timing information of simu-
lating the wrecking ball scenarios under different block counts and time
step sizes using ABD and Bullet. # Bdy is the number of bodies in the test.
Tri./Edg. gives the total numbers of triangles and edges on the surface of
the models. �� is the time step size. # Iter. is the average iteration counts
in ABD simulation. Time reports the average computation time for each
frame using ABD and Bullet. This timing comparison is reported on a
single thread implementation.

Test # Bdy # Tri./Edg. Δ� (sec) # Iter. Time (ms)

Light 16 1.2K/796
1/100
1/240
1/1000

1.9
1.5
1.1

3 | 2
2.2 | 1.5

2 | 3

Medium 142 3.5K/2.3K
1/100
1/240
1/1000

7.6
2.9
1.3

92 | 68
41 | 58
19 | 82

Full 562 11K/7.3K
1/100
1/240
1/1000

11.0
4.4
1.8

657 | 629
328 | 809
102 | 804

in Fig. 10, where we have three configurations: light, medium, and
full. The light test only has 16 blocks on the stack; the medium test
has 142 blocks; and the full test is the same as in Fig. 3 with 560
blocks.
A detailed timing comparison is listed in Tab. 1. In order to en-

sure the comparison is fair, we turn off multi-threading in ABD
and Bullet. This is because our method processes collision on the
surface triangles, which will receive more acceleration under par-
allelization. For the light test (Δ� = 1/100 sec), Bullet is efficient
and only needs 2 ms to simulate one frame. Here ABD is slower
than Bullet and takes 3 ms to simulate one frame. This difference
diminishes under a smaller time step. For instance, when the time
step size is set as 1/240 sec, which is the default setting in Bullet,
the difference of per-frame simulation time is less than one mil-
lisecond (2.2 ms for ABD and 1.5 ms for Bullet). If the time step
size is more conservatively set to 1/1000 sec, ABD becomes faster
than Bullet by a small margin (2 ms for ABD and 3 ms for Bullet).
However, simulations using Bullet in all time step sizes have inter-
sections (even with Δ� = 1/1000 sec). Our method on the other hand
is guaranteed to be free of inter-penetration. Another interesting ob-
servation is per-frame simulation using ABD becomes more efficient
under smaller time steps, which is not the case for Bullet. This
may be because a smaller time step could expose more collisions
to the Bullet solver, which are otherwise missed under a bigger
step. In addition, Bullet fails all the friction experiments including
the screw, arch, and house of cards (Figs. 8 and 7) even with highly
conservative time step size (Δ� = 1/10000 sec).
The story is similar for the medium/full test: ABD (92 ms in

medium and 657 ms in full) is slightly slower than Bullet (68 ms in
medium and 629 ms in full) when Δ� = 1/100 sec2. ABD then takes
the lead under smaller time steps of 1/240 sec and 1/1000 sec. In ad-
dition, Bullet has significantly more inter-penetration instances in
the medium/full tests than in the light test, which generate artifacts
unsuitable for many simulation tasks.
As discussed, ABD’s collision processing directly handles each

body’s input surface mesh boundary with all guarantees, including

2ABD and Bullet have essentially the same FPS in the full test with Δ� = 1/100 sec

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

67:10 • Lan L. et al

ABD Bullet

Fig. 11. Bone dragon. In addition to the simulation algorithm, another difference between ABD and Bullet is the collision detection. ABD allows triangle-level
collision detection to capture local contacts between fine geometries. Bullet is mesh-based and relies on convex decomposition of the model. In some cases,
the decomposition is not accurate enough to approximate concave shapes. This figure shows one of such examples. Both bone dragons and rock spikes are
sharp and concave.

non-intersection, applying directly to those meshes. This means
that control of resolution and so quality is available via standard,
well optimized geometry pipelines, e.g., mesh decimation. Bullet,
however, requires pre-processing to convert all input meshes into
convex decompositions. In turn Bullet will then simulate these de-
composed, simplified models as proxies, resolving collision handling
on them, for each rigid body’s surface rather than the original mesh.
Bullet users often use V-HACD [Mamou et al. 2016], an automated
library for computing convex decomposition, for this process. Utiliz-
ing libraries like V-HACD, can be a slow and often time-consuming
iterative process to hand-tune quality parameters in order to ob-
tain a reasonable geometric approximation and resolution. Even
so important features can be lost while details and symmetries are
often unnecessarily broken. Here, we demonstrate a comparative
example of utilizing detailed, bone dragons in Fig 11 dropped on a
highly featured geometry. After careful hand-tuning of V-HACD
parameters, we present in Fig 11 right the resulting simulation us-
ing our best resulting V-HACD proxies. Here we see the convex
decomposition geometry is still insufficiently detailed to capture
local collision behavior between sharp asperities and convexities. In
contrast, in Fig 11 left, ABD directly simulates the detailed geometry
with tight tolerance so that all the original input meshes’ detailed
affordances are kept. In turn, we see that this allows the dragons’
concavities to tightly entangle and also slide directly onto and be
caught by the sharp points – all while remaining intersection free.

The Bullet library also incorporates amesh-based contact-resolution
collision-resolution (non-default) option with GImpact. In all the
tests we performed, GImpact produces large interpenetrations and
pass-throughs, even under a highly conservative time step sizes
(e.g., Δ� = 1/1000).

5.4 Joint Constraints are Linear for Affine Bodies
An additional benefit of ABD is convenient constraint handling –
especially for the those prescribing rotational DOFs. For instance,
it is common to require multiple objects to obey a given kinematic
relation following the joint connecting them. Such constraints are
often nonlinear as they are formulated from rigid body rotational
DOF. Enforcing them would then require computing the derivatives
of the rotational DOFs (either via constrained Lagrangian methods
or generalized coordinates). Here relaxation from rigid to affine also
eases the processing of these constraints.

Rotataion axis

Fig. 12. ABD constraint
handling. An axis con-
straint becomes linear and
can be easily enforced in
ABD framework.

It is known that a non-degenerate tetra-
hedron uniquely defines an affine trans-
form. This suggests our generalized co-
ordinate � can be mapped to any linear
tetrahedron. From this perspective, an
affine body simulation can also be viewed
as a single-element FEM (with a simpli-
fied strain energy). The geometry of this
element however, can be setup flexibly
even if its position deviates away signif-
icantly from the object. Let � denote the
map between � and this virtual tetrahe-
dron such that � = � (P). P ∈ R3×4 stores
the deformed vertex positions �1, �2, �3, and �4 of the element.
Given its rest shape position P̄, one can easily verify that:

� (P) =
[

1
4
∑
�

(�� − �̄�)� , vec�
(
PP̄� (P̄P̄�)−1

)]�
. (13)

Here, vec(·) denotes the vectorization of a matrix. Since P̄ is given,
we could use vec(P) as the new generalized coordinate of the sys-
tem. Clearly � is a linear function of P. ��/��� only depends on P̄.
Therefore, the Jacobi of the system remains constant:

J� =
���

��
· ��

�vec(P) ∈ R3×12 . (14)

Fig. 13. Constrained simulation. Prescribing rotation freedom in ABD is
convenient. We visualize the generalized coordinate as a virtual tetrahedron,
and most rotational constraints are linearized. We show two examples of
such simulation in this figure. Both pendulum and octopus tentacles are
made of multiple bodies connected via hinge joints. ABD remains signifi-
cantly faster than rigid-IPC: ABD achieves a 371× speedup for the pendulum
and a 28× speedup for the octopus.

In practice, we exploit the fact that P̄ could be any tetrahedron
to manipulate such constraints intuitively. For instance as shown

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

Affine Body Dynamics:
Fast, Stable and Intersection-free Simulation of Stiff Materials • 67:11

Fig. 14. Hybrid simulation. ABD is particularly convenient for simulating hybrid object with both rigid and deformable parts. Both the barbarian ship (225K
triangles, 341K edges) and helicopter (116K triangles, 176K edges) are such hybrid objects with a rigid main body appended by several deformable parts
(canvas, rotors, and wheels). We use standard neo-Hookean FEM to simulate deformable parts, which are constrained to the virtual tetrahedron corresponding
to the rigid body. Due to the involvement of massive DOFs from deformable parts, the simulation uses about 16 sec for one frame under Δ� = 1/100 sec.

in Fig. 12, the gear is constrained to rotate around a prescribed
axis (blue dash line). In ABD, we map � to a tetrahedron and make
sure that one of its edges is parallel to the rotation axis. The axis
constraint can then be simply posed as a linear equality constraint
fixing two vertices of the edge that is parallel to the axis (�2 and
�4 in the figure). Indeed, such formulation is over-constraining as
it eliminates six freedoms instead of two (we should also allow �2
and �4 to move along the edge). However, this hypothetical “over-
constraint” still gives correct simulation because ABD has more
DOFs to simulate than a rigid object. Other constraint types can be
resolved similarly.

Here we demonstrate two applications with joint in Fig. 13. The
pendulum is a simple mechanism with two rigid links constrained
by a hinge. The octopus has eight tentacles, each composed with
five joints. We also compared ABD with rigid-IPC with these mod-
els. ABD does not only provide a simple formulation but also runs
significantly faster (371× and 28× speedups for the pendulum and
octopus respectively). A more challenging experiment is reported in
Fig. 1, where we simulate a more complex mechanism with a set of
28 gears. These gears are coupled by tooth contacts and shafts (see
Fig. 16). There are 2, 450K triangles and 3, 090K edges on the surface
(i.e., those that could participate in culling and CCD). A component-
wise breakdown showing the inter-connectivity of gears is given
in the right of the figure. As the driving torque is applied at one of
the gear (the one with red arrow), the entire device moves forward.
This simulation is a stress test for simulation algorithm robustness.
Because gear teeth are close to each other, highly localized and de-
tailed CCD is massively used. All rigid body simulation algorithms
we have tested fail in this case including rigid-IPC, MuJuCo, and
Bullet. As mentioned, Bullet requires building a convex proxy for
collision processing, which does not capture the zigzag geometry at
the gear tooth. MuJuCo fails the test even under highly conservative
settings (e.g., very small time step size). Rigid-IPC also fails this
experiment: after the first few steps the Newton iteration loops in-
finitely because the curved CCD is unable to find a usable TOI (time
of impact). ABD simulates this scene without issues. Each frame
takes about 12 sec on the CPU. As the majority of the computation
is in CCD processing, we port our i-AABB algorithm to CUDA, and

here the simulation of the gear set reaches an interactive rate (at 5 –
10 FPS).

5.5 Hybrid Simulation
Another benefit of ABD,when viewed as a reduced single-tetrahedron
FEM, is to simulate models with both extremely stiff (close-to-rigid)
and soft components. While existing rigid-body methods could be
augmented to incorporate such hybrid simulations via coupling,
it is particularly seamless and simple in the ABD framework. In
Fig. we demonstrate a hybrid simulation of two barbarian ships each
with a rigid ship body and two deformable canvas sails. Each ship
has 225K surface triangles and 341K edges. The scene collides the
ships with helicopters that are also hybrid with a rigid body, two
soft rotors, and four soft wheels. There are 116K triangles and 176K
edges on each helicopter. After two ships fall into the glass tank,
five helicopters follow, producing interesting effects combining both
rigid and deformable dynamics. Note that the collision between stiff
and soft bodies can be handled uniformly using the barrier-based
penalties. In these hybrid simulations, the Hessian of elastic poten-
tial on the deformable components are much smaller (by several
orders) than the Hessian of the orthogonality potential (�⊥), and the
positive definiteness of the global system matrix can be numerically
compromised. Therefore, LLT factorization (SimplicialLLT) may
fail occasionally. In this case, we switch to LDLT Cholesky for each
Newton solve. A possible remedy for increase numerically stability
is to use Schur complement like formulation [Peiret et al. 2019] to
potentially decouple DOFs from affine and deformable components.

5.6 Timing and Breakdown
Detailed timing statistics are reported in Tab. 2. In all experiments,
we uniformly scale the scene to a 1 × 1 × 1 box and set �̂ as 1/1000.
In other words, if the size of the model is around one meter, the
contact accuracy is guaranteed to be less than one millimeter, while
all model trajectories remain intersection free throughout simula-
tions. We report the comparative timing benchmark of ABD and
rigid-IPC under Δ� = 1/100 in most experiments. Normally, rigid-
IPC remains numerically robust under larger time steps. However,
we see its performance is highly sensitive to a larger Δ� . This is
because the underlying curved CCD quickly becomes prohibitive

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

67:12 • Lan L. et al

Fig. 15. Huge chain net. When the body count increases, the disadvantage of using redundant DOFs in the simulation may become more obvious. Following
this thought, we up scale the chain net to 27, 645 bodies. In this stress test, A-IPC takes about 5 min to simulate one frame on average. The entire simulation
takes about five days with A-IPC. We are never able to finish this test with rigid-IPC. Based on our observation, A-IPC is at least 2, 000× faster than rigid-IPC.
This means it will need several years for rigid-IPC to finish this experiment.

Table 2. Time statistic. Detailed time statistics of our experiments. In most experiments, we tested ABD under three different Δ� settings namely 1/100, 1/50,
and 1/25. # Bdy (number of bodies), # Tri./Edg. (numbers of triangles and edges), �� (time step size), # Iter. (average per-frame iteration counts), and Time
(total time for each frame) are the same measures as in Tab. 1. This table also reports computation time used for Hessian assembly (Hess.), total time used for
solving the linear system in Newton method at each frame (Sol.), time used for triangle-level CCD (CCD), time used for building the collision pairs (Cons.),
and other computations (Misc.) e.g., variables initialization, convergence check etc. In many examples (except for the last four examples), we give comparative
timing information of both ABD and rigid-IPC. The GPU FPS is also reported for Δ� = 1/100 ABD simulations.

Test # Bdy # Tri./Edg. Δ� (sec) # Iter. Hess. (sec) Sol. (ms) CCD (sec) Cons. (sec) Misc. (ms) Time (sec)

Wrecking ball
(Fig. 3) 575 14K/20K

1/100
1/50
1/25

8.8 | 17.1
19.4
42.6

0.023 | 10.3
0.067
0.18

53 | 47
160
444

0.028 | 4.9
0.078
0.23

0.031 | 2.3
0.092
0.027

8 | 53
18
43

0.14 | 17.6 | 18 FPS

0.41
1.1

Small chain net
(Fig. 5) 144 63K/95K

1/100
1/50
1/25

2.1 | 4.0
2.4
2.8

0.011 | 0.18
0.014
0.018

6 | 2
7
9

0.016 | 1.1
0.023
0.29

0.017 | 0.73
0.023
0.032

9 | 6
10
10

0.059 | 2.1 | 143 FPS

0.07
0.08

Big chain net
(Fig. 6) 673 445K/297K

1/100
1/50
1/25

13.5 | 169
24.9
26.3

0.13 | 109
0.25
0.27

241 | 437
440
464

0.41 | 305
0.82
0.93

0.43 | 388
0.87
0.96

62 | 1336
83
86

0.78 | 944 | 5 FPS

2.4
2.7

House of cards
(Fig. 7) 158 336/816

1/100
1/50
1/25

9.8 | 66.5
13.3
25.2

0.014 | 2.49
0.024
0.045

24 | 41
37
64

0.009 | 5.1
0.014
0.035

0.035 | 1.1
0.043
0.074

4 | 46
20
9

0.086 | 8.9 | 42 FPS

0.13
0.24

Screw
(Fig. 8, left) 2 7.9K/5.2K

1/100
1/50
1/25

4.1 | 8.2
3.2
5.7

0.0004 | 0.028
0.0007
0.001

0.1 | 0.1
0.1
0.1

0.039 | 2.5
0.068
0.11

0.039 | 0.096
0.068
0.12

9 | 1
10
10

0.087 | 2.6 | 1K FPS

0.14
0.23

Arch
(Fig. 8, right) 101 1.2K/1.8K

1/100
1/50
1/25

1.9 | 6.2
3.2
5.7

0.002 | 0.13
0.003
0.005

2 | 44
2
3

0.001 | 0.44
0.001
0.003

0.002 | 0.099
0.003
0.006

2 | 3
2
3

0.0087 | 0.67 | 500 FPS

0.013
0.022

Pendulum
(Fig. 13, left) 4 1.3K/2.0K

1/100
1/50
1/25

4.1 | 4.3
4.3
4.7

0.001 | 0.018
0.001
0.001

0.1 | 0.1
0.1
0.1

0.003 | 2.5
0.004
0.005

0.003 | 0.03
0.003
0.004

1 | 1
1
1

0.007 | 2.6 | 1K FPS

0.009
0.01

Octopus
(Fig. 13, right) 41 33K/49K

1/100
1/50
1/25

4.6 | 4.3
5.6
6.7

0.012 | 0.071
0.014
0.017

2 | 0.5
0.2
0.2

0.02 | 0.97
0.03
0.04

0.019 | 0.34
0.025
0.03

5 | 3
6
6

0.05 | 1.4 | 333 FPS

0.07
0.09

Hybrid sim.
(Fig. 5.5) 19+8 1.1M/1.6M

1/100
1/50
1/25

16.7 | –
19.3
25.9

4.3 | –
5.8
7.9

4600 | –
5311
7083

3.5 | –
4.8
7.2

3.4 | –
4.5
6.9

490 | –
562
836

16.4 | – | 0.4 FPS

21.3
30.0

Gear set
(Fig. 1) 28 2.5M/3.1M

1/100
1/50
1/25

16.7 | –
19.3
25.9

4.3 | –
5.8
7.9

4 | –
4
6

5.4 | –
6.3
9.3

6.0 | –
7.9
11.2

211 | –
219
43

11.7 | – | 7.3 FPS

14.5
20.1

Bone dragon
(Fig. 11) 29 1.2M/1.7M 1/100 6.3 0.003 0.2 2.3 0.56 74 2.8

Huge chain net
(Fig. 15) 27,645 12M/18M 1/100 14.2 37.2 87 sec 95 94 7.2 sec 310

when searching over wider trajectory gaps. Therefore, we do not
report our speedup over rigid-IPC for any time steps larger than
Δ� = 1/100 sec. For the chain net example in Fig. 6, the literal
speedup exceeds four-orders in general if we set Δ� = 1/25. We do
not push to this comparison by unnecessary tweaking of the time
step size to these extremes.

The primary portion of our performance improvement is gained
by relaxing the rigidity constraint. This can be observed in two
important metrics in Tab. 2: the iteration count (# Iter.) and the
time needed for CCD processing (CCD). Here we see that as long
as the contact frequency in the simulation is intense, ABD always

requires much fewer iterations to converge than rigid-IPC does. This
difference is “extremized” in the gear set example (Fig. 1), where
ABD needs 17 iterations for each time step, and rigid-IPC needs does
not converge. CCD processing is another major game changer. As
mentioned, rigid-IPC strictly follows the rigidity constraint making
per-step trajectory curved. This curved trajectory is split and con-
verted back to piece-wise line segments again during the CCD. This
conversion is fully avoided in ABD, and one can use any existing
CCD algorithm to detect potential intersection between primitives
and to compute TOI. Recall that CCD must be applied at every
Newton iteration in order to ensure line search does not introduce

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

Affine Body Dynamics:
Fast, Stable and Intersection-free Simulation of Stiff Materials • 67:13

0N 2,000N

Fig. 16. Contact forces at teeth. With the assistance of i-AABB, ABD
efficiently and accurately model the contact forces among gear teeth. This
figure visualizes the force distribution over the gear teeth.

inter-penetrations. Therefore, the performance gap between A-IPC
and rigid-IPC is further scaled by iteration count. Together, these
two factors contribute to 90% of our speedup in complex simula-
tions such as the big chain net (Fig. 6), house of cards (Fig. 7) and
wrecking ball (Fig. 3). In other, relatively lighter simulation experi-
ments, our improved culling and Hessian assembly become more
profitable. Our culling is up to to 90% more effective than conven-
tional BVH-based strategy for models with complex geometry. It is
on average 30% more effective for simpler shapes (e.g., the chain net
or the octopus). In terms of system solve, ABD is typically slower
than existing rigid body methods due to inflated DOFs. However,
this disadvantage is invisible because ABD always enjoys much
fewer iterations and much faster CCD processing. This is our core
inspiration in designing ABD.

Given the above analysis it is reasonable to wonder if increasing
numbers of bodies in a scene would grant a lead to rigid-IPC at a
certain point. To this question we simulate a very large chain net
model with 27, 645 bodies (Fig. 15). Here the result is opposite – we
estimate ABD obtains a ∼ 5, 000× speedup (on CPU). This is just a
rough assessment as we are unable to finish rigid-IPC simulation
in this stress test, which would require several years to complete
currently while ABD finishes the simulation in five days.

6 CONCLUSION
We have introduced a new, simple affine dynamics model and a
carefully customized, easy-to-implement affine IPC algorithm for
the simulation of extremely stiff materials with fidelity, convergence
and reliability. The resulting method is highly suited for simulating
all scenarios and applications where currently rigid body meth-
ods are now popularly employed without, as we have shown, the
current limitations that rigid body models impose. Here we have
demonstrated that ABD obtains orders of magnitude speedup over
state-of-the-art rigid body simulation with comparable guarantees
of non-intersection and convergence. At the same time we have
also shown that ABD obtains both comparable (for easy examples)
and improved (as scene complexity grows) speeds when compared
with highly optimized rigid body libraries that do not have guaran-
tees and so suffer from artifacts and all-out failures that limit their
automated use. While ABD has demonstrated superior robustness
and efficiency, it is, of course, based on numerical discretization of

underlying differential equations. Therefore, ABD could and cer-
tainly fail for extreme simulation conditions. For instance, affine
CCD certainly becomes inaccurate if one rotates a rotor blade for
180 degrees within a single time step.

ABD is custom-suited for parallelization, is also differentiable,
and automatically and directly simulates all input triangulated ge-
ometries. We have shown that, when leveraging the GPU, ABD can
simulate complex contacting systems at interactive rates. With these
combined properties it is then exciting to consider future applica-
tions where ABD’s automation, reliability, and differentiability can
be utilized for computational design, machine learning, and robotics.
In these cases consistent, artifact-free simulation behavior across
shape, material and contact variations, without algorithm parameter
tuning, should accelerate development. We have also shown a few
initial, proofs-of-concept for extensions of ABD to both complex,
jointed stiffmultibody systems, and to hybrid stiff/flexible multibody
systems. Here there also clearly remains significant opportunities
for further development and application of ABD for jointed and hy-
brid systems. Finally, looking ahead, with the popularity and diverse
applications of physical modeling we hope that ABD will provide
the rapidly growing and diverse community of simulation users
with a reliable, differentiable and exceedingly efficient framework
suitable to swap in for all rigid body-type applications.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their constructive comments.
Yin Yang and Lei Lan are partially supported by National Science
Foundation (No. 2011471, 2016414). Chenfanfu Jiang and Minchen
Li are are partially supported by National Science Foundation (No.
2153851, 2153863, 2023780) and Department of Energy (No. ORNL
4000171342).

REFERENCES
Marc Alexa, Daniel Cohen-Or, and David Levin. 2000. As-rigid-as-possible shape

interpolation. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques. 157–164.

Mihai Anitescu and Florian A Potra. 1997. Formulating dynamic multi-rigid-body con-
tact problems with friction as solvable linear complementarity problems. Nonlinear
Dynamics 14, 3 (1997), 231–247.

David Baraff. 1989. Analytical methods for dynamic simulation of non-penetrating
rigid bodies. In Proceedings of the 16th annual conference on Computer graphics and
interactive techniques. 223–232.

David Baraff. 1991. Coping with friction for non-penetrating rigid body simulation.
ACM SIGGRAPH computer graphics 25, 4 (1991), 31–41.

David Baraff. 1994. Fast contact force computation for nonpenetrating rigid bodies.
In Proceedings of the 21st annual conference on Computer graphics and interactive
techniques. 23–34.

David Baraff. 1995. Interactive simulation of solid rigid bodies. IEEE Computer Graphics
and Applications 15, 3 (1995), 63–75.

Joachim Baumgarte. 1972. Stabilization of constraints and integrals of motion in
dynamical systems. Computer methods in applied mechanics and engineering 1, 1
(1972), 1–16.

Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive simulation of rigid body
dynamics in computer graphics. In Computer Graphics Forum, Vol. 33. Wiley Online
Library, 246–270.

Gino van den Bergen. 1997. Efficient collision detection of complex deformable models
using AABB trees. Journal of graphics tools 2, 4 (1997), 1–13.

Javier Bonet and Richard D Wood. 1997. Nonlinear continuum mechanics for finite
element analysis. Cambridge university press.

Robert Bridson, Ronald Fedkiw, and JohnAnderson. 2002. Robust treatment of collisions,
contact and friction for cloth animation. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques. 594–603.

Tyson Brochu, Essex Edwards, and Robert Bridson. 2012. Efficient geometrically exact
continuous collision detection. ACM Transactions on Graphics (TOG) 31, 4 (2012),

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

67:14 • Lan L. et al

1–7.
Michael B Cline and Dinesh K Pai. 2003. Post-stabilization for rigid body simulation

with contact and constraints. In 2003 IEEE International Conference on Robotics and
Automation (Cat. No. 03CH37422), Vol. 3. IEEE, 3744–3751.

Eulalie Coevoet, Otman Benchekroun, and Paul G Kry. 2020. Adaptive merging for
rigid body simulation. ACM Transactions on Graphics (TOG) 39, 4 (2020), 35–1.

Erwin Coumans. 2015. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses. 1.
Peter A Cundall and Otto DL Strack. 1979. A discrete numerical model for granular

assemblies. geotechnique 29, 1 (1979), 47–65.
Evan Drumwright. 2007. A fast and stable penalty method for rigid body simulation.

IEEE transactions on visualization and computer graphics 14, 1 (2007), 231–240.
Christian Duriez, Frederic Dubois, Abderrahmane Kheddar, and Claude Andriot. 2005.

Realistic haptic rendering of interacting deformable objects in virtual environments.
IEEE transactions on visualization and computer graphics 12, 1 (2005), 36–47.

Kenny Erleben. 2007. Velocity-based shock propagation for multibody dynamics
animation. ACM Transactions on Graphics (TOG) 26, 2 (2007), 12–es.

Kenny Erleben. 2017. Rigid body contact problems using proximal operators. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
1–12.

Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M. Kaufman. 2021. Guaranteed
Globally Injective 3D Deformation Processing. ACM Trans. Graph. (SIGGRAPH) 40,
4, Article 75 (2021).

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,
Chenfanfu Jiang, Denis Zorin, Danny M Kaufman, and Daniele Panozzo. 2021.
Intersection-free rigid body dynamics. ACM Transactions on Graphics 40, 4 (2021),
183.

Susan Fisher and Ming C Lin. 2001. Fast penetration depth estimation for elastic bodies
using deformed distance fields. In Proceedings 2001 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the
Next Millennium (Cat. No. 01CH37180), Vol. 1. IEEE, 330–336.

Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. 1996. OBBTree: A hierarchical
structure for rapid interference detection. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques. ACM, 171–180.

Gaël Guennebaud, Benoit Jacob, et al. 2010. Eigen. URl: http://eigen. tuxfamily. org 3
(2010).

Ernst Hairer and Gilles Vilmart. 2006. Preprocessed discrete Moser–Veselov algorithm
for the full dynamics of a rigid body. Journal of Physics A: Mathematical and General
39, 42 (2006), 13225.

Shoichi Hasegawa, Nobuaki Fujii, Katsuhito Akahane, Yasuharu Koike, and Makoto
Sato. 2004. Real-time rigid body simulation for haptic interactions based on contact
volume of polygonal objects. Transactions of the Society of Instrument and Control
Engineers 40, 2 (2004), 122–131.

Kris K Hauser, Chen Shen, and James F O’Brien. 2003. Interactive Deformation Using
Modal Analysis with Constraints.. In Graphics Interface, Vol. 3. 16–17.

Philip Martyn Hubbard. 1995. Collision detection for interactive graphics applications.
IEEE Trans. on Visualization and Computer Graphics 1, 3 (1995), 218–230.

Takeo Igarashi, Tomer Moscovich, and John F Hughes. 2005. As-rigid-as-possible shape
manipulation. ACM transactions on Graphics (TOG) 24, 3 (2005), 1134–1141.

Doug L James and Dinesh K Pai. 2004. BD-tree: output-sensitive collision detection for
reduced deformable models. ACM Trans. Graph. (TOG) 23, 3 (2004), 393–398.

DannyM Kaufman, Timothy Edmunds, and Dinesh K Pai. 2005. Fast frictional dynamics
for rigid bodies. In ACM SIGGRAPH 2005 Papers. 946–956.

Danny M Kaufman, Shinjiro Sueda, Doug L James, and Dinesh K Pai. 2008. Staggered
projections for frictional contact in multibody systems. In ACM SIGGRAPH Asia
2008 papers. 1–11.

Shankar Krishnan, M Gopi, M Lin, Dinesh Manocha, and A Pattekar. 1998. Rapid and
accurate contact determination between spline models using ShellTrees. Computer
Graphics Forum 17, 3 (1998), 315–326.

Lei Lan, Yin Yang, Danny Kaufman, Junfeng Yao, Minchen Li, and Chenfanfu Jiang.
2021. Medial IPC: accelerated incremental potential contact with medial elastics.
ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–16.

Minchen Li. 2020. Robust and Accurate Simulation of Elastodynamics and Contact. Ph.D.
Dissertation. University of Pennsylvania.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020. Incremental potential con-
tact: Intersection-and inversion-free, large-deformation dynamics. ACM transactions
on graphics (2020).

Minchen Li, Danny M. Kaufman, and Chenfanfu Jiang. 2021b. Codimensional In-
cremental Potential Contact. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 170
(2021).

Xuan Li, Yu Fang, Minchen Li, and Chenfanfu Jiang. 2021a. BFEMP: Interpenetration-
free MPM–FEM coupling with barrier contact. Computer Methods in Applied Me-
chanics and Engineering (2021), 114350.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: position-based
simulation of compliant constrained dynamics. In Proceedings of the 9th International
Conference on Motion in Games. 49–54.

Khaled Mamou, E Lengyel, and AK Peters. 2016. Volumetric hierarchical approximate
convex decomposition. In Game Engine Gems 3. AK Peters, 141–158.

Hammad Mazhar, Toby Heyn, Dan Negrut, and Alessandro Tasora. 2015. Using Nes-
terov’s method to accelerate multibody dynamics with friction and contact. ACM
Transactions on Graphics (TOG) 34, 3 (2015), 1–14.

Jean J Moreau. 1988. Unilateral contact and dry friction in finite freedom dynamics. In
Nonsmooth mechanics and Applications. Springer, 1–82.

Guy M Morton. 1966. A computer oriented geodetic data base and a new technique in
file sequencing. (1966).

Jürgen Moser and Alexander P Veselov. 1991. Discrete versions of some classical
integrable systems and factorization of matrix polynomials. Communications in
Mathematical Physics 139, 2 (1991), 217–243.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
based dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

Matthias Müller, Miles Macklin, Nuttapong Chentanez, Stefan Jeschke, and Tae-Yong
Kim. 2020. Detailed rigid body simulation with extended position based dynamics.
In Computer Graphics Forum, Vol. 39. Wiley Online Library, 101–112.

Developer Z Nvidia. 2011. Physx sdk. URL Httpdeveloper Nvidia Comphysx-Downloads
(2011).

Miguel A Otaduy, Daniel Germann, Stephane Redon, and Markus Gross. 2007. Adap-
tive deformations with fast tight bounds. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. 181–190.

Mark Pauly, Dinesh K Pai, and Leonidas J Guibas. 2004. Quasi-rigid objects in contact.
In Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation. 109–119.

Albert Peiret, Sheldon Andrews, József Kövecses, Paul G Kry, and Marek Teichmann.
2019. Schur complement-based substructuring of stiff multibody systems with
contact. ACM Transactions on Graphics (TOG) 38, 5 (2019), 1–17.

Stephane Redon, Ming C Lin, Dinesh Manocha, and Young J Kim. 2005. Fast continuous
collision detection for articulated models. (2005).

Peng Song and Vijay Kumar. 2003. Distributed compliant model for efficient dynamic
simulation of systems with frictional contacts. In International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference,
Vol. 37009. 1009–1018.

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Sympo-
sium on Geometry processing, Vol. 4. 109–116.

David E Stewart. 2000. Rigid-body dynamics with friction and impact. SIAM review 42,
1 (2000), 3–39.

Min Tang, Dinesh Manocha, Miguel A Otaduy, and Ruofeng Tong. 2012. Continuous
penalty forces. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–9.

Min Tang, Ruofeng Tong, Zhendong Wang, and Dinesh Manocha. 2014. Fast and exact
continuous collision detection with bernstein sign classification. ACM Transactions
on Graphics (TOG) 33, 6 (2014), 1–8.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. In Proceedings of the 14th annual conference on Computer graphics
and interactive techniques. 205–214.

Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Gabriel Zachmann, Laks
Raghupathi, Arnulph Fuhrmann, M-P Cani, François Faure, Nadia Magnenat-
Thalmann, Wolfgang Strasser, et al. 2005. Collision detection for deformable objects.
In Computer graphics forum, Vol. 24. Wiley Online Library, 61–81.

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 5026–5033.

Jeffrey C Trinkle, JA Tzitzouris, and Jong-Shi Pang. 2001. Dynamic multi-rigid-body
systems with concurrent distributed contacts. Philosophical Transactions of the Royal
Society of London. Series A: Mathematical, Physical and Engineering Sciences 359,
1789 (2001), 2575–2593.

Bolun Wang, Zachary Ferguson, Teseo Schneider, Xin Jiang, Marco Attene, and Daniele
Panozzo. 2021. A Large-scale Benchmark and an Inclusion-based Algorithm for
Continuous Collision Detection. ACM Transactions on Graphics (TOG) 40, 5 (2021),
1–16.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and
Yajuan Wang. 2014. Intel math kernel library. In High-Performance Computing on
the Intel® Xeon Phi™. Springer, 167–188.

Hongyi Xu, Yili Zhao, and Jernej Barbič. 2014. Implicit multibody penalty-
baseddistributed contact. IEEE transactions on visualization and computer graphics
20, 9 (2014), 1266–1279.

Gabriel Zachmann. 2002. Minimal hierarchical collision detection. In ACM symposium
on Virtual reality software and technology. ACM, 121–128.

Gabriel Zachmann and Elmar Langetepe. 2003. Geometric data structures for computer
graphics. Eurographics Assoc.

Yidong Zhao, Jinhyun Choo, Yupeng Jiang, Minchen Li, Chenfanfu Jiang, and Kenichi
Soga. 2022. A barriermethod for frictional contact on embedded interfaces. Computer
Methods in Applied Mechanics and Engineering 393 (2022), 114820.

ACM Trans. Graph., Vol. 41, No. 4, Article 67. Publication date: July 2022.

	1 Introduction
	2 Related Work
	3 ABD Kinematics
	3.1 Kinetic Energy
	3.2 Orthogonality Potential

	4 Affine IPC
	4.1 Affine CCD
	4.2 Contact Culling via i-AABB
	4.3 Contact-Aware Hessian Construction

